The MAX338/MAX339 are monolithic, CMOS analog
multiplexers (muxes). The 8-channel MAX338 is
designed to connect one of eight inputs to a common
output by control of a 3-bit binary address. The dual, 4-
channel MAX339 is designed to connect one of four
inputs to a common output by control of a 2-bit binary
address. Both devices can be used as either a mux or
a demux. On-resistance is 400Ωmax, and the devices
conduct current equally well in both directions.
These muxes feature extremely low off leakages (less
than 20pA at +25°C), and extremely low on-channel
leakages (less than 50pA at +25°C). The new design
offers guaranteed low charge injection (1.5pC typ) and
electrostatic discharge (ESD) protection greater than
2000V, per method 3015.7. These improved muxes are
pin-compatible upgrades for the industry-standard
DG508A and DG509A. For similar Maxim devices with
lower leakage and charge injection but higher on-resis-
tance, see the MAX328 and MAX329.
The MAX338/MAX339 operate from a single +4.5V to
+30V supply or from dual supplies of ±4.5V to ±20V.
All control inputs (whether address or enable) are TTL
compatible (+0.8V to +2.4V) over the full specified tem-
perature range and over the ±4.5V to ±18V supply
range. These parts are fabricated with Maxim’s 44V sili-
con-gate process.
________________________Applications
Data-Acquisition Systems Sample-and-Hold Circuits
Test Equipment Heads-Up Displays
Military Radios Communications Systems
Guidance and Control Systems PBX, PABX
____________________________Features
On-Resistance, <400Ωmax
Transition Time, <500ns
On-Resistance Match, <10Ω
NO-Off Leakage Current, <20pA at +25°C
1.5pC Charge Injection
Single-Supply Operation (+4.5V to +30V)
Bipolar-Supply Operation (±4.5V to ±20V)
Plug-In Upgrade for Industry-Standard
DG508A/DG509A
Rail-to-Rail Signal Handling
TTL/CMOS-Logic Compatible
ESD Protection >2000V, per Method 3015.7
Ordering Information
MAX338/MAX339
8-Channel/Dual 4-Channel,
Low-Leakage, CMOS Analog Multiplexers
________________________________________________________________ Maxim Integrated Products 1
CMOS DECODE LOGIC
A2 A1 A0 EN
NO8
NO7
NO6
NO5
NO4
NO3
NO2
NO1
COM
V+ V- GND
MAX338 8-CHANNEL SINGLE-ENDED MULTIPLEXER
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
A1
A2
GND
V+
NO1
V-
EN
A0
TOP VIEW
MAX338
NO5
NO6
NO7
NO8
COM
NO4
NO3
NO2
DIP/SO
_____________________Pin Configurations/Functional Diagrams/Truth Tables
19-0272; Rev 3; 11/04
PART
MAX338CPE
MAX338CSE
MAX338C/D 0°C to +70°C
0°C to +70°C
0°C to +70°C
TEMP RANGE PIN-PACKAGE
16 Plastic DIP
16 Narrow SO
Dice*
Ordering Information continued at end of data sheet.
*Contact factory for dice specifications.
**Contact factory for availability.
MAX338EPE -40°C to +85°C 16 Plastic DIP
MAX338ESE -40°C to +85°C 16 Narrow SO
MAX338EJE -40°C to +85°C 16 CERDIP
MAX338MJE -55°C to +125°C 16 CERDIP**
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
MAX338ETE -40°C to +85°C 16 Thin QFN (5mm x 5mm)
Pin Configurations/Functional Diagrams/Truth Tables
continued at end of data sheet.
General Description
1.5 5TA= +25°C
MAX338/MAX339
8-Channel/Dual 4-Channel,
Low-Leakage, CMOS Analog Multiplexers
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS—Dual Supplies
(V+ = +15V, V- = -15V, GND = 0V, VAH = +2.4V, VAL = +0.8V, TA= TMIN to TMAX, unless otherwise noted.)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
Voltage Referenced to V-
V+ ............................................................................-0.3V, 44V
GND .........................................................................-0.3V, 25V
Digital Inputs, NO, COM (Note 1)...........(V- - 2V) to (V+ + 2V) or
30mA (whichever occurs first)
Continuous Current (any terminal) ......................................30mA
Peak Current, NO or COM
(pulsed at 1ms, 10% duty cycle max) ..........................100mA
Continuous Power Dissipation (TA = +70°C)
Plastic DIP (derate 10.53mW/°C above +70°C) ..........842mW
Narrow SO (derate 8.70mW/°C above +70°C) ............696mW
16-Pin TQFN (derate 21.3mW/°C above +70°C) .......1702mW
CERDIP (derate 10.00mW/°C above +70°C)...............800mW
Operating Temperature Ranges
MAX33_C__ ........................................................0°C to +70°C
MAX33_E__......................................................-40°C to +85°C
MAX33_MJE ..................................................-55°C to +125°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10sec) .............................+300°C
VCOM = ±10V,
VNO = ±10V,
sequence
each switch
on
VNO = +10V,
VCOM = ±10V,
VEN = 0V
VCOM = +10V,
VNO = ±10V,
VEN = 0V
INO = 0.2mA,
VCOM = ±10V
VNO = ±10V,
VCOM = +10V,
VEN = 0V
CONDITIONS
nA
-20 20
ICOM(ON)
COM-On Leakage Current
(Note 5)
-1.65 1.65
-0.05 0.008 0.05
-40 40
-3.25 3.25
-0.05 0.006 0.05
nA
-20 20
ICOM(OFF)
COM-Off Leakage Current
(Note 5)
-1.65 1.65
-0.05 0.005 0.05
-40 40
220 400
-3.25 3.25
-0.05 0.005 0.05
nA
-20 20
INO(OFF)
NO-Off Leakage Current
(Note 5) -1.25 1.25
Ω
500
RON
On-Resistance
UNITS
MIN TYP MAX
(Note 2)
SYMBOLPARAMETER
Note 1: Signals on NO, COM, EN, A0, A1, or A2 exceeding V+ or V- are clamped by internal diodes. Limit forward current to
maximum current ratings.
V-15 15
VNO,
VCOM
Analog Signal Range
INO = 0.2mA,
VCOM = ±10V (Note 4) Ω
410
ΔRON
On-Resistance Matching
Between Channels
(Note 3)
TA= +25°C
TA= TMIN to TMAX
TA= +25°C
-0.02 0.001 0.02TA= +25°C
TA= TMIN
to TMAX
TA= +25°C
TA= TMIN
to TMAX
TA= +25°C
TA= TMIN
to TMAX
TA= +25°C
TA= TMIN
to TMAX
TA= +25°C
TA= TMIN
to TMAX
MAX339
MAX338
MAX339
MAX338
C, E
M
C, E
M
C, E
M
C, E
M
C, E
M
SWITCH
TA= TMIN to TMAX 15
MAX338/MAX339
8-Channel/Dual 4-Channel,
Low-Leakage, CMOS Analog Multiplexers
_______________________________________________________________________________________ 3
ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)
(V+ = +15V, V- = -15V, GND = 0V, VAH = +2.4V, VAL = +0.8V, TA= TMIN to TMAX, unless otherwise noted.)
Off Isolation
(Note 6) dB-75VISO
1.5 5Q
Charge Injection
(Note 3)
100 500
ns
750
tON(EN)
Enable Turn-On Time 160 500
ns10 140tOPEN
Break-Before-Make Interval
µA-1.0 1.0IAL
Input Current with
Input Voltage Low
µA-1.0 0.001 1.0IAH
Input Current with
Input Voltage High
µA
-10 10
I-Negative Supply Current -1 1
µA
600
I+Positive Supply Current 290 500
V±4.5 ±20Power-Supply Range
50 100 µA
150
UNITS
MIN TYP MAX
(Note 2)
SYMBOLPARAMETER
Crosstalk Between Channels VCT -92 dB
Logic Input Capacitance CIN 2pF
NO-Off Capacitance CNO(OFF) 3pF
11
COM-Off Capacitance CCOM(OFF)
f = 1MHz,
VEN = 0.8V,
VCOM = 0V,
Figure 8 6
pF
16
COM-On Capacitance CCOM(ON)
f = 1MHz,
VEN = 2.4V,
VCOM = 0V,
Figure 8 9
pF
TA= +25°C
VEN = 0V or 2.4V,
VA= 0V
TA= +25°C
VA= 2.4V or 15V
TA= +25°C
TA= TMIN to TMAX
TA= TMIN to TMAX
TA= +25°C
TA= +25°C
TA= +25°C
TA= TMIN to TMAX
TA= +25°C
TA= +25°C
TA= TMIN to TMAX
CONDITIONS
TA= +25°C
TA= +25°C
TA= +25°C
TA= +25°C
TA= +25°C
VEN = 0V,
RL= 1kΩ,
f = 100kHz
CL= 100pF,
VNO = 0V,
RS= 0Ω, Figure 6
Figure 3
VEN = 0V or 2.4V,
VA(ALL) = 0V, 2.4V or 5V
Figure 4
VEN = 2.4V,
VA(ALL) = 2.4V
VEN = VA= 0V
VEN = 2.4V,
f = 100kHz,
VGEN = 1VP-P,
RL= 1kΩ, Figure 7
f = 1MHz
f = 1MHz,
VEN = VNO = 0V,
Figure 8
MAX338
MAX339
MAX338
MAX339
ns200 500tTRANS
Transistion Time TA= +25°CFigure 2
pC
ns
750
tOFF(EN)
Enable Turn-Off Time TA= TMIN to TMAX
Figure 3
INPUT
SUPPLY
DYNAMIC
MAX338/MAX339
8-Channel/Dual 4-Channel,
Low-Leakage, CMOS Analog Multiplexers
4 _______________________________________________________________________________________
(Note 3)
CONDITIONS
CL= 100pF,
VNO = 0V,
RS= 0Ω
VINH = 2.4V,
VINL = 0V,
VNO1 = 5V,
Figure 3
VINH = 2.4V,
VINL = 0V,
VNO1 = 5V,
Figure 3
VNO1 = 8V,
VNO8 = 0V,
VIN = 2.4V,
Figure 1
INO = 0.2mA
VCOM = 3V or 10V
pC1.8 5Q
Charge Injection
(Note 3)
ns110 500tOFF(EN)
Enable Turn-Off Time
(Note 3)
V012
VNO,
VCOM
Analog Signal Range
ns280 500tON(EN)
Enable Turn-On Time
(Note 3)
ns210 500tTRANS
Transition Time
(Note 3)
Ω460 650RON
On-Resistance
UNITS
MIN TYP MAX
(Note 2)
SYMBOLPARAMETER
ELECTRICAL CHARACTERISTICS—Single Supply
(V+ = +12V, V- = 0V, GND = 0V, VAH = +2.4V, VAL = +0.8V, TA= TMIN to TMAX, unless otherwise noted.)
Note 2: The algebraic convention where the most negative value is a minimum and the most positive value a maximum is used in
this data sheet.
Note 3: Guaranteed by design.
Note 4: ΔRON = RON(MAX) - RON(MIN).
Note 5: Leakage parameters are 100% tested at the maximum rated hot temperature and guaranteed by correlation at +25°C.
Note 6: Worst-case isolation is on channel 4 because of its proximity to the drain pin. Off isolation = 20log VCOM/VNO, where
VCOM = output and VNO = input to off switch.
TA= +25°C
TA= +25°C
TA= +25°C
TA= +25°C
TA= +25°C
SWITCH
DYNAMIC
MAX338/MAX339
8-Channel/Dual 4-Channel,
Low-Leakage, CMOS Analog Multiplexers
_______________________________________________________________________________________ 5
600
ON-RESISTANCE vs. VCOM
(DUAL SUPPLIES)
500
MAX338/9 TOC-01
0
100
200
300
-20 20-15 15-10 10-5 50
400
VCOM (V)
±5V
±10V
±15V
±20V
RON (Ω)
ON-RESISTANCE vs. VCOM OVER
TEMPERATURE (DUAL SUPPLIES)
MAX338/9 TOC-02
0
100
200
300
-15 15-10 10-5 50
400
VCOM (V)
+125°C
+85°C
+25°C
-55°C
RON (Ω)
V+ = +15V
V- = -15V
1200
1400
ON-RESISTANCE vs. VCOM
(SINGLE SUPPLY)
1000
MAX338/9 TOC-03
0
200
400
600
15 201050
800
VCOM (V)
RON (Ω)
+5V
+12V +15V +20V
600
700
ON-RESISTANCE vs. VCOM OVER
TEMPERATURE (SINGLE SUPPLY)
500
MAX338/9 TOC-04
0
100
200
300
151050
400
VCOM (V)
RON (Ω)
+125°C
+85°C
+25°C
-55°C
V+ = +15V
V- = 0V
30
CHARGE INJECTION vs. VCOM
20
MAX338/9 TOC-07
-30
-20
-10
0
-15 15-10 10-5 50
10
VCOM (V)
Qj (pC)
CL = 100pF
V- = 0V
±15V
40
+12V
+5V
10
0.0001
-55 125
OFF LEAKAGE vs. TEMPERATURE
1
MAX338/9 TOC-05
TEMPERATURE (°C)
OFF LEAKAGE (nA)
25
0.01
0.001
-35 -15 65
0.1
100
1000
45 85 105
5
INO (OFF)
ICOM (OFF)
V+ = +15V
V- = -15V
10
0.0001
-55 125
ON LEAKAGE vs. TEMPERATURE
1
MAX338/9 TOC-06
TEMPERATURE (°C)
ON LEAKAGE (nA)
25
0.01
0.001
-35 -15 65
0.1
100
1000
45 85 105
5
ICOM (ON)
V+ = +15V
V- = -15V
100
0.001
-55 125
SUPPLY CURRENT vs. TEMPERATURE
10
MAX338/9 TOC-08
TEMPERATURE (°C)
I+, I- (μA)
25
0.1
0.01
-35 -15 65
1
45 85 105
5
I-
1000
I+, VA(ALL) = 2.4V
I+, VA = 0V
600
1000
900
800
700
TRANSITION TIME vs.
POWER SUPPLIES
500
MAX338/9 TOC-09
0
100
200
300
±15 ±20±10
OR 10V
(SINGLE)
±5
OR 5V
(SINGLE)
0
400
SUPPLY VOLTAGE (V)
tTRANS (nS)
SINGLE SUPPLY
DUAL SUPPLIES
RL = 1kΩ
__________________________________________Typical Operating Characteristics
(TA = +25°C, unless otherwise noted.)
__________Applications Information
Operation with
Supply Voltages Other than 15V
Using supply voltages less than ±15V will reduce the
analog signal range. The MAX338/MAX339 switches
operate with ±4.5V to ±20V bipolar supplies or with a
+4.5V to +30V single supply. Connect V- to GND when
operating with a single supply. Both device types can
also operate with unbalanced supplies such as +24V
and -5V. The Typical Operating Characteristics graphs
show typical on-resistance with 20V, 15V, 10V, and 5V
supplies. (Switching times increase by a factor of two
or more for operation at 5V.)
Overvoltage Protection
Proper power-supply sequencing is recommended for
all CMOS devices. Do not exceed the absolute maxi-
mum ratings, because stresses beyond the listed rat-
ings may cause permanent damage to the devices.
Always sequence V+ on first, then V-, followed by the
logic inputs NO and COM. If power-supply sequencing
is not possible, add two small signal diodes in series
with supply pins for overvoltage protection (Figure 1).
Adding diodes reduces the analog signal range to 1V
below V+ and 1V above V-, but does not affect the
devices’ low switch resistance and low leakage charac-
teristics. Device operation is unchanged, and the differ-
ence between V+ and V- should not exceed 44V.
MAX338/MAX339
8-Channel/Dual 4-Channel,
Low-Leakage, CMOS Analog Multiplexers
6 _______________________________________________________________________________________
______________________________________________________________Pin Description
Vg
NO COM
V-
V+
Figure 1. Overvoltage Protection Using External Blocking
Diodes
PIN
MAX338 MAX339
DIP/SO
THIN QFN
DIP/SO
THIN QFN
NAME FUNCTION
15, 14, 13
A0, A2, A1 Address Inputs
1, 16 15, 14 A0, A1 Address Inputs
2 16 2 16 EN Enable
3 1 3 1 V- Negative-Supply Voltage Input
4–7 2–5 NO1–NO14 Analog Inputs—Bidirectional
4–7 2–5 NO1A–NO4A Analog Inputs—Bidirectional
8 6 COM Analog Output—Bidirectional
8, 9 6, 7
COMA, COMB
Analog Outputs—Bidirectional
9–12 7–10 NO8–NO5 Analog Inputs—Bidirectional
10–3 8–11 NO4B–NO1B Analog Inputs—Bidirectional
13 11 14 12 V+ Positive-Supply Voltage Input
14 12 15 13 GND Ground
EP EP Exposed Pad Exposed Pad. Connect to V+.
MAX338/MAX339
8-Channel/Dual 4-Channel,
Low-Leakage, CMOS Analog Multiplexers
_______________________________________________________________________________________ 7
______________________________________________Test Circuits/Timing Diagrams
50%
tTRANS
tr < 20ns
tf < 20ns
VOUT
+3V
0V
VNO1
0V
VNO8
LOGIC
INPUT
SWITCH
OUTPUT
+15V
VOUT
-15V
GND
V+
A1
V-
A2
A0
EN
NO1
NO2-NO7
NO8
COM
±10V
+10V
50Ω
MAX338
1kΩ
10pF
+15V
VOUT
-15V
GND
V+
A0
V-
A1
EN
NO1B
NO1A-NO4A
NO4B
COMB
±10V
50Ω
MAX339
1kΩ10pF
90%
90%
tTRANS
ON
+10V
ON
50%
tOFF(EN)
tr < 20ns
tf < 20ns
VOUT
VO
+3V
0V
0V
LOGIC
INPUT
SWITCH
OUTPUT
+15V
VOUT
-15V
GND
V+
A1
V-
A0
A2
EN NO1
NO2-NO8
COM
-5V
50Ω
MAX338
1kΩ10pF
90%
10%
tON(EN)
+15V
VOUT
-15V
GND
V+
A1
V-
A0
EN NO1B
NO1A-NO4A,
NO2B-NO4B,
COMA
COMB
-5V
50Ω
MAX339
1kΩ35pF
Figure 2. Transition Time
Figure 3. Enable Switching Time
MAX338/MAX339
8-Channel/Dual 4-Channel,
Low-Leakage, CMOS Analog Multiplexers
8 _______________________________________________________________________________________
50%
tOPEN
tr < 20ns
tf < 20ns
VOUT
+3V
0V
LOGIC
INPUT
SWITCH
OUTPUT
+15V
VOUT
-15V
GND
V+
A0
V-
A1
A2
EN
NO1-NO8
COM
+5V
50Ω
MAX338
1kΩ
10pF
80%
+2.4V
0V
ΔVOUT
+3V
0V
LOGIC
INPUT
+15V
VOUT
-15V
GND
V+
A1
V-
A0
A2
EN
COM
MAX338
CL = 100pF VOUT
NO
CHANNEL
SELECT
RS
VS
ONOFF OFF
ΔVOUT IS THE MEASURED VOLTAGE DUE TO CHARGE TRANSFER
ERROR Q WHEN THE CHANNEL TURNS OFF.
Q = CL x ΔVOUT
_________________________________Test Circuits/Timing Diagrams (continued)
Figure 4. Break-Before-Make Interval
Figure 5. Charge Injection
MAX338/MAX339
8-Channel/Dual 4-Channel,
Low-Leakage, CMOS Analog Multiplexers
_______________________________________________________________________________________ 9
+15V
VOUT
-15V
GND
V+
A1
V-
A0
A2
NO8
COM
MAX338
NO1
RS = 50Ω
VIN
EN
10nF
RL
1kΩ
OFF ISOLATION = 20log VOUT
VIN
10nF
+15V
-15V
GND
V+
A1
V-
A0
A2
NO8
COM
MAX338
NO2
RS = 50Ω
VOUT
EN
10nF
RL=
1kΩ
CROSSTALK = 20log VOUT
VIN
10nF
NO1
+15V
-15V
GND
V+
A2
V-
A1
A0
NO8
MAX338
CHANNEL
SELECT
NO1
COM
EN
METER
IMPEDANCE
ANALYZER
f = 1MHz
_________________________________Test Circuits/Timing Diagrams (continued)
Figure 6. Off-Isolation Figure 7. Crosstalk
Figure 8. NO/COM Capacitance
MAX338/MAX339
8-Channel/Dual 4-Channel,
Low-Leakage, CMOS Analog Multiplexers
10 ______________________________________________________________________________________
________Pin Configurations/Functional Diagrams/Truth Tables (continued)
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
A1
GND
V+
NO1B
NO1A
V-
EN
A0
TOP VIEW
MAX339
NO2B
NO3B
N04B
COMB
COMA
NO4A
NO3A
NO2A
DIP/SO
CMOS DECODE LOGIC
A1 A0 EN
NO4B
NO3B
NO2B
NO1B
NO4A
NO3A
NO2A
NO1A
COMA
V+ V- GND
COMB
MAX339 DUAL 4-CHANNEL MULTIPLEXER
A2 A1 A0 EN ON
SWITCH
X
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
None
1
2
3
4
5
6
7
8
MAX338
LOGIC “0” VAL 0.8V, LOGIC “1” VAH 2.4V
A1 A0 EN ON
SWITCH
X
0
0
1
1
X
0
1
0
1
0
1
1
1
1
None
1
2
3
4
MAX339
LOGIC “0” VAL 0.8V, LOGIC “1” VAH 2.4V
MAX338/MAX339
8-Channel/Dual 4-Channel,
Low-Leakage, CMOS Analog Multiplexers
______________________________________________________________________________________ 11
Ordering Information (continued)
*Contact factory for dice specifications.
**Contact factory for availability.
16 CERDIP**-55°C to +125°CMAX339MJE
16 CERDIP-40°C to +85°CMAX339EJE
16 Narrow SO-40°C to +85°CMAX339ESE
16 Plastic DIP-40°C to +85°CMAX339EPE
Dice*
16 Narrow SO
16 Plastic DIP
PIN-PACKAGETEMP RANGE
0°C to +70°C
0°C to +70°C
0°C to +70°CMAX339C/D
MAX339CSE
MAX339CPE
PART
16 Thin QFN (5mm x 5mm)-40°C to +85°CMAX339ETE
16
EN
15
A0
14
A1
13
A2
5
NO4
6
COM
7
NO8
8
NO7
MAX338
2NO1
1V-
3NO2
4
NO3
11 V+
12 GND
10 NO5
9NO6
TOP VIEW
16 15 14 13
EN A0 A1 GND
5
6
7 8
NO4A
COMA
COMB NO4B
MAX339
2
1
3
4
NO1A
V-
NO2A
NO3A
11
12
10
9
NO1B
V+
NO2B
NO3B
LOGIC LOGIC
Thin QFN Thin QFN
Pin Configurations/Functional Diagrams/Truth Tables (continued)
MAX338/MAX339
8-Channel/Dual 4-Channel,
Low-Leakage, CMOS Analog Multiplexers
12 ______________________________________________________________________________________
__________________________________________________________Chip Topographies
V+
NO3
EN
0.114"
(2.89mm)
0.078"
(1.98mm)
COM NO8
NO5
NO6
N07
A0 A1 A2 GND
NO2
NO1
V-
N.C.
NO4
V+
NO3A
EN
0.114"
(2.89mm)
0.078"
(1.98mm)
COMA COMB
NO1B
NO2B
N04B
A0 A1 N.C. GND
NO2A
NO1A
V-
NO3B
NO4A
TRANSISTOR COUNT: 224
SUBSTRATE IS INTERNALLY CONNECTED TO V+
Note: On Thin QFN packages connect exposed pad
to V+.
TRANSISTOR COUNT: 224
SUBSTRATE IS INTERNALLY CONNECTED TO V+
MAX338 MAX339
N.C. = NO INTERNAL CONNECTION
MAX338/MAX339
8-Channel/Dual 4-Channel,
Low-Leakage, CMOS Analog Multiplexers
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13
© 2004 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
QFN THIN.EPS
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
ENGLISH ???? ??? ???
WHAT'S NEW
PRODUCTS
SOLUTIONS
DESIGN
APPNOTES
SUPPORT
BUY
COMPANY
MEMBERS
MAX338
Part Number Table
Notes:
See the MAX338 QuickView Data Sheet for further information on this product family or download the
MAX338 full data sheet (PDF, 256kB).
1.
Other options and links for purchasing parts are listed at: http://www.maxim-ic.com/sales.2.
Didn't Find What You Need? Ask our applications engineers. Expert assistance in finding parts, usually within
one business day.
3.
Part number suffixes: T or T&R = tape and reel; + = RoHS/lead-free; # = RoHS/lead-exempt. More: See
full data sheet or Part Naming Conventions.
4.
* Some packages have variations, listed on the drawing. "PkgCode/Variation" tells which variation the
product uses.
5.
Part Number
Free
Sample
Buy
Direct
Package:
TYPE PINS SIZE
DRAWING CODE/VAR *
Temp
RoHS/Lead-Free?
Materials Analysis
MAX338EJE
Ceramic DIP;16 pin;.300"
Dwg: 21-0045A (PDF)
Use pkgcode/variation: J16-4*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX338MJE
Ceramic DIP;16 pin;.300"
Dwg: 21-0045A (PDF)
Use pkgcode/variation: J16-4*
-55C to +125C
RoHS/Lead-Free: No
Materials Analysis
MAX338C/D
RoHS/Lead-Free: No
MAX338CPE
PDIP;16 pin;.300"
Dwg: 21-0043D (PDF)
Use pkgcode/variation: P16-1*
0C to +70C
RoHS/Lead-Free: No
Materials Analysis
MAX338CPE+
PDIP;16 pin;.300"
Dwg: 21-0043D (PDF)
Use pkgcode/variation: P16+1*
0C to +70C
RoHS/Lead-Free: Yes
Materials Analysis
MAX338EPE+
PDIP;16 pin;.300"
Dwg: 21-0043D (PDF)
Use pkgcode/variation: P16+1*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX338EPE
PDIP;16 pin;.300"
Dwg: 21-0043D (PDF)
Use pkgcode/variation: P16-1*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX338EEE+
QSOP;16 pin;.150"
Dwg: 21-0055F (PDF)
Use pkgcode/variation: E16+6*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX338EEE+T
-40C to +85C
RoHS/Lead-Free: Yes
MAX338CEE+T
0C to +70C
RoHS/Lead-Free: Yes
MAX338CEE+
QSOP;16 pin;.150"
Dwg: 21-0055F (PDF)
Use pkgcode/variation: E16+6*
0C to +70C
RoHS/Lead-Free: Yes
Materials Analysis
MAX338CEE
QSOP;16 pin;.150"
Dwg: 21-0055F (PDF)
Use pkgcode/variation: E16-6*
0C to +70C
RoHS/Lead-Free: No
Materials Analysis
MAX338CEE-T
QSOP;16 pin;.150"
Dwg: 21-0055F (PDF)
Use pkgcode/variation: E16-6*
0C to +70C
RoHS/Lead-Free: No
Materials Analysis
MAX338EEE-T
QSOP;16 pin;.150"
Dwg: 21-0055F (PDF)
Use pkgcode/variation: E16-6*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX338EEE
QSOP;16 pin;.150"
Dwg: 21-0055F (PDF)
Use pkgcode/variation: E16-6*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX338CSE
SOIC;16 pin;.150"
Dwg: 21-0041B (PDF)
Use pkgcode/variation: S16-2*
0C to +70C
RoHS/Lead-Free: No
Materials Analysis
MAX338CSE+T
SOIC;16 pin;.150"
Dwg: 21-0041B (PDF)
Use pkgcode/variation: S16+2*
0C to +70C
RoHS/Lead-Free: Yes
Materials Analysis
MAX338CSE+
SOIC;16 pin;.150"
Dwg: 21-0041B (PDF)
Use pkgcode/variation: S16+2*
0C to +70C
RoHS/Lead-Free: Yes
Materials Analysis
MAX338CSE-T
SOIC;16 pin;.150"
Dwg: 21-0041B (PDF)
Use pkgcode/variation: S16-2*
0C to +70C
RoHS/Lead-Free: No
Materials Analysis
MAX338ESE+T
SOIC;16 pin;.150"
Dwg: 21-0041B (PDF)
Use pkgcode/variation: S16+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX338ESE+
SOIC;16 pin;.150"
Dwg: 21-0041B (PDF)
Use pkgcode/variation: S16+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX338ESE-T
SOIC;16 pin;.150"
Dwg: 21-0041B (PDF)
Use pkgcode/variation: S16-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX338ESE
SOIC;16 pin;.150"
Dwg: 21-0041B (PDF)
Use pkgcode/variation: S16-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX338ETE
THIN QFN;16 pin;5x5x0.8mm
Dwg: 21-0140K (PDF)
Use pkgcode/variation: T1655-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX338ETE-T
-40C to +85C
RoHS/Lead-Free: No
MAX338ETE+
THIN QFN;16 pin;5x5x0.8mm
Dwg: 21-0140K (PDF)
Use pkgcode/variation: T1655+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX338ETE+T
-40C to +85C
RoHS/Lead-Free: Yes
Didn't Find What You Need?
CONTACT US: SEND US AN EMAIL
C opyright 2007 by Maxim Integrated P roducts, Dallas Semiconductor Legal Notices Privacy P olicy