1
Zarlink Semiconductor Inc.
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.
Copyright 2003-2004, Zarlink Semiconductor Inc. All Rights Reserved.
Features
Ιntegrated Single-Chip 10/100/1000 Mbps
Ethernet Switch
16 10/100 Mbps Autosensing, Fast Ethernet
Ports with RMII or Serial Interface (7WS). Each
port can independently use one of the two
interfaces.
2 Gigabit Ports with GMII, PCS, 10/100 options
per port
Serial CPU interface for configuration
Supports two Frame Buffer Memory domains with
SRAM at 100 MHz
Supports memory size 2 MB, or 4 MB
Applies centralized shared memory architecture
Up to 64 K MAC addresses
Maximum throughput is 3.6 Gbps non-blocking
High performance packet forwarding (10.712 M
packets per second) at full wire speed
Full Duplex Ethernet IEEE 802.3x Flow Control
Backpressure flow control for Half Duplex ports
Supports Ethernet multicasting and broadcasting
and flooding control
Supports per-system option to enable flow control
for best effort frames even on QoS-enabled ports
Traffic Classification
4 transmission priorities for Fast Ethernet ports
with 2 dropping levels
Classification based on:
- Port based priority
- VLAN Priority field in VLAN tagged frame
- DS/TOS field in IP packet
- UDP/TCP logical ports: 8 hard-wired and 8
programmable ports, including one
programmable range
The precedence of the above classifications is
programmable
February 2004
Ordering Information
ZL50417/GKC553 PIN HSBGA
-40°C to +85°C
Figure 1 - System Block Diagram
FDB Interface
Frame Data Buffer A
SRAM (1 M / 2 M)
LED
Search
Engine
MCT
Link
Frame Engine
FCB
Management
Module
16 x 10 /100
RMII
Ports 0 - 15
VLAN 1 MCT
Frame Data Buffer B
SRAM (1 M / 2 M)
VLAN 1 MCT
GMII/
Port
0
PCS
GMII/
Port
1
PCS
ZL50417
Unmanaged 16-Port 10/100 M +
2-Port 1 G Ethernet Switch
Data Sheet
ZL50417 Data Sheet
2
Zarlink Semiconductor Inc.
QoS Support
Supports IEEE 802.1p/Q Quality of Service with 4 transmission priority queues with delay bounded, strict
priority, and WFQ service disciplines
Provides 2 levels of dropping precedence with WRED mechanism
User controls the WRED thresholds
Buffer management: per class and per port buffer reservations
Port-based priority: VLAN priority in a tagged frame can be overwritten by the priority of Port VLAN ID.
3 port trunking groups, one for the 2 Gigabit ports, and two groups for 10/100 ports, with up to 4 10/100 ports
per group. Or 8 groups for 10/100 ports with up to 2 10/100 ports per group.
Load sharing among trunked ports can be based on source MAC and/or destination MAC. The Gigabit
trunking group has one more option, based on source port.
Port Mirroring to a dedicated mirroring port
Full set of LED signals provided by a serial interface, or 6 LED signals dedicated to Gigabit port status only
(without serial interface)
Hardware auto-negotiation through serial management interface (MDIO) for Ethernet ports
Built-in reset logic triggered by system malfunction
Built-In Self Test for internal and external SRAM
I²C EEPROM for configuration
553 BGA package
ZL50417 Data Sheet
3
Zarlink Semiconductor Inc.
Description
The ZL50417 is a high density, low cost, high performance, non-blocking Ethernet switch chip. A single chip
provides 16 ports at 10/100 Mbps, 2 ports at 1000 Mbps. The Gigabit ports can also support 10/100 M.
The chip supports up to 64 K MAC addresses. The centralized shared memory architecture permits a very high
performance packet forwarding rate at up to 5.357 M packets per second at full wire speed. The chip is optimized to
provide low-cost, high-performance workgroup switching.
Two Frame Buffer Memory domains utilize cost-effective, high-performance synchronous SRAM with aggregate
bandwidth of 12.8 Gbps to support full wire speed on all ports simultaneously.
With delay bounded, strict priority, and/or WFQ transmission scheduling, and WRED dropping schemes, the
ZL50417 provides powerful QoS functions for various multimedia and mission-critical applications. The chip
provides 4 transmission priorities (8 priorities per Gigabit port) and 2 levels of dropping precedence. Each packet is
assigned a transmission priority and dropping precedence based on the VLAN priority field in a VLAN tagged
frame, or the DS/TOS field, and UDP/TCP logical port fields in IP packets. The ZL50417 recognizes a total of 16
UDP/TCP logical ports, 8 hard-wired and 8 programmable (including one programmable range).
The ZL50417 supports 3 groups of port trunking/load sharing. One group is dedicated to the two Gigabit ports, and
the other two groups to 10/100 ports, where each 10/100 group can contain up to 4 ports. Port trunking/load sharing
can be used to group ports between interlinked switches to increase the effective network bandwidth.
In half-duplex mode, all ports support backpressure flow control, to minimize the risk of losing data during long
activity bursts. In full-duplex mode, IEEE 802.3x flow control is provided. The ZL50417 also supports a per-system
option to enable flow control for best effort frames, even on QoS-enabled ports.
The Physical Coding Sublayer (PCS) is integrated on-chip to provide a direct 10-bit interface for connection to
SERDES chips. The PCS can be bypassed to provide a GMII interface.
The ZL50417 is fabricated using 0.25 micron technology. Inputs, however, are 3.3 V tolerant, and the outputs are
capable of directly interfacing to LVTTL levels. The ZL50417 is packaged in a 553-pin Ball Grid Array package.
ZL50416 Data Sheet
Table of Contents
4
Zarlink Semiconductor Inc.
1.0 Block Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1 Frame Data Buffer (FDB) Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 GMII/PCS MAC Module (GMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Physical Coding Sublayer (PCS) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 10/100 MAC Module (RMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Configuration Interface Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Frame Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 Search Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.8 LED Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.9 Internal Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.0 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Configuration Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 I²C Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Start Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Data Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.6 Stop Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Synchronous Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Write Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Read Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.0 ZL50417 Data Forwarding Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Unicast Data Frame Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Multicast Data Frame Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.0 Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Detailed Memory Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Memory Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.0 Search Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1 Search Engine Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Basic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Search, Learning, and Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3.1 MAC Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.3 Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4 Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.5 Priority Classification Rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.6 Port-Based VLAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.7 Memory Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.0 Frame Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1 Data Forwarding Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 Frame Engine Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2.1 FCB Manager. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.2 Rx Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.3 RxDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.4 TxQ Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3 Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.4 TxDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.0 Quality of Service and Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.1 Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
ZL50416 Data Sheet
Table of Contents
5
Zarlink Semiconductor Inc.
7.2 Four QoS Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.3 Delay Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.4 Strict Priority and Best Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.5 Weighted Fair Queuing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.6 Shaper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.7 WRED Drop Threshold Management Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.8 Buffer Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.8.1 Dropping When Buffers Are Scarce. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.9 ZL50417 Flow Control Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.9.1 Unicast Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.9.2 Multicast Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.10 Mapping to IETF Diffserv Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.0 Port Trunking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.1 Features and Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.2 Unicast Packet Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.3 Multicast Packet Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.4 Trunking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.0 Port Mirroring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
9.1 Port Mirroring Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
9.2 Setting Registers for Port Mirroring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10.0 TBI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
10.1 TBI Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
11.0 GPSI (7WS) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
11.1 GPSI connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
11.2 SCAN LINK and SCAN COL interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
12.0 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
12.1 LED Interface Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
12.2 Port Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
12.3 LED Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
13.0 Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
13.1 ZL50417 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
13.2 (Group 0 Address) MAC Ports Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
13.2.1 ECR1Pn: Port N Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
13.2.2 ECR2Pn: Port N Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
13.2.3 GGControl – Extra GIGA Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
13.3 (Group 1 Address) VLAN Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
13.3.1 AVTCL – VLAN Type Code Register Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
13.3.2 AVTCH – VLAN Type Code Register High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
13.3.3 PVMAP00_0 – Port 00 Configuration Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
13.3.4 PVMAP00_1 – Port 00 Configuration Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
13.3.5 PVMAP00_3 – Port 00 Configuration Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
13.4 Port Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
13.4.1 PVMODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
13.5 (Group 2 Address) Port Trunking Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
13.5.1 TRUNK0_MODE– Trunk group 0 mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
13.5.2 TRUNK1_MODE – Trunk group 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
13.5.3 TRUNK2_MODE – Trunk group 2 mode (Gigabit ports 1 and 2). . . . . . . . . . . . . . . . . . . . . . . . . . 52
13.5.4 RQSS – Receive Queue Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
13.6 (Group 4 Address) Search Engine Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
13.6.1 AGETIME_LOW – MAC address aging time Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
13.6.2 AGETIME_HIGH –MAC address aging time High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
ZL50416 Data Sheet
Table of Contents
6
Zarlink Semiconductor Inc.
13.6.3 SE_OPMODE – Search Engine Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
13.7 (Group 5 Address) Buffer Control/QOS Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
13.7.1 FCBAT – FCB Aging Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
13.7.2 QOSC – QOS Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
13.7.3 FCR – Flooding Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
13.7.4 AVPML – VLAN Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
13.7.5 AVPMM – VLAN Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
13.7.6 AVPMH – VLAN Priority Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
13.7.7 TOSPML – TOS Priority Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
13.7.8 TOSPMM – TOS Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
13.7.9 TOSPMH – TOS Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
13.7.10 AVDM – VLAN Discard Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
13.7.11 TOSDML – TOS Discard Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
13.7.12 BMRC - Broadcast/Multicast Rate Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
13.7.13 UCC – Unicast Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
13.7.14 MCC – Multicast Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
13.7.15 PR100 – Port Reservation for 10/100 ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
13.7.16 PRG – Port Reservation for Giga ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
13.7.17 SFCB – Share FCB Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
13.7.18 C2RS – Class 2 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
13.7.19 C3RS – Class 3 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
13.7.20 C4RS – Class 4 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
13.7.21 C5RS – Class 5 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
13.7.22 C6RS – Class 6 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
13.7.23 C7RS – Class 7 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
13.7.24 QOSCn - Classes Byte Limit Set 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
13.7.25 Classes Byte Limit Set 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
13.7.26 Classes Byte Limit Set 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
13.7.27 Classes Byte Limit Set 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
13.7.28 Classes Byte Limit Giga Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
13.7.29 Classes Byte Limit Giga Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
13.7.30 Classes WFQ Credit Set 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
13.7.31 Classes WFQ Credit Set 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
13.7.32 Classes WFQ Credit Set 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
13.7.33 Classes WFQ Credit Set 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
13.7.34 Classes WFQ Credit Port G1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
13.7.35 Classes WFQ Credit Port G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
13.7.36 Class 6 Shaper Control Port G1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
13.7.37 Class 6 Shaper Control Port G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
13.7.38 RDRC0 – WRED Rate Control 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
13.7.39 RDRC1 – WRED Rate Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
13.7.40 User Defined Logical Ports and Well Known Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
13.7.40.1 USER_PORT0_(0~7) – User Define Logical Port (0~7). . . . . . . . . . . . . . . . . . . . . . . . . . . 68
13.7.40.2 USER_PORT_[1:0]_PRIORITY - User Define Logic Port 1 and 0 Priority . . . . . . . . . . . . . 68
13.7.40.3 USER_PORT_[3:2]_PRIORITY - User Define Logic Port 3 and 2 Priority . . . . . . . . . . . . . 69
13.7.40.4 USER_PORT_[5:4]_PRIORITY - User Define Logic Port 5 and 4 Priority . . . . . . . . . . . . . 69
13.7.40.5 USER_PORT_[7:6]_PRIORITY - User Define Logic Port 7 and 6 Priority . . . . . . . . . . . . . 69
13.7.40.6 USER_PORT_ENABLE[7:0] – User Define Logic 7 to 0 Port Enables . . . . . . . . . . . . . . . 69
13.7.40.7 WELL_KNOWN_PORT[1:0] PRIORITY- Well Known Logic Port 1 and 0 Priority . . . . . . . 70
13.7.40.8 WELL_KNOWN_PORT[3:2] PRIORITY- Well Known Logic Port 3 and 2 Priority . . . . . . . 70
13.7.40.9 WELL_KNOWN_PORT [5:4] PRIORITY- Well Known Logic Port 5 and 4 Priority . . . . . . 70
13.7.40.10 WELL_KNOWN_PORT [7:6] PRIORITY- Well Known Logic Port 7 and 6 Priority . . . . . 70
ZL50416 Data Sheet
Table of Contents
7
Zarlink Semiconductor Inc.
13.7.40.11 WELL KNOWN_PORT_ENABLE [7:0] – Well Known Logic 7 to 0 Port Enables. . . . . . . 71
13.7.40.12 RLOWL – User Define Range Low Bit 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
13.7.40.13 1RLOWH – User Define Range Low Bit 15:8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
13.7.40.14 RHIGHL – User Define Range High Bit 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
13.7.40.15 RHIGHH – User Define Range High Bit 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
13.7.40.16 RPRIORITY – User Define Range Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
13.8 (Group 6 Address) MISC Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
13.8.1 MII_OP0 – MII Register Option 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
13.8.2 MII_OP1 – MII Register Option 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
13.8.3 FEN – Feature Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
13.8.4 MIIC0 – MII Command Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
13.8.5 MIIC1 – MII Command Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
13.8.6 MIIC2 – MII Command Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
13.8.7 MIIC3 – MII Command Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
13.8.8 MIID0 – MII Data Register 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
13.8.9 MIID1 – MII Data Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
13.8.10 LED Mode – LED Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
13.8.11 CHECKSUM - EEPROM Checksum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
13.9 (Group 7 Address) Port Mirroring Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
13.9.1 MIRROR1_SRC – Port Mirror source port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
13.9.2 MIRROR1_DEST – Port Mirror destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
13.9.3 MIRROR2_SRC – Port Mirror source port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
13.9.4 MIRROR2_DEST – Port Mirror destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
13.10 (Group F Address) CPU Access Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
13.10.1 GCR-Global Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
13.10.2 DCR-Device Status and Signature Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
13.10.3 DCR1-Giga port status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
13.10.4 DPST – Device Port Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
13.10.5 DTST – Data read back register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
13.10.6 PLLCR - PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
13.10.7 LCLK - LA_CLK delay from internal OE_CLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
13.10.8 OECLK - Internal OE_CLK delay from SCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
13.10.9 DA – DA Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
13.11 TBI Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
13.11.1 Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
13.11.2 Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
13.11.3 Advertisement Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
13.11.4 Link Partner Ability Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
13.11.5 Expansion Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
13.11.6 Extended Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
14.0 BGA and Ball Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
14.1 BGA Views (TOP-View). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
14.1.1 Ball Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
14.2 Ball Signal Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
14.3 AC/DC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
14.3.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
14.3.2 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
14.3.3 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
14.3.4 Typical Reset & Bootstrap Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
14.4 Local Frame Buffer SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
14.4.1 Local SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
14.5 Local Switch Database SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
ZL50416 Data Sheet
Table of Contents
8
Zarlink Semiconductor Inc.
14.5.1 Local SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
14.6 AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
14.6.1 Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
14.6.2 Gigabit Media Independent Interface - Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
14.6.3 Ten Bit Interface - Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
14.6.4 Gigabit Media Independent Interface - Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
14.6.5 Ten Bit Interface - Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
14.6.6 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
14.6.7 SCANLINK SCANCOL Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
14.6.8 MDIO Input Setup and Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
14.6.9 I²C Input Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
14.6.10 Serial Interface Setup Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
ZL50417 Data Sheet
List of Tables
9
Zarlink Semiconductor Inc.
Table 1 - Supported Memory Configurations (Pipeline SBRAM Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 2 - Options for Memory Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 3 - Two-dimensional World Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 4 - Four QoS Configurations for a 10/100 Mbps Port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 5 - Four QoS Configurations for a Gigabit Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 6 - Mapping between ZL50417 and IETF Diffserv Classes for Gigabit Ports . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 7 - Mapping between ZL50417 and IETF Diffserv Classes for 10/100 Ports . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 8 - ZL50417 Features Enabling IETF Diffserv Standards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 9 - Select via trunk0_mode register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 10 - Select via trunk1_mode register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 11 - Individually Enabled/disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 12 - Reset & Bootstrap Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 13 - Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 14 - Input Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 15 - Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 16 - Input Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 17 - AC Characteristics – LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 18 - SCANLINK, SCANCOL Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 19 - MDIO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 20 - I²C Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 21 - Serial Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
ZL50417 Data Sheet
List of Figures
10
Zarlink Semiconductor Inc.
Figure 1 - System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 2 - Data Transfer Format for I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 3 - Write Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 4 - Read Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 5 - ZL50417 SRAM Interface Block Diagram (DMAs for 10/1000 Ports Only) . . . . . . . . . . . . . . . . . . . . . . 16
Figure 6 - Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 7 - Priority Classification Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 8 - Memory Configuration For: 2 banks, 1 Layer, 2 MB total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 9 - Memory Configuration For: 2 banks, 2 Layers, 4 MB total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 10 - Memory Configuration For: 2 banks, 1 Layer, 4 MB Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 11 - Summary of the Behaviour of the WRED Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 12 - Buffer Partition Scheme Used to Implement Buffer Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 13 - TBI Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 14 - GPSI (7WS) mode connection diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 15 - SCAN LINK and SCAN COLLISON Status Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 16 - Timing Diagram of LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 17 - Typical Reset & Bootstrap Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 18 - Local Memory Interface – Input Setup and Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 19 - Local Memory Interface - Output Valid Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 20 - Local Memory Interface – Input Setup and Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 21 - Local Memory Interface - Output Valid Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 22 - AC Characteristics – Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 23 - AC Characteristics – Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 24 - AC Characteristics- GMII. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 25 - AC Characteristics – Gigabit Media Independent Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 26 - Gigabit TBI Interface Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 27 - Gigabit TBI Interface Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 28 - AC Characteristics- GMII. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 29 - AC Characteristics – Gigabit Media Independent Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 30 - Gigabit TBI Interface Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 31 - Gigabit TBI Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 32 - AC Characteristics – LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 33 - SCANLINK SCANCOL Output Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 34 - SCANLINK, SCANCOL Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 35 - MDIO Input Setup and Hold Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 36 - MDIO Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 37 - I²C Input Setup Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 38 - I²C Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 39 - Serial Interface Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 40 - Serial Interface Output Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
ZL50417 Data Sheet
11
Zarlink Semiconductor Inc.
1.0 Block Functionality
1.1 Frame Data Buffer (FDB) Interfaces
The FDB interface supports pipelined synchronous burst SRAM (SBRAM) memory at 100 MHz. To ensure a non-
blocking switch, two memory domains are required. Each domain has a 64-bit wide memory bus. At 100 MHz, the
aggregate memory bandwidth is 12.8 Gbps, which is enough to support 16 10/100 Mbps and 2 Gigabit ports at full
wire speed switching.
The Switching Database is also located in the external SRAM; it is used for storing MAC addresses and their
physical port number. It is duplicated and stored in both memory domains. Therefore, when the system updates the
contents of the switching database, it has to write the entry to both domains at the same time.
1.2 GMII/PCS MAC Module (GMAC)
The GMII/PCS Media Access Control (MAC) module provides the necessary buffers and control interface between
the Frame Engine (FE) and the external physical device (PHY).
The ZL50417 GMAC implements both GMII and MII interface, which offers a simple migration from 10/100 to 1 G.
The GMAC of the ZL50417 meets the IEEE 802.3Z specification. It is able to operate in 10M/100 M either Half or
Full Duplex mode with a back pressure/flow control mechanism or in 1 G Full duplex mode with flow control
mechanism. Furthermore, it will automatically retransmit upon collision for up to 16 total transmissions. PHY
addresses for GMAC are 01h and 02h.
For fiber optics media, the ZL50417 implements the Physical Code Sublayer (PCS) interface. The PCS includes an
8B10B encoder and decoder, auto-negotiation, and Ten Bit Interface (TBI).
1.3 Physical Coding Sublayer (PCS) Interface
For the ZL50417, the 1000BASE-X PCS Interface is designed internally and may be utilized in the absence of a
GMII. The PCS incorporates all the functions required by the GMII to include encoding (decoding) 8B GMII data to
(from) 8B/10B TBI format for PHY communication and generating Collision Detect (COL) signals for half-duplex
mode. It also manages the Auto negotiation process by informing the management entity that the PHY is ready for
communications. The on-chip TBI may be disabled if TBI exists within the Gigabit PHY. The TBI interface provides
a uniform interface for all 1000 Mbps PHY implementations.
The PCS comprises the PCS Transmit, Synchronization, PCS Receive, and Auto negotiation processes for
1000BASE-X.
The PCS Transmit process sends the TBI signals TXD [9:0] to the physical medium and generates the GMII
Collision Detect (COL) signal based on whether a reception is occurring simultaneously with transmission.
Additionally, the Transmit process generates an internal “transmitting” flag and monitors Auto negotiation to
determine whether to transmit data or to reconfigure the link.
The PCS Synchronization process determines whether or not the receive channel is operational.
The PCS Receive process generates RXD [7:0] on the GMII from the TBI data [9:0], and the internal “receiving” flag
for use by the Transmit processes.
The PCS Auto negotiation process allows the ZL50417 to exchange configuration information between two devices
that share a link segment, and to automatically configure the link for the appropriate speed of operation for both
devices.
ZL50417 Data Sheet
12
Zarlink Semiconductor Inc.
1.4 10/100 MAC Module (RMAC)
The 10/100 Media Access Control module provides the necessary buffers and control interface between the Frame
Engine (FE) and the external physical device (PHY). The ZL50417 has two interfaces, RMII or Serial (only for
10 M). The 10/100 MAC of the ZL50417 device meets the IEEE 802.3 specification. It is able to operate in either
Half or Full Duplex mode with a back pressure/flow control mechanism. In addition, it will automatically retransmit
upon collision for up to 16 total transmissions. The PHY addresses for 16 10/100 MAC are from 08h to 1Fh.
1.5 Configuration Interface Module
The ZL50417 supports a serial and an I2C interface, which provides an easy way to configure the system. Once
configured, the resulting configuration can be stored in an I2C EEPROM.
1.6 Frame Engine
The main function of the frame engine is to forward a frame to its proper destination port or ports. When a frame
arrives, the frame engine parses the frame header (64 bytes) and formulates a switching request, which is sent to
the search engine to resolve the destination port. The arriving frame is moved to the FDB. After receiving a switch
response from the search engine, the frame engine performs transmission scheduling based on the frame’s priority.
The frame engine forwards the frame to the MAC module when the frame is ready to be sent.
1.7 Search Engine
The Search Engine resolves the frame’s destination port or ports according to the destination MAC address (L2) or
IP multicast address (IP multicast packet) by searching the database. It also performs MAC learning, priority
assignment, and trunking functions.
1.8 LED Interface
The LED interface provides a serial interface for carrying 16 + 2 port status signals. It can also provide direct status
pins (6) for the two Gigabit ports.
1.9 Internal Memory
Several internal tables are required and are described as follows:
Frame Control Block (FCB) - Each FCB entry contains the control information of the associated frame stored
in the FDB, e.g,. frame size, read/write pointer, transmission priority, etc.
MCT Link Table - The MCT Link Table stores the linked list of MCT entries that have collisions in the external
MAC Table. The external MAC table is located in the FDB Memory.
Note that the external MAC table is located in the external SSRAM Memory.
2.0 System Configuration
2.1 Configuration Mode
The ZL50417 can be configured by EEPROM (24C02 or compatible) via an I²C interface at boot time, or via a
synchronous serial interface during operation.
2.2 I²C Interface
The I²C interface uses two bus lines, a serial data line (SDA) and a serial clock line (SCL). The SCL line carries the
control signals that facilitate the transfer of information from EEPROM to the switch. Data transfer is 8-bit serial and
bidirectional, at 50 Kbps. Data transfer is performed between master and slave IC using a request /
ZL50417 Data Sheet
13
Zarlink Semiconductor Inc.
acknowledgment style of protocol. The master IC generates the timing signals and terminates data transfer.
Figure 2 depicts the data transfer format.
Figure 2 - Data Transfer Format for I2C Interface
2.2.1 Start Condition
Generated by the master (in our case, the ZL50417). The bus is considered to be busy after the Start condition is
generated. The Start condition occurs if while the SCL line is High, there is a High-to-Low transition of the SDA line.
Other than in the Start condition (and Stop condition), the data on the SDA line must be stable during the High
period of SCL. The High or Low state of SDA can only change when SCL is Low. In addition, when the I²C bus is
free, both lines are High.
2.2.2 Address
The first byte after the Start condition determines which slave the master will select. The slave in our case is the
EEPROM. The first seven bits of the first data byte make up the slave address.
2.2.3 Data Direction
The eighth bit in the first byte after the Start condition determines the direction (R/W) of the message. A master
transmitter sets this bit to W; a master receiver sets this bit to R.
2.2.4 Acknowledgment
Like all clock pulses, the acknowledgment-related clock pulse is generated by the master. However, the transmitter
releases the SDA line (High) during the acknowledgment clock pulse. Furthermore, the receiver must pull down the
SDA line during the acknowledge pulse so that it remains stable Low during the High period of this clock pulse. An
acknowledgment pulse follows every byte transfer.
If a slave receiver does not acknowledge after any byte, then the master generates a Stop condition and aborts the
transfer.
If a master receiver does not acknowledge after any byte, then the slave transmitter must release the SDA line to let
the master generate the Stop condition.
2.2.5 Data
After the first byte containing the address, all bytes that follow are data bytes. Each byte must be followed by an
acknowledge bit. Data is transferred MSB first.
2.2.6 Stop Condition
Generated by the master. The bus is considered to be free after the Stop condition is generated. The Stop condition
occurs if while the SCL line is High, there is a Low-to-High transition of the SDA line.
The I²C interface serves the function of configuring the ZL50417 at boot time. The master is the ZL50417, and the
slave is the EEPROM memory.
START SLAVE ADDRESS R/W ACK DATA 1 (8 bits) ACK DATA2 ACK DATAM ACK STOP
ZL50417 Data Sheet
14
Zarlink Semiconductor Inc.
2.3 Synchronous Serial Interface
The synchronous serial interface serves the function of configuring the ZL50417 not at boot time but via a PC. The
PC serves as master and the ZL50417 serves as slave. The protocol for the synchronous serial interface is nearly
identical to the I²C protocol. The main difference is that there is no acknowledgment bit after each byte of data
transferred.
The unmanaged ZL50417 uses a synchronous serial interface to program the internal registers. To reduce the
number of signals required, the register address, command and data are shifted in serially through the D0 pin.
STROBE- pin is used as the shift clock. AUTOFD- pin is used as data return path.
Each command consists of four parts.
•START pulse
Register Address
Read or Write command
Data to be written or read back
Any command can be aborted in the middle by sending a ABORT pulse to the ZL50417.
A START command is detected when D0 is sampled high when STROBE- rise and D0 is sampled low when
STROBE- fall.
An ABORT command is detected when D0 is sampled low when STROBE- rise and D0 is sampled high when
STROBE- fall.
2.3.1 Write Command
Figure 3 - Write Command
2.3.2 Read Command
Figure 4 - Read Command
STROBE-
D0 A0 A2 ... A9 A10 A11
A1 W D0 D1 D2 D3 D4 D5 D6 D7
START ADDRESS COMMAND DATA
2 Extra clocks after last
transfer
STROBE-
D0
AUTOFD-
A0 A1 A2 ... A9 A10 A11 R
D0 D1 D2 D3 D4 D5 D6 D7
START ADDRESS COMMAND DATA
ZL50417 Data Sheet
15
Zarlink Semiconductor Inc.
All registers in ZL50417 can be modified through this synchronous serial interface.
3.0 ZL50417 Data Forwarding Protocol
3.1 Unicast Data Frame Forwarding
When a frame arrives, it is assigned a handle in memory by the Frame Control Buffer Manager (FCB Manager). An
FCB handle will always be available, because of advance buffer reservations.
The memory (SRAM) interface is two 64-bit buses, connected to two SRAM banks, A and B. The Receive DMA
(RxDMA) is responsible for multiplexing the data and the address. On a port’s “turn,” the RxDMA will move 8 bytes
(or up to the end-of-frame) from the port’s associated RxFIFO into memory (Frame Data Buffer, or FDB).
Once an entire frame has been moved to the FDB, and a good end-of-frame (EOF) has been received, the Rx
interface makes a switch request. The RxDMA arbitrates among multiple switch requests.
The switch request consists of the first 64 bytes of a frame, containing among other things, the source and
destination MAC addresses of the frame. The search engine places a switch response in the switch response
queue of the frame engine when done. Among other information, the search engine will have resolved the
destination port of the frame and will have determined that the frame is unicast.
After processing the switch response, the Transmission Queue Manager (TxQ manager) of the frame engine is
responsible for notifying the destination port that it has a frame to forward to it. But first, the TxQ manager has to
decide whether or not to drop the frame, based on global FDB reservations and usage, as well as TxQ occupancy
at the destination. If the frame is not dropped, then the TxQ manager links the frame’s FCB to the correct per-port-
per-class TxQ. Unicast TxQ’s are linked lists of transmission jobs, represented by their associated frames’ FCB’s.
There is one linked list for each transmission class for each port. There are 4 transmission classes for each of the
16 10/ 100 ports, and 8 classes for each of the two Gigabit ports – a total of 112 unicast queues.
The TxQ manager is responsible for scheduling transmission among the queues representing different classes for a
port. When the port control module determines that there is room in the MAC Transmission FIFO (TxFIFO) for
another frame, it requests the handle of a new frame from the TxQ manager. The TxQ manager chooses among
the head-of-line (HOL) frames from the per-class queues for that port, using a Zarlink Semiconductor scheduling
algorithm.
The Transmission DMA (TxDMA) is responsible for multiplexing the data and the address. On a port’s turn, the
TxDMA will move 8 bytes (or up to the EOF) from memory into the port’s associated TxFIFO. After reading the EOF,
the port control requests a FCB release for that frame. The TxDMA arbitrates among multiple buffer release
requests.
The frame is transmitted from the TxFIFO to the line.
3.2 Multicast Data Frame Forwarding
After receiving the switch response, the TxQ manager has to make the dropping decision. A global decision to drop
can be made, based on global FDB utilization and reservations. If so, then the FCB is released and the frame is
dropped. In addition, a selective decision to drop can be made, based on the TxQ occupancy at some subset of
the multicast packet’s destinations. If so, then the frame is dropped at some destinations but not others, and the
FCB is not released.
If the frame is not dropped at a particular destination port, then the TxQ manager formats an entry in the multicast
queue for that port and class. Multicast queues are physical queues (unlike the linked lists for unicast frames).
There are 2 multicast queues for each of the 16 10/100 ports. The queue with higher priority has room for 32 entries
and the queue with lower priority has room for 64 entries. There are 4 multicast queues for each of the two Gigabit
ports. The size of the queues are: 32 entries (higher priority queue), 32 entries, 32 entries and 64 entries (lower
priority queue). There is one multicast queue for every two priority classes. For the 10/100 ports to map the 8
ZL50417 Data Sheet
16
Zarlink Semiconductor Inc.
transmit priorities into 2 multicast queues, the 2 LSB are discarded. For the gigabit ports to map the 8 transmit
priorities into 4 multicast queues, the LSB are discarded.
During scheduling, the TxQ manager treats the unicast queue and the multicast queue of the same class as one
logical queue. The older head of line of the two queues is forwarded first.
The port control requests a FCB release only after the EOF for the multicast frame has been read by all ports to
which the frame is destined.
4.0 Memory Interface
4.1 Overview
The ZL50417 provides two 64-bit-wide SRAM banks, SRAM Bank A and SRAM Bank B, with a 64-bit bus
connected to each. Each DMA can read and write from both bank A and bank B. The following figure provides an
overview of the ZL50417 SRAM banks.
Figure 5 - ZL50417 SRAM Interface Block Diagram (DMAs for 10/1000 Ports Only)
4.2 Detailed Memory Information
Because the bus for each bank is 64-bits wide, frames are broken into 8-byte granules, written to and read from
memory. The first 8-byte granule gets written to Bank A, the second 8-byte granule gets written to Bank B and so on
in alternating fashion. When reading frames from memory, the same procedure is followed, first from A, then from B
and so on.
The reading and writing from alternating memory banks can be performed with minimal waste of memory
bandwidth. What’s the worst case? For any speed port, in the worst case, a 1-byte-long EOF granule gets written
to Bank A. This means that a 7-byte segment of Bank A bandwidth is idle, and furthermore, the next 8-byte
segment of Bank B bandwidth is idle, because the first 8 bytes of the next frame will be written to Bank A, not B.
This scenario results in a maximum 15 bytes of waste per frame, which is always acceptable because the
interframe gap is 20 bytes.
SRAM Bank A
TXDMA
0-7
TXDMA
8-15 RXDMA
0-7
RXDMA
8-15
SRAM Bank B
ZL50417 Data Sheet
17
Zarlink Semiconductor Inc.
4.3 Memory Requirements
To speed up searching and decrease memory latency, the external MAC address database is duplicated in both
memory banks. To support 64 K MAC address, 4 MB memory is required. When VLAN support is enabled, 512
entries of the MAC address table are used for storing the VLAN ID at VLAN Index Mapping Table.
Up to 2 K Ethernet frame buffers are supported and they will use 3 MB of memory. Each frame uses 1536 bytes.
The maximum system memory requirement is 4 MB. If less memory is desired, the configuration can scale down.
Memory Configuration
Memory Map
Figure 6 - Memory Map
Bank A Bank B Tag based
VLAN Frame Buffer Max MAC Address
1M 1M Disable 1K 32K
1M 1M Enable 1K 31.5K
2M 2M Disable 2K 64K
2M 2M Enable 2K 63.5K
1 M Bank A 1
M Bank B 2 M Bank A 2 M Bank B
0.75 M 0.75 M 1.5 M 1.5 M
0.25 M 0.25 M 0.5 M 0.5 M
Tag based VLAN Disable
1 M Bank A 1 M Bank B 2 M Bank A 2 M Bank B
0.7 5 M 0.75 M
1.5 M
1.5 M
0.25 M – 4 K 0.25 M 0.5 M – 4 K 0.5 M
4 K 4 K 4 K 4 K
Tag based VLAN Enable
Frame Data Buffer (FDR) Area
MAC Address Control Table (MCT) Area
VLAN Table Area
ZL50417 Data Sheet
18
Zarlink Semiconductor Inc.
5.0 Search Engine
5.1 Search Engine Overview
The ZL50417 search engine is optimized for high throughput searching, with enhanced features to support:
Up to 64 K MAC addresses
Up to 255 VLAN and IP Multicast groups
3 groups of port trunking (1 for the two Gigabit ports, and 2 others)
Traffic classification into 4 (or 8 for Gigabit) transmission priorities, and 2 drop precedence levels
Packet filtering
Security
•IP Multicast
Flooding, Broadcast, Multicast Storm Control
MAC address learning and aging
5.2 Basic Flow
Shortly after a frame enters the ZL50417 and is written to the Frame Data Buffer (FDB), the frame engine generates
a Switch Request, which is sent to the search engine. The switch request consists of the first 64 bytes of the frame,
which contain all the necessary information for the search engine to perform its task. When the search engine is
done, it writes to the Switch Response Queue, and the frame engine uses the information provided in that queue for
scheduling and forwarding.
In performing its task, the search engine extracts and compresses the useful information from the 64-byte switch
request. Among the information extracted are the source and destination MAC addresses, the transmission and
discard priorities, whether the frame is unicast or multicast, and VLAN ID. Requests are sent to the external SRAM
to locate the associated entries in the external hash table.
When all the information has been collected from external SRAM, the search engine has to compare the MAC
address on the current entry with the MAC address for which it is searching. If it is not a match, the process is
repeated on the internal MCT Table. All MCT entries other than the first of each linked list are maintained internal to
the chip. If the desired MAC address is still not found, then the result is either learning (source MAC address
unknown) or flooding (destination MAC address unknown).
In addition, port based VLAN information is used to select the correct set of destination ports for the frame (for
multicast), or to verify that the frame’s destination port is associated with the VLAN (for unicast).
If the destination MAC address belongs to a port trunk, then the trunk number is retrieved instead of the port
number. But on which port of the trunk will the frame be transmitted? This is easily computed using a hash of the
source and destination MAC addresses.
As stated earlier, when all the information is compiled the switch response is generated.
5.3 Search, Learning, and Aging
5.3.1 MAC Search
The search block performs source MAC address and destination MAC address searching. As we indicated earlier,
if a match is not found, then the next entry in the linked list must be examined, and so on until a match is found or
the end of the list is reached.
ZL50417 Data Sheet
19
Zarlink Semiconductor Inc.
In port based VLAN mode, a bitmap is used to determine whether the frame should be forwarded to the outgoing
port. When the egress port is not included in the ingress port VLAN bitmap, the packet is discarded.
The MAC search block is also responsible for updating the source MAC address timestamp and the VLAN port
association timestamp, used for aging.
5.3.2 Learning
The learning module learns new MAC addresses and performs port change operations on the MCT database. The
goal of learning is to update this database as the networking environment changes over time.
5.3.3 Aging
Aging time is controlled by register 400h and 401h.
The aging module scans and ages MCT entries based on a programmable “age out” time interval. As we indicated
earlier, the search module updates the source MAC address timestamps for each frame it processes. When an
entry is ready to be aged, the entry is removed from the table.
5.4 Quality of Service
Quality of Service (QoS) refers to the ability of a network to provide better service to selected network traffic over
various technologies. Primary goals of QoS include dedicated bandwidth, controlled jitter and latency (required by
some real-time and interactive traffic), and improved loss characteristics.
Traditional Ethernet networks have had no prioritization of traffic. Without a protocol to prioritize or differentiate
traffic, a service level known as “best effort” attempts to get all the packets to their intended destinations with
minimum delay; however, there are no guarantees. In a congested network or when a low-performance
switch/router is overloaded, “best effort” becomes unsuitable for delay-sensitive traffic and mission-critical data
transmission.
The advent of QoS for packet-based systems accommodates the integration of delay-sensitive video and
multimedia traffic onto any existing Ethernet network. It also alleviates the congestion issues that have previously
plagued such “best effort” networking systems. QoS provides Ethernet networks with the breakthrough technology
to prioritize traffic and ensure that a certain transmission will have a guaranteed minimum amount of bandwidth.
Extensive core QoS mechanisms are built into the ZL50417 architecture to ensure policy enforcement and
buffering of the ingress port, as well as weighted fair-queue(WFQ) scheduling at the egress port.
In the ZL50417, QoS-based policies sort traffic into a small number of classes and mark the packets accordingly.
The QoS identifier provides specific treatment to traffic in different classes, so that different quality of service is
provided to each class. Frame and packet scheduling and discarding policies are determined by the class to which
the frames and packets belong. For example, the overall service given to frames and packets in the premium class
will be better than that given to the standard class; the premium class is expected to experience lower loss rate or
delay.
The ZL50417 supports the following QoS techniques:
In a port-based setup, any station connected to the same physical port of the switch will have the same transmit
priority.
In a tag-based setup, a 3-bit field in the VLAN tag provides the priority of the packet. This priority can be mapped to
different queues in the switch to provide QoS.
In a TOS/DS-based set up, TOS stands for “Type of Service” that may include “minimize delay,” “maximize
throughput,” or “maximize reliability.” Network nodes may select routing paths or forwarding behaviors that are
suitably engineered to satisfy the service request.
ZL50417 Data Sheet
20
Zarlink Semiconductor Inc.
In a logical port-based set up, a logical port provides the application information of the packet. Certain applications
are more sensitive to delays than others; using logical ports to classify packets can help speed up delay sensitive
applications, such as VoIP.
5.5 Priority Classification Rule
Figure 7 shows the ZL50417 priority classification rule.
Figure 7 - Priority Classification Rule
Fix Port Priority ?
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
No
No
Use TOS
Use Logical Port
Use Default Port Settings
Use VLAN Priority
Use Default Port Settings
TOS Precedence over VLAN?
VLAN Tag ? IP Frame ?
IP
(FCR Register, Bit 7)
No
Use Logical Port
ZL50417 Data Sheet
21
Zarlink Semiconductor Inc.
5.6 Port-Based VLAN
An administrator can use the PVMAP Registers to configure the ZL50417 for port-based VLAN (see “Registration
Definition” on page 42). For example, ports 1-3 might be assigned to the Marketing VLAN, ports 4-6 to the
Engineering VLAN, and ports 7-9 to the Administrative VLAN. The ZL50417 determines the VLAN membership of
each packet by noting the port on which it arrives. From there, the ZL50417 determines which outgoing port(s)
is/are eligible to transmit each packet, or whether the packet should be discarded. Gigabit port 0 and 1 are
denoted as Port 25 and 26 respectively.
For example, in the above table a 1 denotes that an outgoing port is eligible to receive a packet from an incoming
port. A 0 (zero) denotes that an outgoing port is not eligible to receive a packet from an incoming port.
In this example:
Data packets received at port #0 are eligible to be sent to outgoing ports 1 and 2.
Data packets received at port #1 are eligible to be sent to outgoing ports 0 and 2.
Data packets received at port #2 are NOT eligible to be sent to ports 0 and 1.
Destination Port Numbers Bit Map
Port Registers 18 2 1 0
Register for Port #0
PVMAP00_0[7:0] to PVMAP00_3[2:0]
0110
Register for Port #1
PVMAP01_0[7:0] to PVMAP01_3[2:0]
0101
Register for Port #2
PVMAP02_0[7:0] to PVMAP02_3[2:0]
0000
Register for Port #18
PVMAP26_0[7:0] to PVMAP26_3[2:0]
0000
ZL50417 Data Sheet
22
Zarlink Semiconductor Inc.
5.7 Memory Configurations
The ZL50417 supports the following memory configurations. Pipeline SBRAM modes support 1 M and 2M per bank
configurations. For detail connection information, please reference the memory application note.
Configuration
1 M per bank
(Bootstrap pin
TSTOUT7 = open)
2 M per bank
(Bootstrap pin
TSTOUT7 = pull down)
Connections
Single Layer
(Bootstrap pin
TSTOUT13 = open)
Two 128 K x 32
SRAM/bank
or
One 128 K x 64 SRAM/bank
Two 256 K x 32
SRAM/bank
Connect 0E# and WE#
Double Layer
(Bootstrap pin
TSTOUT13 = pull
down)
NA Four 128 K x 32
SRAM/bank
or
Two 128 K x 64 SRAM/bank
Connect 0E0# and
WE0#
Connect 0E1# and
WE1#
Table 1 - Supported Memory Configurations (Pipeline SBRAM Mode)
Only Bank A Bank A and Bank B
1M
(SRAM)
2M
(SRAM)
1M/bank
(SRAM)
2M/bank
(SRAM)
ZL50415 X X
ZL50416 X X
ZL50417 X X
ZL50418 XX
Table 2 - Options for Memory Configuration
ZL50417 Data Sheet
23
Zarlink Semiconductor Inc.
Figure 8 - Memory Configuration For: 2 banks, 1 Layer, 2 MB total
Figure 9 - Memory Configuration For: 2 banks, 2 Layers, 4 MB total
A
ddress LA_A[19:3]
SRAM
Memory
128 K
32 bits
Memory
128 K
32 bits
Data LA_D[63:32]
Data LA_D[31:0]
A
ddress LB_A[19:3]
SRAM
Memory
128 K
32 bits
Memory
128 K
32 bits
Data LB_D[63:32]
Data LB_D[31:0]
BANK A (1M One Layer) BANK B (1M One Layer)
Bootstraps: TSTOUT7 = Open, TSTOUT13 = Open, TSTOUT4 = Open
BANK A (2M Two Layers) BANK B (2M Two Layers)
SRAM
Memory
128 K
32 bits
SRAM
Memory
128 K
32 bits
Data LB_D[63:32]
Data LB_D[31:0]
A
ddress LB_A[19:3]
SRAM
Memory
128 K
32 bits
SRAM
Memory
128 K
32 bits
SRAM
Memory
128 K
32 bits
SRAM
Memory
128 K
32 bits
Data LA_D[63:32]
Data LA_D[31:0]
A
ddress LA
_
A[19:3]
SRAM
Memory
128 K
32 bits
SRAM
Memory
128 K
32 bits
Bootstraps: TSTOUT7 = Pull Down, TSTOUT13 = Pull Down, TSTOUT4 = Open
ZL50417 Data Sheet
24
Zarlink Semiconductor Inc.
Figure 10 - Memory Configuration For: 2 banks, 1 Layer, 4 MB Total
6.0 Frame Engine
6.1 Data Forwarding Summary
When a frame enters the device at the RxMAC, the RxDMA will move the data from the MAC RxFIFO to the FDB.
Data is moved in 8-byte granules in conjunction with the scheme for the SRAM interface.
A switch request is sent to the Search Engine. The Search Engine processes the switch request.
A switch response is sent back to the Frame Engine and indicates whether the frame is unicast or multicast, and its
destination port or ports. A VLAN table lookup is performed as well.
A Transmission Scheduling Request is sent in the form of a signal notifying the TxQ manager. Upon receiving a
Transmission Scheduling Request, the device will format an entry in the appropriate Transmission Scheduling
Queue (TxSch Q) or Queues. There are 4 TxSch Q for each 10/100 port (and 8 per Gigabit port), one for each
priority. Creation of a queue entry either involves linking a new job to the appropriate linked list if unicast, or adding
an entry to a physical queue if multicast.
When the port is ready to accept the next frame, the TxQ manager will get the head-of-line (HOL) entry of one of
the TxSch Qs, according to the transmission scheduling algorithm (so as to ensure per-class quality of service).
The unicast linked list and the multicast queue for the same port-class pair are treated as one logical queue. The
older HOL between the two queues goes first. For 10/100 ports multicast queue 0 is associated with unicast queue
0 and multicast queue 1 is associated with unicast queue 2. For Gigabit ports multicast queue 0 is associated with
unicast queue 0, multicast queue 1 with unicast queue 2, multicast queue 2 with unicast queue 4 and multicast
queue 3 with unicast queue 6.
The TxDMA will pull frame data from the memory and forward it granule-by-granule to the MAC TxFIFO of the
destination port.
6.2 Frame Engine Details
This section briefly describes the functions of each of the modules of the ZL50417 frame engine.
A
ddress LA_A[20:3]
SRAM
Memory
256 K
32 bits
Memory
256 K
32 bits
Data LA_D[63:32]
Data LA_D[31:0]
A
ddress LB_A[20:3]
SRAM
Memory
256 K
32 bits
Memory
256 K
32 bits
Data LB_D[63:32]
Data LB_D[31:0]
BANK A (2M One Layer) BANK B (2M One Layer)
Bootstraps: TSTOUT7 = Pull Down, TSTOUT13 = Open, TSTOUT4 = Open
ZL50417 Data Sheet
25
Zarlink Semiconductor Inc.
6.2.1 FCB Manager
The FCB manager allocates FCB handles to incoming frames, and releases FCB handles upon frame departure.
The FCB manager is also responsible for enforcing buffer reservations and limits. The default values can be
determined by referring to Chapter 7. In addition, the FCB manager is responsible for buffer aging, and for linking
unicast forwarding jobs to their correct TxSch Q. The buffer aging can be enabled or disabled by the bootstrap pin
and the aging time is defined in register FCBAT.
6.2.2 Rx Interface
The Rx interface is mainly responsible for communicating with the RxMAC. It keeps track of the start and end of
frame and frame status (good or bad). Upon receiving an end of frame that is good, the Rx interface makes a switch
request.
6.2.3 RxDMA
The RxDMA arbitrates among switch requests from each Rx interface. It also buffers the first 64 bytes of each
frame for use by the search engine when the switch request has been made.
6.2.4 TxQ Manager
First, the TxQ manager checks the per-class queue status and global reserved resource situation, and using this
information, makes the frame dropping decision after receiving a switch response. If the decision is not to drop, the
TxQ manager requests that the FCB manager link the unicast frame’s FCB to the correct per-port-per-class TxQ. If
multicast, the TxQ manager writes to the multicast queue for that port and class. The TxQ manager can also
trigger source port flow control for the incoming frame’s source if that port is flow control enabled. Second, the TxQ
manager handles transmission scheduling; it schedules transmission among the queues representing different
classes for a port. Once a frame has been scheduled, the TxQ manager reads the FCB information and writes to
the correct port control module.
6.3 Port Control
The port control module calculates the SRAM read address for the frame currently being transmitted. It also writes
start of frame information and an end of frame flag to the MAC TxFIFO. When transmission is done, the port control
module requests that the buffer be released.
6.4 TxDMA
The TxDMA multiplexes data and address from port control, and arbitrates among buffer release requests from the
port control modules.
ZL50417 Data Sheet
26
Zarlink Semiconductor Inc.
7.0 Quality of Service and Flow Control
7.1 Model
Quality of service is an all-encompassing term for which different people have different interpretations. In general,
the approach to quality of service described here assumes that we do not know the offered traffic pattern. We also
assume that the incoming traffic is not policed or shaped. Furthermore, we assume that the network manager
knows his applications, such as voice, file transfer, or web browsing, and their relative importance. The manager
can then subdivide the applications into classes and set up a service contract with each. The contract may consist
of bandwidth or latency assurances per class. Sometimes it may even reflect an estimate of the traffic mix offered to
the switch. As an added bonus, although we do not assume anything about the arrival pattern, if the incoming traffic
is policed or shaped, we may be able to provide additional assurances about our switch’s performance.
Table 3 shows examples of QoS applications with three transmission priorities, but best effort (P0) traffic may form
a fourth class with no bandwidth or latency assurances. Gigabit ports actually have eight total transmission
priorities.
A class is capable of offering traffic that exceeds the contracted bandwidth. A well-behaved class offers traffic at a
rate no greater than the agreed-upon rate. By contrast, a misbehaving class offers traffic that exceeds the agreed-
upon rate. A misbehaving class is formed from an aggregation of misbehaving microflows. To achieve high link
utilization, a misbehaving class is allowed to use any idle bandwidth. However, such leniency must not degrade the
quality of service (QoS) received by well-behaved classes.
As Table 3 illustrates, the six traffic types may each have their own distinct properties and applications. As shown,
classes may receive bandwidth assurances or latency bounds. In the table, P3, the highest transmission class,
requires that all frames be transmitted within 1 ms, and receives 50% of the 100 Mbps of bandwidth at that port.
Goals
Total Assured
Bandwidth (user
defined)
Low Drop Probability
(low-drop)
High Drop Probability
(high-drop)
Highest transmission
priority, P3
50 Mbps Apps: phone calls,
circuit emulation.
Latency: < 1 ms.
Drop: No drop if P3 not
oversubscribed.
Apps: training video.
Latency: < 1 ms.
Drop: No drop if P3 not
oversubscribed; first P3 to
drop otherwise.
Middle transmission
priority, P2
37.5 Mbps Apps: interactive apps,
Web business.
Latency: < 4-5 ms.
Drop: No drop if P2 not
oversubscribed.
Apps: non-critical
interactive apps.
Latency: < 4-5 ms.
Drop: No drop if P2 not
oversubscribed; firstP2 to
drop otherwise.
Low transmission
priority, P1
12.5 Mbps Apps: emails, file
backups.
Latency: < 16 ms
desired, but not critical.
Drop: No drop if P1 not
oversubscribed.
Apps: casual web
browsing.
Latency: < 16 ms desired,
but not critical.
Drop: No drop if P1 not
oversubscribed; first to
drop otherwise.
Total 100 Mbps
Table 3 - Two-dimensional World Traffic
ZL50417 Data Sheet
27
Zarlink Semiconductor Inc.
Best-effort (P0) traffic forms a fourth class that only receives bandwidth when none of the other classes have any
traffic to offer. It is also possible to add a fourth class that has strict priority over the other three; if this class has
even one frame to transmit, then it goes first. In the ZL50417, each 10/100 Mbps port will support four total classes,
and each 1000 Mbps port will support eight classes. We will discuss the various modes of scheduling these classes
in the next section.
In addition, each transmission class has two subclasses, high-drop and low-drop. Well-behaved users should rarely
lose packets. But poorly behaved users – users who send frames at too high a rate – will encounter frame loss, and
the first to be discarded will be high-drop. Of course, if this is insufficient to resolve the congestion, eventually some
low-drop frames are dropped, and then all frames in the worst case.
Table 3 shows that different types of applications may be placed in different boxes in the traffic table. For example,
casual web browsing fits into the category of high-loss, high-latency-tolerant traffic, whereas VoIP fits into the
category of low-loss, low-latency traffic.
7.2 Four QoS Configurations
There are four basic pieces to QoS scheduling in the ZL50417: strict priority (SP), delay bound, weighted fair
queuing (WFQ), and best effort (BE). Using these four pieces, there are four different modes of operation, as shown
in the tables below. For 10/100 Mbps ports, the following registers select these modes:
QOSC40 [7:6] and QOSC48 [7:6] select these modes for the first and second gigabit ports, respectively.
The default configuration for a 10/100 Mbps port is three delay-bounded queues and one best-effort queue. The
delay bounds per class are 0.8 ms for P3, 3.2 ms for P2, and 12.8 ms for P1. For a 1 Gbps port, we have a default
of six delay-bounded queues and two best-effort queues. The delay bounds for a 1 Gbps port are 0.16 ms for P7
and P6, 0.32 ms for P5, 0.64 ms for P4, 1.28 ms for P3, and 2.56 ms for P2. Best effort traffic is only served when
QOSC24 [7:6]_CREDIT_C00
QOSC28 [7:6]_CREDIT_C10
QOSC32 [7:6]_CREDIT_C20
QOSC36 [7:6]_CREDIT_C30
P3 P2 P1 P0
Op1 (default) Delay Bound BE
Op2 SP Delay Bound BE
Op3 SP WFQ
Op4 WFQ
Table 4 - Four QoS Configurations for a 10/100 Mbps Port
P7 P6 P5 P4 P3 P2 P1 P0
Op1 (default) Delay Bound BE
Op2 SP Delay Bound BE
Op3 SP WFQ
Op4 WFQ
Table 5 - Four QoS Configurations for a Gigabit Port
ZL50417 Data Sheet
28
Zarlink Semiconductor Inc.
there is no delay-bounded traffic to be served. For a 1 Gbps port, where there are two best-effort queues, P1 has
strict priority over P0.
We have a second configuration for a 10/100 Mbps port in which there is one strict priority queue, two delay
bounded queues, and one best effort queue. The delay bounds per class are 3.2 ms for P2 and 12.8 ms for P1. If
the user is to choose this configuration, it is important that P3 (SP) traffic be either policed or implicitly bounded
(e.g. if the incoming P3 traffic is very light and predictably patterned). Strict priority traffic, if not admission-controlled
at a prior stage to the ZL50417, can have an adverse effect on all other classes’ performance. For a 1 Gbps port,
P7 and P6 are both SP classes, and P7 has strict priority over P6. In this case, the delay bounds per class are 0.32
ms for P5, 0.64 ms for P4, 1.28 ms for P3, and 2.56 ms for P2.
The third configuration for a 10/100 Mbps port contains one strict priority queue and three queues receiving a
bandwidth partition via WFQ. As in the second configuration, strict priority traffic needs to be carefully controlled. In
the fourth configuration, all queues are served using a WFQ service discipline.
7.3 Delay Bound
In the absence of a sophisticated QoS server and signaling protocol, the ZL50417 may not know the mix of
incoming traffic ahead of time. To cope with this uncertainty, our delay assurance algorithm dynamically adjusts its
scheduling and dropping criteria, guided by the queue occupancies and the due dates of their head-of-line (HOL)
frames. As a result, we assure latency bounds for all admitted frames with high confidence, even in the presence of
system-wide congestion. Our algorithm identifies misbehaving classes and intelligently discards frames at no
detriment to well-behaved classes. Our algorithm also differentiates between high-drop and low-drop traffic with a
weighted random early drop (WRED) approach. Random early dropping prevents congestion by randomly dropping
a percentage of high-drop frames even before the chip’s buffers are completely full, while still largely sparing low-
drop frames. This allows high-drop frames to be discarded early, as a sacrifice for future low-drop frames. Finally,
the delay bound algorithm also achieves bandwidth partitioning among classes.
7.4 Strict Priority and Best Effort
When strict priority is part of the scheduling algorithm, if a queue has even one frame to transmit, it goes first. Two
of our four QoS configurations include strict priority queues. The goal is for strict priority classes to be used for IETF
expedited forwarding (EF), where performance guarantees are required. As we have indicated, it is important that
strict priority traffic be either policed or implicitly bounded, so as to keep from harming other traffic classes.
When best effort is part of the scheduling algorithm, a queue only receives bandwidth when none of the other
classes have any traffic to offer. Two of our four QoS configurations include best effort queues. The goal is for best
effort classes to be used for non-essential traffic, because we provide no assurances about best effort performance.
However, in a typical network setting, much best effort traffic will indeed be transmitted, and with an adequate
degree of expediency.
Because we do not provide any delay assurances for best effort traffic, we do not enforce latency by dropping best
effort traffic. Furthermore, because we assume that strict priority traffic is carefully controlled before entering the
ZL50417, we do not enforce a fair bandwidth partition by dropping strict priority traffic. To summarize, dropping to
enforce bandwidth or delay does not apply to strict priority or best effort queues. We only drop frames from best
effort and strict priority queues when global buffer resources become scarce.
ZL50417 Data Sheet
29
Zarlink Semiconductor Inc.
7.5 Weighted Fair Queuing
In some environments – for example, in an environment in which delay assurances are not required, but precise
bandwidth partitioning on small time scales is essential, WFQ may be preferable to a delay-bounded scheduling
discipline. The ZL50417 provides the user with a WFQ option with the understanding that delay assurances can not
be provided if the incoming traffic pattern is uncontrolled. The user sets four WFQ “weights” (eight for Gigabit ports)
such that all weights are whole numbers and sum to 64. This provides per-class bandwidth partitioning with error
within 2%.
In WFQ mode, though we do not assure frame latency, the ZL50417 still retains a set of dropping rules that helps to
prevent congestion and trigger higher level protocol end-to-end flow control.
As before, when strict priority is combined with WFQ, we do not have special dropping rules for the strict priority
queues, because the input traffic pattern is assumed to be carefully controlled at a prior stage. However, we do
indeed drop frames from SP queues for global buffer management purposes. In addition, queue P0 for a 10/100
port (and queues P0 and P1 for a Gigabit port) are treated as best effort from a dropping perspective, though they
still are assured a percentage of bandwidth from a WFQ scheduling perspective. What this means is that these
particular queues are only affected by dropping when the global buffer count becomes low.
7.6 Shaper
Although traffic shaping is not a primary function of the ZL50417, the chip does implement a shaper for expedited
forwarding (EF). Our goal in shaping is to control the peak and average rate of traffic exiting the ZL50417. Shaping
is limited to the two Gigabit ports only, and only to class P6 (the second highest priority). This means that class P6
will be the class used for EF traffic. If shaping is enabled for P6, then P6 traffic must be scheduled using strict
priority. With reference to Table 8, only the middle two QoS configurations may be used.
Peak rate is set using a programmable whole number, no greater than 64. For example, if the setting is 32, then the
peak rate for shaped traffic is 32/64 * 1000 Mbps = 500 Mbps. Average rate is also a programmable whole number,
no greater than 64, and no greater than the peak rate. For example, if the setting is 16, then the average rate for
shaped traffic is 16/64 * 1000 Mbps = 250 Mbps. As a consequence of the above settings in our example, shaped
traffic will exit the ZL50417 at a rate always less than 500 Mbps, and averaging no greater than 250 Mbps. See
Programming QoS Register application note for more information.
Also, when shaping is enabled, it is possible for a P6 queue to explode in length if fed by a greedy source. The
reason is that a shaper is by definition not work-conserving; that is, it may hold back from sending a packet even if
the line is idle. Though we do have global resource management, we do nothing to prevent this situation locally. We
assume SP traffic is policed at a prior stage to the ZL50417.
7.7 WRED Drop Threshold Management Support
To avoid congestion, the Weighted Random Early Detection (WRED) logic drops packets according to specified
parameters. The following table summarizes the behavior of the WRED logic.
Figure 11 - Summary of the Behaviour of the WRED Logic
In KB (kilobytes) P3 P2 P1 High Drop Low Drop
Level 1
N 120
P3 AKB P2 BKB P1 CKB
X% 0%
Level 2
N 140
Y% Z%
Level 3
N 160
100% 100%
ZL50417 Data Sheet
30
Zarlink Semiconductor Inc.
Px is the total byte count, in the priority queue x. The WRED logic has three drop levels, depending on the value of
N, which is based on the number of bytes in the priority queues. If delay bound scheduling is used, N equals
P3*16+P2*4+P1. If using WFQ scheduling, N equals P3+P2+P1. Each drop level from one to three has defined
high-drop and low-drop percentages, which indicate the minimum and maximum percentages of the data that can
be discarded. The X, Y Z percent can be programmed by the register RDRC0, RDRC1. In Level 3, all packets are
dropped if the bytes in each priority queue exceed the threshold. Parameters A, B, C are the byte count thresholds
for each priority queue. They can be programmed by the QOS control register (refer to the register group 5). See
Programming QoS Registers Application Note for more information.
7.8 Buffer Management
Because the number of FDB slots is a scarce resource, and because we want to ensure that one misbehaving
source port or class cannot harm the performance of a well-behaved source port or class, we introduce the concept
of buffer management into the ZL50417. Our buffer management scheme is designed to divide the total buffer
space into numerous reserved regions and one shared pool, as shown in Figure 12 on page 31.
As shown in the figure, the FDB pool is divided into several parts. A reserved region for temporary frames stores
frames prior to receiving a switch response. Such a temporary region is necessary, because when the frame first
enters the ZL50417, its destination port and class are as yet unknown, and so the decision to drop or not needs to
be temporarily postponed. This ensures that every frame can be received first before subjecting them to the frame
drop discipline after classifying.
Six reserved sections, one for each of the first six priority classes, ensure a programmable number of FDB slots per
class. The lowest two classes do not receive any buffer reservation. Furthermore, even for 10/100 Mbps ports, a
frame is stored in the region of the FDB corresponding to its class. As we have indicated, the eight classes use only
four transmission scheduling queues for 10/100 Mbps ports, but as far as buffer usage is concerned, there are still
eight distinguishable classes.
Another segment of the FDB reserves space for each of the 18 ports. Two parameters can be set, one for the
source port reservation for 10/100 Mbps ports, and one for the source port reservation for 1 Gbps ports. These 18
reserved regions make sure that no well-behaved source port can be blocked by another misbehaving source port.
In addition, there is a shared pool, which can store any type of frame. The frame engine allocates the frames first in
the six priority sections. When the priority section is full or the packet has priority 1 or 0, the frame is allocated in the
shared poll. Once the shared poll is full the frames are allocated in the section reserved for the source port.
The following registers define the size of each section of the Frame data Buffer:
PR100- Port Reservation for 10/100 Ports
PRG- Port Reservation for Giga Ports
SFCB- Share FCB Size
C2RS- Class 2 Reserve Size
C3RS- Class 3 Reserve Size
C4RS- Class 4 Reserve Size
C5RS- Class 5 Reserve Size
C6RS- Class 6 Reserve Size
C7RS- Class 7 Reserve Size
ZL50417 Data Sheet
31
Zarlink Semiconductor Inc.
Figure 12 - Buffer Partition Scheme Used to Implement Buffer Management
7.8.1 Dropping When Buffers Are Scarce
Summarizing the two examples of local dropping discussed earlier in this chapter:
If a queue is a delay-bounded queue, we have a multilevel WRED drop scheme, designed to control delay and
partition bandwidth in case of congestion.
If a queue is a WFQ-scheduled queue, we have a multilevel WRED drop scheme, designed to prevent congestion.
In addition to these reasons for dropping, we also drop frames when global buffer space becomes scarce. The
function of buffer management is to make sure that such dropping causes as little blocking as possible.
7.9 ZL50417 Flow Control Basics
Because frame loss is unacceptable for some applications, the ZL50417 provides a flow control option. When flow
control is enabled, scarcity of buffer space in the switch may trigger a flow control signal; this signal tells a source
port that is sending a packet to this switch, to temporarily hold off.
While flow control offers the clear benefit of no packet loss, it also introduces a problem for quality of service. When
a source port receives an Ethernet flow control signal, all microflows originating at that port, well-behaved or not,
are halted. A single packet destined for a congested output can block other packets destined for uncongested
outputs. The resulting head-of-line blocking phenomenon means that quality of service cannot be assured with high
confidence when flow control is enabled.
In the ZL50417, each source port can independently have flow control enabled or disabled. For flow control
enabled ports, by default all frames are treated as lowest priority during transmission scheduling. This is done so
that those frames are not exposed to the WRED Dropping scheme. Frames from flow control enabled ports feed to
only one queue at the destination, the queue of lowest priority. What this means is that if flow control is enabled for
a given source port, then we can guarantee that no packets originating from that port will be lost, but at the possible
shared pool S
per-source
reservations
(24 10/100 M, CPU)
temporary
reservation
per-class
reservation
ZL50417 Data Sheet
32
Zarlink Semiconductor Inc.
expense of minimum bandwidth or maximum delay assurances. In addition, these “downgraded” frames may only
use the shared pool or the per-source reserved pool in the FDB; frames from flow control enabled sources may not
use reserved FDB slots for the highest six classes (P2-P7).
The ZL50417 does provide a system-wide option of permitting normal QoS scheduling (and buffer use) for frames
originating from flow control enabled ports. When this programmable option is active, it is possible that some
packets may be dropped, even though flow control is on. The reason is that intelligent packet dropping is a major
component of the ZL50417’s approach to ensuring bounded delay and minimum bandwidth for high priority flows.
7.9.1 Unicast Flow Control
For unicast frames, flow control is triggered by source port resource availability. Recall that the ZL50417’s buffer
management scheme allocates a reserved number of FDB slots for each source port. If a programmed number of a
source port’s reserved FDB slots have been used, then flow control Xoff is triggered.
Xon is triggered when a port is currently being flow controlled, and all of that port’s reserved FDB slots have been
released.
Note that the ZL50417’s per-source-port FDB reservations assure that a source port that sends a single frame to a
congested destination will not be flow controlled.
7.9.2 Multicast Flow Control
In unmanaged mode, flow control for multicast frames is triggered by a global buffer counter. When the system
exceeds a programmable threshold of multicast packets, Xoff is triggered. Xon is triggered when the system returns
below this threshold.
In addition, each source port has a 18-bit port map recording which port or ports of the multicast frame’s fanout
were congested at the time Xoff was triggered. All ports are continuously monitored for congestion, and a port is
identified as uncongested when its queue occupancy falls below a fixed threshold. When all those ports that were
originally marked as congested in the port map have become uncongested, then Xon is triggered, and the 18-bit
vector is reset to zero.
7.10 Mapping to IETF Diffserv Classes
The mapping between priority classes discussed in this chapter and elsewhere is shown below.
Table 6 - Mapping between ZL50417 and IETF Diffserv Classes for Gigabit Ports
As the table illustrates, P7 is used solely for network management (NM) frames. P6 is used for expedited
forwarding service (EF). Classes P2 through P5 correspond to an assured forwarding (AF) group of size 4. Finally,
P0 and P1 are two best effort (BE) classes.
ZL504xx P7 P6 P5 P4 P3 P2 P1 P0
IETF NM EF AF0 AF1 AF2 AF3 BE0 BE1
ZL50417 Data Sheet
33
Zarlink Semiconductor Inc.
For 10/100 Mbps ports, the classes of Table 7 are merged in pairs—one class corresponding to NM+EF, two AF
classes, and a single BE class.
Features of the ZL50417 that correspond to the requirements of their associated IETF classes are summarized in
the table below.
8.0 Port Trunking
8.1 Features and Restrictions
A port group (i.e., trunk) can include up to 4 physical ports, but when using stack all of the ports in a group must be
in the same ZL50417.
The two Gigabit ports may also be trunked together. There are three trunk groups total, including the option to trunk
Gigabit ports.
Load distribution among the ports in a trunk for unicast is performed using hashing based on source MAC address
and destination MAC address. Three other options include source MAC address only, destination MAC address
only, and source port (in bidirectional ring mode only). Load distribution for multicast is performed similarly.
The ZL50417 also provides a safe fail-over mode for port trunking automatically. If one of the ports in the trunking
group goes down, the ZL50417 will automatically redistribute the traffic over to the remaining ports in the trunk.
ZL504xx P3 P2 P1 P0
IETF NM+EF AF0 AF1 BE0
Table 7 - Mapping between ZL50417 and IETF Diffserv Classes for 10/100 Ports
Network management (NM) and
Expedited forwarding (EF)
Global buffer reservation for NM and EF
Shaper for EF traffic on 1 Gbps ports
Option of strict priority scheduling
No dropping if admission controlled
Assured forwarding (AF) Four AF classes for 1 Gbps ports
Programmable bandwidth partition, with option of
WFQ service
Option of delay-bounded service keeps delay
under fixed levels even if not admission-
controlled
Random early discard, with programmable levels
Global buffer reservation for each AF class
Best effort (BE) Two BE classes for 1 Gbps ports
Service only when other queues are idle means
that QoS not adversely affected
Random early discard, with programmable levels
Traffic from flow control enabled ports
automatically classified as BE
Table 8 - ZL50417 Features Enabling IETF Diffserv Standards
ZL50417 Data Sheet
34
Zarlink Semiconductor Inc.
8.2 Unicast Packet Forwarding
The search engine finds the destination MCT entry, and if the status field says that the destination port found
belongs to a trunk, then the group number is retrieved instead of the port number. In addition, if the source address
belongs to a trunk, then the source port’s trunk membership register is checked.
A hash key, based on some combination of the source and destination MAC addresses for the current packet,
selects the appropriate forwarding port, as specified in the Trunk_Hash registers.
8.3 Multicast Packet Forwarding
For multicast packet forwarding, the device must determine the proper set of ports from which to transmit the
packet based on the VLAN index and hash key.
Two functions are required in order to distribute multicast packets to the appropriate destination ports in a port
trunking environment.
Determining one forwarding port per group.
Preventing the multicast packet from looping back to the source trunk.
The search engine needs to prevent a multicast packet from sending to a port that is in the same trunk group with
the source port. This is because, when we select the primary forwarding port for each group, we do not take the
source port into account. To prevent this, we simply apply one additional filter, so as to block that forwarding port for
this multicast packet.
8.4 Trunking
In this mode, 3 trunk groups are supported. Groups 0 and 1 can trunk up to 4 10/100 ports. Group 2 can trunk 2
Gigabit ports. The supported combinations are shown in the following table.
The trunks are individually enabled/disabled by controlling pin trunk 0, 1, 2.
Group 0 Port 0 Port 1 Port 2 Port 3
DD
DDD
DDDD
Table 9 - Select via trunk0_mode register
Group 1 Port 4 Port 5 Port 6 Port 7
DD
DDDD
Table 10 - Select via trunk1_mode register
Group 2 Port 25 (Giga 0) Port 26 (Giga 1)
DD
Table 11 - Individually Enabled/disabled
ZL50417 Data Sheet
35
Zarlink Semiconductor Inc.
9.0 Port Mirroring
9.1 Port Mirroring Features
The received or transmitted data of any 10/100 port in the ZL50417 chip can be “mirrored” to any other port. We
support two such mirrored source-destination pairs. A mirror port can not also serve as a data port.
9.2 Setting Registers for Port Mirroring
MIRROR1_SRC: Sets the source port for the first port mirroring pair. Bits [4:0] select the source port to be mirrored.
An illegal port number is used to disable mirroring (which is the default setting). Bit [5] is used to select between
ingress (Rx) or egress (Tx) data.
MIRROR1_DEST: Sets the destination port for the first port mirroring pair. Bits [4:0] select the destination port to be
mirrored.
MIRROR2_SRC: Sets the source port for the second port mirroring pair. Bits [4:0] select the source port to be
mirrored. An illegal port number is used to disable mirroring (which is the default setting). Bit [5] is used to select
between ingress (Rx) or egress (Tx) data.
MIRROR2_DEST: Sets the destination port for the second port mirroring pair. Bits [4:0] select the destination port to
be mirrored. The default is port 0.
Refer to Port Mirroring Application Notes for further information.
ZL50417 Data Sheet
36
Zarlink Semiconductor Inc.
10.0 TBI Interface
10.1 TBI Connection
The TBI interface can be used for 1000 Mbps fiber operation. In this mode, the ZL50417 is connected to the Serdes
as shown in Figure 13. There are two TBI interfaces in the ZL50417 devices. To enable to TBI function, the
corresponding TXEN and TXER pins need to be boot strapped. See Ball – Signal Description for details.
Figure 13 - TBI Connection
ZL50417 SERDES
M25/26_TXD[9:0]
M25/26_TXCLK
M25/26_RXCLK
M25/26_COL
M25/26_RXD[9:0]
RBC0
RBC1
T[9:0]
R[9:0]
REFCLK
ZL50417 Data Sheet
37
Zarlink Semiconductor Inc.
11.0 GPSI (7WS) Interface
11.1 GPSI connection
The 10/100 RMII ethernet port can function in GPSI (7WS) mode when the corresponding TXEN pin is strapped
low with a 1 K pull down resistor. In this mode, the TXD[0], TXD[1], RXD[0] and RXD[1] serve as TX data, TX clock,
RX data and RX clock respectively. The link status and collision from the PHY are multiplexed and shifted into the
switch device through external glue logic. The duplex of the port can be controlled by programming the ECR
register. The GPSI interface can be operated in port based VLAN mode only.
Figure 14 - GPSI (7WS) mode connection diagram
5041X
Port 0
Ethernet
PHY
crs
rxd
rx_clk
tx_clk
txd
txen
TXD[1]
TXD[0]
TXEN
RXD[1]
RXD[0]
CRS_DV
Port 15
Ethernet
PHY
Link
Serializer
(CPLD)
link0
link1
link2
link15
SCAN_LINK
SCAN_CLK
Collision
Serializer
(CPLD)
col0
col1
col2
col15
SCAN_COL
ZL50417 Data Sheet
38
Zarlink Semiconductor Inc.
11.2 SCAN LINK and SCAN COL interface
An external CPLD logic is required to take the link signals and collision signals from the GPSI PHYS and shift them
into the switch device. The switch device will drive out a signature to indicate the start of the sequence. After that,
the CPLD should shift in the link and collision status of the PHYS as shown in the figure. The extra link status
indicates the polarity of the link signal. One indicates the polarity of the link signal is active high.
Figure 15 - SCAN LINK and SCAN COLLISON Status Diagram
scan_clk
scan_link/
scan_col
Drived by ZL5041x Drived by CPLD
25 cycles for link/
24 cycles for col
Total 32 cycles period
ZL50417 Data Sheet
39
Zarlink Semiconductor Inc.
12.0 LED Interface
12.1 LED Interface Introduction
A serial output channel provides port status information from the ZL50417 chips. It requires three additional pins.
LED_CLK at 12.5 MHz
LED_SYN a sync pulse that defines the boundary between status frames
LED_DATA a continuous serial stream of data for all status LEDs that repeats once every frame time
A non-serial interface is also allowed, but in this case, only the Gigabit ports will have status LEDs.
A low cost external device (44 pin PAL) is used to decode the serial data and to drive an LED array for display. This
device can be customized for different needs.
12.2 Port Status
In the ZL50417, each port has 8 status indicators, each represented by a single bit. The 8 LED status indicators
are:
- Bit 0: Flow control
- Bit 1:Transmit data
- Bit 2: Receive data
- Bit 3: Activity (where activity includes either transmission or reception of data)
- Bit 4: Link up
- Bit 5: Speed ( 1= 100 Mb/s; 0 = 10 Mb/s)
- Bit 6: Full-duplex
- Bit 7: Collision
Eight clocks are required to cycle through the eight status bits for each port.
When the LED_SYN pulse is asserted, the LED interface will present 256 LED clock cycles with the clock cycles
providing information for the following ports.
- Port 0 (10/100): cycles #0 to cycle #7
- Port 1 (10/100): cycles#8 to cycle #15
- Port 2 (10/100): cycle #16 to cycle #23
-...
- Port 14 (10/100): cycle #112 to cycle #119
- Port 15 (10/100): cycle #120 to cycle #127
- Port 25 (Gigabit 1): cycle #192 to cycle #199
- Port 26 (Gigabit 2): cycle #200 to cycle #207
- Byte 26 (additional status): cycle #208 to cycle #215
- Byte 27 (additional status): cycle #216 to cycle #223
Cycles #224 to 256 present data with a value of zero.
ZL50417 Data Sheet
40
Zarlink Semiconductor Inc.
The first two bits of byte 26 provides the speed information for the Gigabit ports while the remainder of byte 26 and
byte 27 provides bist status
- 26[0]: G0 port (1 = port 24 is operating at Gigabit speed; 0 = speed is either 10 or 100 Mb/s depending on
speed bit of Port 24)
- 26[1]: G1 port (1 = port 25 is operating at Gigabit speed; 0 = speed is either 10 or 100 Mb/s depending on
speed bit of Port 25)
- 26[2]: initialization done
- 26[3]: initialization start
- 26[4]: checksum ok
- 26[5]: link_init_complete
- 26[6]: bist_fail
- 26[7]: ram_error
- 27[0]: bist_in_process
- 27[1]: bist_done
12.3 LED Interface Timing Diagram
The signal from the ZL50417 to the LED decoder is shown in Figure 16.
.
Figure 16 - Timing Diagram of LED Interface
ZL50417 Data Sheet
41
Zarlink Semiconductor Inc.
13.0 Register Definition
13.1 ZL50417 Register Description
Register Description
CPU
Addr
(Hex)
R/W
I²C
Addr
(Hex)
Default Notes
0. ETHERNET Port Control Registers Substitute [N] with Port number (0..F, 18-1A)
ECR1P”N” Port Control Register 1 for Port N 0000 + 2
x N
R/W 000-
01A
020
ECR2P”N” Port Control Register 2 for Port N 001 + 2 x
N
R/W 01B-
035
000
GGC Extra GIGA bit control register 036 R/W NA 000
1. VLAN Control Registers Substitute [N] with Port number (0..F, 18-1A)
AVTCL VLAN Type Code Register Low 100 R/W 036 000
AVTCH VLAN Type Code Register High 101 R/W 037 081
PVMAP”N”_0 Port “N” Configuration Register 0 102 + 4N R/W 038-052 0FF
PVMAP”N”_1 Port “N” Configuration Register 1 103 + 4N R/W 053-
06D
0FF
PVMAP”N”_3 Port “N” Configuration Register 3 105 + 4N R/W 089-
0A3
007
PVMODE VLAN Operating Mode 170 R/W 0A4 000
PVROUTE7-0 VLAN Router Group Enable 171-178 R/W NA 000
2. TRUNK Control Registers
TRUNK0_ MODE Trunk Group 0 Mode 203 R/W 0A5 003
3. CPU Port Configuration
RQSS Receive Queue Status 324 RO NA N/A
TX_AGE Transmission Queue Aging Time 325 R/W 0A7 008
4. Search Engine Configurations
AGETIME_LOW MAC Address Aging Time Low 400 R/W 0A8 2M:05C/
4M:02E
AGETIME_ HIGH MAC Address Aging Time High 401 R/W 0A9 000
SE_OPMODE Search Engine Operating Mode 403 R/W NA 000
5. Buffer Control and QOS Control
FCBAT FCB Aging Timer 500 R/W 0AA 0FF
QOSC QOS Control 501 R/W 0AB 000
ZL50417 Data Sheet
42
Zarlink Semiconductor Inc.
FCR Flooding Control Register 502 R/W 0AC 008
AVPML VLAN Priority Map Low 503 R/W 0AD 000
AVPMM VLAN Priority Map Middle 504 R/W 0AE 000
AVPMH VLAN Priority Map High 505 R/W 0AF 000
TOSPML TOS Priority Map Low 506 R/W 0B0 000
TOSPMM TOS Priority Map Middle 507 R/W 0B1 000
TOSPMH TOS Priority Map High 508 R/W 0B2 000
AVDM VLAN Discard Map 509 R/W 0B3 000
TOSDML TOS Discard Map 50A R/W 0B4 000
BMRC Broadcast/Multicast Rate Control 50B R/W 0B5 000
UCC Unicast Congestion Control 50C R/W 0B6 2M:008/
4M:010
MCC Multicast Congestion Control 50D R/W 0B7 050
PR100 Port Reservation for 10/100 Ports 50E R/W 0B8 2M:024/
4M:036
PRG Port Reservation for Giga Ports 50F R/W 0B9 2M:035/
4M:058
SFCB Share FCB Size 510 R/W 0BA 2M:014/
4M:064
C2RS Class 2 Reserve Size 511 R/W 0BB 000
C3RS Class 3 Reserve Size 512 R/W 0BC 000
C4RS Class 4 Reserve Size 513 R/W 0BD 000
C5RS Class 5 Reserve Size 514 R/W 0BE 000
C6RS Class 6 Reserve Size 515 R/W 0BF 000
C7RS Class 7 Reserve Size 516 R/W 0C0 000
QOSC”N” QOS Control (N=0 - 5) 517- 51C R/W 0C1-
0C6
000
QOS Control (N=6 - 11) 51D- 522 R/W NA 000
QOS Control (N=12 - 23) 523- 52E R/W 0C7-
0D2
000
QOS Control (N=24 - 59) 52F- 552 R/W NA 000
RDRC0 WRED Drop Rate Control 0 553 R/W 0FB 08F
Register Description
CPU
Addr
(Hex)
R/W
I²C
Addr
(Hex)
Default Notes
ZL50417 Data Sheet
43
Zarlink Semiconductor Inc.
RDRC1 WRED Drop Rate Control 1 554 R/W 0FC 088
USER_
PORT”N”_LOW
User Define Logical Port “N” Low
(N=0-7)
580 + 2N R/W 0D6-
0DD
000
USER_
PORT”N”_HIGH
User Define Logical Port “N” High 581 + 2N R/W 0DE-
0E5
000
USER_
PORT1:0_
PRIORITY
User Define Logic Port 1 and 0
Priority
590 R/W 0E6 000
USER_
PORT3:2_
PRIORITY
User Define Logic Port 3 and 2
Priority
591 R/W 0E7 000
USER_
PORT5:4_
PRIORITY
User Define Logic Port 5 and 4
Priority
592 R/W 0E8 000
USER_
PORT7:6_PRI
ORITY
User Define Logic Port 7 and 6
Priority
593 R/W 0E9 000
USER_PORT_
ENABLE
User Define Logic Port Enable 594 R/W 0EA 000
WLPP10 Well known Logic Port Priority for 1
and 0
595 R/W 0EB 000
WLPP32 Well known Logic Port Priority for 3
and 2
596 R/W 0EC 000
WLPP54 Well known Logic Port Priority for 5
and 4
597 R/W 0ED 000
WLPP76 Well-known Logic Port Priority for 7 &
6
598 R/W 0EE 000
WLPE Well known Logic Port Enable 599 R/W 0EF 000
RLOWL User Define Range Low Bit7:0 59A R/W 0F4 000
RLOWH User Define Range Low Bit 15:8 59B R/W 0F5 000
RHIGHL User Define Range High Bit 7:0 59C R/W 0D3 000
RHIGHH User Define Range High Bit 15:8 59D R/W 0D4 000
RPRIORITY User Define Range Priority 59E R/W 0D5 000
6. MISC Configuration Registers
MII_OP0 MII Register Option 0 600 R/W 0F0 000
MII_OP1 MII Register Option 1 601 R/W 0F1 000
Register Description
CPU
Addr
(Hex)
R/W
I²C
Addr
(Hex)
Default Notes
ZL50417 Data Sheet
44
Zarlink Semiconductor Inc.
FEN Feature Registers 602 R/W 0F2 010
MIIC0 MII Command Register 0 603 R/W N/A 000
MIIC1 MII Command Register 1 604 R/W N/A 000
MIIC2 MII Command Register 2 605 R/W N/A 000
MIIC3 MII Command Register 3 606 R/W N/A 000
MIID0 MII Data Register 0 607 RO N/A N/A
MIID1 MII Data Register 1 608 RO N/A N/A
LED LED Control Register 609 R/W 0F3 000
SUM EEPROM Checksum Register 60B R/W 0FF 000
7. Port Mirroring Controls
MIRROR1_SRC Port Mirror 1 Source Port 700 R/W N/A 07F
MIRROR1_ DEST Port Mirror 1 Destination Port 701 R/W N/A 017
MIRROR2_SRC Port Mirror 2 Source Port 702 R/W N/A 0FF
MIRROR2_ DEST Port Mirror 2 Destination Port 703 R/W N/A 000
2
GCR Global Control Register F00 R/W N/A 000
DCR Device Status and Signature Register F01 RO N/A N/A
DCR1 Giga Port status F02 RO N/A N/A
DPST Device Port Status Register F03 R/W N/A 000
DTST Data read back register F04 RO N/A N/A
DA DA Register FFF RO N/A DA
Register Description
CPU
Addr
(Hex)
R/W
I²C
Addr
(Hex)
Default Notes
ZL50417 Data Sheet
45
Zarlink Semiconductor Inc.
13.2 (Group 0 Address) MAC Ports Group
13.2.1 ECR1Pn: Port N Control Register
I²C Address 000 - 01A; CPU Address:0000+2xN (N = port number)
Accessed by serial interface and I²C (R/W)
765 4321 0
Sp State A-FC Port Mode
Bit [0] 1 - Flow Control Off
0 - Flow Control On
When Flow Control On:
In half duplex mode, the MAC transmitter applies back pressure for flow
control.
In full duplex mode, the MAC transmitter sends Flow Control frames when
necessary. The MAC receiver interprets and processes incoming flow
control frames. The Flow Control Frame Received counter is incremented
whenever a flow control is received.
When Flow Control off:
In half duplex mode, the MAC Transmitter does not assert flow control by
sending flow control frames or jamming collision.
In full duplex mode, the Mac transmitter does not send flow control frames.
The MAC receiver does not interpret or process the flow control frames. The
Flow Control Frame Received counter is not incremented.
Bit [1] 1 - Half Duplex - Only in 10/100 mode
0 - Full Duplex
Bit [2] 1 - 10 Mbps
0 - 100 Mbps
Bit [4:3] 00 – Automatic Enable Auto Neg. - This enables hardware state machine for
auto-negotiation.
01 - Limited Disable auto Neg. This disables hardware for speed auto-
negotiation. Hardware Poll MII for link status.
10 - Link Down. Force link down (disable the port).
11 - Link Up. The configuration in ECR1 [2:0] is used for (speed/half
duplex/full duplex/flow control) setup.
Bit [5] Asymmetric Flow Control Enable.
0 – Disable asymmetric flow control
01 – Enable Asymmetric flow control
When this bit is set, and flow control is on (bit [0] = 0), don’t send out a flow
control frame. But MAC receiver interprets and processes flow control
frames.
ZL50417 Data Sheet
46
Zarlink Semiconductor Inc.
13.2.2 ECR2Pn: Port N Control Register
I²C Address: 01B-035; CPU Address:0001+2xN (N = port number)
Accessed by serial interface and I²C (R/W)
Bit [7:6] SS - Spanning tree state (802.1D spanning tree protocol) Default is 11.
00 – Blocking: Frame is dropped
01 - Listening: Frame is dropped
10 - Learning: Frame is dropped. Source MAC address is learned.
11 - Forwarding: Frame is forwarded. Source MAC address is learned.
7654 3 210
Security En QoS Sel Reserve DisL Ftf Futf
Bit [0]: Filter untagged frame (Default 0)
0: Disable
1: All untagged frames from this port are discarded or follow security option
when security is enable
Bit [1]: Filter Tag frame (Default 0)
0: Disable
1: All tagged frames from this port are discarded or follow security option
when security is enable
Bit [2]: Learning Disable (Default 0)
1 Learning is disabled on this port
0 Learning is enabled on this port
Bit [3]: Must be ‘1
Bit [5:4:] QOS mode selection (Default 00)
Determines which of the 4 sets of QoS settings is used for 10/100 ports.
Note that there are 4 sets of per-queue byte thresholds, and 4 sets of WFQ
ratios programmed. These bits select among the 4 choices for each 10/100
port. Refer to QOS Application Note.
00: select class byte limit set 0 and classes WFQ credit set 0
01: select class byte limit set 1 and classes WFQ credit set 1
10: select class byte limit set 2 and classes WFQ credit set 2
11: select class byte limit set 3 and classes WFQ credit set 3
Bit [7:6] Security Enable (Default 00). The ZL50417 checks the incoming data for
one of the following conditions:
If the source MAC address of the incoming packet is in the MAC table and is
defined as secure address but the ingress port is not the same as the port
associated with the MAC address in the MAC table.
ZL50417 Data Sheet
47
Zarlink Semiconductor Inc.
13.2.3 GGControl – Extra GIGA Port Control
CPU Address:h036
Accessed by CPU and serial interface (R/W)
A MAC address is defined as secure when its entry at MAC table has static
status and bit 0 is set to 1. MAC address bit 0 (the first bit transmitted)
indicates whether the address is unicast or multicast. As source addresses
are always unicast bit 0 is not used (always 0). ZL50417 uses this bit to
define secure MAC addresses.
If the port is set as learning disable and the source MAC address of the
incoming packet is not defined in the MAC address table.
If the port is configured to filter untagged frames and an untagged frame
arrives or if the port is configured to filter tagged frames and a tagged frame
arrives.
If the port is configured to filter untagged frames and an untagged frame
arrives or if the port is configured to filter tagged frames and a tagged frame
arrives.
If one of these three conditions occurs, the packet will be handled according
to one of the following specified options:
•CPU installed
- 00 – Disable port security
- 01 – Discard violating packets
- 10 – Send packet to CPU and destination port
- 11 – Send packet to CPU only
765 4 321 0
DF MiiB RstA DF MiiA RstA
Bit [0]: Reset GIGA port A
- 0: Normal operation (default)
- 1: Reset Gigabit port A. Normally used when a new Phy is connected (Hot swap).
Bit [1]: GIGA port A use MII interface (10/100 M)
- 0: Gigabit port operations at 1000 mode (default)
- 1: Gigabit port operations at 10/100 mode
Bit [2]: Reserved - Must be zero
Bit [3]: GIGA port A direct flow control (MAC to MAC connection). The ZL50417 supports direct
flow control mechanism; the flow control frame is therefore not sent through the Gigabit
port data path.
- 0: Direct flow control disabled (default)
- 1: Direct flow control enabled
ZL50417 Data Sheet
48
Zarlink Semiconductor Inc.
13.3 (Group 1 Address) VLAN Group
13.3.1 AVTCL – VLAN Type Code Register Low
I²C Address 036; CPU Address:h100
Accessed serial interface and I²C (R/W)
13.3.2 AVTCH – VLAN Type Code Register High
I²C Address 037; CPU Address:h101
Accessed by serial interface and I²C (R/W)
13.3.3 PVMAP00_0 – Port 00 Configuration Register 0
I²C Address 038, CPU Address:h102
Accessed by serial interface and I²C (R/W)
In Port Based VLAN Mode
This register indicates the legal egress ports. A “1” on bit 7 means that the packet can be sent to port 7. A “0” on bit
7 means that any packet destined to port 7 will be discarded. This register works with registers 1, 2 and 3 to form a
27 bit mask to all egress ports.
Bit [4]: Reset GIGA port B
- 0: Normal operation (default)
- 1: Reset Gigabit port B
Bit [5]: GIGA port B use MII interface (10/100 M)
- 0: Gigabit port operates at 1000 mode (default)
- 1: Gigabit port operates at 10/100 mode
Bit [6]: Reserved - Must be zero
Bit [7]: GIGA port B direct flow control (MAC to MAC connection). ZL50417 supports direct
flow control mechanism; the flow control frame is therefore not sent through the Gigabit
port data path.
- 0: Direct flow control disabled (default)
- 1: Direct flow control enabled
Bit [7:0]: VLANType_LOW: Lower 8 bits of the VLAN type code (Default 00)
Bit [7:0]: VLANType_HIGH: Upper 8 bits of the VLAN type code (Default is 81)
Bit [7:0]: VLAN Mask for ports 7 to 0 (Default FF)
ZL50417 Data Sheet
49
Zarlink Semiconductor Inc.
13.3.4 PVMAP00_1 – Port 00 Configuration Register 1
I²C Address h53, CPU Address:h103
Accessed by serial interface and I²C (R/W)
In Port based VLAN Mode
13.3.5 PVMAP00_3 – Port 00 Configuration Register 3
I²C Address h89, CPU Address:h105)
Accessed by serial interface and I²C (R/W)
In Port Based VLAN Mode
Bit [7:0]: VLAN Mask for ports 15 to 8 (Default is FF)
765 32 0
FP en Drop Default tx priority VLAN Mask
Bit [2:0]: VLAN Mask for ports 26 to 24 (Default 7).
Bit [5:3]: Default Transmit priority. Used when Bit [7]=1 (Default 0)
000 Transmit Priority Level 0 (Lowest)
001 Transmit Priority Level 1
010 Transmit Priority Level 2
011 Transmit Priority Level 3
100 Transmit Priority Level 4
101 Transmit Priority Level 5
110 Transmit Priority Level 6
111 Transmit Priority Level 7 (Highest)
Bit [6]: Default Discard priority. Used when Bit [7]=1 (Default 0)
0 - Discard Priority Level 0 (Lowest)
1 - Discard Priority Level 1(Highest)
Bit [7]: Enable Fix Priority (Default 0)
0 Disable fix priority. All frames are analyzed. Transmit Priority and
Discard Priority are based on VLAN Tag, TOS or Logical Port.
1 Transmit Priority and Discard Priority are based on values programmed
in bit [6:3]
ZL50417 Data Sheet
50
Zarlink Semiconductor Inc.
13.4 Port Configuration Registers
PVMAP01_0,1,3 I²C Address h39,54,8A; CPU Address:h106,107,109
PVMAP02_0,1,3 I²C Address h3A,55,8B; CPU Address:h10A, 10B, 10D
PVMAP03_0,1,3 I²C Address h3B,56,8C; CPU Address:h10E, 10F, 111
PVMAP04_0,1,3 I²C Address h3C,57,8D; CPU Address:h112, 113, 115
PVMAP05_0,1,3 I²C Address h3D,58,8E; CPU Address:h116, 117, 119
PVMAP06_0,1,3 I²C Address h3E,59,8F; CPU Address:h11A, 11B, 11D
PVMAP07_0,1,3 I²C Address h3F,5A,90; CPU Address:h11E, 11F, 121
PVMAP08_0,1,3 I²C Address h40,5B,91; CPU Address:h122, 123, 125
PVMAP09_0,1,3 I²C Address h41,5C,92; CPU Address:h126, 127, 129
PVMAP10_0,1,3 I²C Address h42,5D,93; CPU Address:h12A, 12B, 12D
PVMAP11_0,1,3 I²C Address h43,5E,94; CPU Address:h12E, 12F, 131
PVMAP12_0,1,3 I²C Address h44,5F,95; CPU Address:h132, 133, 135
PVMAP13_0,1,3 I²C Address h45,60,96; CPU Address:h136, 137, 139
PVMAP14_0,1,3 I²C Address h46,61,97; CPU Address:h13A, h13B, 13D
PVMAP15_0,1,3 I²C Address h47,62,98; CPU Address:h13E, 13F, 141
PVMAP25_0,1,3 I²C Address h51,6C,A2; CPU Address:h166, 167, 168, 169 (Gigabit port 1)
PVMAP26_0,1,3 I²C Address h52,6D,A3; CPU Address:h16A, 16B, 16D (Gigabit port 2)
13.4.1 PVMODE
I²C Address: h0A4, CPU Address:h170
Accessed by CPU, serial interface (R/W)
7 5 4 321 0
SMO DL SL
Bit [0]: Reserved
-Must be0
Bit [1]: Slow learning (Default = 0)
Same function as SE_OP MODE bit 7. Either bit can enable the function;
both need to be turned off to disable the feature.
Bit [2]: Disable dropping of frames with destination MAC addresses
0180C2000001 to 0180C200000F (Default = 0)
- 0: Drop all frames in this range
- 1: Disable dropping of frames in this range
ZL50417 Data Sheet
51
Zarlink Semiconductor Inc.
13.5 (Group 2 Address) Port Trunking Groups
Trunk Group 0 - Up to four 10/100 ports can be selected for trunk group 0.
13.5.1 TRUNK0_MODE– Trunk group 0 mode
I²C Address h0A5; CPU Address:203
Accessed by serial interface and I²C (R/W)
13.5.2 TRUNK1_MODE – Trunk group 1 mode
I²C Address h0A6; CPU Address:20B
Accessed by serial interface and I²C (R/W)
Bit [3]: Reserved
Bit [4]: Support MAC address 0 (Default = 0)
- 0: MAC address 0 is not learned.
- 1: MAC address 0 is learned.
Bit [7:5]: Reserved
743210
Hash
Select
Port
Select
Bit [1:0]: Port selection in unmanaged mode. Input pin TRUNK0 enable/disable trunk group 0
in unmanaged mode.
- 00 Reserved
- 01 Port 0 and 1 are used for trunk0
- 10 Port 0,1 and 2 are used for trunk0
- 11 Port 0,1,2 and 3 are used for trunk0
Bit [3:2] Hash Select. The Hash selected is valid for Trunk 0, 1 and 2. (Default 00)
- 00 Use Source and Destination Mac Address for hashing
- 01 Use Source Mac Address for hashing
- 10 Use Destination Mac Address for hashing
- 11 Use source destination MAC address and ingress physical port number for
hashing
7 210
Port Select
ZL50417 Data Sheet
52
Zarlink Semiconductor Inc.
Trunk Group 2
13.5.3 TRUNK2_MODE – Trunk group 2 mode (Gigabit ports 1 and 2)
CPU Address:210
Accessed by serial interface (R/W)
13.5.4 RQSS – Receive Queue Status
CPU Address:h324
Accessed by serial interface (RO)
Bit [5:0]: Unit of 100 ms (Default 8)
Disable transmission queue aging if value is zero. Aging timer for all ports and queues.
This register must be set to 0 for ‘No Packet Loss Flow Control Test’.
Bit [1:0]: Port selection in unmanaged mode. Input pin TRUNK1
enable/disable trunk group 1 in unmanaged mode.
- 00 Reserved
- 01 Port 4 and 5 are used for trunk1
- 10 Reserved
- 11 Port 4, 5, 6 and 7 are used for trunk1
76 43 0
Ring/trunk Mode
Bit [3:0] Reserved
Bit [6:4] 000 Normal
001 Trunk Mode. Enable Trunk group for Gigabit port 1 and 2 in
managed mode. In unmanaged mode Trunk 2 is enable/disable
using input pin TRUNK2.
010 Single Ring with G1
100 Single Ring with G2
111 Dual Ring Mode
76 5 0
Tx Queue Agent
ZL50417 Data Sheet
53
Zarlink Semiconductor Inc.
13.6 (Group 4 Address) Search Engine Group
13.6.1 AGETIME_LOW – MAC address aging time Low
I²C Address h0A8; CPU Address:h400
Accessed by serial interface and I²C (R/W)
Bit [7:0] Low byte of the MAC address aging timer
MAC address aging is enable/disable by boot strap TSTOUT9
13.6.2 AGETIME_HIGH –MAC address aging time High
I²C Address h0A9; CPU Address h401
Accessed by serial interface and I²C (R/W)
Bit [7:0]: High byte of the MAC address aging timer.
The default setting provide 300 seconds aging time. Aging time is based on the following equation:
{AGETIME_TIME,AGETIME_LOW} X (# of MAC entries in the memory X100 µsec). Number of MAC entries = 32 K
when 1 MB is used per Bank. Number of entries = 64 K when 2 MB is used per Bank.
13.6.3 SE_OPMODE – Search Engine Operation Mode
CPU Address:h403
Accessed by serial interface (R/W)
{SE_OPMODE} X(# of entries 100 usec)
76 5 0
SL DMS
Bit [5:0]: Reserved
Bit [6]: Disable MCT speedup aging (Default 0)
- 1 – Disable speedup aging when MCT resource is low.
- 0 – Enable speedup aging when MCT resource is low.
Bit [7]: Slow Learning (Default 0)
- 1– Enable slow learning. Learning is temporary disabled when search
demand is high
- 0 – Learning is performed independent of search demand
ZL50417 Data Sheet
54
Zarlink Semiconductor Inc.
13.7 (Group 5 Address) Buffer Control/QOS Group
13.7.1 FCBAT – FCB Aging Timer
I²C Address h0AA; CPU Address:h500
13.7.2 QOSC – QOS Control
I²C Address h0AB; CPU Address:h501
Accessed by serial interface and I²C (R/W)
13.7.3 FCR – Flooding Control Register
I²C Address h0AC; CPU Address:h502
Accessed by serial interface and I²C (R/W)
70
FCBAT
Bit [7:0]: FCB Aging time. Unit of 1 ms. (Default FF)
This is for buffer aging control. It is used to configure the buffer aging
time. This function can be enabled/disabled through bootstrap pin. It is
not suggested to use this function for normal operation.
76 5 43 10
Tos-d Tos-p VF1c L
Bit [0]: QoS frame lost is OK. Priority will be available for flow control enabled
source only when this bit is set (Default 0)
Bit [4]: Per VLAN Multicast Flow Control (Default 0)
•0 Disable
•1 Enable
Bit [5]: - Reserved
Bit [6]: Select TOS bits for Priority (Default 0)
0 – Use TOS [4:2] bits to map the transmit priority
1 – Use TOS [7:5] bits to map the transmit priority
Bit [7]: Select TOS bits for Drop priority (Default 0)
0 – Use TOS [4:2] bits to map the drop priority
1 – Use TOS [7:5] bits to map the drop priority
76 43 0
Tos TimeBase U2MR
ZL50417 Data Sheet
55
Zarlink Semiconductor Inc.
13.7.4 AVPML – VLAN Priority Map
I²C Address h0AD; CPU Address:h503
Accessed by serial interface and I²C (R/W)
Registers AVPML, AVPMM, and AVPMH allow the eight VLAN Tag priorities to map into eight Internal level transmit
priorities. Under the Internal transmit priority, Registers AVPML, AVPMM, and AVPMH allow the eight VLAN
priorities to map into eight internal level transmit priorities. Under the internal transmit priority, seven is highest
priority where as zero is the lowest. This feature allows the user the flexibility of redefining the VLAN priority field.
For example, programming a value of 7 into bit 2:0 of the AVPML register would map VLAN priority 0 into internal
transmit priority 7. The new priority is used inside the ZL50417. When the packet goes out it carries the original
priority.
Bit [3:0]: U2MR: Unicast to Multicast Rate. Units in terms of time base defined in
bits [6:4]. This is used to limit the amount of flooding traffic. The value in
U2MR specifies how many packets are allowed to flood within the time
specified by bit [6:4]. To disable this function, program U2MR to 0.
(Default = 8)
Bit [6:4]: Time Base: (Default = 000)
- 000 = 100 us
- 001 = 200 us
- 010 = 400 us
-011 = 800us
- 100 = 1.6 ms
- 101 = 3.2 ms
- 110 = 6.4 ms
-111 = 100 us, same as 000.
Bit [7]: Select VLAN tag or TOS (IP packets) to be preferentially picked to map
transmit priority and drop priority (Default = 0).
- 0 – Select VLAN Tag priority field over TOS
- 1 – Select TOS over VLAN tag priority field
765 32 0
VP2 VP1 VP0
Bit [2:0]: Priority when the VLAN tag priority field is 0 (Default 0)
Bit [5:3]: Priority when the VLAN tag priority field is 1 (Default 0)
Bit [7:6]: Priority when the VLAN tag priority field is 2 (Default 0)
ZL50417 Data Sheet
56
Zarlink Semiconductor Inc.
13.7.5 AVPMM – VLAN Priority Map
I²C Address h0AE, CPU Address:h504
Accessed by serial interface and I²C (R/W)
Map VLAN priority into eight level transmit priorities:
13.7.6 AVPMH – VLAN Priority Map
I²C Address h0AF, CPU Address:h505
Accessed by serial interface and I²C (R/W)
Map VLAN priority into eight level transmit priorities:
13.7.7 TOSPML – TOS Priority Map
I²C Address h0B0, CPU Address:h506
Accessed by serial interface and I²C (R/W)
Map TOS field in IP packet into eight level transmit priorities
76 43 1 0
VP5 VP4 VP3 VP2
Bit [0]: Priority when the VLAN tag priority field is 2 (Default 0)
Bit [3:1]: Priority when the VLAN tag priority field is 3 (Default 0)
Bit [6:4]: Priority when the VLAN tag priority field is 4 (Default 0)
Bit [7]: Priority when the VLAN tag priority field is 5 (Default 0)
754210
VP7 VP6 VP5
Bit [1:0]: Priority when the VLAN tag priority field is 5 (Default 0)
Bit [4:2]: Priority when the VLAN tag priority field is 6 (Default 0)
Bit [7:5]: Priority when the VLAN tag priority field is 7 (Default 0)
76 5 32 0
TP2 TP1 TP0
Bit [2:0]: Priority when the TOS field is 0 (Default 0)
Bit [5:3]: Priority when the TOS field is 1 (Default 0)
Bit [7:6]: Priority when the TOS field is 2 (Default 0)
ZL50417 Data Sheet
57
Zarlink Semiconductor Inc.
13.7.8 TOSPMM – TOS Priority Map
I²C Address h0B1, CPU Address:h507
Accessed by serial interface and I²C (R/W)
Map TOS field in IP packet into eight level transmit priorities
13.7.9 TOSPMH – TOS Priority Map
I²C Address h0B2, CPU Address:h508
Accessed by serial interface and I²C (R/W)
Map TOS field in IP packet into eight level transmit priorities:
13.7.10 AVDM – VLAN Discard Map
I²C Address h0B3, CPU Address:h509
Accessed by serial interface and I²C (R/W)
Map VLAN priority into frame discard when low priority buffer usage is above threshold
76 43 10
TP5 TP4 TP3 TP2
Bit [0]: Priority when the TOS field is 2 (Default 0)
Bit [3:1]: Priority when the TOS field is 3 (Default 0)
Bit [6:4]: Priority when the TOS field is 4 (Default 0)
Bit [7]: Priority when the TOS field is 5 (Default 0)
75420
TP7 TP6 TP5
Bit [1:0]: Priority when the TOS field is 5 (Default 0)
Bit [4:2]: Priority when the TOS field is 6 (Default 0)
Bit [7:5]: Priority when the TOS field is 7 (Default 0)
76543210
FDV7 FDV6 FDV5 FDV4 FDV3 FDV2 FDV1 FDV0
Bit [0]: Frame drop priority when VLAN Tag priority field is 0 (Default 0)
Bit [1]: Frame drop priority when VLAN Tag priority field is 1 (Default 0)
Bit [2]: Frame drop priority when VLAN Tag priority field is 2 (Default 0)
Bit [3]: Frame drop priority when VLAN Tag priority field is 3 (Default 0)
Bit [4]: Frame drop priority when VLAN Tag priority field is 4 (Default 0)
ZL50417 Data Sheet
58
Zarlink Semiconductor Inc.
13.7.11 TOSDML – TOS Discard Map
I²C Address h0B4, CPU Address:h50A
Accessed by serial interface and I²C (R/W)
Map TOS into frame discard when low priority buffer usage is above threshold
13.7.12 BMRC - Broadcast/Multicast Rate Control
I²C Address h0B5, CPU Address:h50B)
Accessed by serial interface and I²C (R/W)
This broadcast and multicast rate defines for each port, the number of packets allowed to be forwarded within a
specified time. Once the packet rate is reached, packets will be dropped. To turn off the rate limit, program the field
to 0. Time base is based on register FCR [6:4]
Bit [5]: Frame drop priority when VLAN Tag priority field is 5 (Default 0)
Bit [6]: Frame drop priority when VLAN Tag priority field is 6 (Default 0)
Bit [7]: Frame drop priority when VLAN Tag priority field is 7 (Default 0)
7 654321 0
FDT7 FDT6 FDT5 FDT4 FDT3 FDT2 FDT1 FDT0
Bit [0]: Frame drop priority when TOS field is 0 (Default 0)
Bit [1]: Frame drop priority when TOS field is 1 (Default 0)
Bit [2]: Frame drop priority when TOS field is 2 (Default 0)
Bit [3]: Frame drop priority when TOS field is 3 (Default 0)
Bit [4]: Frame drop priority when TOS field is 4 (Default 0)
Bit [5]: Frame drop priority when TOS field is 5 (Default 0)
Bit [6]: Frame drop priority when TOS field is 6 (Default 0)
Bit [7]: Frame drop priority when TOS field is 7 (Default 0)
7430
Broadcast Rate Multicast Rate
Bit [3:0]: Multicast Rate Control. Number of multicast packets allowed within the time
defined in bits 6 to 4 of the Flooding Control Register (FCR). (Default 0).
Bit [7:4]: Broadcast Rate Control. Number of broadcast packets allowed within the
time defined in bits 6 to 4 of the Flooding Control Register (FCR). (Default
0)
ZL50417 Data Sheet
59
Zarlink Semiconductor Inc.
13.7.13 UCC – Unicast Congestion Control
I²C Address h0B6, CPU Address: 50C
Accessed by serial interface and I²C (R/W)
13.7.14 MCC – Multicast Congestion Control
I²C Address h0B7, CPU Address: 50D
Accessed by serial interface and I²C (R/W)
13.7.15 PR100 – Port Reservation for 10/100 ports
I²C Address h0B8, CPU Address 50E
Accessed by serial interface and I²C (R/W)
70
Unicast congest threshold
Bit [7:0]: Number of frame count. Used for best effort dropping at B% when destination
port’s best effort queue reaches UCC threshold and shared pool is all in use.
Granularity 1 frame. (Default: h10 for 2 MB/bank or h08 for 1 MB/bank)
754 0
FC reaction period Multicast congest threshold
Bit [4:0]: In multiples of two frames (granularity). Used for triggering MC flow control
when destination port’s multicast best effort queue reaches MCC
threshold.(Default 0x10)
Bit [7:5]: Flow control reaction period (Default 2) Granularity 4 uSec.
7430
Buffer low threshold SP Buffer reservation
Bit [3:0]: Per source port buffer reservation.
Define the space in the FDB reserved for each 10/100 port and CPU.
Expressed in multiples of 4 packets. For each packet 1536 bytes are
reserved in the memory.
Bits [7:4]: Expressed in multiples of 4 packets. Threshold for dropping all best effort
frames when destination port best efforts queues reaches UCC threshold,
shared pool is all used and source port reservation is at or below the
PR100 [7:4] level. Also the threshold for initiating UC flow control.
•Default:
- h36 for 16+2 configuration with memory 2 MB/bank;
- h24 for 16+2 configuration with 1 MB/bank;
ZL50417 Data Sheet
60
Zarlink Semiconductor Inc.
13.7.16 PRG – Port Reservation for Giga ports
I²C Address h0B9, CPU Address 50F
Accessed by serial interface and I²C (R/W)
13.7.17 SFCB – Share FCB Size
I²C Address h0BA), CPU Address 510
Accessed by serial interface and I²C (R/W)
13.7.18 C2RS – Class 2 Reserve Size
I²C Address h0BB, CPU Address 511
Accessed by serial interface and I²C (R/W)
Buffer reservation for class 2 (third lowest priority). Granularity 1. (Default 0)
7430
Buffer low threshold SP buffer reservation
Bit [3:0]: Per source port buffer reservation.
Define the space in the FDB reserved for each Gigabit port. Expressed in
multiples of 16 packets. For each packet 1536 bytes are reserved in the
memory.
Bits [7:4]: Expressed in multiples of 16 packets. Threshold for dropping all best effort
frames when destination port best effort queues reach UCC threshold,
shared pool is all used and source port reservation is at or below the
PRG [7:4] level. Also the threshold for initiating UC flow control.
•Default:
- H58 for memory 2 MB/bank;
- H35 for 1 MB/bank;
70
Shared pool buffer size
Bits [7:0]: Expressed in multiples of 4 packets. Buffer reservation for shared pool.
•Default:
- h64 for 16+2 configuration with memory of 2 MB/bank;
- h14 for 16+2 configuration with memory of 1 MB/bank;
70
Class 2 FCB Reservation
ZL50417 Data Sheet
61
Zarlink Semiconductor Inc.
13.7.19 C3RS – Class 3 Reserve Size
I²C Address h0BC, CPU Address 512
Accessed by serial interface and I²C (R/W)
Buffer reservation for class 3. Granularity 1. (Default 0)
13.7.20 C4RS – Class 4 Reserve Size
I²C Address h0BD, CPU Address 513
Accessed by serial interface and I²C (R/W)
Buffer reservation for class 4. Granularity 1. (Default 0)
13.7.21 C5RS – Class 5 Reserve Size
I²C Address h0BE; CPU Address 514
Accessed by serial interface and I²C (R/W)
Buffer reservation for class 5. Granularity 1. (Default 0)
13.7.22 C6RS – Class 6 Reserve Size
I²C Address h0BF; CPU Address 515
Accessed by serial interface and I²C (R/W)
Buffer reservation for class 6 (second highest priority). Granularity 1. (Default 0)
70
Class 3 FCB Reservation
70
Class 4 FCB Reservation
70
Class 5 FCB Reservation
70
Class 6 FCB Reservation
ZL50417 Data Sheet
62
Zarlink Semiconductor Inc.
13.7.23 C7RS – Class 7 Reserve Size
I²C Address h0C0; CPU Address 516
Accessed by serial interface and I²C (R/W)
Buffer reservation for class 7 (highest priority). Granularity 1. (Default 0)
13.7.24 QOSCn - Classes Byte Limit Set 0
Accessed by serial interface and I²C (R/W):
C — QOSC00 – BYTE_C01 (I²C Address h0C1, CPU Address 517)
B — QOSC01 – BYTE_C02 (I²C Address h0C2, CPU Address 518)
A — QOSC02 – BYTE_C03 (I²C Address h0C3, CPU Address 519)
QOSC00 through QOSC02 represents one set of values A-C for a 10/100 port when using the Weighted Random
Early Drop (WRED) Scheme described in Chapter 7. There are four such sets of values A-C specified in Classes
Byte Limit Set 0, 1, 2, and 3.
Each 10/ 100 port can choose one of the four Byte Limit Sets as specified by the QoS Select field located in bits 5
to 4 of the ECR2n register. The values A-C are per-queue byte thresholds for random early drop. QOSC02
represents A, and QOSC00 represents C.
Granularity when Delay bound is used: QOSC02: 128 bytes, QOSC01: 256 bytes, QOSC00: 512 bytes. Granularity
when WFQ is used: QOSC02: 512 bytes, QOSC01: 512 bytes, QOSC00: 512 bytes.
13.7.25 Classes Byte Limit Set 1
Accessed by serial interface and I²C (R/W):
C - QOSC03 – BYTE_C11 (I²C Address h0C4, CPU Address 51a)
B - QOSC04 – BYTE_C12 (I²C Address h0C5, CPU Address 51b)
A - QOSC05 – BYTE_C13 (I²C Address h0C6, CPU Address 51c)
QOSC03 through QOSC05 represents one set of values A-C for a 10/100 port when using the Weighted Random
Early Detect (WRED) Scheme.
Granularity when Delay bound is used: QOSC05: 128 bytes, QOSC04: 256 bytes. QOSC03: 512 bytes. Granularity
when WFQ is used: QOSC05: 512 bytes, QOSC04: 512 bytes, QOSC03: 512 bytes.
13.7.26 Classes Byte Limit Set 2
Accessed by serial interface (R/W):
C - QOSC06 – BYTE_C21 (CPU Address 51d)
B - QOSC07 – BYTE_C22 (CPU Address 51e)
A - QOSC08 – BYTE_C23 (CPU Address 51f)
70
Class 7 FCB Reservation
ZL50417 Data Sheet
63
Zarlink Semiconductor Inc.
QOSC06 through QOSC08 represents one set of values A-C for a 10/100 port when using the Weighted Random
Early Detect (WRED) Scheme.
Granularity when Delay bound is used: QOSC08: 128 bytes, QOSC07: 256 bytes. QOSC06: 512 bytes. Granularity
when WFQ is used: QOSC08: 512 bytes, QOSC07: 512 bytes, QOSC06: 512 bytes.
13.7.27 Classes Byte Limit Set 3
Accessed by serial interface (R/W):
C - QOSC09 – BYTE_C31 (CPU Address 520)
B - QOSC10 – BYTE_C32 (CPU Address 521)
A - QOSC11 – BYTE_C33 (CPU Address 522)
QOSC09 through QOSC011 represents one set of values A-C for a 10/100 port when using the Weighted Random
Early Drop (WRED) scheme.
Granularity when Delay bound is used: QOSC11: 128 bytes, QOSC10: 256 bytes, QOSC09: 512 bytes.
Granularity when WFQ is used: QOSC11: 512 bytes, QOSC10: 512 bytes, QOSC09: 512 bytes
13.7.28 Classes Byte Limit Giga Port 1
Accessed by serial interface and I²C (R/W):
F - QOSC12 – BYTE_C2_G1 (I²C Address h0C7, CPU Address 523)
E - QOSC13 – BYTE_C3_G1 (I²C Address h0C8, CPU Address 524)
D - QOSC14 – BYTE_C4_G1 (I²C Address h0C9, CPU Address 525)
C -QOSC15 – BYTE_C5_G1 (I²C Address h0CA, CPU Address 526)
B - QOSC16 – BYTE_C6_G1 (I²C Address h0CB, CPU Address 527)
A - QOSC17 – BYTE_C7_G1 (I²C Address h0CC, CPU Address 528)
QOSC12 through QOSC17 represent the values A-F for Gigabit port 1. They are per-queue byte thresholds for
random early drop. QOSC17 represents A, and QOSC12 represents F.
Granularity when Delay bound is used: QOSC17 and QOSC16: 256 bytes, QOSC15 and QOSC14: 512 bytes,
QOSC13 and QOSC12: 1024 bytes.
Granularity when WFQ is used: QOSC17 to QOSC12: 1024 bytes
13.7.29 Classes Byte Limit Giga Port 2
Accessed by serial interface and I²C (R/W)
F - QOSC18 – BYTE_C2_G2 (I²C Address h0CD, CPU Address 529)
E - QOSC19 – BYTE_C3_G2 (I²C Address h0CE, CPU Address 52a)
D - QOSC20 – BYTE_C4_G2 (I²C Address h0CF, CPU Address 52b)
C - QOSC21 – BYTE_C5_G2 (I²C Address h0D0, CPU Address 52c)
B - QOSC22 – BYTE_C6_G2 (I²C Address h0D1, CPU Address 52d)
A - QOSC23 – BYTE_C7_G2 (I²C Address h0D2, CPU Address 52e)
ZL50417 Data Sheet
64
Zarlink Semiconductor Inc.
QOSC12 through QOSC17 represent the values A-F for Gigabit port 2. They are per-queue byte thresholds for
random early drop. QOSC17 represents A, and QOSC12 represents F.
Granularity when Delay bound is used: QOSC17 and QOSC16: 256 bytes, QOSC15 and QOSC14: 512 bytes,
QOSC13 and QOSC12: 1024 bytes.
Granularity when WFQ is used: QOSC17 to QOSC12: 1024 bytes
13.7.30 Classes WFQ Credit Set 0
Accessed by serial interface
W0 - QOSC24[5:0] – CREDIT_C00 (CPU Address 52f)
W1 - QOSC25[5:0] – CREDIT_C01 (CPU Address 530)
W2 - QOSC26[5:0] – CREDIT_C02 (CPU Address 531)
W3 - QOSC27[5:0] – CREDIT_C03 (CPU Address 532)
QOSC24 through QOSC27 represents one set of WFQ parameters for a 10/100 port. There are four such sets of
values. The granularity of the numbers is 1, and their sum must be 64. QOSC27 corresponds to W3, and QOSC24
corresponds to W0.
QOSC24[7:6]: Priority service type for the ports select this parameter set. Option 1 to option 4.
QOSC25[7]: Priority service allow flow control for the ports select this parameter set.
QOSC25[6]: Flow control pause best effort traffic only
Both flow control allow and flow control best effort only can take effect only the priority type is WFQ.
13.7.31 Classes WFQ Credit Set 1
Accessed by serial interface
W0 - QOSC28[5:0] – CREDIT_C10 (CPU Address 533)
W1 - QOSC29[5:0] – CREDIT_C11 (CPU Address 534)
W2 - QOSC30[5:0] – CREDIT_C12 (CPU Address 535)
W3 - QOSC31[5:0] – CREDIT_C13 (CPU Address 536)
QOSC28 through QOSC31 represents one set of WFQ parameters for a 10/100 port. There are four such sets of
values. The granularity of the numbers is 1, and their sum must be 64. QOSC31 corresponds to W3, and QOSC28
corresponds to W0.
QOSC28[7:6]: Priority service type for the ports select this parameter set. Option 1 to option 4.
QOSC29[7]: Priority service allow flow control for the ports select this parameter set.
QOSC29[6]: Flow control pause best effort traffic only
13.7.32 Classes WFQ Credit Set 2
Accessed by serial interface
W0 - QOSC32[5:0] – CREDIT_C20 (CPU Address 537)
W1 - QOSC33[5:0] – CREDIT_C21 (CPU Address 538)
ZL50417 Data Sheet
65
Zarlink Semiconductor Inc.
W2 - QOSC34[5:0] – CREDIT_C22 (CPU Address 539)
W3 - QOSC35[5:0] – CREDIT_C23 (CPU Address 53a)
QOSC35 through QOSC32 represents one set of WFQ parameters for a 10/100 port. There are four such sets of
values. The granularity of the numbers is 1, and their sum must be 64. QOSC35 corresponds to W3, and QOSC32
corresponds to W0.
QOSC32[7:6]: Priority service type for the ports select this parameter set. Option 1 to option 4.
QOSC33[7]: Priority service allow flow control for the ports select this parameter set.
QOSC33[6]: Flow control pause for best effort traffic only
13.7.33 Classes WFQ Credit Set 3
Accessed by serial interface
W0 - QOSC36[5:0] – CREDIT_C30 (CPU Address 53b)
W1 - QOSC37[5:0] – CREDIT_C31 (CPU Address 53c)
W2 - QOSC38[5:0] – CREDIT_C32 (CPU Address 53d)
W3 - QOSC39[5:0] – CREDIT_C33 (CPU Address 53e)
QOSC39 through QOSC36 represents one set of WFQ parameters for a 10/100 port. There are four such sets of
values. The granularity of the numbers is 1, and their sum must be 64. QOSC39 corresponds to W3, and QOSC36
corresponds to W0.
QOSC36[7:6]: Priority service type for the ports select this parameter set. Option 1 to option 4.
QOSC37[7]: Priority service allow flow control for the ports select this parameter set.
QOSC37[6]: Flow control pause best effort traffic only
13.7.34 Classes WFQ Credit Port G1
Accessed by serial interface
W0 - QOSC40[5:0] - CREDIT_C0_G1(CPU Address 53f)
[7:6]: Priority service type. Option 1 to 4.
W1 - QOSC41[5:0] – CREDIT_C1_G1 (CPU Address 540)
[7]: Priority service allow flow control for the ports select this parameter set.
[6]: Flow control pause best effort traffic only
W2 - QOSC42[5:0] – CREDIT_C2_G1 (CPU Address 541)
W3 - QOSC43[5:0] – CREDIT_C3_G1 (CPU Address 542)
W4 - QOSC44[5:0] – CREDIT_C4_G1 (CPU Address 543)
W5 - QOSC45[5:0] – CREDIT_C5_G1 (CPU Address 544)
W6 - QOSC46[5:0] – CREDIT_C6_G1 (CPU Address 545)
W7 - QOSC47[5:0] – CREDIT_C7_G1 (CPU Address 546)
QOSC40 through QOSC47 represents the set of WFQ parameters for Gigabit port 24. The granularity of the
numbers is 1, and their sum must be 64. QOSC47 corresponds to W7, and QOSC40 corresponds to W0.
ZL50417 Data Sheet
66
Zarlink Semiconductor Inc.
13.7.35 Classes WFQ Credit Port G2
Accessed by serial interface
W0 - QOSC48[5:0] – CREDIT_C0_G2(CPU Address 547)
[7:6]: Priority service type. Option 1 to 4
W1 - QOSC49[5:0] – CREDIT_C1_G2(CPU Address 548)
[7]: Priority service allow flow control for the ports select this parameter set.
[6]: Flow control pause best effort traffic only
W2 - QOSC50[5:0] – CREDIT_C2_G2(CPU Address 549)
W3 - QOSC51[5:0] – CREDIT_C3_G2(CPU Address 54a)
W4 - QOSC52[5:0] – CREDIT_C4_G2(CPU Address 54b)
W5 - QOSC53[5:0] – CREDIT_C5_G2(CPU Address 54c)
W6 - QOSC54[5:0] – CREDIT_C6_G2(CPU Address 54d)
W7 - QOSC55[5:0] – CREDIT_C7_G2(CPU Address 54e)
QOSC48 through QOSC55 represents the set of WFQ parameters for Gigabit port 2. The granularity of the
numbers is 1, and their sum must be 64. QOSC55 corresponds to W7, and QOSC48 corresponds to W0.
13.7.36 Class 6 Shaper Control Port G1
Accessed by serial interface
QOSC56[5:0] – TOKEN_RATE_G1 (CPU Address 54f). Programs de average rate for gigabit port 1. When equal to
0, shaper is disable. Granularity is 1.
QOSC57[7:0] – TOKEN_LIMIT_G1 (CPU Address 550). Programs the maximum counter for gigabit port 1.
Granularity is 16 bytes.
Shaper is implemented to control the peak and average rate for outgoing traffic with priority 6 (queue 6). Shaper is
limited to gigabit ports and queue P6 when it is in strict priority. QOSC41 programs the peak rate for gigabit port 1.
See Programming QoS Registers application note for more information
13.7.37 Class 6 Shaper Control Port G2
Accessed by serial interface
QOSC58[5:0] – TOKEN_RATE_G2 (CPU Address 551). Programs de average rate for gigabit port 2. When equal
to 0, shaper is disable. Granularity is 1.
QOSC59[7:0] – TOKEN_LIMIT_G2 (CPU Address 552). Programs the maximum counter for gigabit port 2.
Granularity is 16 bytes.
Shaper is implemented to control the peak and average rate for outgoing traffic with priority 6 (queue 6). Shaper is
limited to gigabit ports and queue P6 when it is in strict priority. QOSC49 programs the peak rate for gigabit port 2.
See Programming QoS Register application note for more information.
ZL50417 Data Sheet
67
Zarlink Semiconductor Inc.
13.7.38 RDRC0 – WRED Rate Control 0
I²C Address 0FB, CPU Address 553
Accessed by Serial Interface and IcC (R/W)
13.7.39 RDRC1 – WRED Rate Control 1
I²C Address 0FC, CPU Address 554
Accessed by Serial Interface and I²C (R/W)
13.7.40 User Defined Logical Ports and Well Known Ports
The ZL50417 supports classifying packet priority through layer 4 logical port information. It can be setup by 8 Well
Known Ports, 8 User Defined Logical Ports, and 1 User Defined Range. The 8 Well Known Ports supported are:
•0:23
•1:512
•2:6000
•3:443
•4:111
5:22555
•6:22
•7:554
Their respective priority can be programmed via Well_Known_Port [7:0] priority register. Well_Known_Port_ Enable
can individually turn on/off each Well Known Port if desired.
7430
X Rate Y Rate
Bits [7:4]: Corresponds to the frame drop percentage X% for WRED. Granularity
6.25%.
Bits [3:0]: Corresponds to the frame drop percentage Y% for WRED. Granularity
6.25%.
See Programming QoS Registers Application Note for more information
7430
Z Rate B Rate
Bits [7:4]: Corresponds to the frame drop percentage Z% for WRED. Granularity
6.25%.
Bits [3:0]: Corresponds to the best effort frame drop percentage B%, when shared pool
is all in use and destination port best effort queue reaches UCC. Granularity
6.25%.
See Programming QoS Registers application note for more information
ZL50417 Data Sheet
68
Zarlink Semiconductor Inc.
Similarly, the User Defined Logical Port provides the user programmability to the priority, plus the flexibility to select
specific logical ports to fit the applications. The 8 User Logical Ports can be programmed via User_Port 0-7
registers. Two registers are required to be programmed for the logical port number. The respective priority can be
programmed to the User_Port [7:0] priority register. The port priority can be individually enabled/disabled via
User_Port_Enable register.
The User Defined Range provides a range of logical port numbers with the same priority level. Programming is
similar to the User Defined Logical Port. Instead of programming a fixed port number, an upper and lower limit need
to be programmed, they are: {RHIGHH, RHIGHL} and {RLOWH, RLOWL} respectively. If the value in the upper limit
is smaller or equal to the lower limit, the function is disabled. Any IP packet with a logical port that is less than the
upper limit and more than the lower limit will use the priority specified in RPRIORITY.
13.7.40.1 USER_PORT0_(0~7) – User Define Logical Port (0~7)
USER_PORT_0 - I²C Address h0D6 + 0DE; CPU Address 580(Low) + 581(high)
USER_PORT_1 - I²C Address h0D7 + 0DF; CPU Address 582 + 583
USER_PORT_2 - I²C Address h0D8 + 0E0; CPU Address 584 + 585
USER_PORT_3 - I²C Address h0D9 + 0E1; CPU Address 586 + 587
USER_PORT_4 - I²C Address h0DA + 0E2; CPU Address 588 + 589
USER_PORT_5 - I²C Address h0DB + 0E3; CPU Address 58A + 58B
USER_PORT_6 - I²C Address h0DC + 0E4; CPU Address 58C + 58D
USER_PORT_7 - I²C Address h0DD + 0E5; CPU Address 58E + 58F
Accessed by CPU, serial interface and I²C (R/W)
(Default 00) This register is duplicated eight times from PORT 0 through PORT 7 and allows the CPU to define
eight separate ports.
13.7.40.2 USER_PORT_[1:0]_PRIORITY - User Define Logic Port 1 and 0 Priority
I²C Address h0E6, CPU Address 590
Accessed by serial interface and I²C (R/W)
The chip allows the CPU to define the priority
70
TCP/UDP Logic Port Low
70
TCP/UDP Logic Port High
7543 10
Priority 1 Drop Priority 0 Drop
Bits [3:0]: Priority setting, transmission + dropping, for logic port 0
Bits [7:4]: Priority setting, transmission + dropping, for logic port 1 (Default 00)
ZL50417 Data Sheet
69
Zarlink Semiconductor Inc.
13.7.40.3 USER_PORT_[3:2]_PRIORITY - User Define Logic Port 3 and 2 Priority
I²C Address h0E7, CPU Address 591
Accessed by serial interface and I²C (R/W)
13.7.40.4 USER_PORT_[5:4]_PRIORITY - User Define Logic Port 5 and 4 Priority
I²C Address h0E8, CPU Address 592
Accessed by serial interface and I²C (R/W)
(Default 00)
13.7.40.5 USER_PORT_[7:6]_PRIORITY - User Define Logic Port 7 and 6 Priority
I²C Address h0E9, CPU Address 593
Accessed by serial interface and I²C (R/W)
(Default 00)
13.7.40.6 USER_PORT_ENABLE[7:0] – User Define Logic 7 to 0 Port Enables
I²C Address h0EA, CPU Address 594
Accessed by serial interface and I²C (R/W)
(Default 00)
754310
Priority 3 Drop Priority 2 Drop
754310
Priority 5 Drop Priority 4 Drop
754310
Priority 7 Drop Priority 6 Drop
7654 3 2 10
P7 P6 P5 P4 P3 P2 P1 P0
ZL50417 Data Sheet
70
Zarlink Semiconductor Inc.
13.7.40.7 WELL_KNOWN_PORT[1:0] PRIORITY- Well Known Logic Port 1 and 0 Priority
I²C Address h0EB, CPU Address 595
Accessed by serial interface and I²C (R/W)
Priority 0 - Well known port 23 for telnet applications.
Priority 1 - Well Known port 512 for TCP/UDP.
(Default 00)
13.7.40.8 WELL_KNOWN_PORT[3:2] PRIORITY- Well Known Logic Port 3 and 2 Priority
I²C Address h0EC, CPU Address 596
Accessed by serial interface and I²C (R/W)
Priority 2 - Well known port 6000 for XWIN.
Priority 3 - Well known port 443 for http.sec
(Default 00)
13.7.40.9 WELL_KNOWN_PORT [5:4] PRIORITY- Well Known Logic Port 5 and 4 Priority
I²C Address h0ED, CPU Address 597
Accessed by serial interface and I²C (R/W)
Priority 4 - Well Known port 111 for sun remote procedure call.
Priority 5 - Well Known port 22555 for IP Phone call setup.
(Default 00)
13.7.40.10 WELL_KNOWN_PORT [7:6] PRIORITY- Well Known Logic Port 7 and 6 Priority
I²C Address h0EE, CPU Address 598
Accessed by serial interface and I²C (R/W)
Priority 6 - well know port 22 for ssh.
Priority 7 – well Known port 554 for rtsp.
(Default 00)
754310
Priority 1 Drop Priority 0 Drop
754310
Priority 3 Drop Priority 2 Drop
754310
Priority 5 Drop Priority 4 Drop
754310
Priority 7 Drop Priority 6 Drop
ZL50417 Data Sheet
71
Zarlink Semiconductor Inc.
13.7.40.11 WELL KNOWN_PORT_ENABLE [7:0] – Well Known Logic 7 to 0 Port Enables
I²C Address h0EF, CPU Address 599
Accessed by serial interface and I²C (R/W)
- 1 – Enable
- 0 - Disable
(Default 00)
13.7.40.12 RLOWL – User Define Range Low Bit 7:0
I²C Address h0F4, CPU Address: 59a
Accessed by serial interface and I²C (R/W)
(Default 00)
13.7.40.13 1RLOWH – User Define Range Low Bit 15:8
I²C Address h0F5, CPU Address: 59b
Accessed by serial interface and I²C (R/W)
(Default 00)
13.7.40.14 RHIGHL – User Define Range High Bit 7:0
I²C Address h0D3, CPU Address: 59c
Accessed by CPU, serial interface and I²C (R/W)
(Default 00)
13.7.40.15 RHIGHH – User Define Range High Bit 15:8
I²C Address h0D4, CPU Address: 59d
Accessed by serial interface and I²C (R/W)
(Default 00)
13.7.40.16 RPRIORITY – User Define Range Priority
I²C Address h0D5, CPU Address: 59e
Accessed by serial interface and I²C (R/W)
7654 3 2 10
P7 P6 P5 P4 P3 P2 P1 P0
743 0
Range Transmit Priority Drop
ZL50417 Data Sheet
72
Zarlink Semiconductor Inc.
RLOW and RHIGH form a range for logical ports to be classified with priority specified in RPRIORITY.
13.8 (Group 6 Address) MISC Group
13.8.1 MII_OP0 – MII Register Option 0
I²C Address F0, CPU Address:h600
Accessed by serial interface and I²C (R/W)
13.8.2 MII_OP1 – MII Register Option 1
I²C Address F1, CPU Address:h601
Accessed by serial interface and I²C (R/W)
Bit [3:1] Transmit Priority
Bits [0]: Drop Priority
76 5 4 0
hfc 1prst DisJ Vendor Spc. Reg Addr
Bits [7]: Half duplex flow control feature
0 = Half duplex flow control always enable
1 = Half duplex flow control by negotiation
Bits [6]: Link partner reset auto-negotiate disable
Bits [5]: Disable jabber detection. This is for HomePNA applications or any serial
operation slower than 10 Mbps.
0 = Enable
1 = Disable
Bit [4:0]: Vendor specified link status register address (null value means don’t use it)
(Default 00). This is used if the Linkup bit position in the PHY is non-standard
743 0
Speed bit location Duplex bit location
Bits [3:0]: Duplex bit location in vendor specified register
Bits [7:4]: Speed bit location in vendor specified register
(Default 00)
ZL50417 Data Sheet
73
Zarlink Semiconductor Inc.
13.8.3 FEN – Feature Register
I²C Address F2, CPU Address:h602)
Accessed by serial interface and I²C (R/W)
13.8.4 MIIC0 – MII Command Register 0
CPU Address:h603
Accessed by serial interface only (R/W)
Bit [7:0] - MII Data [7:0]
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY, and no VALID; then
program MII command.
13.8.5 MIIC1 – MII Command Register 1
CPU Address:h604
Accessed by serial interface only (R/W)
Bit [7:0] - MII Data [15:8]
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then
program MII command.
765 3 21 0
DML Mii DS
Bits [1:0]: Reserved (Default 0)
Bit [2]: Support DS EF Code. (Default 0)
- 0 – Disable
- 1 – Enable (all ports)
When 101110 is detected in DS field (TOS[7:2]), the frame priority is set for
110 and drop is set for 0.
Bit [5:3]: Reserved (Default 010)
Bit [6]: Disable MII Management State Machine (Default 0)
- 0: Enable MII Management State Machine
- 1: Disable MII Management State Machine
Bit [7]: Disable using MCT Link List structure (Default 0)
- 0 – Enable using MCT Link structure
- 1 - Disable using MCT Link List structure
ZL50417 Data Sheet
74
Zarlink Semiconductor Inc.
13.8.6 MIIC2 – MII Command Register 2
CPU Address:h605
Accessed by serial interface only (R/W)
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then
program MII command.
13.8.7 MIIC3 – MII Command Register 3
CPU Address:h606
Accessed by serial interface only (R/W)
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then
program MII command. Writing this register will initiate a serial management cycle to the MII management
interface.
13.8.8 MIID0 – MII Data Register 0
CPU Address:h607
Accessed by serial interface only (RO)
Bit [7:0] - MII Data [7:0]
13.8.9 MIID1 – MII Data Register 1
CPU Address:h608
Accessed by serial interface only (RO)
Bit [7:0] - MII Data [15:8]
76 54 0
Mii OP Register address
- Bit [4:0] REG_AD – Register PHY Address
- Bit [6:5] OP – Operation code “10” for read command and “01” for write command
7654 0
Rdy Valid PHY address
- Bits [4:0] PHY_AD – 5 Bit PHY Address
- Bit [6] VALID – Data Valid from PHY (Read Only)
- Bit [7] RDY – Data is returned from PHY (Ready Only)
ZL50417 Data Sheet
75
Zarlink Semiconductor Inc.
13.8.10 LED Mode – LED Control
CPU Address:h609
Accessed by CPU, serial interface and I²C (R/W)
13.8.11 CHECKSUM - EEPROM Checksum
I²C Address FF, CPU Address:h60b
Accessed by serial interface and I²C (R/W)
This register is used in unmanaged mode only. Before requesting that the ZL50417 updates the EEPROM device,
the correct checksum needs to be calculated and written into this checksum register. The checksum formula is:
FF
ΣI²C register = 0
i = 0
When the ZL50417 boots from the EEPROM the checksum is calculated and the value must be zero. If the
checksum is not zeroed the ZL50417 does not start and pin CHECKSUM_OK is set to zero.
7543210
Clock rate Hold Time
- Bit [0] Reserved (Default 0)
- Bit [2:1]: Hold time for LED signal (Default 00)
00 = 8 msec 01 = 16 msec
10 = 32 msec 11 = 64 msec
- Bit [4:3]: LED clock frequency (Default 0)
00 = 100 M/8 = 12.5 MHz
01 = 100 M/16 = 25 MHz
10 = 100 M/32 = 125 MHz
11 = 100 M/64 =1.5625 MHz
- Bit [7:5]: Reserved. Must be set to ‘0’ (Default 0)
- Bit [7:0]: (Default 0)
ZL50417 Data Sheet
76
Zarlink Semiconductor Inc.
13.9 (Group 7 Address) Port Mirroring Group
13.9.1 MIRROR1_SRC – Port Mirror source port
CPU Address 700
Accessed by serial interface (R/W) (Default 7F)
13.9.2 MIRROR1_DEST – Port Mirror destination
CPU Address 701
Accessed by serial interface (R/W) (Default 17)
13.9.3 MIRROR2_SRC – Port Mirror source port
CPU Address 702
Accessed by serial interface (R/W) (Default FF)
7654 0
I/O Src Port Select
- Bit [4:0]: Source port to be mirrored. Use illegal port number to disable mirroring
- Bit [5]: 1 – select ingress data
0 – select egress data
- Bit [6]: Reserved
- Bit [7]: Reserved must be se to '1'
754 0
Dest Port Select
- Bit [4:0]: Port Mirror Destination
When port mirroring is enable, destination port can not serve as a data port.
7654 0
I/O Src Port Select
- Bit [4:0]: Source port to be mirrored. Use illegal port number to disable mirroring
- Bit [5]: 1 – select ingress data
0 – select egress data
- Bit [6] Reserved
- Bit [7] Reserved must be set to '1'
ZL50417 Data Sheet
77
Zarlink Semiconductor Inc.
13.9.4 MIRROR2_DEST – Port Mirror destination
CPU Address 703
Accessed by serial interface (R/W) (Default 00)
13.10 (Group F Address) CPU Access Group
13.10.1 GCR-Global Control Register
CPU Address: hF00
Accessed by serial interface. (R/W)
13.10.2 DCR-Device Status and Signature Register
CPU Address: hF01
Accessed by serial interface. (RO)
754 0
Dest Port Select
Bit [4:0]: Port Mirror Destination
When port mirroring is enable, destination port can not serve as a data port.
7 43 210
Reset Bist SR SC
Bit [0]: Store configuration (Default = 0)
Write ‘1’ followed by ‘0’ to store configuration into external EEPROM
Bit [1]: Store configuration and reset (Default = 0)
Write ‘1’ to store configuration into external EEPROM and reset chip
Bit [2]: Start BIST (Default = 0)
Write ‘1’ followed by ‘0’ to start the device’s built-in self-test. The result is
found in the DCR register.
Bit [3]: Soft Reset (Default = 0)
Write ‘1’ to reset chip
Bit [7:4]: Reserved
76543210
Revision Signature RE BinP BR BW
Bit [0]: 1: Busy writing configuration to I²C
0: Not busy (not writing configuration to I²C)
Bit [1]: 1: Busy reading configuration from I²C
0: Not busy (not reading configuration from I²C)
ZL50417 Data Sheet
78
Zarlink Semiconductor Inc.
13.10.3 DCR1-Giga port status
CPU Address: hF02
Accessed by serial interface. (RO)
13.10.4 DPST – Device Port Status Register
CPU Address:hF03
Accessed by serial interface (R/W)
Bit [2]: 1: BIST in progress
0: BIST not running
Bit [3]: 1: RAM Error
0: RAM OK
Bit [5:4]: Device Signature
11: ZL50417 device
Bit [7:6]: Revision
00: Initial Silicon
01: XA1 Silicon
10: Production Silicon
76 43210
CIC GIGA1 GIGA0
Bit [1:0]: Giga port 0 strap option
- 00 – 100 Mb MII mode
- 01 – Reserved
-10 GMII
- 11 – PCS
Bit [3:2] Giga port 1 strap option
- 00 – 100 Mb MII mode
- 01 – Reserved
-10 GMII
- 11 – PCS
Bit [7] Chip initialization completed
Bit [4:0]: Read back index register. This is used for selecting what to read back from
DTST. (Default 00)
- 5’b00000 - Port 0 Operating mode and Negotiation status
- 5’b00001 - Port 1 Operating mode and Negotiation status
- 5’b00010 - Port 2 Operating mode and Negotiation status
ZL50417 Data Sheet
79
Zarlink Semiconductor Inc.
13.10.5 DTST – Data read back register
CPU Address: hF04
Accessed by serial interface (RO)
This register provides various internal information as selected in DPST bit [4:0]. Refer to the PHY Control
Application Note.
- 5’b00011 - Port 3 Operating mode and Negotiation status
- 5’b00100 - Port 4 Operating mode and Negotiation status
- 5’b00101 - Port 5 Operating mode and Negotiation status
- 5’b00110 - Port 6 Operating mode and Negotiation status
- 5’b00111 - Port 7 Operating mode and Negotiation status
- 5’b01000 - Port 8 Operating mode and Negotiation status
- 5’b01001 - Port 9 Operating mode and Negotiation status
- 5’b01010 - Port 10 Operating mode and Negotiation status
- 5’b01011 - Port 11 Operating mode and Negotiation status
- 5’b01100 - Port 12 Operating mode and Negotiation status
- 5’b01101 - Port 13 Operating mode and Negotiation status
- 5’b01110 - Port 14 Operating mode and Negotiation status
- 5’b01111 - Port 15 Operating mode and Negotiation status
- 5’b10000 - Reserved
- 5’b10001 - Reserved
- 5’b10010 - Reserved
- 5’b00011 - Reserved
- 5’b10100 - Reserved
- 5’b10101 - Reserved
- 5’b10110 - Reserved
- 5’b10111 - Reserved
- 5’b11000 - Reserved
- 5’b11001 - Port 25 Operating mode/Neg status (Gigabit 1)
- 5’b11010 - Port 26 Operating mode/Neg status (Gigabit 2)
7 654321 0
MD Sig Giga Inkdn FE Fdpx FcEn
ZL50417 Data Sheet
80
Zarlink Semiconductor Inc.
When bit is 1:
Bit [0] – Flow control enable
Bit [1] – Full duplex port
Bit [2] – Fast Ethernet port (if not gigabit port)
Bit [3] – Link is down
Bit [4] – Giga port
Bit [5] – Signal detect (when PCS interface mode)
Bit [6] - reserved
Bit [7] – Module detected (for hot swap purpose)
13.10.6 PLLCR - PLL Control Register
CPU Address: hF05
Accessed by serial interface (RW)
Bit [3] - Must be '1'
Bit [7] - Selects strap option or LCLK/OECLK registers
0 - Strap option (default)
1 - LCLK/OECLK registers
13.10.7 LCLK - LA_CLK delay from internal OE_CLK
CPU Address: hF06
Accessed by serial interface (RW)
PD[12:10] LCLK Delay
000b 80h 8 Buffers Delay
001b 40h 7 Buffers Delay
010b 20h 6 Buffers Delay
011b 10h 5 Buffers Delay (Recommend)
100b 08h 4 Buffers Delay
101b 04h 3 Buffers Delay
110b 02h 2 Buffers Delay
111b 01h 1 Buffers Delay
The LCLK delay from SCLK is the sum of the delay programmed in here and the delay in OECLK register.
ZL50417 Data Sheet
81
Zarlink Semiconductor Inc.
13.10.8 OECLK - Internal OE_CLK delay from SCLK
CPU Address: hF07
Accessed by serial interface (RW)
The OE_CLK is used for generating the OE0 and OE1 signals.
PD[15:13] OECLK Delay
000b 80h 8 Buffers Delay
001b 40h 7 Buffers Delay (Recommend)
010b 20h 6 Buffers Delay
011b 10h 5 Buffers Delay
100b 08h 4 Buffers Delay
101b 04h 3 Buffers Delay
110b 02h 2 Buffers Delay
111b 01h 1 Buffers Delay
13.10.9 DA – DA Register
CPU Address: hFFF
Accessed by serial interface (RO)
Always return 8’h DA. Indicate the serial port connection is good.
13.11 TBI Registers
Two sets of TBI registers are used for configure the two Gigabit ports if they are operating in TBI mode. These TBI
registers are located inside the switching chip and they are accessed through the MII command and MII data
registers.
ZL50417 Data Sheet
82
Zarlink Semiconductor Inc.
13.11.1 Control Register
MII Address: h00
Read/Write
13.11.2 Status Register
MII Address: h01
Read Only
Bit [15] Reset PCS logic and all TBI registers
1 = Reset
0 = Normal operation
Bit [14] Reserved. Must be programmed with “0”.
Bit [13] Speed selection (See bit 6 for complete details)
Bit [12] Auto Negotiation Enable
1 = Enable auto-negotiation process.
0 = Disable auto-negotiation process (Default)
Bit [11:10] Reserved. Must be programmed with “0”
Bit [9] Restart Auto Negotiation.
1 = Restart auto-negotiation process.
0 = Normal operation (Default).
Bit [8:7] Reserved.
Bit [6] Speed Selection
Bit [6] [13]
1 1 = Reserved
0 =1000 Mb/s (Default)
1 =100 Mb/s
0 0 =10 Mb/s
Bit [5:0] Reserved. Must be programmed with “0”.
Bit [15:9] Reserved. Always read back as “0”.
Bit [8] Reserved. Always read back as “1”.
Bit [7:6] Reserved. Always read back as “0”.
Bit [5] Auto-Negotiation Complete
1 = Auto-negotiation process completed.
0 = Auto-negotiation process not completed.
Bit [4] Reserved. Always read back as “0”
Bit [3] Reserved. Always read back as “1”
Bit [2] Link Status
1 = Link is up.
0 = Link is down.
Bit [1] Reserved. Always read back as “0”.
Bit [0] Reserved. Always read back as “1”.
ZL50417 Data Sheet
83
Zarlink Semiconductor Inc.
13.11.3 Advertisement Register
MII Address: h04
Read/Write
13.11.4 Link Partner Ability Register
MII Address: h05
Read Only
Bit [15] Next Page
1 = Has next page capabilities.
0 = Do not has next page capabilities (Default).
Bit [14] Reserved. Always read back as “0”. Read Only.
Bit [13:12] Remote Fault. Default is “0”.
Bit [11:9] Reserved. Always read back as “0”. Read Only.
Bit [8:7] Pause. Default is “00”
Bit [6] Half Duplex
1 = Support half duplex (Default).
0 = Do not support half duplex.
Bit [5] Full duplex
1 = Support full duplex (Default).
0 = Do not support full duplex.
Bit [4:0] Reserved. Always read back as “0”. Read Only.
Bit [15] Next Page
1 = Has next page capabilities.
0 = Do not has next page capabilities.
Bit [14] Acknowledge
Bit [13:12] Remote Fault.
Bit [11:9] Reserved. Always read back as “0”.
Bit [8:7] Pause.
Bit [6] Half Duplex
1 = Support half duplex.
0 = Do not support half duplex.
Bit [5] Full duplex
1 = Support full duplex.
0 = Do not support full duplex.
Bit [4:0] Reserved. Always read back as “0”.
ZL50417 Data Sheet
84
Zarlink Semiconductor Inc.
13.11.5 Expansion Register
MII Address: h06
Read Only
13.11.6 Extended Status Register
MII Address: h15
Read Only
Bit [15:2] Reserved. Always read back as “0”.
Bit [1] Page Received.
1 = A new page has been received.
0 = A new page has not been received.
Bit [0] Reserved. Always read back as “0”.
Bit [15] 1000 Full Duplex
1 = Support 1000 full duplex operation (Default).
0 = Do not support 1000 full duplex operation.
Bit [14] 1000 Half Duplex
1 = Support 1000 half duplex operation (Default).
0 = Do not support 1000 half duplex operation.
Bit [13:0] Reserved. Always read back as “0”.
ZL50417 Data Sheet
85
Zarlink Semiconductor Inc.
14.0 BGA and Ball Signal Descriptions
14.1 BGA Views (TOP-View)
1234567891011121314151617181920212223242526272829
ALA_D
4
LA_D
7
LA_D
10
LA_D
13
LA_D
15
LA_A
4
LA_O
E0_
LA_A
8
LA_A
13
LA_A
16
LA_A
19
LA_D
33
LA_D
36
LA_D
39
LA_D
42
LA_D
45
OE_
CLK0
LA_
CLK0
TRUN
K1
RESE
RVED
RESE
RVED
SCL SDA STRO
BE
TSTO
UT7
BLA_D
1
LA_D
3
LA_D
6
LA_D
9
LA_D
12
LA_D
14
LA_A
DSC_
LA_O
E1_
LA_A
7
LA_A
12
LA_A
15
LA_A
18
LA_D
32
LA_D
35
LA_D
38
LA_D
41
LA_D
44
OE_
CLK1
LA_
CLK1
LA_D
62
RESE
RVED
RESE
RVED
TRUN
K2
RESE
RVED
D0 TSTO
UT8
TSTO
UT3
CLA_C
LK
LA_D
0
LA_D
2
LA_D
5
LA_D
8
LA_D
11
LA_A
3
LA_O
E_
LA_W
E_
T_MO
DE1
LA_A
11
LA_A
14
LA_A
17
LA_A
20
LA_D
34
LA_D
37
LA_D
40
LA_D
43
OE_
CLK2
LA_
CLK2
P_D TRUN
K0
RESE
RVED
RESE
RVED
AUTO
FD
TSTO
UT11
TSTO
UT9
TSTO
UT4
TSTO
UT0
DAGN
D
LA_D
17
LA_D
19
LA_D
21
LA_D
23
LA_D
25
LA_D
27
LA_D
29
LA_D
31
LA_A
6
LA_A
10
LA_W
E0_
LA_D
49
LA_D
51
LA_D
53
LA_D
55
LA_D
57
LA_D
59
LA_D
61
LA_D
63
LA_D
47
SCAN
COL
SCAN
CLK
TSTO
UT14
TSTO
UT13
TSTO
UT12
TSTO
UT10
TSTO
UT5
TSTO
UT1
ESCLK
LA_D
16
LA_D
18
LA_D
20
LA_D
22
LA_D
24
LA_D
26
LA_D
28
LA_D
30
LA_A
5
LA_A
9
LA_W
E1_
LA_D
48
LA_D
50
LA_D
52
LA_D
54
LA_D
56
LA_D
58
LA_D
60
RESE
RVED
LA_D
46
SCAN
LINK
TSTO
UT15
M26_
CRS
M26_
TXER
SCAN
MOD
TSTO
UT6
TSTO
UT2
FAV C C RESI
N_
SCAN
EN
LB_D
63
LB_D
62
VCC VCC VCC VCC VCC M26_
TXCL
M26_
TXEN
M26_
MTX-
M26_
RXDV
M26_
RXCL
GLB_C
LK
RESE
TOUT
LB_D
47
LB_D
61
LB_D
60
RESE
RVED
RESE
RVED
RESE
RVED
M26_
RXER
M26_
COL
HLB_D
46
LB_D
45
LB_D
44
LB_D
59
LB_D
58
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
JLB_D
43
LB_D
42
LB_D
41
LB_D
57
LB_D
56
RESE
RVED
RESE
RVED
M26_
RXD9
RESE
RVED
RESE
RVED
KLB_D
40
LB_D
39
LB_D
38
LB_D
55
LB_D
54
VDD VDD VDD VDD M26_
TXD9
M26_
TXD8
M26_
RXD6
M26_
RXD7
M26_
RXD8
LLB_D
37
LB_D
36
LB_D
35
LB_D
53
LB_D
52
M26_
TXD4
M26_
TXD6
M26_
RXD3
M26_
RXD4
M26_
RXD5
MLB_D
34
LB_D
33
LB_D
32
LB_D
51
LB_D
50
VDD VSS VSS VSS VSS VSS VSS VSS VDD M26_
TXD7
M26_
TXD5
M26_
RXD0
M26_
RXD1
M26_
RXD2
NLB_A
18
LB_A
19
LB_A
20
LB_D
49
LB_D
48
VCC VDD VSS VSS VSS VSS VSS VSS VSS VDD VCC M26_
TXD2
M26_
TXD3
GREF
_CLK
PLB_A
15
LB_A
16
LB_A
17
LB_W
E0_
LB_W
E1_
VCC VSS VSS VSS VSS VSS VSS VSS VCC M26_
TXD0
M26_
TXD1
MDIO GREF
_CLK
RLB_A
10
LB_A
11
LB_A
12
LB_A
13
LB_A
14
VCC VSS VSS VSS VSS VSS VSS VSS VCC M25_
CRS
M25_
TXER
MDC M_CL
K
TLB_A
5
LB_A
6
LB_A
7
LB_A
8
LB_A
9
VCC VSS VSS VSS VSS VSS VSS VSS VCC M25_
TXCL
M25_
TXEN
M25_
MTX-
M25_
RXDV
M25_
RXCL
ULB_O
E0_
LB_O
E1_
T_MO
DE0
LB_D
31
LB_D
30
VCC VDD VSS VSS VSS VSS VSS VSS VSS VDD VCC RESE
RVED
RESE
RVED
RESE
RVED
M25_
RXER
M25_
COL
VLB_A
DSC_
LB_O
E_
LB_W
E_
LB_D
29
LB_D
28
VDD VSS VSS VSS VSS VSS VSS VSS VDD RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
WLB_D
15
LB_A
3
LB_A
4
LB_D
27
LB_D
26
RESE
RVED
RESE
RVED
M25_
RXD9
RESE
RVED
RESE
RVED
YLB_D
14
LB_D
13
LB_D
12
LB_D
25
LB_D
24
VDD VDD VDD VDD M25_
RXD6
M25_
TXD8
M25_
TXD9
M25_
RXD7
M25_
RXD8
AA LB_D
11
LB_D
10
LB_D
9
LB_D
23
LB_D
22
M25_
TXD6
M25_
TXD7
M25_
RXD3
M25_
RXD4
M25_
RXD5
AB LB_D
8
LB_D
7
LB_D
6
LB_D
21
LB_D
20
M25_
TXD4
M25_
TXD5
M25_
RXD0
M25_
RXD1
M25_
RXD2
AC LB_D
5
LB_D
4
LB_D
3
LB_D
19
LB_D
18
M25_
TXD2
M25_
TXD3
RESE
RVED
RESE
RVED
RESE
RVED
AD LB_D
2
LB_D
1
LB_D
0
LB_D
17
LB_D
16
VCC VCC VCC VCC VCC M25_
TXD0
M25_
TXD1
RESE
RVED
RESE
RVED
RESE
RVED
AE M0_T
XEN
M0_T
XD0
M0_T
XD1
M3_T
XD1
M3_T
XEN
M3_R
XD0
M5_T
XD1
M5_T
XEN
M5_R
XD0
M8_T
XD1
M8_T
XEN
M8_R
XD0
M10_
TXD1
M10_
TXEN
M10_
RXD0
M13_
TXD1
RESE
RVED
M15_
TXD1
RESE
RVED
M15_
TXEN
M15_
RXD0
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
AF M0_R
XD1
M0_R
XD0
M0_C
RS
M3_T
XD0
M3_C
RS
M3_R
XD1
M5_T
XD0
M5_C
RS
M5_R
XD1
M8_T
XD0
M8_C
RS
M8_R
XD1
M10_
TXD0
M10_
CRS
M10_
RXD1
M13_
TXD0
M13_
CRS
M13_
RXD1
M14_
CRS
RESE
RVED
M15_
RXD1
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
AG M1_T
XEN
M1_T
XD0
M1_T
XD1
M2_T
XD1
M2_C
RS
M4_T
XD1
M4_C
RS
M6_T
XD1
M6_C
RS
M7_T
XD1
M7_C
RS
M9_T
XD1
M9_C
RS
M11_
TXD1
M11_
CRS
M12_
TXD1
M12_
CRS
M14_
TXD1
M15_
TXD0
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
AH M1_R
XD0
M1_C
RS
M2_T
XD0
M2_R
XD0
M4_T
XD0
M4_R
XD0
M6_T
XD0
M6_R
XD0
M7_T
XD0
M7_R
XD0
M9_T
XD0
M9_R
XD0
M11_
TXD0
M11_
RXD0
M12_
TXD0
M12_
RXD0
M14_
TXD0
M14_
RXD0
M13_
RXD0
M15_
CRS
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
AJ M1_R
XD1
M2_T
XEN
M2_R
XD1
M4_T
XEN
M4_R
XD1
M6_T
XEN
M6_R
XD1
M7_T
XEN
M7_R
XD1
M9_T
XEN
M9_R
XD1
M11_
TXEN
M11_
RXD1
M12_
TXEN
M12_
RXD1
M14_
TXEN
M14_
RXD1
RESE
RVED
M13_
TXEN
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
RESE
RVED
1234567891011121314151617181920212223242526272829
ZL50417 Data Sheet
86
Zarlink Semiconductor Inc.
14.1.1 Ball Signal Descriptions
Ball No(s) Symbol I/O Description
I²C Interface Note: Use I²C and Serial control interface to configure the system
A24 SCL Output I²C Data Clock
A25 SDA I/O-TS with internal pull
up
I²C Data I/O
Serial Control Interface
A26 STROBE Input with weak internal
pull up
Serial Strobe Pin
B26 D0 Input with weak internal
pull up
Serial Data Input
C25 AUTOFD Output with pull up Serial Data Output (AutoFD)
Frame Buffer Interface
D20, B21, D19,
E19,D18, E18, D17,
E17, D16, E16, D15,
E15, D14, E14, D13,
E13, D21, E21, A18,
B18, C18, A17, B17,
C17, A16, B16, C16,
A15, B15, C15, A14,
B14, D9, E9, D8, E8,
D7, E7, D6, E6, D5, E5,
D4, E4, D3, E3, D2, E2,
A7, B7, A6, B6, C6, A5,
B5, C5, A4, B4, C4, A3,
B3, C3, B2, C2
LA_D[63:0] I/O-TS with pull up Frame Bank A– Data Bit [63:0]
C14, A13, B13, C13,
A12, B12, C12, A11,
B11, C11, D11, E11,
A10, B10, D10, E10, A8,
C7
LA_A[20:3] Output Frame Bank A – Address Bit
[20:3]
B8 LA_ADSC# Output with pull up Frame Bank A Address Status
Control
C1 LA_CLK Output with pull up Frame Bank A Clock Input
C9 LA_WE# Output with pull up Frame Bank A Write Chip
Select for one layer SRAM
application
D12 LA_WE0# Output with pull up Frame Bank A Write Chip
Select for lower layer of two
bank SRAM application
E12 LA_WE1# Output with pull up Frame Bank A Write Chip
Select for upper bank of two
layer SRAM application
ZL50417 Data Sheet
87
Zarlink Semiconductor Inc.
C8 LA_OE# Output with pull up Frame Bank A Read Chip
Select for one layer SRAM
application
A9 LA_OE0# Output with pull up Frame Bank A Read Chip
Select for lower layer of two
layers SRAM application
B9 LA_OE1# Output with pull up Frame Bank A Read Chip
Select for upper layer of two
layers SRAM application
F4, F5, G4, G5, H4, H5,
J4, J5, K4, K5, L4, L5,
M4, M5, N4, N5, G3,
H1, H2, H3, J1, J2, J3,
K1, K2, K3, L1, L2, L3,
M1, M2, M3, U4, U5,
V4, V5, W4, W5, Y4,
Y5, AA4, AA5, AB4,
AB5, AC4, AC5, AD4,
AD5, W1, Y1, Y2, Y3,
AA1, AA2, AA3, AB1,
AB2, AB3, AC1, AC2,
AC3, AD1, AD2, AD3
LB_D[63:0] I/O-TS with pull up. Frame Bank B– Data Bit [63:0]
N3, N2, N1, P3, P2, P1,
R5, R4, R3, R2, R1, T5,
T4, T3, T2, T1, W3, W2
LB_A[20:3] Output Frame Bank B – Address Bit
[20:3]
V1 LB_ADSC# Output with pull up Frame Bank B Address Status
Control
G1 LB_CLK Output with pull up Frame Bank B Clock Input
V3 LB_WE# Output with pull up Frame Bank B Write Chip
Select for one layer SRAM
application
P4 LB_WE0# Output with pull up Frame Bank B Write Chip
Select for lower layer of two
layers SRAM application
P5 LB_WE1# Output with pull up Frame Bank B Write Chip
Select for upper layer of two
layers SRAM application
V2 LB_OE# Output with pull up Frame Bank B Read Chip
Select for one layer SRAM
application
U1 LB_OE0# Output with pull up Frame Bank B Read Chip
Select for lower layer of two
layers SRAM application
U2 LB_OE1# Output with pull up Frame Bank B Read Chip
Select for upper layer of two
layers SRAM application
Ball No(s) Symbol I/O Description
ZL50417 Data Sheet
88
Zarlink Semiconductor Inc.
Fast Ethernet Access Ports [15:0] RMII
R28 M_MDC Output MII Management Data Clock –
(Common for all MII Ports
[15:0])
P28 M_MDIO I/O-TS with pull up MII Management Data I/O
(Common for all MII Ports
[15:0])
R29 M_CLKI Input Reference Input Clock
AF21, AJ19, AF18,
AJ17, AJ15, AF15,
AJ13, AF12, AJ11, AJ9,
AF9, AJ7, AF6, AJ5,
AJ3, AF1
M[15:0]_RXD[1] Input with weak internal
pull up resistors.
Ports [15:0] – Receive Data
Bit [1]
AE21, AH19, AH20,
AH17, AH15, AE15,
AH13, AE12, AH11,
AH9, AE9, AH7, AE6,
AH5, AH2, AF2
M[15:0]_RXD[0] Input with weak internal
pull up resistors
Ports [15:0] – Receive Data
Bit [0]
AH21, AF19, AF17,
AG17, AG15, AF14,
AG13, AF11, AG11,
AG9, AF8, AG7, AF5,
AG5, AH3, AF3
M[15:0]_CRS_DV Input with weak internal
pull down resistors.
Ports [15:0] – Carrier Sense
and Receive Data Valid
AE20, AJ18, AJ21,
AJ16, AJ14, AE14,
AJ12, AE11, AJ10, AJ8,
AE8, AJ6, AE5, AJ4,
AG1, AE1
M[15:0]_TXEN I/O- TS with pull up,
slew
Ports [15:0] – Transmit Enable
Strap option for RMII/GPSI
AE18, AG18, AE16,
AG16, AG14, AE13,
AG12, AE10, AG10,
AG8, AE7, AG6, AE4,
AG4, AG3, AE3
M[15:0]_TXD[1] Output, slew Ports [15:0] – Transmit Data
Bit [1]
AG19, AH18, AF16,
AH16, AH14, AF13,
AH12, AF10, AH10,
AH8, AF7, AH6, AF4,
AH4, AG2, AE2
M[15:0]_TXD[0] Output, slew Ports [15:0] – Transmit Data
Bit [0]
GMII/TBI GiGabit Ethernet Access Ports 0 & 1
Y27, Y26, AA26, AA25,
AB26, AB25, AC26,
AC25, AD26, AD25
M25_TXD[9:0] Output Transmit Data Bit [9:0]
T28 M25_RX_DV Input w/ pulldown Receive Data Valid
U28 M25_RX_ER Input w/ pullup Receive Error
R25 M25_CRS Input w/ pulldown Carrier Sense
Ball No(s) Symbol I/O Description
ZL50417 Data Sheet
89
Zarlink Semiconductor Inc.
U29 M25_COL Input w/ pullup Collision Detected
T29 M25_RXCLK Input w/ pullup Receive Clock
W27, Y29, Y28, Y25,
AA29, AA28, AA27,
AB29, AB28, AB27
M25_RXD[9:0] Input w/ pullup Receive Data Bit [9:0]
T26 M25_TX_EN Output w/ pullup Transmit Data Enable
R26 M25_TX_ER Output w/ pullup Transmit Error
T27 M25_MTXCLK Input w/ pull down MII Mode Transmit Clock
T25 M25_ TXCLK Output Gigabit Transmit Clock
P29 GREF_CLK0 Input w/ pullup Gigabit Reference Clock
K25, K26, M25, L26,
M26, L25, N26, N25,
P26, P25
M26_TXD[9:0] Output Transmit Data Bit [9:0]
F28 M26_RX_DV Input w/ pulldown Receive Data Valid
G28 M26_RX_ER Input w/ pullup Receive Error
E25 M26_CRS Input w/ pulldown Carrier Sense
G29 M26_COL Input w/ pullup Collision Detected
F29 M26_RXCLK Input w/ pullup Receive Clock
J27, K29, K28, K27,
L29, L28, L27, M29,
M28, M27
M26_RXD[9:0] Input w/ pullup Receive Data Bit [9:0]
F26 M26_TX_EN Output w/ pullup Transmit Data Enable
E26 M26_TX_ER Output w/ pullup Transmit Error
F27 M26_MTXCLK Input w/ pull down MII Mode Transmit Clock
F25 M26_ TXCLK Output Gigabit Transmit Clock
N29 GREF_CLK1 Input w/ pullup Gigabit Reference Clock
LED Interface
C29 LED_CLK/TSTOUT0 I/O- TS with pull up LED Serial Interface Output
Clock
D29 LED_SYN/TSTOUT1 I/O- TS with pull up LED Output Data Stream
Envelope
E29 LED_BIT/TSTOUT2 I/O- TS with pull up LED Serial Data Output
Stream
B28 G1_RXTX#/TSTOUT3 I/O- TS with pull up LED for Gigabit port 1 (receive
+ transmit)
C28 G1_DPCOL#/TSTOUT4 I/O- TS with pull up LED for Gigabit port 1 (full
duplex + collision)
D28 G1_LINK#/TSTOUT5 I/O- TS with pull up LED for Gigabit port 1
Ball No(s) Symbol I/O Description
ZL50417 Data Sheet
90
Zarlink Semiconductor Inc.
E28 G2_RXTX#/TSTOUT6 I/O- TS with pull up LED for Gigabit port 2 (receive
+ transmit)
A27 G2_DPCOL#/TSTOUT7 I/O- TS with pull up LED for Gigabit port 2 (full
duplex + collision)
B27 G2_LINK#/TSTOUT8 I/O- TS with pull up LED for Gigabit port 2
C27 INIT_DONE/TSTOUT9 I/O- TS with pull up System start operation
D27 INIT_START/TSTOUT1
0
I/O- TS with pull up Start initialization
C26 CHECKSUM_OK/TSTO
UT11
I/O- TS with pull up EEPROM read OK
D26 FCB_ERR/TSTOUT12 I/O- TS with pull up FCB memory self test fail
D25 MCT_ERR/TSTOUT13 I/O- TS with pull up MCT memory self test fail
D24 BIST_IN_PRC/TSTOUT
14
I/O- TS with pull up Processing memory self test
E24 BIST_DONE/TSTOUT1
5
I/O- TS with pull up Memory self test done
Trunk Enable
C22 TRUNK0 Input w/ weak internal
pull down resistors
Trunk Port Enable in
unmanaged mode
In managed mode doesn't
care
A21 TRUNK1 Input w/ weak internal
pull down resistors
Trunk Port Enable in
unmanaged mode
In managed mode doesn't
care
B24 TRUNK2 Input w/ weak internal
pull down resistors
Trunk Port Enable in
unmanaged mode
In managed mode doesn't
care
Test Facility
U3, C10 T_MODE0, T_MODE1 I/O-TS Test Pins
00 – Test mode – Set Mode
upon Reset, and provides
NAND Tree test output during
test mode
01 - Reserved - Do not use
10 - Reserved - Do not use
11 – Normal mode. Use
external pull up for normal
mode
F3 SCAN_EN Input with pull down Scan Enable
0 - Normal mode (open)
E27 SCANMODE Input with pull down 1 – Enable Test mode
0 - Normal mode (open)
Ball No(s) Symbol I/O Description
ZL50417 Data Sheet
91
Zarlink Semiconductor Inc.
System Clock, Power, and Ground Pins
E1 SCLK Input System Clock at 100 MHz
K12, K13, K17,K18
M10, N10, M20, N20,
U10, V10, U20, V20,
Y12, Y13, Y17, Y18
VDD Power +2.5 Volt DC Supply
F13, F14, F15, F16,
F17, N6, P6, R6, T6,
U6, N24, P24, R24,
T24, U24, AD13, AD14,
AD15, AD16, AD17
VCC Power +3.3 Volt DC Supply
M12, M13, M14, M15,
M16, M17, M18, N12,
N13, N14, N15, N16,
N17, N18, P12, P13,
P14, P15, P16, P17,
P18, R12, R13, R14,
R15, R16, R17, R18,
T12, T13, T14, T15,
T16, T17, T18, U12,
U13, U14, U15, U16,
U17, U18, V12, V13,
V14, V15, V16, V17,
V18,
VSS Power Ground Ground
F1 AVCC Analog Power Analog +2.5 Volt DC Supply
D1 AGND Analog Ground Analog Ground
MISC
D22 SCANCOL Input Scans the Collision signal of
Home PHY
D23 SCANCLK Input/ output Clock for scanning Home PHY
collision and link
E23 SCANLINK Input Link up signal from Home
PHY
F2 RESIN# Input Reset Input
G2 RESETOUT# Output Reset PHY
Ball No(s) Symbol I/O Description
ZL50417 Data Sheet
92
Zarlink Semiconductor Inc.
AC29, AE28, AJ27,
AF27, AJ25, AF24,
AH23, AE19, AC27,
AF29, AG27, AF26,
AG25, AG23, AF23,
AG21, AC28, AF28,
AH27, AE27, AH25,
AE24, AF22, AF20,
AD29, AG28, AJ26,
AE26, AJ24, AE23,
AJ22, AJ20, AD27,
AH28, AG26, AE25,
AG24, AE22, AJ23,
AG20, AD28, AG29,
AH26, AF25, AH24,
AG22, AH22, AE17,
G27, H29, H28, H27,
J29, J28, U26, U25,
V26, V25, W26, W25,
G26, G25, H26, H25,
J26, J25, U27, V29,
V28, V27, W29, W28,
B22, A22, C23, B23,
A23, C24, E20, B25
RESERVED NA Reserved Pins. Leave
unconnected.
Bootstrap Pins (Default = pull up, 1= pull up 0= pull down)
After reset TSTOUT0 to TSTOU15 are used by the LED interface.
C29 TSTOUT0 Default 1 GIGA Link polarity
0 – active low
1 – active high
D29 TSTOUT1 Default 1 RMII MAC Power Saving
Enable
0 – No power saving
1 – power saving
E29 TSTOUT2 Default 1
Recommend disable (0)
with pull-down
Giga Half Duplex Support
0 - Disable
1 - Enable
B28 TSTOUT3 Default 1 Module detect enable
0 – Hot swap enable
1 – Hot swap disable
C28 TSTOUT4 Reserved
D28 TSTOUT5 Default 1 Scan Speed: ¼ SCLK or
SCLK
0 – ¼ SCLK (HPNA)
1 - SCLK
E28 TSTOUT6 Reserved
Ball No(s) Symbol I/O Description
ZL50417 Data Sheet
93
Zarlink Semiconductor Inc.
A27 TSTOUT7 Default 1 Memory Size
0 - 256 K x 32 or 256 K x 64
(4 M total)
1 - 128 K x 32 or 128 K x 64
(2 M total)
B27 TSTOUT8 Default 1 EEPROM Installed
0 – EEPROM installed
1 – EEPROM not installed
C27 TSTOUT9 Default 1 MCT Aging
0 – MCT aging disable
1 – MCT aging enable
D27 TSTOUT10 Default 1 FCB Aging
0 - FCB aging disable
1 – FCB aging enable
C26 TSTOUT11 Default 1 Timeout Reset
0 – Time out reset disable
1 – Time out reset enable.
Issue reset if any state
machine did not go back to
idle for 5 sec.
D26 TSTOUT12 Reserved
D25 TSTOUT13 Default 1 FDB RAM depth (1 or 2
layers)
0 – 2 layer
1 – 1 layer
D24 TSTOUT14 Reserved
E24 TSTOUT15 Default 1 SRAM Test Mode
0 – Enable test mode
1 – Normal operation
T26, R26 G0_TXEN, G0_TXER Default: PCS Giga0
Mode:
G0_TXEN G0_TXER
0 0 MII
0 1 RSVD
1 0 GMII
1 1 PCS
F26, E26 G1_TXEN, G1_TXER Default: PCS Giga1
Mode:
G1_TXEN G1_TXER
0 0 MII
0 1 RSVD
1 0 GMII
1 1 PCS
Ball No(s) Symbol I/O Description
ZL50417 Data Sheet
94
Zarlink Semiconductor Inc.
Note: :
AE20, AJ18, AJ21,
AJ16, AJ14, AE14,
AJ12, AE11, AJ10, AJ8,
AE8, AJ6, AE5, AJ4,
AG1, AE1,
M[15:0]_TXEN Default: RMII 0 – GPSI
1 - RMII
C21 P_D Must be pulled-down Reserved - Must be pulled-
down
C19, B19, A19 OE_CLK[2:0] Default: 111 Programmable delay for
internal OE_CLK from SCLK
input. The OE_CLK is used for
generating the OE0 and OE1
signals.
Suggested value is 011.
C20, B20, A20 LA_CLK[2:0] Default: 111 Programmable delay for
LA_CLK and LB_CLK from
internal OE_CLK. The
LA_CLK and LB_CLK delay
from SCLK is the sum of the
delay programmed in here
and the delay in P_D[15:13].
Suggested value is 011.
# = Active low signal
Input = Input signal
In-ST = Input signal with Schmitt-Trigger
Output = Output signal (Tri-State driver)
Out-OD= Output signal with Open-Drain driver
I/O-TS = Input & Output signal with Tri-State driver
I/O-OD = Input & Output signal with Open-Drain driver
Ball No(s) Symbol I/O Description
ZL50417 Data Sheet
95
Zarlink Semiconductor Inc.
14.2 Ball Signal Name
Ball No. Signal Name Ball No. Signal Name Ball No. Signal Name
D20 LA_D[63] D3 LA_D[19] A9 LA_OE0#
B21 LA_D[62] E3 LA_D[18] B9 LA_OE1#
D19 LA_D[61] D2 LA_D[17] F4 LB_D[63]
E19 LA_D[60] E2 LA_D[16] F5 LB_D[62]
D18 LA_D[59] A7 LA_D[15] G4 LB_D[61]
E18 LA_D[58] B7 LA_D[14] G5 LB_D[60]
D17 LA_D[57] A6 LA_D[13] H4 LB_D[59]
E17 LA_D[56] B6 LA_D[12] H5 LB_D[58]
D16 LA_D[55] C6 LA_D[11] J4 LB_D[57]
E16 LA_D[54] A5 LA_D[10] J5 LB_D[56]
D15 LA_D[53] B5 LA_D[9] K4 LB_D[55]
E15 LA_D[52] C5 LA_D[8] K5 LB_D[54]
D14 LA_D[51] A4 LA_D[7] L4 LB_D[53]
E14 LA_D[50] B4 LA_D[6] L5 LB_D[52]
D13 LA_D[49] C4 LA_D[5] M4 LB_D[51]
E13 LA_D[48] A3 LA_D[4] M5 LB_D[50]
D21 LA_D[47] B3 LA_D[3] N4 LB_D[49]
E21 LA_D[46] C3 LA_D[2] N5 LB_D[48]
A18 LA_D[45] B2 LA_D[1] G3 LB_D[47]
B18 LA_D[44] C2 LA_D[0] H1 LB_D[46]
C18 LA_D[43] C14 LA_A[20] H2 LB_D[45]
A17 LA_D[42] A13 LA_A[19] H3 LB_D[44]
B17 LA_D[41] B13 LA_A[18] J1 LB_D[43]
C17 LA_D[40] C13 LA_A[17] J2 LB_D[42]
A16 LA_D[39] A12 LA_A[16] J3 LB_D[41]
B16 LA_D[38] B12 LA_A[15] K1 LB_D[40]
C16 LA_D[37] C12 LA_A[14] K2 LB_D[39]
A15 LA_D[36] A11 LA_A[13] K3 LB_D[38]
B15 LA_D[35] B11 LA_A[12] L1 LB_D[37]
C15 LA_D[34] C11 LA_A[11] L2 LB_D[36]
ZL50417 Data Sheet
96
Zarlink Semiconductor Inc.
A14 LA_D[33] D11 LA_A[10] L3 LB_D[35]
B14 LA_D[32] E11 LA_A[9] M1 LB_D[34]
D9 LA_D[31] A10 LA_A[8] M2 LB_D[33]
E9 LA_D[30] B10 LA_A[7] M3 LB_D[32]
D8 LA_D[29] D10 LA_A[6] U4 LB_D[31]
E8 LA_D[28] E10 LA_A[5] U5 LB_D[30]
D7 LA_D[27] A8 LA_A[4] V4 LB_D[29]
E7 LA_D[26] C7 LA_A[3] V5 LB_D[28]
D6 LA_D[25] B8 LA_DSC# W4 LB_D[27]
E6 LA_D[24] C1 LA_CLK W5 LB_D[26]
D5 LA_D[23] C9 LA_WE# Y4 LB_D[25]
E5 LA_D[22] D12 LA_WE0# Y5 LB_D[24]
D4 LA_D[21] E12 LA_WE1# AA4 LB_D[23]
E4 LA_D[20] C8 LA_OE# AA5 LB_D[22]
AB4 LB_D[21] U2 LB_OE1# AH7 M[4]_RXD[0]
AB5 LB_D[20] R28 MDC AE6 M[3]_RXD[0]
AC4 LB_D[19] P28 MDIO AH5 M[2]_RXD[0]
AC5 LB_D[18] R29 M_CLK AH2 M[1]_RXD[0]
AD4 LB_D[17] AC29 NC AF2 M[0]_RXD[0]
AD5 LB_D[16] AE28 NC AC27 NC
W1 LB_D[15] AJ27 NC AF29 NC
Y1 LB_D[14] AF27 NC AG27 NC
Y2 LB_D[13] AJ25 NC AF26 NC
Y3 LB_D[12] AF24 NC AG25 NC
AA1 LB_D[11] AH23 NC AG23 NC
AA2 LB_D[10] AE19 NC AF23 NC
AA3 LB_D[9] AF21 M[15]_RXD[1] AG21 NC
AB1 LB_D[8] AJ19 M[14]_RXD[1] AH21 M[15]_CRS_DV
AB2 LB_D[7] AF18 M[13]_RXD[1] AF19 M[14]_CRS_DV
AB3 LB_D[6] AJ17 M[12]_RXD[1] AF17 M[13]_CRS_DV
AC1 LB_D[5] AJ15 M[11]_RXD[1] AG17 M[12]_CRS_DV
Ball No. Signal Name Ball No. Signal Name Ball No. Signal Name
ZL50417 Data Sheet
97
Zarlink Semiconductor Inc.
AC2 LB_D[4] AF15 M[10]_RXD[1] AG15 M[11]_CRS_DV
AC3 LB_D[3] AJ13 M[9]_RXD[1] AF14 M[10]_CRS_DV
AD1 LB_D[2] AF12 M[8]_RXD[1] AG13 M[9]_CRS_DV
AD2 LB_D[1] AJ11 M[7]_RXD[1] AF11 M[8]_CRS_DV
AD3 LB_D[0] AJ9 M[6]_RXD[1] AG11 M[7]_CRS_DV
N3 LB_A[20] AF9 M[5]_RXD[1] AG9 M[6]_CRS_DV
N2 LB_A[19] AJ7 M[4]_RXD[1] AF8 M[5]_CRS_DV
N1 LB_A[18] AF6 M[3]_RXD[1] AG7 M[4]_CRS_DV
P3 LB_A[17] AJ5 M[2]_RXD[1] AF5 M[3]_CRS_DV
P2 LB_A[16] AJ3 M[1]_RXD[1] AG5 M[2]_CRS_DV
P1 LB_A[15] AF1 M[0]_RXD[1] AH3 M[1]_CRS_DV
R5 LB_A[14] AC28 NC AF3 M[0]_CRS_DV
R4 LB_A[13] AF28 NC AD29 NC
R3 LB_A[12] AH27 NC AG28 NC
R2 LB_A[11] AE27 NC AJ26 NC
R1 LB_A[10] AH25 NC AE26 NC
T5 LB_A[9] AE24 NC AJ24 NC
T4 LB_A[8] AF22 NC AE23 NC
T3 LB_A[7] AF20 NC AJ22 NC
T2 LB_A[6] AE21 M[15]_RXD[0] AJ20 NC
T1 LB_A[5] AH19 M[14]_RXD[0] AE20 M[15]_TXEN
W3 LB_A[4] AH20 M[13]_RXD[0] AJ18 M[14]_TXEN
W2 LB_A[3] AH17 M[12]_RXD[0] AJ21 M[13]_TXEN
V1 LB_ADSC# AH15 M[11]_RXD[0] AJ16 M[12]_TXEN
G1 LB_CLK AE15 M[10]_RXD[0] AJ14 M[11]_TXEN
V3 LB_WE# AH13 M[9]_RXD[0] AE14 M[10]_TXEN
P4 LB_WE0# AE12 M[8]_RXD[0] AJ12 M[9]_TXEN
P5 LB_WE1# AH11 M[7]_RXD[0] AE11 M[8]_TXEN
V2 LB_OE# AH9 M[6]_RXD[0] AJ10 M[7]_TXEN
U1 LB_OE0# AE9 M[5]_RXD[0] AJ8 M[6]_TXEN
AE8 M[5]_TXEN AH8 M[6]_TXD[0] G27 RESERVED
Ball No. Signal Name Ball No. Signal Name Ball No. Signal Name
ZL50417 Data Sheet
98
Zarlink Semiconductor Inc.
AJ6 M[4]_TXEN AF7 M[5]_TXD[0] H29 RESERVED
AE5 M[3]_TXEN AH6 M[4]_TXD[0] H28 RESERVED
AJ4 M[2]_TXEN AF4 M[3]_TXD[0] H27 RESERVED
AG1 M[1]_TXEN AH4 M[2]_TXD[0] J29 RESERVED
AE1 M[0]_TXEN AG2 M[1]_TXD[0] J28 RESERVED
AD27 NC AE2 M[0]_TXD[0] J27 M26_RXD[9]
AH28 NC U26 RESERVED K29 M26_RXD[8]
AG26 NC U25 RESERVED K28 M26_RXD[7]
AE25 NC V26 RESERVED K27 M26_RXD[6]
AG24 NC V25 RESERVED L29 M26_RXD[5]
AE22 NC W26 RESERVED L28 M26_RXD[4]
AJ23 NC W25 RESERVED L27 M26_RXD[3]
AG20 NC Y27 M25_TXD[9] M29 M26_RXD[2]
AE18 M[15]_TXD[1] Y26 M25_TXD[8] M28 M26_RXD[1]
AG18 M[14]_TXD[1] AA26 M25_TXD[7] M27 M26_RXD[0]
AE16 M[13]_TXD[1] AA25 M25_TXD[6] G26 RESERVED
AG16 M[12]_TXD[1] AB26 M25_TXD[5] G25 RESERVED
AG14 M[11]_TXD[1] AB25 M25_TXD[4] H26 RESERVED
AE13 M[10]_TXD[1] AC26 M25_TXD[3] H25 RESERVED
AG12 M[9]_TXD[1] AC25 M25_TXD[2] J26 RESERVED
AE10 M[8]_TXD[1] AD26 M25_TXD[1] J25 RESERVED
AG10 M[7]_TXD[1] AD25 M25_TXD[0] K25 M26_TXD[9]
AG8 M[6]_TXD[1] U27 RESERVED K26 M26_TXD[8]
AE7 M[5]_TXD[1] V29 RESERVED M25 M26_TXD[7]
AG6 M[4]_TXD[1] V28 RESERVED L26 M26_TXD[6]
AE4 M[3]_TXD[1] V27 RESERVED M26 M26_TXD[5]
AG4 M[2]_TXD[1] W29 RESERVED L25 M26_TXD[4]
AG3 M[1]_TXD[1] W28 RESERVED N26 M26_TXD[3]
AE3 M[0]_TXD[1] W27 M25_RXD[9] N25 M26_TXD[2]
AD28 NC Y29 M25_RXD[8] P26 M26_TXD[1]
AG29 NC Y28 M25_RXD[7] P25 M26_TXD[0]
Ball No. Signal Name Ball No. Signal Name Ball No. Signal Name
ZL50417 Data Sheet
99
Zarlink Semiconductor Inc.
AH26 NC Y25 M25_RXD[6] F28 M26_RX_DV
AF25 NC AA29 M25_RXD[5] G28 M26_RX_ER
AH24 NC AA28 M25_RXD[4] E25 M26_CRS
AG22 NC AA27 M25_RXD[3] G29 M26_COL
AH22 NC AB29 M25_RXD[2] F29 M26_RXCLK
AE17 NC AB28 M25_RXD[1] F26 M26_TX_EN
AG19 M[15]_TXD[0] AB27 M25_RXD[0] E26 M26_TX_ER
AH18 M[14]_TXD[0] R26 M25_TX_ER F25 M26_TXCLK
AF16 M[13]_TXD[0] T25 M25_TXCLK E24 BIST_DONE/TSTOUT[15]
AH16 M[12]_TXD[0] T26 M25_TX_EN D24 BIST_IN_PRC/TST0UT[14]
AH14 M[11]_TXD[0] T28 M25_RX_DV D25 MCT_ERR/TSTOUT[13]
AF13 M[10]_TXD[0] U28 M25_RX_ER D26 FCB_ERR/TSTOUT[12]
AH12 M[9]_TXD[0] R25 M25_CRS C26 CHECKSUM_OK/TSTOUT[11]
AF10 M[8]_TXD[0] U29 M25_COL D27 INIT_START/TSTOUT[10]
AH10 M[7]_TXD[0] T29 M25_RXCLK C27 INIT_DONE/TSTOUT[9]
B27 G2_LINK#/TSTOUT[8] U18 VSS N12 VSS
A27 G2_DPCOL#/TSTOUT[7] V12 VSS N13 VSS
E28 G2_RXTX#/TSTOUT[6] V13 VSS K17 VDD
D28 G1_LINK#/TSTOUT[5] V14 VSS K18 VDD
C28 G1_DPCOL#/TSTOUT[4] V15 VSS M10 VDD
B28 G1_RXTX#/TSTOUT[3] V16 VSS N10 VDD
E29 LED_BIT/TSTOUT[2] V17 VSS M20 VDD
D29 LED_SYN/TSTOUT[1] V18 VSS N20 VDD
C29 LED_CLK/TSTOUT[0] N14 VSS U10 VDD
N29 GREF_CLK1 N15 VSS V10 VDD
P29 GREF_CLK0 N16 VSS U20 VDD
F3 SCAN_EN N17 VSS V20 VDD
E1 SCLK N18 VSS Y12 VDD
U3 T_MODE0 P12 VSS Y13 VDD
C10 T_MODE1 P13 VSS Y17 VDD
B24 TRUNK2 P14 VSS Y18 VDD
Ball No. Signal Name Ball No. Signal Name Ball No. Signal Name
ZL50417 Data Sheet
100
Zarlink Semiconductor Inc.
A21 TRUNK1 P15 VSS K12 VDD
C22 TRUNK0 P16 VSS K13 VDD
A26 STROBE C19 OE_CLK2 M16 VSS
B26 D0 B19 OE_CLK1 M17 VSS
C25 AUTOFD A19 OE_CLK0 M18 VSS
A24 SCL R13 VSS F16 VCC
A25 SDA R14 VSS F17 VCC
F1 AVCC R15 VSS N6 VCC
D1 AGND R16 VSS P6 VCC
D22 SCANCOL R17 VSS R6 VCC
E23 SCANLINK R18 VSS T6 VCC
E27 SCANMODE T12 VSS U6 VCC
N28 T13 VSS N24 VCC
N27 T14 VSS P24 VCC
F2 RESIN# T15 VSS R24 VCC
G2 RESETOUT# T16 VSS T24 VCC
B22 Reserved T17 VSS U24 VCC
A22 Reserved T18 VSS AD13 VCC
C23 Reserved U12 VSS AD14 VCC
B23 Reserved U13 VSS AD15 VCC
A23 Reserved U14 VSS AD16 VCC
C24 Reserved U15 VSS AD17 VCC
D23 SCANCLK U16 VSS F13 VCC
T27 M25_MTXCLK U17 VSS F14 VCC
F27 M26_MTXCLK M12 VSS F15 VCC
C20 LA_CLK2 M13 VSS
B20 LA_CLK1 M14 VSS
A20 LA_CLK0 M15 VSS
C21 P_D P17 VSS
E20 RESERVED P18 VSS
B25 RESERVED R12 VSS
Ball No. Signal Name Ball No. Signal Name Ball No. Signal Name
ZL50417 Data Sheet
101
Zarlink Semiconductor Inc.
14.3 AC/DC Timing
14.3.1 Absolute Maximum Ratings
Storage Temperature -65C to +150C
Operating Temperature -40oC to + 85oC
Maximum Junction Temperature +125°C
Supply Voltage VCC with Respect to VSS +3.0 V to +3.6 V
Supply Voltage VDD with Respect to VSS +2.38 V to +2.75 V
Voltage on Input Pins -0.5 V to (VCC + 3.3 V)
Caution: Stress above those listed may damage the device. Exposure to the Absolute Maximum Ratings for
extended periods may affect device reliability. Functionality at or above these limits is not implied.
14.3.2 DC Electrical Characteristics
VCC = 3.0 V to 3.6 V (3.3v +/- 10%)TAMBIENT = -40 C to +85 C
VDD = 2.5 V +10% - 5%
14.3.3 Recommended Operating Conditions
Symbol Parameter Description Min. Typ. Max. Unit
fosc Frequency of Operation 100 MHz
ICC Supply Current – @ 100 MHz (VCC=3.3 V) 350 mA
IDD Supply Current – @ 100 MHz (VDD =2.5 V) 1400 mA
VOH Output High Voltage (CMOS) 2.4 V
VOL Output Low Voltage (CMOS) 0.4 V
VIH-TTL Input High Voltage (TTL 5 V tolerant) 2.0 VCC +
2.0
V
VIL-TTL Input Low Voltage (TTL 5 V tolerant) 0.8 V
IIL Input Leakage Current (0.1 V < VIN < VCC)
(all pins except those with internal pull-up/pull-
down resistors)
10 µA
IOL Output Leakage Current (0.1 V < VOUT <
VCC)
10 µA
CIN Input Capacitance 5 pF
COUT Output Capacitance 5 pF
CI/O I/O Capacitance 7 pF
θja Thermal resistance with 0 air flow 11.2 C/W
θja Thermal resistance with 1 m/s air flow 10.2 C/W
θja Thermal resistance with 2 m/s air flow 8.9 C/W
ZL50417 Data Sheet
102
Zarlink Semiconductor Inc.
14.3.4 Typical Reset & Bootstrap Timing Diagram
Figure 17 - Typical Reset & Bootstrap Timing Diagram
θjc Thermal resistance between junction and case. 3.1 C/W
θjb Thermal resistance between junction and
board.
6.6 C/W
Symbol ParameterMin.Typ. Note
R1 Delay until RESETOUT# is tri-stated 10 ns RESETOUT# state is then determined
by the external pull-up/down resistor
R2 Bootstrap stabilization 1 µs10µs Bootstrap pins sampled on rising edge
of RESIN#a
a. The TSTOUT[8:0] pins will switch over to the LED interface functionality in 3 SCLK cycles after RESIN# goes high
R3 RESETOUT# assertion 2 ms
Table 12 - Reset & Bootstrap Timing
Symbol Parameter Description Min. Typ. Max. Unit
RESETOUT#
Tri-Stated
RESIN#
R1
R2
R3
Bootstrap Pins
Inputs OutputsOutputs
ZL50417 Data Sheet
103
Zarlink Semiconductor Inc.
14.4 Local Frame Buffer SBRAM Memory Interface
14.4.1 Local SBRAM Memory Interface
Figure 18 - Local Memory Interface – Input Setup and Hold Timing
Figure 19 - Local Memory Interface - Output Valid Delay Timing
L1
L2
LA_CLK
LA_D[63:0]
L3-min
L3-max
L4-min
L4-max
L6-min
L6-max
L7-min
L7-max
L8-min
L8-max
LA_CLK
LA_D[63:0]
LA_A[20:3]
LA_ADSC#
LA_WE[1:0]#
####
LA_OE[1:0]#
L9-min
L9-max
LA_WE#
L10-min
L10-max
LA_OE#
ZL50417 Data Sheet
104
Zarlink Semiconductor Inc.
14.5 Local Switch Database SBRAM Memory Interface
14.5.1 Local SBRAM Memory Interface
Figure 20 - Local Memory Interface – Input Setup and Hold Timing
AC Characteristics – Local frame buffer SBRAM Memory Interface
Symbol Parameter
-100 MHz
Note
Min. (ns) Max. (ns)
L1 LA_D[63:0] input set-up time 4
L2 LA_D[63:0] input hold time 1.5
L3 LA_D[63:0] output valid delay 1.5 7 CL = 25 pf
L4 LA_A[20:3] output valid delay 2 7 CL = 30 pf
L6 LA_ADSC# output valid delay 1 7 CL = 30 pf
L7 LA_WE[1:0]#output valid delay 1 7 CL = 25 pf
L8 LA_OE[1:0]# output valid delay -1 1 CL = 25 pf
L9 LA_WE# output valid delay 1 7 CL = 25 pf
L10 LA_OE# output valid delay 1 5 CL = 25 pf
L1
L2
LB_CLK
LB_D[63:0]
ZL50417 Data Sheet
105
Zarlink Semiconductor Inc.
Figure 21 - Local Memory Interface - Output Valid Delay Timing
AC Characteristics – Local Switch Database SBRAM Memory Interface
Symbol Parameter
-100 MHz
Note
Min. (ns) Max. (ns)
L1 LB_D[63:0] input set-up time 4
L2 LB_D[63:0] input hold time 1.5
L3 LB_D[63:0] output valid delay 1.5 7 CL = 25 pf
L4 LB_A[20:3] output valid delay 2 7 CL = 30 pf
L6 LB_ADSC# output valid delay 1 7 CL = 30 pf
L8 LB_WE[1:0]#output valid delay 1 7 CL = 25 pf
L9 LB_OE[1:0]# output valid delay -1 1 CL = 25 pf
L10 LB_WE# output valid delay 1 7 CL = 25 pf
L11 LB_OE# output valid delay 1 5 CL = 25 pf
L3-min
L3-max
L4-min
L4-max
L6-min
L6-max
L8-min
L8-max
L9-min
L9-max
L10-min
L10-max
LB_CLK
LB_D[31:0]
LB_A[21:2]
LB_ADSC#
LB_WE[1:0]#
LB_OE[1:0]#
LB_WE#
L11-min
L11-max
LB_OE#
ZL50417 Data Sheet
106
Zarlink Semiconductor Inc.
14.6 AC Characteristics
14.6.1 Reduced Media Independent Interface
Figure 22 - AC Characteristics – Reduced Media Independent Interface
Figure 23 - AC Characteristics – Reduced Media Independent Interface
AC Characteristics – Reduced Media Independent Interface
Symbol Parameter
-50 MHz
Note
Min. (ns) Max. (ns)
M2 M[15:0]_RXD[1:0] Input Setup Time 4
M3 M[15:0]_RXD[1:0] Input Hold Time 1
M4 M[15:0]_CRS_DV Input Setup Time 4
M5 M[15:0]_CRS_DV Input Hold Time 1
M6 M[15:0]_TXEN Output Delay Time 2 11 CL = 20 pF
M7 M[15:0]_TXD[1:0] Output Delay Time 2 11 CL = 20 pF
M6-min
M6-max
M7-min
M7-max
M_CLKI
M[23:0]_TXEN
M[23:0] _TXD[1:0]
15
15
M2
M_CLKI
M[23:0]_RXD
M[23:0]_CRS_DV
M3
M4
M5
15
15
ZL50417 Data Sheet
107
Zarlink Semiconductor Inc.
14.6.2 Gigabit Media Independent Interface - Port A
Figure 24 - AC Characteristics- GMII
Figure 25 - AC Characteristics – Gigabit Media Independent Interface
G12-min
G12-max
G13-min
G13-max
G14-min
G14-max
M25_TXCLK
M25_TXD [15:0]
M25_TX_EN]
M25_TX_ER
[7:0]
M25_RXCLK
G1
G2
M25_RXD[15:0]
G3 G4
M25_RX_DV
G5
G6
M25_RX_ER
G7 G8
M25_RX_CRS
[7:0]
ZL50417 Data Sheet
108
Zarlink Semiconductor Inc.
14.6.3 Ten Bit Interface - Port A
Figure 26 - Gigabit TBI Interface Transmit Timing
Figure 27 - Gigabit TBI Interface Receive Timing
AC Characteristics – Gigabit Media Independent Interface
Symbol Parameter
-125 Mhz
Note
Min. (ns) Max. (ns)
G1 M[25]_RXD[7:0] Input Setup Times 2
G2 M[25]_RXD[7:0] Input Hold Times 1
G3 M[25]_RX_DV Input Setup Times 2
G4 M[25]_RX_DV Input Hold Times 1
G5 M[25]_RX_ER Input Setup Times 2
G6 M[25]_RX_ER Input Hold Times 1
G7 M[25]_CRS Input Setup Times 2
G8 M[25]_CRS Input Hold Times 1
G12 M[25]_TXD[7:0] Output Delay Times 1 6 CL = 20 pf
G13 M[25]_TX_EN Output Delay Times 1 6.5 CL = 20 pf
G14 M[25]_TX_ER Output Delay Times 1 6 CL = 20 pf
Symbol Parameter Min. (ns) Max. (ns) Note
T1 M25_TXD[9:0] Output Delay Time 1 6 CL = 20 pf
Table 13 - Output Delay Timing
M25_TXCLK
M25_TXD [9:0]
TIMIN
TIMAX
M25_RXCLK
M25_COL
T2
M25_RXD[9:0]
T3
T2
T3
ZL50417 Data Sheet
109
Zarlink Semiconductor Inc.
14.6.4 Gigabit Media Independent Interface - Port B
Figure 28 - AC Characteristics- GMII
Figure 29 - AC Characteristics – Gigabit Media Independent Interface
Symbol Parameter Min. (ns) Max. (ns) Note
T2 M25_RXD[9:0] Input Setup Time 3
T3 M25_RXD[9:0] Input Hold Time 3
Table 14 - Input Setup Timing
G12-min
G12-max
G13-min
G13-max
G14-min
G14-max
M26_TXCLK
M26_TXD [15:0]
M26_TX_EN]
M26_TX_ER
[7:0]
M26_RXCLK
G1
G2
M26_RXD[15:0]
G3 G4
M26_RX_DV
G5
G6
M26_RX_ER
G7 G8
M26_RX_CRS
[7:0]
ZL50417 Data Sheet
110
Zarlink Semiconductor Inc.
14.6.5 Ten Bit Interface - Port B
Figure 30 - Gigabit TBI Interface Transmit Timing
Figure 31 - Gigabit TBI Interface Timing
AC Characteristics – Gigabit Media Independent Interface
Symbol Parameter
-125 Mhz
Note
Min. (ns) Max. (ns)
G1 M[26]_RXD[7:0] Input Setup Times 2
G2 M[26]_RXD[7:0] Input Hold Times 1
G3 M[26]_RX_DV Input Setup Times 2
G4 M[26]_RX_DV Input Hold Times 1
G5 M[26]_RX_ER Input Setup Times 2
G6 M[26]_RX_ER Input Hold Times 1
G7 M[26]_CRS Input Setup Times 2
G8 M[26]_CRS Input Hold Times 1
G12 M[26]_TXD[7:0] Output Delay Times 1 6 CL = 20 pf
G13 M[26]_TX_EN Output Delay Times 1 6.5 CL = 20 pf
G14 M[26]_TX_ER Output Delay Times 1 6 CL = 20 pf
M26_TXCLK
M26_TXD [9:0]
TIMIN
TIMAX
M26_RXCLK
M26_COL
T2
M26_RXD[9:0]
T3
T2
T3
ZL50417 Data Sheet
111
Zarlink Semiconductor Inc.
14.6.6 LED Interface
Figure 32 - AC Characteristics – LED Interface
Symbol Parameter Min. (ns) Max. (ns) Note
T1 M26_TXD[9:0] Output Delay Time 1 6 CL = 20 pf
Table 15 - Output Delay Timing
Symbol Parameter Min. (ns) Max. (ns) Note
T2 M26_RXD[9:0] Input Setup Time 3
T3 M26_RXD[9:0] Input Hold Time 3
Table 16 - Input Setup Timing
Symbol Parameter
Variable FREQ.
Note:
Min. (ns) Max. (ns)
LE5 LED_SYN Output Valid Delay -1 7 CL = 30 pf
LE6 LED_BIT Output Valid Delay -1 7 CL = 30 pf
Table 17 - AC Characteristics – LED Interface
LE5-min
LE5-max
LE6-min
LE6-max
LED_CLK
LED_SYN
LED_BIT
ZL50417 Data Sheet
112
Zarlink Semiconductor Inc.
14.6.7 SCANLINK SCANCOL Output Delay Timing
Figure 33 - SCANLINK SCANCOL Output Delay Timing
Figure 34 - SCANLINK, SCANCOL Setup Timing
Symbol Parameter
-25 MHz
Note
Min. (ns) Max. (ns)
C1 SCANLINK input set-up time 20
C2 SCANLINK input hold time 2
C3 SCANCOL input setup time 20
C4 SCANCOL input hold time 1
C5 SCANLINK output valid delay 0 10 CL = 30 pf
C7 SCANCOL output valid delay 0 10 CL = 30 pf
Table 18 - SCANLINK, SCANCOL Timing
C5-min
C5-max
C7-min
C7-max
SCANCLK
SCANLINK
SCANCOL
SCANCLK
C1
C2
SCANLINK
C3 C4
SCANCOL
ZL50417 Data Sheet
113
Zarlink Semiconductor Inc.
14.6.8 MDIO Input Setup and Hold Timing
Figure 35 - MDIO Input Setup and Hold Timing
Figure 36 - MDIO Output Delay Timing
Symbol Parameter
1MHz
Note
Min. (ns) Max. (ns)
D1 MDIO input setup time 10
D2 MDIO input hold time 2
D3 MDIO output delay time 1 20 CL = 50 pf
Table 19 - MDIO Timing
MDC
D1
D2
MDIO
D3-min
D3-max
MDC
MDIO
ZL50417 Data Sheet
114
Zarlink Semiconductor Inc.
14.6.9 I²C Input Setup Timing
Figure 37 - I²C Input Setup Timing
Figure 38 - I²C Output Delay Timing
Symbol Parameter
50 KHz
Note
Min. (ns) Max. (ns)
S1 SDA input setup time 20
S2 SDA input hold time 1
S3* SDA output delay time 4 usec 6 usec CL = 30 pf
* Open Drain Output. Low to High transistor is controlled by external pullup resistor.
Table 20 - I²C Timing
S1 S2
SCL
SDA
S3-min
S3-max
SCL
SDA
ZL50417 Data Sheet
115
Zarlink Semiconductor Inc.
14.6.10 Serial Interface Setup Timing
Figure 39 - Serial Interface Setup Timing
Figure 40 - Serial Interface Output Delay Timing
Symbol Parameter Min. (ns) Max. (ns) Note
D1 D0 setup time 20
D2 D0 hold time 3 µs
D3 AutoFd output delay time 1 50 CL = 100 pf
D4 Strobe low time 5 µs
D5 Strobe high time 5 µs
Table 21 - Serial Interface Timing
STROBE
D1
D2
D0
D1
D2
D4 D5
D3-min
D3-max
STROBE
AutoFd
APPRD.
ISSUE
DATE
ACN
Package Code
Previous package codes:
Conforms to JEDEC MS - 034
2.20
E
e
b
E1
DIMENSION
D
D1
A2
A1
A
1.27
553
MAX
0.70
2.46
1.17 REF
0.50
MIN
3. SEATING PLANE IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
1. CONTROLLING DIMENSIONS ARE IN MM
2. DIMENSION "b" IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER
4. N IS THE NUMBER OF SOLDER BALLS
5. NOT TO SCALE.
NOTE:
0.60 0.90
37.30 37.70
34.50 REF
37.30 37.70
34.50 REF
E1
D1
D
E
e
b
A2
6. SUBSTRATE THICKNESS IS 0.56 MM
www.zarlink.com
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system
conforms to the I2C Standard Specification as defined by Philips.
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.
Copyright Zarlink Semiconductor Inc. All Rights Reserved.
TECHNICAL DOCUMENTATION - NOT FOR RESALE
For more information about all Zarlink products
visit our Web Site at