REV. 0
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices.
a
AD10226
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700www.analog.com
Fax: 781/326-8703 © Analog Devices, Inc., 2002
Dual-Channel, 12-Bit 125 MSPS
IF Sampling A/D Converter
FUNCTIONAL BLOCK DIAGRAM
D0B
(LSB)
D1B
D2B
D3B
D4B
D5B
D6B
D7B
D8B
D9B
D10B
D11B
(MSB)
D0A
(LSB)
D1A
D2A
D3A
D4A
D5A
D6A
D7A
D8A
D9A
D10A
D11A
(MSB)
ADC
50
A
IN
A2
T1A
ADC
50
A
IN
B2
T1B
AD10226
12
TIMING
ENCODEA
ENCODEA
REF
REF_A_OUT
TIMING
ENCODEB
ENCODEB
REF
REF_B_OUT
OUTPUT
RESISTORS
T/H T/H
A
IN
A1 A
IN
B1
12
OUTPUT
RESISTORS
12 12
DFS_A
SFDR_A
DFS_B
SFDR_B
FEATURES
Two Independent 12-Bit, 125 MSPS ADCs
Channel-to-Channel Isolation, > 80 dB
AC-Coupled Signal Conditioning Included
Gain Flatness up to Nyquist, < 0.1 dB
Input VSWR 1.1:1 to Nyquist
80 dB Spurious-Free Dynamic Range
Two’s Complement Output Format
3.3 V or 5 V CMOS-Compatible Output Levels
1.5 W Per Channel
Single-Ended or Differential Input
350 MHz Input Bandwidth
APPLICATIONS
Wireless and Wired Broadband Communications
Base Stations and “Zero-IF” or Direct IF Sampling
Subsystems
Wireless Local Loop (WLL)
Local Multipoint Distribution Service (LMDS)
Radar and Satellite Subsystems
PRODUCT DESCRIPTION
The AD10226 offers two complete ADC channels with on-module
signal conditioning for improved dynamic performance. Each wide
dynamic range ADC has a transformer coupled front end
optimized for direct-IF sampling. The AD10226 has on-chip
track-and-hold circuitry and utilizes an innovative architecture to
achieve 12-bit, 125 MSPS performance. The AD10226 uses
innovative high density circuit design to achieve exceptional
performance, while still maintaining excellent isolation and pro-
viding for board area savings.
The AD10226 operates with 5.0 V analog supply and 3.3 V digital
supply. Each channel is completely independent, allowing opera-
tion with independent ENCODE and analog inputs. The AD10226
is available in a 35 mm square 385-lead BGA package.
PRODUCT HIGHLIGHTS
1. Guaranteed sample rate of 125 MSPS
2. Input signal conditioning included with full-power bandwidth
to 350 MHz
3. Industry-leading IF sampling performance
REV. 0
–2–
AD10226–SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
1
Test
Parameter Temp Level Min Typ Max Unit
RESOLUTION 12 Bits
DC ACCURACY
Differential Nonlinearity
2
Full IV –0.99 ±0.3 +0.99 LSB
Integral Nonlinearity
2
Full IV –1.3 ±0.75 +1.3 LSB
No Missing Codes Full IV Guaranteed
Gain Error
3
25°CI 9 ±1+9% FS
Output Offset 25°CI –12 +2 +12 LSB
Gain Tempco Full V 100 ppm/°C
Offset Tempco Full V –50 ppm/°C
ANALOG INPUT
Input Voltage Range 25°CV 1.84 V p-p
Input Impedance 25°CV 50
Input VSWR
4
Full V 1.1:1 1.25:1 Ratio
Analog Input Bandwidth, High Full IV 300 350 MHz
Analog Input Bandwidth, Low Full IV 1 MHz
ANALOG REFERENCE
Output Voltage 25°CV 2.5 V
Load Current 25°CV 5 mA
Tempco Full V ±80 ppm/°C
SWITCHING PERFORMANCE
5
Maximum Conversion Rate Full VI 125 MSPS
Minimum Conversion Rate Full IV 10 MSPS
Duty Cycle Full IV 45 50 55 %
Aperture Delay (t
A
)25°CV 2.1 ns
Aperture Uncertainty (Jitter) 25°CV 0.25 ps rms
Output Valid Time (t
V
)
6
Full IV 3.0 4.5 ns
Output Propagation Delay (t
PD
)
6
Full IV 4.5 6.0 ns
Output Rise Time (t
R
)25°CV 3.5 ns
Output Fall Time (t
F
)25°CV 3.3 ns
DIGITAL INPUTS
ENCODE Input Common-Mode Full IV 3.75 V
Differential Input (ENC, ENC)Full IV 500 mV
Logic “1” Voltage Full IV 2.0 V
Logic “0” Voltage Full IV 0.8 V
Input Resistance Full IV 3 6 k
Input Capacitance 25°CV 3 pF
DIGITAL OUTPUTS
Logic “1” Voltage
6
Full IV 3.1 3.3 V
Logic “0” Voltage
6
Full IV 0 0.2 V
Output Coding Two’s Complement
POWER SUPPLY
7
Power Dissipation
8
Full VI 3040 3300 mW
Power Supply Rejection Ratio Full IV ±0.5 ±5.0 mV/V
Total I (DV
DD
) Current Full VI 40 60 mA
Total I (AV
CC
) Current Full VI 540 650 mA
(VDD = 3.3 V, VCC = 5.0 V; ENCODE = 125 MSPS, unless otherwise noted.)
REV. 0 –3–
AD10226
Test
Parameter Temp Level Min Typ Max Unit
DYNAMIC PERFORMANCE
Signal-to-Noise Ratio (SNR)
9
(Without Harmonics)
f
IN
= 10.3 MHz 25°CI 66.5 68.5 dBFS
f
IN
= 49 MHz 25°CV 67 dBFS
f
IN
= 71 MHz 25°CI 63 66 dBFS
f
IN
= 121 MHz 25°CV 64 dBFS
f
IN
= 250 MHz 25°CV 60 dBFS
Signal-to-Noise Ratio (SINAD)
10
(With Harmonics)
f
IN
= 10.3 MHz 25°CI 65.5 68 dBFS
f
IN
= 49 MHz 25°CV 66.5 dBFS
f
IN
= 71 MHz 25°CI 62.5 65 dBFS
f
IN
= 121 MHz 25°CV 62.5 dBFS
f
IN
= 250 MHz 25°CV 59.5 dBFS
Spurious-Free Dynamic Range
11
f
IN
= 10 MHz 25°CI 76.5 82 dBFS
f
IN
= 41 MHz 25°CV 77 dBFS
f
IN
= 71 MHz 25°CI 66 72 dBFS
f
IN
= 121 MHz 25°CV 71 dBFS
f
IN
= 250 MHz 25°CV 70 dBFS
Two-Tone Intermodulation
Distortion
12
(IMD)
f
IN
= 29.3 MHz; f
IN
= 30.3 MHz 25°CV 78 dBc
f
IN
= 150 MHz; f
IN
= 151 MHz 25°CV 70 dBc
Channel-to-Channel Isolation
13
f
IN
= 121 MHz Full IV 85 dB
NOTES
1
All ac specifications tested by driving ENCODE and ENCODE differentially, with the analog input applied to A
IN
X1 and A
IN
X2 tied to ground.
2
SFDR enabled (SFDR = 1) for DNL and INL specifications.
3
Gain error measured at 10.3 MHz.
4
Input VSWR, see TPC 14.
5
See Figure 1, Timing Diagram.
6
t
V
and t
PD
are measured from the transition points of the ENCODE input to the 50%/50% levels of the digital outputs swing. The digital output load during
test is not to exceed an ac load of 10 pF or a dc current of ±40 A.
7
Supply voltages should remain stable within ±5% for normal operation.
8
Power dissipation measures with encode at rated speed.
9
Analog input signal power at –1 dBFS; signal-to-noise (SNR) is the ratio of signal level to total noise (first six harmonics removed). ENCODE = 125 MSPS,
SFDR mode = 1. SNR is reported in dBFS, related back to converter full-scale.
10
Analog input signal power at –1 dBFS; signal-to-noise and distortion (SINAD) is the ratio of signal level to total noise + harmonics. ENCODE = 125 MSPS.
SINAD is reported in dBFS, related back to converter full-scale.
11
Analog input signal equals –1 dBFS; SFDR is ratio of converter full-scale to worst spur.
12
Both input tones at –7 dBFS; two-tone intermodulation distortion (IMD) rejection is the ratio of either tone to the worst third order intermod product.
13
Channel-to-channel isolation tested with A channel/50 terminated (A
IN
A2) grounded and a full-scale signal applied to B channel (A
IN
B2).
Specifications subject to change without notice.
REV. 0
AD10226
–4–
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection. Although
the AD10226 features proprietary ESD protection circuitry, permanent damage may occur on
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are
recommended to avoid performance degradation or loss of functionality.
WARNING!
ESD SENSITIVE DEVICE
ABSOLUTE MAXIMUM RATINGS*
V
DD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V
V
CC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V
Analog Inputs . . . . . . . . . . . . . . . . . . . . . . 5 V p-p (18 dBm)
Digital Inputs . . . . . . . . . . . . . . . . . . . –0.5 V to V
DD
+ 0.5 V
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 20 mA
Operating Temperature (Ambient) . . . . . . . –55°C to +125°C
Storage Temperature (Ambient) . . . . . . . . . –65°C to +150°C
Maximum Junction Temperature . . . . . . . . . . . . . . . . . 150°C
*Stresses above those listed under Absolute Maximum Ratings may cause permanent
damage to the device. This is a stress rating only; functional operation of the device
at these or any other conditions outside of those indicated in the operation sections
of this specification is not implied. Exposure to absolute maximum ratings for
extended periods may affect device reliability.
THERMAL CHARACTERISTICS
385-Lead BGA Package:
The typical θ
JA
of the module as determined by an IR scan is
26.25°C/W.
t
PD
AIN
ENCODE
ENCODE
D11D0
SAMPLE N1SAMPLE N SAMPLE N10 SAMPLE N11
SAMPLE N9SAMPLE N1
1/f
S
DATA N11 DATA N10 N9DATA N1DATA N DATA N 1
t
V
N2
Figure 1. Timing Diagram
ORDERING GUIDE
Model Temperature Range Package Description Package Option
AD10226AB –25°C to +85°C (Ambient) 385-Lead BGA (35 mm 35 mm) B-385
AD10226/PCB 25°CEvaluation Board with AD10226AB
EXPLANATION OF TEST LEVELS
Test Level
I100% production tested
II 100% production tested at 25°C and sample tested at specific
temperatures
III Sample tested only
IV Parameter is guaranteed by design and characterization
testing
VParameter is a typical value only
VI 100% production tested at 25°C; guaranteed by design and
characterization testing for industrial temperature range
Table I. Output Coding (V
REF
= 2.5 V) (Two’s Complement)
Code A
IN
(V) Digital Output
+2047 +0.875 0111 1111 1111
·· ·
·· ·
00 0000 0000 0000
–1 –0.000427 1111 1111 1111
·· ·
·· ·
–2048 –0.875 1000 0000 0000
REV. 0
AD10226
–5–
PIN CONFIGURATION
35mm SQUARE
BOTTOM VIEW
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
24 22 20 18 16 14 12 10 8 6 4 2
25 23 21 19 17 15 13 11 9 7 5 3 1
PIN FUNCTION DESCRIPTIONS
Mnemonic Function
AGNDA A Channel Analog Ground. A and B grounds should be connected as close to the device as possible.
REF_A_OUT A Channel Internal Voltage Reference
NC No connection
A
IN
A1 Analog Input for A side ADC (– input)
A
IN
A2 Analog Input for A side ADC (+ input)
AV
CC
AAnalog Positive Supply Voltage (nominally 5.0 V)
DGNDA A Channel Digital Ground
D11A–D0A Digital Outputs for ADC A. D0 (LSB)
ENCODEA Complement of ENCODE
ENCODEA Data conversion initiated on the rising edge of ENCODE input.
DV
CC
ADigital Positive Supply Voltage (nominally 3.3 V)
DGNDB B Channel Digital Ground
D11B–D0B Digital Outputs for ADC B. D0 (LSB)
AGNDB B Channel Analog Ground. A and B grounds should be connected as close to the device as possible.
DV
CC
BDigital Positive Supply Voltage (nominally 3.3 V)
ENCODEB Complement of ENCODE
ENCODEB Data conversion initiated on rising edge of ENCODE input.
REF_B_OUT B Channel Internal Voltage Reference
A
IN
B1 Analog Input for B side ADC (– input)
A
IN
B2 Analog Input for B side ADC (+ input)
AV
CC
BAnalog Positive Supply Voltage (nominally 5.0 V)
DFS Data format select. Low = Two’s Complement, High = Binary.
SFDR Mode CMOS control pin that enables (SFDR MODE = 1) a proprietary circuit that may improve the spurious free dynamic
range (SFDR) performance. It is useful in applications where the dynamic range of the system is limited by discrete spurious
frequency content caused by nonlinearities in the ADC transfer function. SFDR Mode = 0 for normal operation.
REV. 0
AD10226
–6–
A1 AGNDA
A2 AGNDA
A3 AGNDA
A4 AGNDA
A5 AGNDA
A6 AGNDA
A7 DNC
A8 DNC
A9 AGNDA
A10 AV
CC
A
A11 REF_A_OUT
A12 AGNDA
A13 DNC
A14 AGNDB
A15 AGNDB
A16 AV
CC
B
A17 AGNDB
A18 AV
CC
B
A19 DNC
A20 DNC
A21 AGNDB
A22 AGNDB
A23 AGNDB
A24 AGNDB
A25 AGNDB
B1 AGNDA
B2 AGNDA
B3 AGNDA
B4 AGNDA
B5 AGNDA
B6 AGNDA
B7 DNC
B8 DNC
B9 AGNDA
B10 AV
CC
A
B11 REF_A_OUT
B12 AGNDA
B13 DNC
B14 AGNDB
B15 AGNDB
B16 AV
CC
B
B17 AGNDB
B18 AV
CC
B
B19 DNC
B20 DNC
B21 AGNDB
B22 AGNDB
B23 AGNDB
B24 AGNDB
B25 AGNDB
C1 AGNDA
C2 AGNDA
C3 AGNDA
C4 AGNDA
C5 AGNDA
C6 AGNDA
C7 DNC
C8 DNC
C9 AGNDA
C10 AV
CC
A
C11 REF_A_OUT
C12 AGNDA
C13 DNC
C14 AGNDB
C15 AGNDB
C16 AV
CC
B
C17 AGNDB
C18 AV
CC
B
C19 DNC
C20 DNC
C21 AGNDB
C22 AGNDB
C23 AGNDB
C24 AGNDB
C25 AGNDB
D1 AGNDA
D2 AGNDA
D3 AGNDA
D4 AGNDA
D5 AGNDA
D6 AGNDA
D7 A
IN
A2
D8 A
IN
A1
D9 AGNDA
D10 AV
CC
A
D11 REF_A_OUT
D12 AGNDA
D13 DNC
D14 AGNDB
D15 AGNDB
D16 AV
CC
B
D17 AGNDB
D18 AV
CC
B
D19 A
IN
B2
D20 A
IN
B1
D21 AGNDB
D22 AGNDB
D23 AGNDB
D24 AGNDB
D25 AGNDB
E1 AGNDA
E2 AGNDA
E3 AGNDA
E4 AGNDA
E22 AGNDB
E23 AGNDB
E24 AGNDB
E25 AGNDB
F1 AGNDA
F2 AGNDA
F3 AGNDA
F4 AGNDA
F22 AGNDB
F23 AGNDB
F24 AGNDB
F25 AGNDB
G1 AGNDA
G2 AGNDA
G3 AGNDA
G4 AGNDA
G22 AGNDB
G23 AGNDB
G24 AGNDB
G25 AGNDB
H1 AGNDA
H2 AGNDA
H3 AGNDA
H4 AGNDA
H22 AGNDB
H23 AGNDB
H24 AGNDB
H25 AGNDB
J1 AV
CC
A
J2 AV
CC
A
J3 AV
CC
A
J4 AV
CC
A
J22 REF_B_OUT
J23 REF_B_OUT
J24 REF_B_OUT
J25 REF_B_OUT
K1 AGNDA
K2 AGNDA
K3 AGNDA
K4 AGNDA
K10 SFDR_MODE_A
K11 AGNDA
K12 AGNDA
K13 DNC
K14 AGNDB
K15 AGNDB
K16 SFDR_MODE_B
K22 AGNDB
K23 AGNDB
K24 AGNDB
K25 AGNDB
L1 AGNDA
L2 AGNDA
L3 AGNDA
L4 AGNDA
L10 DFS_A
L11 AGNDA
L12 AGNDA
L13 DNC
L14 AGNDB
L15 AGNDB
L16 DFS_B
L22 ENCBB
L23 ENCBB
L24 ENCBB
L25 ENCBB
M1 ENCAB
M2 ENCAB
M3 ENCAB
M4 ENCAB
M10 AGNDA
M11 AGNDA
M12 AGNDA
M13 DNC
M14 AGNDB
M15 AGNDB
M16 AGNDB
M22 ENCB
M23 ENCB
M24 ENCB
M25 ENCB
N1 ENCA
N2 ENCA
N3 ENCA
N4 ENCA
N10 GAIN_A
N11 AGNDA
N12 AGNDA
N13 DNC
N14 AGNDB
N15 AGNDB
N16 AGNDB
N22 AGNDB
N23 AGNDB
N24 AGNDB
N25 AGNDB
P1 AGNDA
P2 AGNDA
P3 AGNDA
P4 AGNDA
P10 AGNDA
P11 AGNDA
P12 AGNDA
P13 DNC
P14 AGNDB
P15 AGNDB
P16 AGNDB
P22 DV
CC
B
P23 DV
CC
B
P24 DV
CC
B
P25 DV
CC
B
P25 DV
CC
B
R1 DV
CC
A
R2 DV
CC
A
R3 DV
CC
A
R4 DV
CC
A
R10 AGNDA
R11 AGNDA
R12 AGNDA
R13 DNC
R14 AGNDB
R15 AGNDB
R16 AGNDB
R22 DB0
R23 DB0
R24 DB0
R25 DB0
T1 DA11
T2 DA11
T3 DA11
T4 DA11
T10 AV
CC
A
T11 AGNDA
T12 AGNDA
T13 DNC
T14 AV
CC
B
T15 GAIN_B
T16 AGNDB
T22 DB1
T23 DB1
T24 DB1
T25 DB1
U1 DA10
U2 DA10
U3 DA10
U4 DA10
U22 DB2
U23 DB2
U24 DB2
U25 DB2
V1 DA9
V2 DA9
V3 DA9
V4 DA9
V22 DB3
V23 DB3
V24 DB3
V25 DB3
W1 DA8
W2 DA8
W3 DA8
W4 DA8
W22 DB4
W23 DB4
W24 DB4
W25 DB4
Y1 DA7
Y2 DA7
Y3 DA7
Y4 DA7
Y22 DB5
Y23 DB5
Y24 DB5
Y25 DB5
AA1 DGNDA
AA2 DGNDA
AA3 DGNDA
AA4 DGNDA
AA22 DGNDB
AA23 DGNDB
AA24 DGNDB
AA25 DGNDB
AB1 OVRA
AB2 OVRA
AB3 OVRA
AB4 OVRA
AB5 DGNDA
AB6 DA6
AB7 DA5
AB8 DA4
AB9 DA3
AB10 DA2
AB11 DA1
AB12 DA0
AB13 DGNDA
AB14 DGNDB
AB15 DB11
AB16 DB10
AB17 DB9
AB18 DB8
AB19 DB7
AB20 DB6
AB21 DGNDB
AB22 OVRB
AB23 OVRB
AB24 OVRB
AB25 OVRB
AC1 DGNDA
AC2 DGNDA
AC3 DGNDA
AC4 DGNDA
AC5 DGNDA
AC6 DA6
AC7 DA5
AC8 DA4
AC9 DA3
AC10 DA2
AC11 DA1
AC12 DA0
AC13 DGNDA
AC14 DGNDB
AC15 DB11
AC16 DB10
AC17 DB9
AC18 DB8
AC19 DB7
AC20 DB6
AC21 DGNDB
AC22 DGNDB
AC23 DGNDB
AC24 DGNDB
AC25 DGNDB
AD1 DGNDA
AD2 DGNDA
AD3 DGNDA
AD4 DGNDA
AD5 DGNDA
AD6 DA6
AD7 DA5
AD8 DA4
AD9 DA3
AD10 DA2
AD11 DA1
AD12 DA0
AD13 DGNDA
AD14 DGNDB
AD15 DB11
AD16 DB10
AD17 DB9
AD18 DB8
AD19 DB7
AD20 DB6
AD21 DGNDB
AD22 DGNDB
AD23 DGNDB
AD24 DGNDB
AD25 DGNDB
AE1 DGNDA
AE2 DGNDA
AE3 DGNDA
AE4 DGNDA
AE5 DGNDA
AE6 DA6
AE7 DA5
AE8 DA4
AE9 DA3
AE10 DA2
AE11 DA1
AE12 DA0
AE13 DGNDA
AE14 DGNDB
AE15 DB11
AE16 DB10
AE17 DB9
AE18 DB8
AE19 DB7
AE20 DB6
AE21 DGNDB
AE22 DGNDB
AE23 DGNDB
AE24 DGNDB
AE25 DGNDB
385-LEAD BGA PINOUT
Ball Signal Ball Signal Ball Signal Ball Signal Ball Signal Ball Signal
No. Name No. Name No. Name No. Name No. Name No. Name
REV. 0
AD10226
–7–
385-LEAD BGA PINOUT (Top View, PCB Footprint)
DNC = DO NOT CONNECT
1
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AV
CC
A
AGNDA
AGNDA
OVRB
DGNDB
DGNDB
DGNDB
22
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
DB0
DB1
DB2
DB3
DB4
DB5
DGNDB
23
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
24
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
25
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
OVRB
DGNDB
DGNDB
DGNDB
OVRB
DGNDB
DGNDB
DGNDB
OVRB
DGNDB
DGNDB
DGNDB
DB0
DB1
DB2
DB3
DB4
DB5
DGNDB
DB0
DB1
DB2
DB3
DB4
DB5
DGNDB
DB0
DB1
DB2
DB3
DB4
DB5
DGNDB
REF_B_OUT
AGNDB
ENCBB
ENCB
AGNDB
DV
CC
B
REF_B_OUT
AGNDB
ENCBB
ENCB
AGNDB
DV
CC
B
REF_B_OUT
AGNDB
ENCBB
ENCB
AGNDB
DV
CC
B
REF_B_OUT
AGNDB
ENCBB
ENCB
AGNDB
DV
CC
B
DGNDA
OVRA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DA6
DA6
DA6
DA6
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
DGNDA
OVRA
DGNDA
DGNDA
DGNDA
DGNDA
OVRA
DGNDA
DGNDA
DGNDA
DGNDA
OVRA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDB
DGNDB
DGNDB
DGNDB
DB11
DB11
DB11
DB11
DB10
DB10
DB10
DB10
DB9
DB9
DB9
DB9
DB8
DB8
DB8
DB8
DB7
DB7
DB7
DB7
DB6
DB6
DB6
DB6
DGNDB
DGNDB
DGNDB
DGNDB
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
DNC
DNC
DNC
DNC
DNC
DNC
DNC
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AV
CC
B
ENCAB
ENCA
AGNDA
DV
CC
A
DA11
DA10
DA9
DA8
DA7
2
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AV
CC
A
AGNDA
AGNDA
3
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AV
CC
A
AGNDA
AGNDA
4
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AV
CC
A
AGNDA
AGNDA
5
AGNDA
AGNDA
AGNDA
AGNDA
6
AGNDA
AGNDA
AGNDA
AGNDA
7
DNC
DNC
DNC
AINA2
8
DNC
DNC
DNC
AINA1
9
AGNDA
AGNDA
AGNDA
AGNDA
12
AGNDA
AGNDA
AGNDA
AGNDA
10
AV
CC
A
AV
CC
A
AV
CC
A
AV
CC
A
11
REF_A_OUT
REF_A_OUT
REF_A_OUT
REF_A_OUT
13
DNC
DNC
DNC
DNC
14
AGNDB
AGNDB
AGNDB
AGNCB
15
AGNDB
AGNDB
AGNDB
AGNCB
16
AV
CC
B
AV
CC
B
AV
CC
B
AV
CC
B
17
AGNDB
AGNDB
AGNDB
AGNCB
18
AV
CC
B
AV
CC
B
AV
CC
B
AV
CC
B
19
DNC
DNC
DNC
AINB2
21
AGNDB
AGNDB
AGNDB
AGNDB
20
DNC
DNC
DNC
AINB1
ENCAB
ENCA
AGNDA
DV
CC
A
DA11
DA10
DA9
DA8
DA7
ENCAB
ENCA
AGNDA
DV
CC
A
DA11
DA10
DA9
DA8
DA7
ENCAB
ENCA
AGNDA
DV
CC
A
DA11
DA10
DA9
DA8
DA7
DFS_B
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
DA5
DA5
DA5
DA5
DA4
DA4
DA4
DA4
DA3
DA3
DA3
DA3
DA2
DA2
DA2
DA2
DA1
DA1
DA1
DA1
DA0
DA0
DA0
DA0
DFS_A
AGNDA
AGNDA
AGNDA
AGNDA
AV
CC
B
SFDR
Mode A
SFDR
Mode B
REV. 0
AD10226
–8–
FREQUENCY – MHz
0
130
dB
20
80
100
110
120
40
60
0
10
30
90
50
70
5101520253035404550
ENCODE = 125MSPS
A
IN
= 10.3MHz (–1dBFS)
SNR = 68.19dBFS
SFDR = 85.13dBFS
55 60
TPC 1. Single Tone @ 10.3 MHz
FREQUENCY – MHz
0
130
dB
20
80
100
110
120
40
60
0
10
30
90
50
70
51015202530354045 50
ENCODE = 125MSPS
AIN = 49MHz (–1dBFS)
SNR = 67.12dBFS
SFDR = 83.09dBFS
55 60
TPC 2. Single Tone @ 49 MHz
FREQUENCY – MHz
0
130
dB
20
80
100
110
120
40
60
0
10
30
90
50
70
51015202530354045 50
ENCODE = 125MSPS
A
IN
= 71MHz (–1dBFS)
SNR = 66.2dBFS
SFDR = 82.02dBFS
55 60
TPC 3. Single Tone @ 71 MHz
– Typical Performance Characteristics
FREQUENCY – MHz
0
130
dB
20
80
100
110
120
40
60
0
10
30
90
50
70
5101520253035404550
ENCODE = 125MSPS
A
IN
= 121MHz (–1dBFS)
SNR = 63.66dBFS
SFDR = 79.28dBFS
55 60
TPC 4. Single Tone @ 121 MHz
FREQUENCY – MHz
0
130
dB
20
80
100
110
120
40
60
0
10
30
90
50
70
5101520253035404550
ENCODE = 125MSPS
AIN = 240MHz (–1dBFS)
SNR = 59.06dBFS
SFDR = 74.56dBFS
55 60
TPC 5. Single Tone @ 240 MHz
FREQUENCY – MHz
0
130
dB
20
80
100
110
120
40
60
0
10
30
90
50
70
5101520253035404550
ENCODE = 125MSPS
A
IN
= 29.3MHz AND 30.3MHz
SFDR = 79.03dBFS
55 60
TPC 6. Two Tone @ 29/30 MHz
REV. 0
AD10226
–9–
FREQUENCY – MHz
0
130
dB
20
80
100
110
120
40
60
0
10
30
90
50
70
5101520253035404550
ENCODE = 125MSPS
A
IN
= 150MHz AND 151MHz
SFDR = 75.38dBFS
55 60
TPC 7. Two Tone @ 150/151 MHz
FREQUENCY – MHz
0
130
dB
20
80
100
110
120
40
60
0
10
30
90
50
70
5101520253035404550
ENCODE = 125MSPS
A
IN
= 240MHz AND 241MHz
SFDR = 67dBFS
55 60
TPC 8. Two Tone @ 240/241 MHz
3.0
1.0
LSB
1.5
0.5
0.0
0.5
2.5
0
1.0
2.0
512 1024 1536 2048 2560 3072 3584 4096
ENCODE = 125MSPS
DNL MIN = 0.530
DNL MAX = 0.369
OUTPUT CODES
TPC 9. Differential Nonlinearity
3.0
3.0
LSB
0.0
0
1.0
2.0
512 1024 1536 2048 2560 3072 3584 4096
2.0
1.0
ENCODE = 125MSPS
INL MIN = 0.610
INL MAX = 0.702
OUTPUT CODES
TPC 10. Integral Nonlinearity
GAIN – dB
6
2
10
4
FREQUENCY – MHz
3
5
100 1000
1
0
TPC 11. Frequency Response
GAIN – dB
2
10
FREQUENCY – MHz
100 1000
1
0
TPC 12. Gain Flatness*
*Gain flatness measurement is performed by
applying a constant voltage at the device input.
REV. 0
AD10226
–10–
10MHz = 52.22 – j0.421
50MHz = 50.69 – j2.84
100MHz = 47.50 – j3.58
150MHz = 44.61 – j0.970
200MHz = 43.70 + j3.70
250MHz = 46.41 + j9.48
300MHz = 53.09 + j14.76
TPC 13. Input Impedance S11
FREQUENCY – MHz
0.1 1
GAIN – dB
10
1
2
3
4
5
6
7
8
9
10
0
100 1000
1MHz = 1.010
10MHz = 1.028
50MHz = 1.045
100MHz = 1.066
140MHz = 1.090
160MHz = 1.126
200MHz = 1.170
TPC 14. Voltage Standing Wave Ratio (VSWR)
Equivalent Circuits
VCC
24k
8k
ENCODE ENCODE
8k
24k
Test Circuit 1. Equivalent ENCODE Input
V
CC
100DIGITAL
OUTPUT
Test Circuit 2. Equivalent Digital Output
Q1
NPN
V
REF
OUTPUT
V
CC
V
CC
Test Circuit 3. Equivalent Voltage Reference Output
V
CC
A
IN
2
15k
50
3.75k
A
IN
1
15k
3.75k
Test Circuit 4. Equivalent Analog Input
DEFINITION OF TERMS
Analog Bandwidth
The analog input frequency at which the spectral power of the
fundamental frequency (as determined by the FFT analysis) is
reduced by 3 dB.
Aperture Delay
The delay between the 50% point on the rising edge of the ENCODE
command and the instant at which the analog input is sampled.
Aperture Uncertainty (Jitter)
The sample-to-sample variation in aperture delay.
Differential Nonlinearity
The deviation of any code from an ideal 1 LSB step.
ENCODE Pulsewidth/Duty Cycle
Pulsewidth high is the minimum amount of time that the
ENCODE pulse should be left in logic “1” state to achieve rated
performance; pulsewidth low is the minimum time ENCODE
pulse should be left in low state. At a given clock rate, these specs
define an acceptable ENCODE duty cycle.
REV. 0
AD10226
–11–
Harmonic Distortion
The ratio of the rms signal amplitude to the rms value of the worst
harmonic component.
Integral Nonlinearity
The deviation of the transfer function from a reference line measured
in fractions of 1 LSB using a “best straight line” determined by
a least square curve fit.
Minimum Conversion Rate
The ENCODE rate at which the SNR of the lowest analog signal
frequency drops by no more than 3 dB below the guaranteed limit.
Maximum Conversion Rate
The ENCODE rate at which parametric testing is performed.
Output Propagation Delay
The delay between the 50% point of the rising edge of ENCODE
command and the time when all output data bits are within valid
logic levels.
Power Supply Rejection Ratio
The ratio of a change in output offset voltage to a change in
power supply voltage.
Signal-to-Noise-and-Distortion (SINAD)
The ratio of the rms signal amplitude (set at 1 dB below full-scale)
to the rms value of the sum of all other spectral components,
excluding the first six harmonics and dc. [May be reported in dBc
(i.e., degrades as signal levels are lowered) or in dBFS (always
related back to converter full-scale).]
Signal-to-Noise Ratio (without Harmonics)
The ratio of the rms signal amplitude (set at 1 dB below full-scale)
to the rms value of the sum of all other spectral components,
excluding the first six harmonics and dc. [May be reported in
dBc (i.e., degrades as signal levels are lowered) or in dBFS (always
related back to converter full-scale).]
Spurious-Free Dynamic Range
The ratio of the rms signal amplitude to the rms value of the peak
spurious spectral component. The peak spurious component may
or may not be a harmonic. [May be reported in dBc (i.e., degrades
as signal levels is lowered) or in dBFS (always related back to
converter full-scale).]
Two-Tone Intermodulation Distortion Rejection
The ratio of the rms value of either input tone to the rms value
of the worst third order intermodulation product; reported in dBc.
Voltage Standing Wave Ratio (VSWR)
The ratio of the amplitude of the electric field at a voltage maximum
to that at an adjacent voltage minimum.
APPLICATION NOTES
Theory of Operation
The AD10226 is a high-dynamic-range dual 12-bit, 125 MHz
subrange pipeline converter that uses switched capacitor archi-
tecture. The analog input section uses A
IN
A2/B2 at 1.84 V p-p
with an input impedance of 50 . The analog input includes an
ac-coupled wideband 1:1 transformer, which provides high dynamic
range and SNR while maintaining VSWR and gain flatness. The
ADC includes a high bandwidth linear track/hold that gives excel-
lent spurious performance up to and beyond the Nyquist rate. The
high bandwidth track/hold has a low jitter of 0.25 ps rms, leading
to excellent SNR and SFDR performance. AC-coupled differen-
tial PECL/ECL encode inputs are recommended for optimum
performance.
USING THE AD10226
ENCODE Input
Any high speed A/D converter is extremely sensitive to the quality
of the sampling clock provided by the user. A track/hold circuit
is essentially a mixer, and any noise, distortion, or timing jitter
on the clock will be combined with the desired signal at the A/D
output. For that reason, considerable care has been taken in the
design of the ENCODE input of the AD10226, and the user is
advised to give commensurate thought to the clock source.
The monolithic converter has an internal clock duty cycle stabiliza-
tion circuit that locks to the rising edge of ENCODE (falling edge
of ENCODE if driven differentially), and optimizes timing inter-
nally. This allows for a wide range of input duty cycles at the input
without degrading performance. Jitter in the rising edge of the input
is still of paramount concern and is not reduced by the internal
stabilization circuit. This circuit is always on and cannot be dis-
abled by the user.
The ENCODE and ENCODE inputs are internally biased to 3.75 V
(nominal) and support either differential or single-ended signals.
For best dynamic performance, a differential signal is recommended.
Good performance is obtained using an MC10EL16 in the circuit
to directly drive the encode inputs, as illustrated in Figure 2.
GND
510
510
0.1F
0.1F
PECL
GATE
ENCODE
ENCODE
AD10226
Figure 2. Using PECL to Drive ENCODE Inputs
Often, the cleanest clock source is a crystal oscillator producing
a pure, single-ended sine wave. In this configuration, or with any
roughly symmetrical, single-ended clock source, the signal can
be ac-coupled to the ENCODE input. To minimize jitter, the
signal amplitude should be maximized within the input range
described in the Table II.
Table II. ENCODE Inputs
Description Min Nom Max
Differential Signal
Amplitude (V
ID
)200 mV 750 mV 5.5 V
Input Voltage
Range (V
HID
,
V
ILD
,
V
HIS
)–5 V V
CC
+ 0.5 V
Internal Common-Mode
Voltage (V
ICM
)3.75 V
External Common-Mode
Bias (V
ECM
)2.0 V 4.25 V
505050
0.1F
AD10226
ENCODE
ENCODE
50
SINE
SOURCE
0.1F
Figure 3. Single-Ended 50 Sine Encode Circuit
The 10 k resistors to ground at each of the inputs, in parallel with
the internal bias resistors, set the common-mode voltage to ~ 2.5 V,
REV. 0
AD10226
–12–
allowing the maximum swing at the input. The ENCODE input
should be bypassed with a capacitor to ground to reduce noise.
This ensures that the internal bias voltage is centered on the
encode signal (Figure 3). For best dynamic performance, imped-
ances at ENCODE and ENCODE should match.
Figure 4 shows another preferred method for clocking the AD10226.
The clock source (low jitter) is converted from single-ended to
differential using an RF transformer. The back-to-back Schottky
diodes across the transformer secondary limit clock excursions
into the AD10226 to approximately 0.8 V p-p differential. This
helps prevent the large voltage swings of the clock from feeding
through to the other portions of the AD9433, and limits the noise
presented to the ENCODE inputs. A crystal clock oscillator can
also be used to drive the RF transformer if an appropriate limiting
resistor (typically 100 ) is placed in the series with the primary.
100
0.1F
AD10226
ENCODE
ENCODE
CLOCK
SOURCE
Figure 4. Double-Ended 50 Sine Encode Circuit
ENCODE Voltage Level Definition
The voltage level definitions for driving ENCODE and ENCODE
in differential mode is shown in Figure 6.
ENCODE
ENCODE
0.1F
VIHS
VILS
VID
VIHD
VILD
ENCODE
ENCODE
VIHS VILS
VIHS VILS
Figure 5. Differential Input Levels
Analog Input
The analog input is a single-ended ac-coupled high performance
1:1 transformer with an input impedance of 50 to 350 MHz.
The nominal full scale input is 1.87 V p-p.
Special care was taken in the design of the analog input section
of the AD10226 to prevent damage and corruption of data when
the input is overdriven.
SFDR Optimization
The SFDR MODE pin enables (SFDR MODE = 1) a proprietary
circuit that may improve the spurious-free dynamic range (SFDR)
performance of the AD10226. It is useful in applications where the
dynamic range of the system is limited by discrete spurious frequency
content caused by nonlinearities in the ADC transfer function.
Enabling this circuit will give the circuit a dynamic transfer function,
meaning that the voltage threshold between two adjacent output
codes may change from clock cycle to clock cycle. While improv-
ing spurious frequency content, this dynamic aspect of the transfer
function may be inappropriate for some time domain applications
of the converter. Connecting the SFDR Mode pin to ground will
disable this function. The Typical Performance Characteristics
section of the data sheet illustrates the improvement in the linearity
of the converter and its effect on spurious-free dynamic range.
Digital Outputs
The digital outputs are 3.3 V (2.7 V to 3.6 V) TTL/CMOS-
compatible for lower power consumption. The output data format
is selectable through the data format select (DFS) CMOS input.
DFS = 1 selects offset binary coding (Table III); DFS = 0 se-
lects Two’s Complement coding (Table IV).
Table III. Offset Binary Output Coding (DFS = 1, V
REF
= 2.5 V)
A
IN
– A
IN
(V) Digital
Code Range = 2 V
p-p Output
4095 +0.92 1111 1111 1111
••
••
2048 0 1000 0000 0000
2047 –0.00045 0111 1111 1111
••
••
0–0.92 0000 0000 0000
Table IV. Two’s Complement Output Coding
(DFS = 0, V
REF
= 2.5 V)
A
IN
– A
IN
(V) Digital
Code Range = 2 V
p-p Output
+2047 +0.92 0111 1111 1111
••
••
00 0000 0000 0000
–1 –0.00045 1111 1111 1111
••
••
–2048 –0.92 1000 0000 0000
Voltage Reference
A stable and accurate 2.5 V voltage reference is designed into the
AD10226 (V
REFOUT
). An external voltage reference is not required.
Timing
The AD10226 provides latched data outputs, with 10 pipeline
delays. Data outputs are available one propagation delay (t
PD
) after
the rising edge of the ENCODE command (see Figure 1). The
length of the output data lines and loads placed on them should
be minimized to reduce transients within the AD10226; these
transients can detract from the converter’s dynamic performance.
The minimum guaranteed conversion rate of the AD10226 is
10 MSPS. At internal clock rates below 10 MSPS, dynamic perfor-
mance may degrade. Therefore, input clock rates below 10 MHz
should be avoided.
GROUNDING AND DECOUPLING
Analog and Digital Grounding
Proper grounding is essential in any high-speed, high resolution
system. Multilayer printed circuit boards (PCBs) are recommended
to provide optimal grounding and power schemes. The use of
ground and power planes offers distinct advantages:
1. The minimization of the loop area encompassed by a signal
and its return path.
2. The minimization of the impedance associated with ground
and power paths.
3. The inherent distributed capacitor formed by the powerplane,
PCB insulation, and ground plane.
REV. 0
AD10226
–13–
These characteristics result in both a reduction of electromagnetic
interference (EMI) and an overall improvement in performance.
It is important to design a layout that prevents noise from coupling
to the input signal. Digital signals should not be run in parallel
with input signal traces and should be routed away from the input
circuitry. The PCB should have a ground plane covering all unused
portions of the component side of the board to provide a low
impedance path and manage the power and ground currents. The
ground plane should be removed from the area near the input
pins to reduce stray capacitance.
Solder Reflow Profile
The Solder Reflow Profile for the AD10226 is shown in Figure 6.
TIME – Seconds
0
50
100
250
200
150
050
TEMPERATURE – C
100 150 200 250 300 350 400
Figure 6. Typical Solder Reflow Profile
LAYOUT INFORMATION
The schematic of the evaluation board (Figures 7a–7d) represents
a typical implementation of the AD10226. The pinout of the
AD10226 is very straightforward and facilitates ease of use and the
implementation of high-frequency/high resolution design prac-
tices. It is recommended that high quality ceramic chip capacitors
be used to decouple each supply pin to ground directly at the device.
All capacitors can be standard high quality ceramic chip capacitors.
Care should be taken when placing the digital output runs. Because
the digital outputs have such a high slew rate, the capacitive load-
ing on the digital outputs should be minimized. Circuit traces for
the digital outputs should be kept short and connect directly to
the receiving gate. Internal circuitry buffers the outputs of the
AD9433 ADC through a resistor network to eliminate the need
to externally isolate the device from the receiving gate.
EVALUATION BOARD
The AD10226 evaluation board (Figures 7a–7d) is designed to
provide optimal performance for evaluation of the AD10226
analog-to-digital converter. The board encompasses everything
needed to ensure the highest level of performance for evaluating the
AD10226. The board requires an analog input signal, an ENCODE
clock and power supply inputs. The clock is buffered on-board to
provide clocks for the latches. The digital outputs and out clocks
are available at the standard 40-pin connectors J1 and J2. Power
to the analog supply pins is connected via banana jacks. The analog
supply powers the associated components and analog section of the
AD10226. The digital outputs of the AD10226 are also powered
via banana jacks with 3.3 V. Contact the factory if additional layout
or application assistance is required.
BILL OF MATERIALS LIST FOR AD10226 EVALUATION BOARD
Quantity Reference Designator Value Description Part Number
2U16, U17 IC, Low Voltage 16-Bit D-Type Flip-Flop 74LCX16374MTD
with 5 V Tolerant Inputs and Outputs (Fairchild)
1U1 IC, BGA 35 35 385 AD10226AB
2U14, U15 IC, Precision Low Dropout any CAP ADP3330ART-3.3-RL7
Voltage Regulator (Analog)
4R38, R39, R56, R58 33 kRES 33 k 1/10W 0.1% 0805 SMD ERA-6YEB333V (Panasonic)
8R1, R7, R8, R41, R60, R61, R71, R72 51 RES 51 1/10W 5% 0805 SMD ERJ-6GEYJ510V (Panasonic)
32 R3, R4, R9–R18, R23–R30, R35, 100 RES 100 1/10W 1% 0805 SMD ERJ-6ENF1000V
R36, R40, R42–R46, R63–R66 (Panasonic)
23 C1, C2, C5–C10, C12, C16–C18, 0.1 µFCAP 0.1 µF 50 V Ceramic Y5V 0805 ECJ-2VF1H104Z
C20–C26, C28, C33–C35 (Panasonic)
2C13, C27 0.47 µFCAP 0.47 µF 25 V Ceramic Y5V 0805 ECJ-2YF1E474Z (Panasonic)
2J1, J2 2 20 Male Connector Strip, 100 Centers TSW-120-08G-D (Samtec)
4L1, L2, L3, L4 47 SMT Ferrite Bead 2743019447 (Fair Rite)
4U2, U3, U9, U11 IC, 3.3 V/5 V ECL Differential MC10EP16D
Receiver/Driver (Motorola)
8E3–E6, E25, E26, E33, E34 Power Jack, Banana Plug 108-0740-001 (Johnson Company)
2U4, U10 3.3 V Dual Differential SY100ELT23L
LVPECL-to-LVTTL Translator (Micrel-Synergy)
10 C3, C4, C11, C14, C15, C19, 10 µFSolid Tantalum Chip Capacitor, T491C106M016AS
C29, C30–C32 10 µF, 16 V, 20% (KEMET)
8J3–J7, J10–J12 SMA PLUG 200Mil STR GOLD 142-0801-201
(Johnson Components Inc.)
4Spacer Aluminum, Hex M–F (Standoff)
4Nut Hex Stl #4-40 UNC-2B
1AD10201/AD10226 Evaluation Board GS03983 Rev. A (PCB)
2C36, C37 CAP 0.047 µF 25 V Ceramic Y5V 0603 ECJ-1VB1C473K
6JP3, JP4, JP6, JP8, JP9, JP12 0 RES 0 1/16 W 5% 0402 ER J-2GEOR00
REV. 0
AD10226
–14–
3
4
11
12
15
16
17
18
19
20
2
1
13
14
5
6
9
10
7
8
30
29
26
25
24
23
22
21
28
27
31
38
37
39
40
36
35
32
34
33
11
12
15
16
17
18
19
20
13
14
10
3
4
2
1
5
6
9
7
8
38
37
30
29
26
25
24
23
22
21
39
40
28
27
36
35
32
31
34
33
J1
R71
51
MSB B11A
B10A
B9A
B8A
B7A
B6A
B5A
B4A
B3A
B2A
B1A
LSB B0A
DGNDA DGNDA
BUFLATA
DGNDA
C15
10F
16V
3.3VDA
+
18
CP2
OE2
I15
I14
I13
I12
I11
I10
I9
I8
CP1
OE1
I7
I6
I5
I4
I3
I2
I1
I0
GND
GND
GND
GND
VCC
VCC
O15
O14
O13
O12
O11
O10
O9
O8
O7
O6
O5
O4
O3
O2
O1
O0
GND
GND
GND
GND
VCC
VCC
7
31
42
23
22
20
19
17
16
14
13
12
11
9
8
6
5
3
2
21
15
10
4
25
24
26
27
29
30
32
33
35
36
48
1
37
38
40
41
43
44
46
47
28
34
39
45
U16
MSB D11A
D10A
D9A
D8A
D7A
D6A
D5A
D4A
R7
51
LATCHA
LSB D0A
D3A
D2A
D1A
DGNDA
74LCX16374MTD
DGNDA
R18
100
R17
100
R16
100
R40
100
R44
100
R45
100
R46
100
R15
100
R14
100
R13
100
R24
100
R23
100
DUT_3.3VDA B11A MSB
B10A
B9A
B8A
B7A
B6A
B5A
B4A
B3A
B2A
B1A
B0A LSB
3
4
11
12
15
16
17
18
19
20
2
1
13
14
5
6
9
10
7
8
30
29
26
25
24
23
22
21
28
27
31
38
37
39
40
36
35
32
34
33
11
12
15
16
17
18
19
20
13
14
10
3
4
2
1
5
6
9
7
8
38
37
30
29
26
25
24
23
22
21
39
40
28
27
36
35
32
31
34
33
J2
R72
51
MSB B11B
B10B
B9B
B8B
B7B
B6B
B5B
B4B
B3B
B2B
B1B
LSB B0B
DGNDB DGNDB
BUFLATB
DGNDB
C14
10F
16V
3.3VDB
+
18
CP2
OE2
I15
I14
I13
I12
I11
I10
I9
I8
CP1
OE1
I7
I6
I5
I4
I3
I2
I1
I0
GND
GND
GND
GND
VCC
VCC
O15
O14
O13
O12
O11
O10
O9
O8
O7
O6
O5
O4
O3
O2
O1
O0
GND
GND
GND
GND
VCC
VCC
7
31
42
23
22
20
19
17
16
14
13
12
11
9
8
6
5
3
2
21
15
10
4
25
24
26
27
29
30
32
33
35
36
48
1
37
38
40
41
43
44
46
47
28
34
39
45
U17
MSB D11B
D10B
D9B
D8B
D7B
D6B
D5B
D4B
R8
51
LATCHB
LSB D0B
D3B
D2B
D1B
DGNDB
74LCX16374MTD
DGNDB
R11
100
R10
100
R30
100
R29
100
R28
100
R27
100
R26
100
R12
100
R9
100
R25
100
R36
100
R35
100
DUT_3.3VDB B11B MSB
B10B
B9B
B8B
B7B
B6B
B5B
B4B
B3B
B2B
B1B
B0B LSB
Figure 7a. Evaluation Board Schematic
REV. 0
AD10226
–15–
JP1
AINA1
AGNDA
E4
AGNDA
E6
AGNDA
5VAA
C3
10F
16V
12
L3
47 @ 100MHz
C20
0.1F
C11
10F
16V
AGNDA
5VAA
++
AINA1
J3
AINA2
AGNDA
AINA2
J4
E3
AGNDB
E5
AGNDB
5VAB
C4
10F
16V
12
L4
47 @ 100MHz
C21
0.1F
C19
10F
16V
AGNDB
5VAB
++
AINB2
AGNDB
AINB2
J7
JP2
AINB1
AGNDB
DGNDA
E34
DGNDA
E25 3.3VDA
C29
10F
16V
12
L1
47 @ 100MHz
C12
0.1F
C31
10F
16V
DGNDA
++
DUT_3.3VDA
AINB1
J6
DGNDB
E33
DGNDB
E26 3.3VDB
C30
10F
16V
12
L2
47 @ 100MHz
C16
0.1F
C32
10F
16V
DGNDB
++
DUT_3.3VDB
AGNDA
C34
0.1F
5VAA
DGNDA
C9
0.1F
C10
0.1F
DUT_3.3VDA
DGNDB
C17
0.1F
C18
0.1F
DUT_3.3VDB
DGNDB
E30E29
E35E36
E37E38
E39E40
E46E45
E80E79
E83E84
AGNDB
E41E42
E43E44
E47E48
E65E66
E68E67
E69E70
E71E72
AGNDADGNDA
E74E73
E75E76
E82E81
STITCHES TO TIE GROUNDS TOGETHER
E78 E77
E7 E12
E10 E9
E8 E11
E1 E2
DGNDA DGNDB
DGNDA DGNDB
DGNDA AGNDA
AGNDA AGNDB
DGNDB AGNDB
Figure 7b. Evaluation Board Schematic
REV. 0
AD10226
–16–
NC VCC
U2
DQ
DQ
VBB VEE
3
2
1
4
6
7
8
5
MC10EP16D
AGNDA
C13
0.1F
25V
R42
100
R43
100
AGNDA
R56
33k
3.3VA
C1
0.1F
R1
51
AGNDA
AGNDA
J5
ENCODE
IN OUT
SD NR
ERR
GND
U14
6
21
5
3
AGNDA
5VAA
3.3VA
NC VCC
U3
DQ
DQ
VBB VEE
3
2
1
4
6
7
8
5
MC10EP16D
DGNDA
C6
0.1FR3
100
R4
100
DGNDA
R58
33k
3.3VDA
C2
0.1F
R41
51
AGNDA
AGNDA
J12
ENCA
3.3VDA
D0 VCC
U4
D0 Q
D1 Q
D1 GND
3
2
1
4
6
7
8
5
SY100EPT23L
DGNDA
C5
0.1F
3.3VDA
LATCHA
BUFLATA
E23
E19
C7
0.1F
C8
0.1F
ENCAB
ENCA
4
NC VCC
U11
DQ
DQ
VBB VEE
3
2
1
4
6
7
8
5
MC10EP16D
AGNDB
C27
0.47F
25V
R63
100
R64
100
AGNDB
R38
33k
3.3VB
C22
0.1F
R60
51
AGNDB
AGNDB
J10
ENCODE
IN OUT
SD NR
ERR
GND
U15
6
21
5
3
AGNDB
5VAB
3.3VB
NC VCC
U9
DQ
DQ
VBB VEE
3
2
1
4
6
7
8
5
MC10EP16D
DGNDB
C25
0.1FR65
100
R66
100
DGNDB
R39
33k
3.3VDB
R61
51
AGNDB
AGNDB
J11
ENCB
3.3VDB
D0 VCC
U10
D0 Q
D1 Q
D1 GND
3
2
1
4
6
7
8
5
SY100EPT23L
DGNDB
C26
0.1F
3.3VDB
LATCHB
BUFLATB
E24
E22
C24
0.1F
C28
0.1F
ENCBB
ENCB
4
C23
0.1F
Figure 7c. Evaluation Board Schematic
REV. 0
AD10226
–17–
AB25
AB24
AB23
AB22
AE15
AD15
AC15
AB15
AE16
AD16
AC16
AB16
AE17
AD17
AC17
AB17
AE18
AD18
AC18
AB18
AE19
AD19
AC19
AB19
AE20
AD20
AC20
AB20
Y25
Y24
Y23
Y22
W25
W24
W23
W22
V25
V24
V23
V22
U25
U24
U23
U22
T25
T24
T23
T22
R25
R24
R23
R22
M25
M24
M23
M22
L25
L24
L23
L22
J25
J24
J23
J22
D20
C20
B20
A20
D19
C19
B19
A19
AINB2
AINB1
ENCBB
ENCB
D0B
D1B
D2B
D3B
D4B
D5B
D6B
D7B
D8B
D9B
D10B
D11B
OVRB
AGNDB
C35
0.1FE50
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
AGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDA
DGNDB
DGNDB
DGNDB
DGNDB
DGNDB
DGNDB
DGNDB
DGNDB
DGNDB
DGNDB
DGNDB
DGNDB
DGNDB
DGNDB
DGNDB
DGNDB
DGNDB
DGNDB
DGNDB
DGNDB
DGNDB
DGNDB
DGNDB
DGNDB
A1
A2
A3
A4
A5
A6
A9
A12
B1
B2
B3
B4
B5
B6
B9
B12
C1
C2
C3
C4
C5
C6
C9
C12
D1
D2
D3
D4
D5
D6
D9
D12
E1
E2
E3
E4
F1
F2
F3
F4
G1
G2
G3
G4
H1
H2
H3
H4
K1
K2
K3
K4
K10
K11
K12
L1
L2
L3
L4
L10
L11
L12
M10
M11
M12
N10
N11
N12
P1
P2
P3
P4
P10
P11
P12
R10
R11
R12
T10
T11
T12
AA1
AA2
AA3
AA4
AB5
AB13
AC1
AC2
AC3
AC4
AC5
AC13
AD1
AD2
AD3
AD4
AD5
AD13
AE1
AE2
AE3
AE4
AE5
AE13
AA22
AA23
AA24
AA25
AB14
AB21
AC14
AC21
AC22
AC23
AC24
AC25
AD14
AD21
AD22
AD23
AD24
AD25
AE14
AE21
AE22
AE23
AE24
AE25
AGNDA
DGNDA
DGNDB
OVRB
OVRB
OVRB
OVRB
D11B (MSBB)
D11B (MSBB)
D11B (MSBB)
D11B (MSBB)
D10B
D10B
D10B
D10B
D9B
D9B
D9B
D9B
D8B
D8B
D8B
D8B
D7B
D7B
D7B
D7B
D6B
D6B
D6B
D6B
D5B
D5B
D5B
D5B
D4B
D4B
D4B
D4B
D3B
D3B
D3B
D3B
D2B
D2B
D2B
D2B
D1B
D1B
D1B
D1B
D0B (LSBB)
D0B (LSBB)
D0B (LSBB)
D0B (LSBB)
ENCB
ENCB
ENCB
ENCB
ENCBB
ENCBB
ENCBB
ENCBB
REF_B
REF_B
REF_B
REF_B
AINB1
AINB1
AINB1
AINB1
AINB2
AINB2
AINB2
AINB2
JP4
AGNDA
C36
0.047F
AGNDA
JP6
AGNDA
JP3
AGNDA
+5VAA
5VAA
5VAA
5VAA
5VAA
5VAA
5VAA
5VAA
5VAA
3.3VDA
3.3VDA
3.3VDA
3.3VDA
SHEILD
SHEILD
SHEILD
SHEILD
SHEILD
SHEILD
SHEILD
SHEILD
SHEILD
SHEILD
SHEILD
3.3VDB
3.3VDB
3.3VDB
3.3VDB
5VAB
5VAB
5VAB
5VAB
5VAB
5VAB
5VAB
5VAB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
J1
J2
J3
J4
A10
B10
C10
D10
R1
R2
R3
R4
A13
B13
C13
D13
K13
L13
M13
N13
P13
R13
T13
P22
P23
P24
P25
A16
B16
C16
D16
A18
B18
C18
D18
A14
A15
A17
A21
A22
A23
A24
A25
B14
B15
B17
B21
B22
B23
B24
B25
C14
C15
C17
C21
C22
C23
C24
C25
D14
D15
D17
D21
D22
D23
D24
D25
E22
E23
E24
E25
F22
F23
F24
F25
G22
G23
G24
G25
H22
H23
H24
H25
K14
K15
K16
K22
K23
K24
K25
L14
L15
L16
M14
M15
M16
N14
N15
N16
N22
N23
N24
N25
P14
P15
P16
R14
R15
R16
T14
T15
T16
AGNDB
JP12
AGNDB
JP9
AGNDB
JP8
C37
0.047F
+5VAA
DUT_3.3VDA
DUT_3.3VDB
+5VAB
OVRA
OVRA
OVRA
OVRA
D0A (LSBA)
D0A (LSBA)
D0A (LSBA)
D0A (LSBA)
D1A
D1A
D1A
D1A
D2A
D2A
D2A
D2A
D3A
D3A
D3A
D3A
D4A
D4A
D4A
D4A
D5A
D5A
D5A
D5A
D6A
D6A
D6A
D6A
D7A
D7A
D7A
D7A
D8A
D8A
D8A
D8A
D9A
D9A
D9A
D9A
D10A
D10A
D10A
D10A
D11A (MSBA)
D11A (MSBA)
D11A (MSBA)
D11A (MSBA)
ENCA
ENCA
ENCA
ENCA
ENCAB
ENCAB
ENCAB
ENCAB
AINA2
AINA2
AINA2
AINA2
AINA1
AINA1
AINA1
AINA1
REF_A
REF_A
REF_A
REF_A
AB4
AB3
AB2
AB1
AE12
AD12
AC12
AB12
AE11
AD11
AC11
AB11
AE10
AD10
AC10
AB10
AE9
AD9
AC9
AB9
AE8
AD8
AC8
AB8
AE7
AD7
AC7
AB7
AE6
AD6
AC6
AB6
Y4
Y3
Y2
Y1
W4
W3
W2
W1
V4
V3
V2
V1
U4
U3
U2
U1
T4
T3
T2
T1
N4
N3
N2
N1
M4
M3
M2
M1
D7
C7
B7
A7
D8
C8
B8
A8
D11
C11
B11
A11
AINA1
AINA2
AGNDA
C33
0.1F
E49
OVRA
D0A
D1A
D2A
D3A
D4A
D5A
D6A
D7A
D8A
D9A
D10A
D11A
ENCA
ENCAB
AD10226
+5VAA
+5VAA
+5VAA
+5VAB
+5VAB
+5VAB
+5VAB
AGNDB
Figure 7d. Evaluation Board Schematic
REV. 0
AD10226
–18–
+5VAA
+
C3
E39
+
J7
+
E4
JP1
E49 J3
J10
J11
E9
E70
E73
E42
E44
E10
E66
E84
E45
E79
E38
+
E23
GND TIE
E24
E22
L2
C12
R23
R11
R10
+
C30
C16
E25
+
C29
R15
R46
R27
R28
+
R16
R40
R9
R25
E7
E6
E47
+
+5VAB E3
ENCA
J5
E50
U1
J12
ENCA
GND TIES
E76
E81
E72
E67
E36
E1
E29
E19
C31
L1
E26
E12
R24
GS03983 REV: A
AD10201/ AD10206
EVALUATION BOARD
GND TIEGND TIE
E11
AGNDA
C11
AINA2
J4
AINA1
AINB1
AINB2
J6
ENCB
L4
E69
E74
E43
E41
E65
E83
E46
ENCB E80
E35
E37
E34 DGNDA
LATCHA
BUFLATA
E78
LATCHB
+3.3VDA
J1
GND TIE
L3
E8
E5
REF_A
JP2
C19
C4
AGNDB
E75
GND TIES
E71
E68
E82
E2
E30
R13
R14
E77
BUFLATB
R30
C32
R29
E33 DGNDB
R17
R18
R45
R44
R36
R35
R12
R26
+3.3VDB J2
REF_B
Figure 8a. Mechanical Layout Top View
GND TIE
+
U16
C5
R66
R65
U10
C10
U9
C8
JP9
R64
C28
U14
C13
C36
C37
U15
R63
R56
C1
C22
R60
GND TIE
C9
R8
C26
C25
GND TIES
U3
GND TIES
U2
JP4
C23
C34
R1
U17
R72
C6
R4
R3
GND TIE
R39
C2
R41
R42
+5V JP3
JP6
C21
C35
C18 C24
C27
U11
GND TIE
R71
C15
C14
U4
R7
C17
C7
R43
R58
C33
C20
JP8
JP12
R38
R61
Figure 8b. Mechanical Layout Bottom View
Figure 8c. Top View
Figure 8d. Layer 2
REV. 0
AD10226
–19–
Figure 8e. Layer 3
Figure 8f. Ground View 1
Figure 8g. Ground View 2
REV. 0
–20–
PRINTED IN U.S.A.
AD10226
C02927–0–5/02(0)
OUTLINE DIMENSIONS
Dimensions shown in millimeters (mm).
385-Lead Ball Grid Array (BGA)
(B-385)
AD10201AB
XXXX
DETAIL C
0.75
0.60
0.50
DETAIL A
0.90
0.75
0.60
DETAIL B
AD10201AB
XXXX
DETAIL C
37.00
35.00 BSC SQ
33.00
DETAIL A 1.27 TYP
A
C
E
G
J
L
N
R
U
W
AA
AC
B
D
F
H
K
M
P
T
V
Y
AB
AD
AE
135791113151719212325
24681012141618202224
DETAIL B
30.48 BSC
SQ
COMPONENT
VOLUME 1.15
1.02
0.89
3.20
MAX