Features
2.5 A maximum peak output current
2.0 A minimum peak output current
25 kV/µs minimum Common Mode Rejection (CMR) at 
VCM = 1500 V
0.5  V  maximum  low  level  output  voltage  (VOL) 
Eliminates need for negative gate drive
ICC = 5 mA maximum supply current
Under  Voltage  Lock-Out  protection  (UVLO)  with 
hysteresis
Wide operating VCC range: 15 to 30 Volts
500 ns maximum switching speeds
Industrial temperature range: -40°C to 100°C
SafetyApproval:
UL Recognized
3750 Vrms for 1 min. for HCPL-3120/J312 
5000 Vrms for 1 min. for HCNW3120 
CSA Approval
IEC/EN/DIN EN 60747-5-2 Approved
VIORM= 630 Vpeak for HCPL-3120 (Option 060) 
VIORM= 891 Vpeak for HCPL-J312 
VIORM= 1414 Vpeak for HCNW3120
Applications
IGBT/MOSFET gate drive
AC/Brushless DC motor drives
Industrial inverters
Switch mode power supplies
HCPL-3120/J312, HCNW3120
2.5 Amp Output Current IGBT Gate Drive Optocoupler
Data Sheet
Lead (Pb) Free
RoHS 6 fully
compliant
RoHS 6 fully compliant options available;
-xxxE denotes a lead-free product
CAUTION: It is advised that normal static precautions be taken in handling and assembly
of this component to prevent damage and/or degradation which may be induced by ESD.
Description
The HCPL-3120 contains a GaAsP LED while the     HCPL-
J312 and the HCNW3120 contain an AlGaAs LED. The LED 
is optically coupled to an integrated circuit with a power 
output stage. These optocouplers  are ideally suited for 
driving power IGBTs and MOSFETs used in motor control 
inverter applications. The high operating voltage range 
of the output stage provides the drive voltages required 
by  gate  controlled  devices.  The  voltage  and  current 
supplied  by  these  optocouplers  make  them  ideally 
suited for directly driving IGBTs with ratings up to 1200 
V/100  A.  For  IGBTs  with  higher  ratings,  the  HCPL-3120 
series can be used to drive a discrete power stage which 
drives the IGBT gate. The HCNW3120 has the highest in-
sulation voltage of VIORM = 1414 Vpeak in the IEC/EN/DIN 
EN 60747-5-2. The HCPL-J312 has an insulation voltage 
of  VIORM = 891 Vpeak and  the  VIORM = 630 Vpeak is  also 
available with the HCPL-3120 (Option 060).
A 0.1 µF bypass capacitor must be connected between pins 5 and 8.
TRUTH TABLE
LED
VCC - VEE
“POSITIVE GOING”
(i.e., TURN-ON)
VCC - VEE
“NEGATIVE GOING”
(i.e., TURN-OFF) VO
OFF  0 - 30 V  0 - 30 V  LOW 
ON  0 - 11 V  0 - 9.5 V  LOW 
ON  11 - 13.5 V  9.5 - 12 V  TRANSITION 
ON  13.5 - 30 V  12 - 30 V  HIGH 
Functional Diagram
1
3
SHIELD
2
4
8
6
7
5
N/C
CATHODE
ANODE
N/C
VCC
VO
VO
VEE
1
3
SHIELD
2
4
8
6
7
5
N/C
CATHODE
ANODE
N/C
VCC
N/C
VO
VEE
HCNW3120
HCPL-3120/J312
2
Selection Guide
Part Number HCPL-3120 HCPL-J312 HCNW3120 HCPL-3150*
Output Peak Current ( IO)  2.5 A  2.5 A  2.5 A  0.6 A
IEC/EN/DIN EN    VIORM = 630 Vpeak VIORM = 891 Vpeak VIORM = 1414 Vpeak VIORM = 630 Vpeak
60747-5-2 Approval  (Option 060)  (Option 060)
*The HCPL-3150 Data sheet available. Contact Avago sales representative or authorized distributor.
Ordering Information
HCPL-3120 and HCPL-J312 are UL recognized with 3750 Vrms for 1 minute per UL1577. HCNW3120 is UL Recognized 
with 5000 Vrms for 1 minute per UL1577.
Option
Part RoHS Non RoHS Surface Gull Tape IEC/EN/DIN
Number Compliant Compliant Package Mount Wing & Reel EN 60747-5-2 Quantity
-000E  No option  50 per tube 
-300E  #300   X  X  50 per tube 
HCPL-3120  -500E  #500  X  X  X  1000 per reel
-060E  #060  X  50 per tube 
-360E  #360  X  X  X  50 per tube 
-560E  #560  X  X  X  X  1000 per tube
-000E  No option  X  50 per tube 
HCPL-J312  -300E  #300   X  X  X  50 per tube 
-500E  #500  X  X  X  X  1000 per reel
-000E  No option  X  42 per tube 
HCNW3120  -300E  #300   X  X  X  42 per tube 
-500E  #500  X  X  X  X  750 per reel
To order, choose a part number from the part number column and combine with the desired option from the option 
column to form an order entry. 
Example 1: 
HCPL-3120-560E to order product of 300 mil DIP Gull Wing Surface Mount package in Tape and Reel packaging with 
IEC/EN/DIN EN 60747-5-2 Safety Approval in RoHS compliant.
Example 2: 
HCPL-3120 to order product of 300 mil DIP package in tube packaging and non RoHS compliant.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.
Remarks: The notation ‘#XXX’ is used for existing products, while (new) products launched since 15th July 2001 and 
RoHS compliant option will use ‘-XXXE’.
300mil
DIP-8
300mil
DIP-8
400mil
DIP-8
3
Package Outline Drawings
HCPL-3120 Outline Drawing (Standard DIP Package)
HCPL-3120 Gull Wing Surface Mount Option 300 Outline Drawing
1.080 ± 0.320
(0.043 ± 0.013) 2.54 ± 0.25
(0.100 ± 0.010)
0.51 (0.020) MIN.
0.65 (0.025) MAX.
4.70 (0.185) MAX.
2.92 (0.115) MIN.
5° TYP. 0.254 + 0.076
- 0.051
(0.010+ 0.003)
- 0.002)
7.62 ± 0.25
(0.300 ± 0.010)
6.35 ± 0.25
(0.250 ± 0.010)
9.65 ± 0.25
(0.380 ± 0.010)
1.78 (0.070) MAX.
1.19 (0.047) MAX.
A XXXXZ
YYWW
DATE CODE
DIMENSIONS IN MILLIMETERS AND (INCHES).
5678
4321
OPTION CODE*
TYPE NUMBER
* MARKING CODE LETTER FOR OPTION NUMBERS.
"V" = OPTION 060
OPTION NUMBERS 300 AND 500 NOT MARKED.
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
3.56 ± 0.13
(0.140 ± 0.005)
0.635 ± 0.25
(0.025 ± 0.010) 12° NOM.
9.65 ± 0.25
(0.380 ± 0.010)
0.635 ± 0.130
(0.025 ± 0.005)
7.62 ± 0.25
(0.300 ± 0.010)
5
6
7
8
4
3
2
1
9.65 ± 0.25
(0.380 ± 0.010)
6.350 ± 0.25
(0.250 ± 0.010)
1.016 (0.040)
1.27 (0.050)
10.9 (0.430)
2.0 (0.080)
LAND PATTERN RECOMMENDATION
1.080 ± 0.320
(0.043 ± 0.013)
3.56 ± 0.13
(0.140 ± 0.005)
1.780
(0.070)
MAX.
1.19
(0.047)
MAX.
2.54
(0.100)
BSC
DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
0.254 + 0.076
- 0.051
(0.010+ 0.003)
- 0.002)
4
1.080 ± 0.320
(0.043 ± 0.013)
2.54 ± 0.25
(0.100 ± 0.010)
0.51 (0.020) MIN.
0.65 (0.025) MAX.
4.70 (0.185) MAX.
2.92 (0.115) MIN.
5°TYP. 0.254 + 0.076
- 0.051
(0.010 + 0.003)
- 0.002)
7.62 ± 0.25
(0.300 ± 0.010)
6.35 ± 0.25
(0.250 ± 0.010)
9.80 ± 0.25
(0.386 ± 0.010)
1.78 (0.070) MAX.
1.19 (0.047) MAX.
A XXXX
YYWW
DATE CODE
DIMENSIONS IN MILLIMETERS AND (INCHES).
5678
4321
TYPE NUMBER
OPTION NUMBERS 300 AND 500 NOT MARKED.
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
3.56 ± 0.13
(0.140 ± 0.005)
0.635 ± 0.25
(0.025 ± 0.010)
12
°
NOM.
9.65 ± 0.25
(0.380 ± 0.010)
0.635 ± 0.130
(0.025 ± 0.005)
7.62 ± 0.25
(0.300 ± 0.010)
5
6
7
8
4
3
2
1
9.80 ± 0.25
(0.386 ± 0.010)
6.350 ± 0.25
(0.250 ± 0.010)
1.016 (0.040)
1.27 (0.050)
10.9 (0.430)
2.0 (0.080)
LAND PATTERN RECOMMENDATION
1.080 ± 0.320
(0.043 ± 0.013)
3.56 ± 0.13
(0.140 ± 0.005)
1.780
(0.070)
MAX.
1.19
(0.047)
MAX.
2.54
(0.100)
BSC
DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.5 mm (20 mils) MAX.
0.254 + 0.076
- 0.051
(0.010 + 0.003)
- 0.002)
Package Outline Drawings
HCPL-J312 Outline Drawing (Standard DIP Package)
HCPL-J312 Gull Wing Surface Mount Option 300 Outline Drawing
5
HCNW3120 Outline Drawing (8-Pin Wide Body Package)
HCNW3120 Gull Wing Surface Mount Option 300 Outline Drawing
5
6
7
8
4
3
2
1
11.15 ± 0.15
(0.442 ± 0.006)
1.78 ± 0.15
(0.070 ± 0.006)
5.10
(0.201)MAX.
1.55
(0.061)
MAX.
2.54 (0.100)
TYP.
DIMENSIONS IN MILLIMETERS (INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
7° TYP. 0.254 + 0.076
- 0.0051
(0.010+ 0.003)
- 0.002)
11.00
(0.433)
9.00 ± 0.15
(0.354 ± 0.006)
MAX.
10.16 (0.400)
TYP.
A
HCNWXXXX
YYWW
DATE CODE
TYPE NUMBER
0.51 (0.021) MIN.
0.40 (0.016)
0.56 (0.022)
3.10 (0.122)
3.90 (0.154)
1.00 ± 0.15
(0.039 ± 0.006)
7° NOM.
12.30 ± 0.30
(0.484 ± 0.012)
0.75 ± 0.25
(0.030 ± 0.010)
11.00
(0.433)
5
6
7
8
4
3
2
1
11.15 ± 0.15
(0.442 ± 0.006)
9.00 ± 0.15
(0.354 ± 0.006)
1.3
(0.051)
13.56
(0.534)
2.29
(0.09)
LAND PATTERN RECOMMENDATION
1.78 ± 0.15
(0.070 ± 0.006)
4.00
(0.158)MAX.
1.55
(0.061)
MAX.
2.54
(0.100)
BSC
DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
0.254 + 0.076
- 0.0051
(0.010+ 0.003)
- 0.002)
MAX.
6
Recommended Pb-Free IR Prole
Solder Reow Temperature Prole
0
TIME (SECONDS)
TEMPERATURE (°C)
200
100
50 150100 200 250
300
0
30
SEC.
50 SEC.
30
SEC.
160 °C
140 °C
150 °C
PEAK
TEMP.
245 °C
PEAK
TEMP.
240 °CPEAK
TEMP.
230 °C
SOLDERING
TIME
200 °C
PREHEATING TIME
150 °C, 90 + 30 SEC.
2.5 C ± 0.5 °C/SEC.
3°C+1°C/–0.5 °C
TIGHT
TYPICAL
LOOSE
ROOM
TEMPERATURE
PREHEATING RATE 3 °C+1°C/–0.5 °C/SEC.
REFLOW HEATING RATE 2.5 °C ± 0.5 °C/SEC.
NOTE: NON-HALIDE FLUX SHOULD BE USED.
7
Regulatory Information
Agency/Standard HCPL-3120 HCPL-J312 HCNW3120
Underwriters Laboratory (UL)  Compliant  Compliant  Compliant 
Recognized under UL 1577, Component Recognition Program, 
Category, File E55361
Canadian Standards Association (CSA) File CA88324,  Compliant  Compliant  Compliant 
per Component Acceptance Notice #5
IEC/EN/DIN EN 60747-5-2  Compliant  Compliant  Compliant 
Option 060
Insulation and Safety Related Specications
Value
HCPL- HCPL- HCNW
Parameter Symbol 3120 J312 3120 Units Conditions
Minimum External  L(101)  7.1  7.4  9.6  mm  Measured from input terminals to output 
Air Gap (Clearance)  terminals, shortest distance through air.
Minimum External  L(102)  7.4  8.0  10.0  mm  Measured from input terminals to output  
Tracking (Creepage)  terminals, shortest distance path along 
body.
Minimum Internal  0.08  0.5  1.0  mm  Insulation thickness between emitter 
Plastic Gap  and detector; also known as distance 
(Internal Clearance)  through insulation.
Tracking Resistance  CTI  >175  >175  >200  Volts  DIN IEC 112/VDE 0303 Part 1 
(Comparative 
Tracking Index)
Isolation Group  IIIa  IIIa  IIIa  Material Group (DIN VDE 0110, 1/89, 
Table 1)
8
IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics
HCPL-3120
Description Symbol Option 060 HCPL-J312 HCNW3120 Unit
Installation classication per DIN VDE 0110/1.89, 
Table 1 
for rated mains voltage ≤150 V rms  I-IV  I-IV  I-IV 
for rated mains voltage ≤300 V rms  I-IV  I-IV  I-IV 
for rated mains voltage ≤450 V rms  I-III  I-III  I-IV 
for rated mains voltage ≤600 V rms  I-III  I-IV 
for rated mains voltage ≤1000 V rms  I-III
Climatic Classication  55/100/21  55/100/21  55/100/21
Pollution Degree (DIN VDE 0110/1.89)  2  2  2
Maximum Working Insulation Voltage  VIORM 630  891  1414  Vpeak
Input to Output Test Voltage, Method b*  VPR 1181  1670  2652  Vpeak
VIORM x 1.875 = VPR, 100% Production Test, 
tm = 1 sec, Partial Discharge < 5pC 
Input to Output Test Voltage, Method a*  VPR 945  1336  2121  Vpeak
VIORM x 1.5 = VPR, Type and Sample Test, 
tm = 60 sec, Partial Discharge < 5pC
Highest Allowable Overvoltage*  VIOTM 6000  6000  8000  Vpeak
(Transient Overvoltage, tini = 10 sec) 
Safety Limiting Values – maximum values allowed 
in the event of a failure, also see Figure 37. 
    Case Temperature  TS 175  175  150  °C 
    Input Current  IS INPUT 230  400  400  mA 
    Output Power  PS OUTPUT 600  600  700  mW
Insulation Resistance at TS, VIO = 500 V  RS ≥109 ≥109 ≥109 Ω
*Refer to the IEC/EN/DIN EN 60747-5-2 section (page 1-6/8) of the Isolation Control Component Designers Catalog for a detailed description of 
Method a/b partial discharge test proles.
Note: These optocouplers are suitable for safe electrical isolation” only within the safety limit data. Maintenance of the safety data shall be en-
sured by means of protective circuits. Surface mount classication is Class A in accordance with CECC 00802.
All Avago data sheets report the creepage and clearance 
inherent  to  the  optocoupler  component  itself.  These 
dimensions  are  needed  as  a  starting  point  for  the 
equipment designer when determining the circuit insula-
tion requirements. However, once mounted on a printed 
circuit board, minimum creep-age and clearance require-
ments must be met as specied for individual equipment 
standards. For creepage, the shortest distance path along 
the surface of a printed circuit board between the solder 
llets of the input and output leads must be considered. 
There  are  recommended  techniques  such  as  grooves 
and ribs which may be used on a printed circuit board 
to  achieve  desired  creepage  and  clearances.  Creepage 
and clearance distances will also change depending on 
factors such as pollution degree and insulation level.
9
Recommended Operating Conditions
Parameter Symbol Min. Max. Units
Power Supply Voltage  (VCC - VEE)  15  30  Volts
Input Current (ON)  HCPL-3120  7 
HCPL-J312  IF(ON) 16  mA
HCNW3120  10
Input Voltage (OFF)  VF(OFF) -3.6  0.8  V
Operating Temperature  TA -40  100  °C
Absolute Maximum Ratings
Parameter Symbol Min. Max. Units Note
Storage Temperature  TS -55  125  °C
Operating Temperature  TA -40  100  °C
Average Input Current  IF(AVG) 25  mA  1
Peak Transient Input Current  IF(TRAN) 1.0  A 
(<1 µs pulse width, 300 pps)
Reverse Input Voltage  HCPL-3120  VR 5  Volts
HCPL-J312  5 
HCNW3120
“High” Peak Output Current  IOH(PEAK) 2.5  A  2
“Low” Peak Output Current  IOL(PEAK) 2.5  A  2
Supply Voltage  (VCC - VEE)  0  35  Volts
Input Current (Rise/Fall Time)  tr(IN) /tf(IN)  500  ns
Output Voltage  VO(PEAK) 0  VCC Volts
Output Power Dissipation  PO 250  mW  3
Total Power Dissipation  PT 295  mW  4
Lead Solder Temperature  HCPL-3120  260°C for 10 sec., 1.6 mm below seating plane 
HCPL-J312
HCNW3120  260°C for 10 sec., up to seating plane
Solder Reow Temperature Prole  See Package Outline Drawings section
10
Electrical Specications (DC)
Over  recommended  operating  conditions  (TA =  -40  to  100°C,  for  HCPL-3120,  HCPL-J312  IF(ON) =  7  to  16mA,  for 
HCNW3120 IF(ON) = 10 to 16mA, VF(OFF) = -3.6 to 0.8 V, VCC = 15 to 30 V, VEE = Ground) unless otherwise specied.
Parameter Symbol Device Min. Typ.* Max. Units Test Conditions Fig. Note
High Level Output  IOH  0.5  1.5  A  VO = (VCC - 4 V)  2, 3,  5
Current 2.0  A  VO = (VCC - 15 V)  17 2
Low Level Output  IOL  0.5  2.0  A  VO = (VEE + 2.5 V)  5, 6,  5
Current 2.0  A  VO = (VEE + 15 V)  18 2
High Level Output  VOH (VCC - 4)  (VCC - 3)  V  IO = -100 mA  1, 3,  6, 7 
Voltage  19
Low Level Output  VOL  0.1  0.5  V  IO = 100 mA  4, 6, 
Voltage  20
High Level Supply  ICCH 2.5  5.0  mA  Output Open,  7, 8 
Current  IF = 7 to 16 mA
Low Level Supply  ICCL 2.5  5.0  mA  Output Open, 
Current  VF = -3.0 to +0.8 V
Threshold Input  IFLH HCPL-3120  2.3  5.0  mA  IO = 0 mA,  9, 15,
Current Low to HCPL-J312  1.0 VO > 5 V  21
High HCNW3120  2.3  8.0
Threshold Input  VFHL 0.8  V 
Voltage High to 
Low
Input Forward  VF HCPL-3120  1.2  1.5  1.8  V  IF = 10 mA  16
Voltage HCPL-J312  1.6  1.95 
HCNW3120
Temperature  ∆VF/∆TA HCPL-3120  -1.6  mV/°C  IF = 10 mA
Coecient of HCPL-J312  -1.3 
Forward Voltage HCNW3120
Input Reverse  BVR HCPL-3120  5  V  IR = 10 µA
Breakdown HCPL-J312  3  IR = 100 µA 
Voltage HCNW3120
Input Capacitance  CIN HCPL-3120  60  pF  f = 1 MHz,
HCPL-J312  70  VF = 0 V
HCNW3120
UVLO Threshold  VUVLO+ 11.0  12.3  13.5  V  VO > 5 V,  22, 
IF = 10 mA  34
VUVLO 9.5  10.7  12.0 
UVLO Hysteresis  UVLOHYS 1.6
*All typical values at TA = 25°C and VCC - VEE = 30 V, unless otherwise noted.
11
Switching Specications (AC)
Over  recommended  operating  conditions  (TA =  -40  to  100°C,  for  HCPL-3120,HCPL-J312  IF(ON) =  7  to  16mA,  for 
HCNW3120 IF(ON) = 10 to 16mA, VF(OFF) = -3.6 to 0.8 V, VCC = 15 to 30 V,  VEE = Ground) unless otherwise specied.
Parameter Symbol Min. Typ.* Max. Units Test Conditions Fig. Note
Propagation Delay Time  tPLH 0.10  0.30  0.50  µs  Rg = 10 Ω,  10, 11,  16 
to High Output Level  Cg = 10 nF,  12, 13, 
Propagation Delay Time  tPHL 0.10  0.30  0.50  µs  f = 10 kHz,  14, 23
to Low Output Level  Duty Cycle = 50%
Pulse Width Distortion  PWD  0.3  µs  17
Propagation Delay  PDD  -0.35  0.35  µs  35, 36  12 
Dierence Between Any  (tPHL - tPLH) 
Two Parts
Rise Time  tr 0.1  µs  23
Fall Time  tf 0.1  µs
UVLO Turn On Delay  tUVLO ON 0.8  µs  VO > 5 V, IF = 10 mA  22
UVLO Turn O Delay  tUVLO OFF 0.6  VO < 5 V, IF = 10 mA
Output High Level Common  |CMH|  25  35  kV/µs  TA = 25°C,  24  13, 14 
Mode Transient Immunity  IF = 10 to 16 mA, 
VCM = 1500 V, 
VCC = 30 V
Output Low Level Common  |CML|  25  35  kV/µs  TA = 25°C,  13, 15 
Mode Transient Immunity  VCM = 1500 V, 
VF = 0 V, VCC = 30 V
*All typical values at TA = 25°C and VCC - VEE = 30 V, unless otherwise noted.
12
Package Characteristics
Over recommended temperature (TA = -40 to 100°C) unless otherwise specied.
Parameter Symbol Device Min. Typ. Max. Units Test Conditions Fig. Note
Input-Output Momentary  VISO HCPL-3120  3750  VRMS RH < 50%,  8, 11
Withstand Voltage** HCPL-J312  3750  t = 1 min., 9, 11
HCNW3120  5000  TA = 25°C 10, 11
Resistance  RI-O HCPL-3120  1012 Ω  VI-O = 500 VDC  11 
(Input-Output)  HCPL-J312
HCNW3120  1012 1013 TA = 25°C
1011  TA = 100°C
Capacitance  CI-O HCPL-3120  0.6  pF  f = 1 MHz
(Input-Output)  HCPL-J312  0.8
HCNW3120  0.5  0.6
LED-to-Case Thermal  qLC 467  °C/W  Thermocouple  28 
Resistance  located at center
LED-to-Detector Thermal  qLD 442  °C/W  underside of 
Resistance  package
Detector-to-Case  qDC 126  °C/W 
Thermal Resistance
*All typicals at TA = 25°C.
**The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous 
voltage rating. For the continuous voltage rating refer to your equipment level safety specication or Avago Application Note 1074 entitled “Op-
tocoupler Input-Output Endurance Voltage.
Notes:
1. Derate linearly above 70°C free-air temperature at a rate of 0.3 mA/°C.
2. Maximum pulse width = 10 µs, maximum duty cycle = 0.2%. This value is intended to allow for component tolerances for designs with IO peak 
minimum = 2.0 A. See Applications section for additional details on limiting IOH peak.
3. Derate linearly above 70°C free-air temperature at a rate of 4.8 mW/°C.
4. Derate linearly above 70°C free-air temperature at a rate of 5.4 mW/°C. The maximum LED junction tem-perature should not exceed 125°C.
5. Maximum pulse width = 50 µs, maximum duty cycle = 0.5%.
6. In this test V
OH is measured with a dc load current. When driving capacitive loads VOH will approach VCC as IOH approaches zero amps.
7. Maximum pulse width = 1 ms, maximum duty cycle = 20%.
8. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage ≥4500 Vrms for 1 second (leakage detec-
tion current limit, II-O ≤ 5 µA). 
9. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage ≥4500 Vrms for 1 second (leakage detec-
tion current limit, II-O ≤ 5 µA).
10. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage ≥6000 Vrms for 1 second (leakage detec-
tion current limit, II-O ≤ 5 µA).
11. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together.
12. The dierence between tPHL and tPLH between any two HCPL-3120 parts under the same test condition.
13. Pins 1 and 4 need to be connected to LED common.
14. Common mode transient immunity in the high state is the maximum tolerable dVCM/dt of the common mode pulse, VCM, to assure that the 
output will remain in the high state (i.e., VO> 15.0 V).
15. Common mode transient immunity in a low state is the maximum tolerable dVCM/dt of the common mode pulse, VCM, to assure that the out-
put will remain in a low state (i.e., VO< 1.0 V).
16. This load condition approximates the gate load of a 1200 V/75A IGBT.
17. Pulse Width Distortion (PWD) is dened as |tPHL-tPLH| for any given device.
13
Figure 7. ICC vs. temperature. Figure 8. ICC vs. VCC.
Figure 4. VOL vs. temperature. Figure 5. IOL vs. temperature. Figure 6. VOL vs. IOL.
Figure 1. VOH vs. temperature. Figure 2. IOH vs. temperature. Figure 3. VOH vs. IOH.
(V
OH
– V
CC
) – HIGH OUTPUT VOLTAGE DROP – V
-40
-4
T
A
– TEMPERATURE – °C
100
-1
-2
-20
HCPL-3120 fig 1
0
0 20 40
-3
60 80
I
F
= 7 to 16 mA
I
OUT
= -100 mA
V
CC
= 15 to 30 V
V
EE
= 0 V
I
OH
– OUTPUT HIGH CURRENT – A
-40
1.0
T
A
– TEMPERATURE – °C
100
1.8
1.6
-20
HCPL-3120 fig 2
2.0
0 20 40
1.2
60 80
I
F
= 7 to 16 mA
V
OUT
= (V
CC
- 4 V)
V
CC
= 15 to 30 V
V
EE
= 0 V
1.4
(V
OH
– V
CC
) – OUTPUT HIGH VOLTAGE DROP – V
0
-6
I
OH
– OUTPUT HIGH CURRENT – A
2.5
-2
-3
0.5
HCPL-3120 fig 3
-1
1.0 1.5
-5
2.0
I
F
= 7 to 16 mA
V
CC
= 15 to 30 V
V
EE
= 0 V
-4
100 °C
25 °C
-40 °C
V
OL
– OUTPUT LOW VOLTAGE – V
-40
0
T
A
– TEMPERATURE – °C
-20
HCPL-3120 fig 4-new
0.25
0 20
0.05
100
0.15
0.20
0.10
40 60 80
V
F
(OFF) = -3.0 TO 0.8 V
I
OUT
= 100 mA
V
CC
= 15 TO 30 V
V
EE
= 0 V
IOL – OUTPUT LOW CURRENT – A
-40
0
TA – TEMPERATURE – °C
-20
HCPL-3120 fig 5-new
4
0 20
1
100
2
3
40 60 80
VF (OFF) = -3.0 TO 0.8 V
VOUT = 2.5 V
VCC = 15 TO 30 V
VEE = 0 V
V
OL
– OUTPUT LOW VOLTAGE – V
0
0
I
OL
– OUTPUT LOW CURRENT – A
2.5
3
0.5
HCPL-3120 fig 6
4
1.0 1.5
1
2.0
V
F(OFF)
= -3.0 to 0.8 V
V
CC
= 15 to 30 V
V
EE
= 0 V
2
100 °C
25 °C
-40 °C
I
CC
– SUPPLY CURRENT – mA
-40
1.5
T
A
– TEMPERATURE – °C
100
3.0
2.5
-20
HCPL-3120 fig 7
3.5
0 20 40
2.0
60 80
V
CC
= 30 V
V
EE
= 0 V
I
F
= 10 mA for I
CCH
I
F
= 0 mA for I
CCL
I
CCH
I
CCL
I
CC
– SUPPLY CURRENT – mA
15
1.5
V
CC
– SUPPLY VOLTAGE – V
30
3.0
2.5
HCPL-3120 fig 8
3.5
20
2.0
25
I
F
= 10 mA for I
CCH
I
F
= 0 mA for I
CCL
T
A
= 25 °C
V
EE
= 0 V
I
CCH
I
CCL
14
Figure 9. IFLH vs. temperature.
Figure 10. Propagation delay vs. VCC. Figure 11. Propagation delay vs. IF. Figure 12. Propagation delay vs. temperature.
Figure 14. Propagation delay vs. Cg.Figure 13. Propagation delay vs. Rg.
I
FLH
– LOW TO HIGH CURRENT THRESHOLD – mA
-40
0
T
A
– TEMPERATURE – °C
100
3
2
-20
HCPL-3120 fig 9a
4
0 20 40
1
60 80
5
V
CC
= 15 TO 30 V
V
EE
= 0 V
OUTPUT = OPEN
HCPL-3120
I
FLH
– LOW TO HIGH CURRENT THRESHOLD – mA
-40
0
T
A
– TEMPERATURE – °C
-20
HCPL-3120 fig 9b-new
5
0 20
1
100
2
3
40 60 80
V
CC
= 15 TO 30 V
V
EE
= 0 V
OUTPUT = OPEN
4
HCPL-J312
IFLH – LOW TO HIGH CURRENT THRESHOLD – mA
-40
0
TA – TEMPERATURE – °C
-20
HCPL-3120 fig 9c-new
5
0 20
1
100
2
3
40 60 80
VCC = 15 TO 30 V
VEE = 0 V
OUTPUT = OPEN
4
HCNW3120
Tp – PROPAGATION DELAY – ns
15
100
VCC – SUPPLY VOLTAGE – V
30
400
300
HCPL-3120 fig 10
500
20
200
25
IF = 10 mA
TA = 25 °C
Rg = 10
Cg = 10 nF
DUTY CYCLE = 50%
f = 10 kHz
TPLH
TPHL
T
p
– PROPAGATION DELAY – ns
6
100
I
F
– FORWARD LED CURRENT – mA
16
400
300
HCPL-3120 fig 11
500
10
200
12
V
CC
= 30 V, V
EE
= 0 V
Rg = 10 , Cg = 10 nF
T
A
= 25 °C
DUTY CYCLE = 50%
f = 10 kHz
T
PLH
T
PHL
148
T
p
– PROPAGATION DELAY – ns
-40
100
T
A
– TEMPERATURE – °C
100
400
300
-20
HCPL-3120 fig 12
500
0 20 40
200
60 80
T
PLH
T
PHL
I
F
= 10 mA
V
CC
= 30 V, V
EE
= 0 V
Rg = 10 , Cg = 10 nF
DUTY CYCLE = 50%
f = 10 kHz
T
p
– PROPAGATION DELAY – ns
0
100
Rg – SERIES LOAD RESISTANCE –
50
400
300
10
HCPL-3120 fig 13
500
30
200
40
T
PLH
T
PHL
V
CC
= 30 V, V
EE
= 0 V
T
A
= 25 °C
I
F
= 10 mA
Cg = 10 nF
DUTY CYCLE = 50%
f = 10 kHz
20
Tp – PROPAGATION DELAY – ns
0
100
Cg – LOAD CAPACITANCE – nF
100
400
300
20
HCPL-3120 fig 14
500
40
200
60 80
TPLH
TPHL
VCC = 30 V, VEE = 0 V
TA = 25 °C
IF = 10 mA
Rg = 10
DUTY CYCLE = 50%
f = 10 kHz
15
Figure 15. Transfer characteristics.
Figure 16. Input current vs. forward voltage.
Figure 17. IOH test circuit.
VO – OUTPUT VOLTAGE – V
0
0
IF – FORWARD LED CURRENT – mA
5
25
15
1
HCPL-3120 fig 15
30
2
5
3 4
20
10
V
O
– OUTPUT VOLTAGE – V
0
0
I
F
– FORWARD LED CURRENT – mA
1
HCPL-3120 fig 15b
35
2
5
5
15
25
3 4
10
20
HCPL-J312
30
I
F
– FORWARD CURRENT – mA
1.10
0.001
V
F
– FORWARD VOLTAGE – VOLTS
1.60
10
1.0
0.1
1.20
HCPL-3120 fig 16a
1000
1.30 1.40 1.50
T
A
= 25°C
I
F
V
F
+
0.01
100
HCPL-3120
VF – FORWARD VOLTAGE – VOLTS
1.2 1.3 1.4 1.5
IF – FORWARD CURRENT – mA
1.71.6
1.0
IF
+
TA = 25°C
HCPL-J312/HCNW3120
VF
0.1
0.01
0.001
10
100
1000
HCPL-3120 fig 16b
HCPL-3120 fig 17
0.1 µF
V
CC
= 15
to 30 V
1
3
I
F
= 7 to
16 mA +
2
4
8
6
7
5
+
4 V
I
OH
16
Figure 20. VOL Test circuit. Figure 21. IFLH Test circuit.
Figure 19. VOH Test circuit.Figure 18. IOL Test circuit.
Figure 22. UVLO test circuit.
HCPL-3120 fig 18
0.1 µF
VCC = 15
to 30 V
1
3
+
2
4
8
6
7
5
2.5 V
IOL
+
HCPL-3120 fig 19
0.1 µF
V
CC
= 15
to 30 V
1
3
I
F
= 7 to
16 mA +
2
4
8
6
7
5
100 mA
V
OH
HCPL-3120 fig 20
0.1 µF
V
CC
= 15
to 30 V
1
3
+
2
4
8
6
7
5
100 mA
V
OL
HCPL-3120 fig 21
0.1 µF
V
CC
= 15
to 30 V
1
3
I
F
+
2
4
8
6
7
5
V
O
> 5 V
HCPL-3120 fig 22
0.1 µF
V
CC
1
3
I
F
= 10 mA +
2
4
8
6
7
5
V
O
> 5 V
17
Figure 24. CMR test circuit and waveforms.
Figure 23. tPLH, tPHL, tr, and tf test circuit and waveforms.
HCPL-3120 fig 23
0.1 µF V
CC
= 15
to 30 V
10
1
3
I
F
= 7 to 16 mA
V
O
+
+
2
4
8
6
7
5
10 KHz
50% DUTY
CYCLE
500
10 nF
I
F
V
OUT
t
PHL
t
PLH
t
f
t
r
10%
50%
90%
HCPL-3120 fig 24
0.1 µF
V
CC
= 30 V
1
3
I
F
V
O
+
+
2
4
8
6
7
5
A
+
B
V
CM
= 1500 V
5 V
V
CM
t
0 V
V
O
SWITCH AT B: I
F
= 0 mA
V
O
SWITCH AT A: I
F
= 10 mA
V
OL
V
OH
t
V
CM
δV
δt=
18
Applications Information
Eliminating Negative IGBT Gate Drive (Discussion applies 
to HCPL-3120, HCPL-J312, and HCNW3120)
To  keep  the  IGBT  rmly  o,  the  HCPL-3120  has  a  very 
low maximum VOLspecication of 0.5 V. The HCPL-3120 
realizes  this  very  low  VOL by  using  a  DMOS  transistor 
with 1 Ω (typical)  on  resistance in its pull down circuit. 
When the HCPL-3120 is  in the low state, the IGBT gate 
is  shorted  to  the  emitter  by  Rg  +  1 Ω.  Minimizing  Rg 
and  the  lead  inductance  from  the  HCPL-3120  to  the 
IGBT gate and emitter (possibly by mounting the HCPL-
Figure 25. Recommended LED drive and application circuit.
+ HVDC
3-PHASE
AC
- HVDC
HCPL-3120 fig 25
0.1 µF V
CC
= 18 V
1
3
+
2
4
8
6
7
5
270
HCPL-3120
+5 V
CONTROL
INPUT
Rg
Q1
Q2
74XXX
OPEN
COLLECTOR
3120 on a small PC board directly above the IGBT) can 
eliminate the need for negative IGBT gate drive in many 
applications as shown in Figure 25. Care should be taken 
with such a PC board design to avoid routing the IGBT 
collector or emitter traces close to the HCPL-3120 input 
as  this  can  result  in  unwanted  coupling  of  transient 
signals into the HCPL-3120 and degrade performance. (If 
the IGBT drain must be routed near the HCPL-3120 input, 
then the LED should be reverse-biased when in the o
state, to prevent the transient signals coupled from the 
IGBT drain from turning on the HCPL-3120.) 
19
Selecting  the  Gate  Resistor  (Rg)  to  Minimize  IGBT 
Switching  Losses.  (Discussion  applies  to  HCPL-3120, 
HCPL-J312 and HCNW3120)
Step 1: Calculate Rg Minimum from the IOLPeak Specica-
tion. The IGBT and Rg in Figure 26 can be analyzed as a 
simple RC circuit with a voltage supplied by the HCPL-
3120.
(VCC – VEE - VOL) 
Rg  ≥  ———————  
IOLPEAK 
(VCC – VEE - 2 V) 
=  ———————  
      IOLPEAK 
(15 V + 5 V - 2 V) 
=  ———————  
       2.5 A 
=  7.2 Ω @ 8 Ω
The VOL value of 2 V in the previous equation is a con-
servative value of VOL at the peak current of 2.5A (see 
Figure 6). At lower Rg values the voltage supplied by 
the HCPL-3120 is not an ideal voltage step. This results 
in lower peak currents (more margin) than predicted by 
this analysis. When negative gate drive is not used VEE in 
the previous equation is equal to zero volts.
Step 2: Check the HCPL-3120 Power Dissipation and 
Increase Rg if Necessary. The HCPL-3120 total power 
dissipation (PT) is equal to the sum of the emitter power 
(PE) and the output power (PO):
PT= PE + PO
PE = IF VF · Duty Cycle
PO= PO(BIAS) + PO (SWITCHING)
= ICC (VCC - VEE)+ ESW(RG, QG)  f
Figure 26. HCPL-3120 typical application circuit with negative IGBT gate drive.
+ HVDC
3-PHASE
AC
- HVDC
HCPL-3120 fig 26
0.1 µF V
CC = 15 V
1
3
+
2
4
8
6
7
5
HCPL-3120
Rg
Q1
Q2
VEE = -5 V
+
270
+5 V
CONTROL
INPUT
74XXX
OPEN
COLLECTOR
For  the  circuit  in  Figure  26  with  IF (worst  case)  = 
16 mA, Rg =  8 Ω,  Max  Duty Cycle  =  80%, Qg = 500  nC, 
f = 20 kHz and TA max = 85 °C:
PE= 16 mA1.8 V 0.8 = 23 mW
PO= 4.25 mA20 V + 5.2 µ J 20 kHz
 = 85 mW + 104 mW
 = 189 mW > 178 mW (PO(MAX) @ 85°C
 = 250 mW-15C*4.8 mW/C)
The value of 4.25 mA for ICC in the previous equation was 
obtained by derating the ICC max of 5 mA (which occurs 
at -40°C) to ICC max at 85C (see Figure 7).
Since PO for this case is greater than PO(MAX), Rg must be 
increased to reduce the HCPL-3120 power dissipation.
PO(SWITCHING MAX)
= PO(MAX) - PO(BIAS)
 = 178 mW - 85 mW
= 93 mW
PO(SWITCHINGMAX)
ESW(MAX) =  ——————— 
f 
93 mW 
=  ———— = 4.65 µW 
20 kHz
For Qg = 500 nC, from Figure 27, a value of ESW = 4.65 µW 
gives a   Rg = 10.3 Ω.
20
PO Parameter Description
ICC Supply Current
VCC Positive Supply Voltage
VEE Negative Supply Voltage
ESW(Rg,Qg)  Energy Dissipated in the HCPL-3120 
for each IGBT Switching Cycle  
(See Figure 27)
f  Switching Frequency
Figure 27. Energy dissipated in the HCPL-3120 for each IGBT switching
cycle.
Esw – ENERGY PER SWITCHING CYCLE – µJ
0
0
Rg – GATE RESISTANCE –
50
6
10
HCPL-3120 fig 27
14
20
4
30 40
12
Qg = 100 nC
Qg = 500 nC
Qg = 1000 nC
10
8
2
VCC = 19 V
VEE = -9 V
Thermal Model (Discussion applies to HCPL-3120, HCPL-
J312 and HCNW3120)
The  steady  state  thermal  model  for  the  HCPL-3120  is 
shown in Figure 28. The thermal resistance values given 
in this model can be used to calculate the temperatures 
at each node for a given operating condition. As shown 
by the model, all heat generated ows through qCA which 
raises  the  case  temperature  TC accordingly.  The  value 
of qCAdepends  on  the  conditions  of  the  board  design 
and is, therefore, determined by the designer. The value 
of  qCA= 83°C/W  was  obtained  from  thermal  measure-
ments using a 2.5 x 2.5 inch PC board, with small traces 
(no ground plane), a single HCPL-3120 soldered into the 
center of the board and still air. The absolute maximum 
power  dissipation  derating  specications  assume  a 
qCAvalue of 83°C/W.
From the thermal mode in Figure 28 the LED and detector 
IC junction temperatures can be expressed as:
TJE = P
E@
(qLC||(qLD + qDC) + qCA)
     qLC * qDC
+ PD(———————  + qCA) + TA
qLC + qDC + qLD
     qLCqDC
TJD =PE (———————  + qCA)
qLC + qDC+ qLD
+ P
D (qDC||(qLD + qLC) + qCA) + TA
Inserting the values for qLCand qDCshown in Figure 28 
gives:
TJE = PE (256°C/W + qCA) 
  + PD (57°C/W + qCA) + TA 
TJD = PE (57°C/W + qCA) 
  + PD (111°C/W + qCA) + TA
For example, given PE= 45 mW, PO= 250 mW, TA= 70°C 
and  qCA= 83°C/W:
TJE = PE 339°C/W + PD 140°C/W + TA
  = 45 mW 339°C/W + 250 mW 
    140°C/W + 70°C = 120°C
TJD = PE 140°C/W + PD 194°C/W + TA
  = 45 mW 14C/W + 250 mW194°C/W + 70°C = 125°C
TJE and  TJD should  be  limited  to  125°C  based  on  the 
board layout and part placement (qCA) specic to the ap-
plication.
PE Parameter Description
IF LED Current
VF LED On Voltage
Duty Cycle  Maximum LED Duty Cycle
21
TJE =  LED junction temperature 
TJD =  detector IC junction temperature 
TC =  case temperature measured at the center of the package bottom 
qLC =  LED-to-case thermal resistance
qLD =  LED-to-detector thermal resistance 
qDC =  detector-to-case thermal resistance 
qCA =  case-to-ambient thermal resistance 
   *qCA will depend on the board design and the placement of the part.
Figure 28. Thermal model.
HCPL-3120 fig 28
θLD = 442 °C/W
TJE TJD
θLC = 467 °C/W θDC = 126 °C/W
θCA = 83 °C/W*
TC
TA
TJE = LED JUNCTION TEMPERATURE
TJD = DETECTOR IC JUNCTION TEMPERATURE
TC = CASE TEMPERATURE MEASURED AT THE
CENTER OF THE PACKAGE BOTTOM
θLC = LED-TO-CASE THERMAL RESISTANCE
θLD = LED-TO-DETECTOR THERMAL RESISTANCE
θDC = DETECTOR-TO-CASE THERMAL RESISTANCE
θCA = CASE-TO-AMBIENT THERMAL RESISTANCE
*
θ
CA
WILL DEPEND ON THE BOARD DESIGN AND
THE PLACEMENT OF THE PART.
LED Drive Circuit Considerations for Ultra High CMR Per-
formance. (Discussion applies to HCPL-3120, HCPL-J312,
and HCNW3120)
Without  a  detector  shield,  the  dominant  cause  of  op-
tocoupler  CMR  failure  is  capacitive  coupling  from  the 
input side of the optocoupler, through the package, to 
the detector IC as shown in Figure 29. The HCPL-3120 
improves CMR perform-ance by using a detector IC with 
an optically transparent Faraday shield, which diverts the 
capacitively coupled current away from the sensitive IC 
circuitry. However, this shield does not eliminate the ca-
pacitive coupling between the LED and optocoupler pins 
5-8 as shown in Figure 30. This capacitive coupling causes 
Figure 29. Optocoupler input to output capacitance model for unshielded
optocouplers.
Figure 30. Optocoupler input to output capacitance model for shielded
optocouplers.
HCPL-3120 fig 29
1
3
2
4
8
6
7
5
C
LEDP
C
LEDN
HCPL-3120 fig 30
1
3
2
4
8
6
7
5
CLEDP
CLEDN
SHIELD
CLEDO1
CLEDO2
perturbations in the LED current during common mode 
transients and becomes the major source of CMR failures 
for a shielded optocoupler. The main design objective of 
a high CMR LED drive circuit becomes keeping the LED 
in  the  proper  state  (on  or  o)  during  common  mode 
transients.  For  example,  the  recommended  application 
circuit (Figure 25), can achieve 25 kV/µs CMR while mini-
mizing component complexity.
Techniques  to  keep  the  LED  in  the  proper  state  are 
discussed in the next two sections.
22
CMR with the LED On (CMRH).
A high CMR LED drive circuit must keep the LED on during 
common mode transients. This is achieved by overdriv-
ing the LED current beyond the input threshold so that 
it is not pulled below the  threshold during a transient. 
A  minimum  LED  current  of  10  mA  provides  adequate 
margin over the maximum IFLH of 5 mA to achieve 25 kV/
µs CMR.
CMR with the LED O (CMRL).
A  high  CMR  LED  drive  circuit  must  keep  the  LED  o
(VF≤ VF(OFF))  during  common  mode  transients.  For 
example,  during  a  -dVcm/dt  transient  in  Figure  31,  the 
current  owing  through  CLEDP also  ows  through  the 
HCPL-3120 fig 31
Rg
1
3
VSAT
2
4
8
6
7
5
+
VCM
ILEDP
CLEDP
CLEDN
SHIELD
* THE ARROWS INDICATE THE DIRECTION
OF CURRENT FLOW DURING –dV
CM
/dt.
+5 V
+
VCC = 18 V
• • •
• • •
0.1
µF
+
Figure 33. Recommended LED drive circuit for ultra-high CMR.
HCPL-3120 fig 33
1
3
2
4
8
6
7
5
C
LEDP
C
LEDN
SHIELD
+5 V
Figure 31. Equivalent circuit for gure 25 during common mode transient. Figure 32. Not recommended open collector drive circuit.
HCPL-3120 fig 32
1
3
2
4
8
6
7
5
C
LEDP
C
LEDN
SHIELD
+5 V
Q1
I
LEDN
RSATand VSATof the logic gate. As long as the low state 
voltage  developed  across  the  logic  gate  is  less  than 
VF(OFF), the LED will  remain o  and  no  common mode 
failure will occur.
The  open  collector  drive  circuit,  shown  in  Figure  32, 
cannot  keep  the  LED  o  during  a  +dVcm/dt  transient, 
since  all  the  current  owing  through  CLEDN must  be 
supplied  by  the  LED,  and  it  is  not  recommended  for 
applica-tions  requiring  ultra  high  CMRL performance. 
Figure 33 is an alternative drive circuit which, like the rec-
ommended applica-tion circuit (Figure 25), does achieve 
ultra high CMR performance by shunting the LED in the 
o state.
Figure 34. Under voltage lock out.
V
O
– OUTPUT VOLTAGE – V
0
0
(V
CC
- V
EE
) – SUPPLY VOLTAGE – V
10
5
HCPL-3120 fig 34
14
10 15
2
20
6
8
4
12
(12.3, 10.8)
(10.7, 9.2)
(10.7, 0.1) (12.3, 0.1)
23
Under Voltage Lockout Feature. (Discussion applies to
HCPL-3120, HCPL-J312, and HCNW3120)
The HCPL-3120 contains an under voltage lockout (UVLO) 
feature that is designed to protect the IGBT under fault 
conditions  which  cause  the  HCPL-3120  supply  voltage 
(equivalent  to  the  fully-charged  IGBT  gate  voltage)  to 
drop below a level necessary to keep the IGBT in a low re-
sistance state. When the HCPL-3120 output is in the high 
state and the supply voltage drops below the HCPL-
3120  VUVLO threshold  (9.5 < VUVLO–  <  12.0)  the  opto-
coupler output will go into the low state with a typical 
delay, UVLO Turn O Delay, of 0.6 µs.
When  the  HCPL-3120  output  is  in  the  low  state  and 
the  supply  voltage  rises  above  the  HCPL-3120  VUVLO+
threshold (11.0 < VUVLO+< 13.5) the optocoupler output 
will go into the high state (assumes LED is “ON”) with a 
typical delay, UVLO Turn On Delay of 0.8 µs.
IPM Dead Time and Propagation Delay Specications.
(Discussion applies to HCPL-3120, HCPL-J312, and
HCNW3120)
The HCPL-3120 includes a Propagation Delay Dierence 
(PDD) specication intended to help designers minimize 
dead  time in  their  power  inverter designs. Dead time 
is the time period during which both the high and low 
side power transistors (Q1 and Q2 in Figure 25) are o. 
Any overlap in Q1 and Q2 conduction will result in large 
currents  owing  through  the  power  devices  between 
the high and low voltage motor rails.
Figure 35. Minimum LED skew for zero dead time.
Figure 36. Waveforms for dead time.
tPHL MAX
tPLH MIN
PDD* MAX = (tPHL- tPLH)MAX = tPHL MAX - tPLH MIN
*PDD = PROPAGATION DELAY DIFFERENCE
NOTE: FOR PDD CALCULATIONS THE PROPAGATION DELAYS
ARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS.
VOUT1
ILED2
VOUT2
ILED1
Q1 ON
Q2 OFF
Q1 OFF
Q2 ON
HCPL-3120 fig 35
tPLH
MIN
MAXIMUM DEAD TIME
(DUE TO OPTOCOUPLER)
= (tPHL MAX - tPHL MIN) + (tPLH MAX - tPLH MIN)
= (tPHL MAX - tPLH MIN) – (tPHL MIN - tPLH MAX)
= PDD* MAX – PDD* MIN
*PDD = PROPAGATION DELAY DIFFERENCE
NOTE: FOR DEAD TIME AND PDD CALCULATIONS ALL PROPAGATION
DELAYS ARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS.
VOUT1
ILED2
VOUT2
ILED1
Q1 ON
Q2 OFF
Q1 OFF
Q2 ON
HCPL-3120 fig 36
tPHL MIN
tPHL MAX
tPLH MAX
PDD* MAX
(tPHL-tPLH) MAX
Figure 37. Thermal derating curve, dependence of safety limiting value with case temperature per IEC/EN/DIN EN 60747-5-2.
OUTPUT POWER – P
S
, INPUT CURRENT – I
S
0
0
T
S
– CASE TEMPERATURE – °C
175
HCPL-3120 fig 37b
1000
50
400
12525 75 100 150
600
800
200
100
300
500
700
900
HCNW3120
P
S
(mW)
I
S
(mA)
OUTPUT POWER – PS, INPUT CURRENT – IS
0
0
TS – CASE TEMPERATURE – °C
200
600
400
25
HCPL-3120 fig 37a
800
50 75 100
200
150 175
PS (mW)
125
100
300
500
700 IS (mA) FOR HCPL-3120
OPTION 060
IS (mA) FOR HCPL-J312
HCPL-3120 OPTION 060éHCPL-J312
To minimize dead time in a given design, the turn on of 
LED2 should be delayed (relative to the turn o of LED1) 
so that under worst-case con-ditions, transistor Q1 has 
just turned o when transistor Q2 turns on, as shown in 
Figure 35. The amount of delay necessary to achieve this 
conditions is equal to the maximum value of the propa-
gation delay dierence specication, PDDMAX,  which is 
specied  to  be  350 ns  over  the  operating  temperature 
range of -40°C to 100°C.
Delaying the LED  signal  by  the  maximum propagation 
delay dierence ensures that the minimum dead time is 
zero, but it does not tell a designer what the maximum 
dead time will be. The maximum dead time is equivalent 
to the dierence between the maximum and minimum 
propagation delay dierence specications as shown in 
Figure 36. The maximum dead time for the HCPL-3120 is 
700 ns (= 350 ns  - (-350 ns)) over an  operating tempera-
ture range of -40°C to 100°C.
Note that the propagation delays used to calculate PDD 
and dead time are taken at equal temperatures and test 
conditions since the optocouplers under consideration 
are typically mounted in close  proximity to each other 
and are switching identical IGBTs.
For product information and a complete list of distributors, please go to our website: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2008 Avago Technologies. All rights reserved. Obsoletes AV01-0622EN
AV02-0161EN - July 4, 2008