www.irf.com 1
08/24/06
DirectFET Power MOSFET
Description
The IRF6648PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packag-
ing to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The
DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and
vapor phase, infra-red or convection soldering techniques. Application note AN-1035 is followed regarding the manufacturing
methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems,
improving previous best thermal resistance by 80%.
The IRF6648PbF is an optimized switch for use in synchronous rectification circuits with 5-12Vout, and is also ideal for use as
a primary side switch in 24Vin forward converters. The reduced total losses in the device coupled with the high level of thermal
performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this
device ideal for high performance.
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
Fig 1. Typical On-Resistance vs. Gate-to-Source Voltage
Typical values (unless otherwise specified)
Fig 2. Total Gate Charge vs. Gate-to-Source Voltage
DirectFET ISOMETRIC
MN
l RoHs Compliant
l Lead-Free (Qualified up to 260°C Reflow)
l Application Specific MOSFETs
lOptimized for Synchronous Rectification for
5V to 12V outputs
l Low Conduction Losses
l Ideal for 24V input Primary Side Forward Converters
l Low Profile (<0.7mm)
l Dual Sided Cooling Compatible
l Compatible with existing Surface Mount Techniques
IRF6648PbF
IRF6648TRPbF
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET Website.
Surface mounted on 1 in. square Cu board, steady state.
TC measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
Starting TJ = 25°C, L = 0.082mH, RG = 25, IAS = 34A.
Notes:
SH SJ SP MZ MN
Absolute Maximum Ratin
g
s
Parameter Units
VDS Drain-to-Source Voltage V
VGS Gate-to-Source Voltage
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V
f
ID @ TC = 70°C Continuous Drain Current, VGS @ 10V
f
A
IDM Pulsed Drain Current
g
EAS Single Pulse Avalanche Energy
h
mJ
IAR Avalanche Current
g
A
69
Max.
86
260
±20
60
47
34
46810 12 14 16
VGS, Gate -to -Source Voltage (V)
0
10
20
30
40
50
60
Typical RDS(on) (m)
ID = 17A
TJ = 25°C
TJ = 125°C
0 5 10 15 20 25 30 35 40
QG, Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
VGS, Gate-to-Source Voltage (V)
VDS= 48V
VDS= 30V
ID= 17A
VDSS VGS
60V max ±20V max
RDS(on)
5.5m@ 10V
Qg tot Qgd Qgs2 Qrr Qoss Vgs(th)
36nC 14nC 2.7nC 37nC 21nC 4.0V
PD - 97225A
IRF6648PbF
2www.irf.com
Repetitive rating; pulse width limited by max. junction temperature.
Pulse width 400µs; duty cycle 2%.
Notes:
Electrical Characteristic @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
BVDSS Drain-to-Source Breakdown Voltage 60 ––– ––– V
∆ΒVDSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.076 ––– V/°C
RDS(on) Static Drain-to-Source On-Resistance ––– 5.5 7.0 m
VGS(th) Gate Threshold Voltage 3.0 4.0 4.9 V
VGS(th)/TJGate Threshold Voltage Coefficient ––– -11 ––– mV/°C
IDSS Drain-to-Source Leakage Current ––– ––– 20 µA
––– ––– 250
IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA
Gate-to-Source Reverse Leakage ––– ––– -100
gfs Forward Transconductance 31 ––– ––– S
QgTotal Gate Charge ––– 36 50
Qgs1 Pre-Vth Gate-to-Source Charge ––– 7.5 –––
Qgs2 Post-Vth Gate-to-Source Charge ––– 2.7 ––– nC
Qgd Gate-to-Drain Charge ––– 14 21
Qgodr Gate Charge Overdrive ––– 12 ––– See Fig. 15
Qsw Switch Charge (Qgs2 + Qgd)––– 17 –––
Qoss Output Charge ––– 21 ––– nC
RG (Internal) Gate Resistance ––– 1.0 –––
td(on) Turn-On Delay Time ––– 16 –––
trRise Time ––– 29 –––
td(off) Turn-Off Delay Time ––– 28 ––– ns
tfFall Time ––– 13 –––
Ciss Input Capacitance ––– 2120 –––
Coss Output Capacitance ––– 600 ––– pF
Crss Reverse Transfer Capacitance ––– 170 –––
Coss Output Capacitance ––– 2450 –––
Coss Output Capacitance ––– 440 –––
Diode Characteristics
Parameter Min. Typ. Max. Units
ISContinuous Source Current ––– ––– 81
(Body Diode) A
ISM Pulsed Source Current ––– ––– 260
(Body Diode)g
VSD Diode Forward Voltage ––– ––– 1.3 V
trr Reverse Recovery Time ––– 31 47 ns
Qrr Reverse Recovery Charge ––– 37 56 nC
VDS = 25V
Conditions
See Fig. 16 & 17
VGS = 0V, VDS = 48V, f=1.0MHz
VGS = 0V, VDS = 1.0V, f=1.0MHz
VDS = VGS, ID = 150µA
VDS = 60V, VGS = 0V
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 17A i
TJ = 25°C, IF = 17A, VDD = 30V
di/dt = 100A/µs iSee Fig. 18
TJ = 25°C, IS = 17A, VGS = 0V i
ID = 17A
VDS = 16V, VGS = 0V
VDD = 30V, VGS = 10Vi
VGS = 0V
ƒ = 1.0MHz
ID = 17A
RG= 6.2
VDS = 48V, VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
VGS = 10V
VDS = 10V, ID = 17A
VDS = 30V
MOSFET symbol
showing the
integral reverse
p-n junction diode.
IRF6648PbF
www.irf.com 3
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Used double sided cooling , mounting pad.
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
Notes:
Rθ is measured at TJ of approximately 90°C.
Surface mounted on 1 in. square Cu
(still air).
Mounted to a PCB with
small clip heatsink (still air)
Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.17199 0.000044
0.67673 0.001660
0.54961 0.007649
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τC
τC
Ci= τi/Ri
Ci= τi/Ri
Absolute Maximum Ratin
g
s
Parameter Units
PD @TA = 25°C Power Dissipation
e
W
PD @TA = 70°C Power Dissipation
e
PD @TC = 25°C Power Dissipation
f
TP Peak Soldering Temperature °C
TJ Operating Junction and
TSTG Storage Temperature Range
Thermal Resistance
Parameter Typ. Max. Units
RθJA Junction-to-Ambient
em
––– 45
RθJA Junction-to-Ambient
km
12.5 ––– °C/W
RθJC Junction-to-Case
fm
––– 1.4
RθJ-PCB Junction-to-PCB Mounted 1.0 –––
Linear Derating Factor
e
W/°C
1.8
0.022
270
-40 to + 150
Max.
89
2.8
IRF6648PbF
4www.irf.com
Fig 5. Typical Output Characteristics
Fig 4. Typical Output Characteristics
Fig 6. Typical Transfer Characteristics Fig 7. Normalized On-Resistance vs. Temperature
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage Fig 9. Normalized Typical On-Resistance vs.
Drain Current and Gate Voltage
0.1 110
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 15V
10V
8.0V
7.0V
BOTTOM 6.0V
60µs PULSE WIDTH
Tj = 25°C
6.0V
0.1 110
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
6.0V
60µs PULSE WIDTH
Tj = 150°C
VGS
TOP 15V
10V
8.0V
7.0V
BOTTOM 6.0V
246810
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
TJ = 150°C
TJ = 25°C
TJ = -40°C
VDS = 10V
60µs PULSE WIDTH
-60 -40 -20 020 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
Typical RDS(on) (Normalized)
ID = 86A
VGS = 10V
110 100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
C, Capacitance (pF)
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
020 40 60 80 100
ID, Drain Current (A)
0
5
10
15
20
25
30
Typical RDS(on) (m)
TJ = 25°C
Vgs = 7.0V
Vgs = 8.0V
Vgs = 10V
Vgs = 15V
IRF6648PbF
www.irf.com 5
Fig 13. Threshold Voltage vs. Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 10. Typical Source-Drain Diode Forward Voltage Fig11. Maximum Safe Operating Area
Fig 14. Maximum Avalanche Energy vs. Drain Current
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
VSD, Source-to-Drain Voltage (V)
0
1
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 150°C
TJ = 25°C
TJ = -40°C
VGS = 0V
0 1 10 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
OPERATION IN THIS AREA
LIMITED BY RDS(on)
Tc = 25°C
Tj = 150°C
Single Pulse
100µsec
1msec
10msec
25 50 75 100 125 150
TC , Case Temperature (°C)
0
10
20
30
40
50
60
70
80
90
ID, Drain Current (A)
-75 -50 -25 025 50 75 100 125 150
TJ , Temperature ( °C )
2.0
3.0
4.0
5.0
6.0
Typical VGS(th), Gate threshold Voltage (V)
ID = 150µA
ID = 250µA
ID = 1.0mA
ID = 1.0A
25 50 75 100 125 150
Starting TJ , Junction Temperature (°C)
0
20
40
60
80
100
120
140
160
180
200
EAS , Single Pulse Avalanche Energy (mJ)
ID
TOP 12A
18A
BOTTOM 34A
IRF6648PbF
6www.irf.com
D.U.T. VDS
ID
IG
3mA
VGS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
Fig 15a. Gate Charge Test Circuit Fig 15b. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2 Qgd Qgodr
Fig 16b. Unclamped Inductive Waveforms
tp
V
(BR)DSS
I
AS
Fig 16a. Unclamped Inductive Test Circuit
Fig 17b. Switching Time Waveforms
VGS
VDS
90%
10%
td(on) td(off)
trtf
Fig 17a. Switching Time Test Circuit
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
VDD
VDS
LD
D.U.T
+
-
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
IRF6648PbF
www.irf.com 7
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
VGS=10V
VDD
ISD
Driver Gate Drive
D.U.T. ISD Waveform
D.U.T. VDS Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
Inductor Current
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
+
-
+
+
+
-
-
-
RGVDD
D.U.T
DirectFET Substrate and PCB Layout, MN Outline
(Medium Size Can, N-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
S
D
DD
G
S
IRF6648PbF
8www.irf.com
DirectFET Part Marking
DirectFET Outline Dimension, MN Outline
(Medium Size Can, N-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
/#:














/+0














/#:














/+0














%1&'
#
$
%
&
'
(
)
*
,
-
.
/
4
2
&+/'05+105
/'64+% +/2'4+#.
IRF6648PbF
www.irf.com 9
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.08/06
DirectFET Tape & Reel Dimension (Showing component orientation).
STANDARD OPTION (QTY 4800)
MIN
330.0
20.2
12.8
1.5
100.0
N.C
12.4
11.9
CODE
A
B
C
D
E
F
G
H
MAX
N.C
N.C
13.2
N.C
N.C
18.4
14.4
15.4
MIN
12.992
0.795
0.504
0.059
3.937
N.C
0.488
0.469
MAX
N.C
N.C
0.520
N.C
N.C
0.724
0.567
0.606
METRIC IMPERIAL
TR1 OPTION (QTY 1000)
IMPERIAL
MIN
6.9
0.75
0.53
0.059
2.31
N.C
0.47
0.47
MAX
N.C
N.C
12.8
N.C
N.C
13.50
12.01
12.01
MIN
177.77
19.06
13.5
1.5
58.72
N.C
11.9
11.9
METRIC
MAX
N.C
N.C
0.50
N.C
N.C
0.53
N.C
N.C
REEL DIMENSIONS
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6648TRPBF). For 1000 parts on 7"
reel, order IRF6648TR1PBF
MIN
7.90
3.90
11.90
5.45
5.10
6.50
1.50
1.50
CODE
A
B
C
D
E
F
G
H
MAX
8.10
4.10
12.30
5.55
5.30
6.70
N.C
1.60
MIN
0.311
0.154
0.469
0.215
0.201
0.256
0.059
0.059
MAX
0.319
0.161
0.484
0.219
0.209
0.264
N.C
0.063
DIMENSIONS
METRIC IMPERIAL
LOADED TAPE FEED DIRECTION
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/