MMRF5014H
1
RF Device Data
NXP Semiconductors
RF Power GaN on SiC Transistor
Depletion Mode HEMT
This 125 W CW RF power transistor is optimized for wideband operation up to
2700 MHz and includes input matching for extended bandwidth performance.
With its high gain and high ruggedness, this device is ideally suited for CW,
pulse and wideband RF applications.
This part is characterized and performance is guaranteed for applications
operating in the 1–2700 MHz band. There is no guarantee of performance when
this part is used in applications designed outside of these frequencies.
Typical Narrowband Performance: VDD =50Vdc,I
DQ = 350 mA, TA=25°C
Frequency
(MHz) Signal Type
Pout
(W)
Gps
(dB)
ηD
(%)
2500 (1) CW 125 CW 16.0 64.2
2500 (1) Pulse
(100 μsec,
20% Duty Cycle)
125 Peak 18.0 66.8
Typical Wideband Performance: VDD =50Vdc,T
A=25°C
Frequency
(MHz) Signal Type
Pout
(W)
Gps (2)
(dB)
ηD(2)
(%)
200–2500 (3) CW 100 CW 12.0 40.0
1300–1900 (4) CW 125 CW 14.5 45.0
Load Mismatch/Ruggedness
Frequency
(MHz) Signal Type VSWR
Pin
(W)
Test
Voltage Result
2500 (1) Pulse
(100 μsec,
20% Duty Cycle)
> 20:1 at
All Phase
Angles
5.0 Peak
(3 dB
Overdrive)
50 No Device
Degradation
1. Measured in 2500 MHz narrowband test circuit.
2. The values shown are the minimum measured performance numbers across the
indicated frequency range.
3. Measured in 200–2500 MHz broadband reference circuit.
4. Measured in 1300–1900 MHz broadband reference circuit.
Features
Decade bandwidth performance
Low thermal resistance
Advanced GaN on SiC, offering high power density
Input matched for extended wideband performance
High ruggedness: > 20:1 VSWR
Applications
Ideal for military end--use applications,
including the following:
Narrowband and multi--octave
wideband amplifiers
Radar
Jammers
–EMCtesting
Also suitable for commercial applications,
including the following:
Public mobile radios, including
emergency service radios
Industrial, scientific and medical
Wideband laboratory amplifiers
Wireless cellular infrastructure
Document Number: MMRF5014H
Rev. 2, 04/2017
NXP Semiconductors
Technical Data
1–2700 MHz, 125 W CW, 50 V
WIDEBAND
RF POWER GaN ON SiC
TRANSISTOR
MMRF5014H
NI--360H--2SB
Note: The backside of the package is the
source terminal for the transistor.
(Top View)
Drain
21
Figure 1. Pin Connections
Gate
©2015, 2017 NXP B.V.
2
RF Device Data
NXP Semiconductors
MMRF5014H
Table 1. Maximum Ratings
Rating Symbol Value Unit
Drain--Source Voltage VDSS 125 Vdc
Gate--Source Voltage VGS –8, 0 Vdc
Operating Voltage VDD 0to+50 Vdc
Maximum Forward Gate Current @ TC=25°C IGMAX 18 mA
Storage Temperature Range Tstg 65to+150 °C
Case Operating Temperature Range TC–55 to +150 °C
Operating Junction Temperature Range (1) TJ–55 to +225 °C
Total Device Dissipation @ TC=25°C
Derate above 25°C
PD232
1.16
W
W/°C
Table 2. Thermal Characteristics
Characteristic Symbol Value (2) Unit
Thermal Resistance, Junction to Case
CW: Case Temperature 82°C, 125 W CW, 50 Vdc, IDQ = 350 mA, 2500 MHz
RθJC 0.86 °C/W
Thermal Impedance, Junction to Case
Pulse: Case Temperature 58°C, 125 W Peak, 100 μsec Pulse Width,
20% Duty Cycle, 50 Vdc, IDQ = 350 mA, 2500 MHz
ZθJC 0.21 °C/W
Table 3. ESD Protection Characteristics
Test Methodology Class
Human Body Model (per JESD22--A114) 1B, passes 500 V
Machine Model (per EIA/JESD22--A115) A, passes 100 V
Charge Device Model (per JESD22--C101) IV, passes 2000 V
Table 4. Electrical Characteristics (TA=25°C unless otherwise noted)
Characteristic Symbol Min Typ Max Unit
Off Characteristics
Drain Leakage Current
(VGS =–8Vdc,V
DS =10Vdc)
IDSS 5 mAdc
Drain--Source Breakdown Voltage
(VGS =–8Vdc,I
D=25mAdc)
V(BR)DSS 150 Vdc
On Characteristics
Gate Threshold Voltage
(VDS =10Vdc,I
D=25mAdc)
VGS(th) –3.8 –2.9 –2.3 Vdc
Gate Quiescent Voltage
(VDS =50Vdc,I
D= 350 mAdc, Measured in Functional Test)
VGS(Q) –3.2 –2.7 –2.2 Vdc
Dynamic Characteristics
Reverse Transfer Capacitance
(VDS =50Vdc±30 mV(rms)ac @ 1 MHz, VGS =–4Vdc)
Crss 1.0 pF
Output Capacitance
(VDS =50Vdc±30 mV(rms)ac @ 1 MHz, VGS =–4Vdc)
Coss 7.7 pF
Input Capacitance (3)
(VDS =50Vdc,V
GS =–4Vdc±30 mV(rms)ac @ 1 MHz)
Ciss 51.0 pF
1. Continuous use at maximum temperature will affect MTTF.
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.
3. Part internally input matched.
(continued)
MMRF5014H
3
RF Device Data
NXP Semiconductors
Table 4. Electrical Characteristics (TA=25°C unless otherwise noted) (continued)
Characteristic Symbol Min Typ Max Unit
Functional Tests (In NXP Test Fixture, 50 ohm system) VDD =50Vdc,I
DQ = 350 mA, Pout = 125 W Peak (25 W Avg.), f = 2500 MHz, 100
μsec Pulse Width, 20% Duty Cycle. [See note on correct biasing sequence.]
Power Gain Gps 17.0 18.0 20.0 dB
Drain Efficiency ηD64.3 66.8 %
Input Return Loss IRL –12 –9 dB
Load Mismatch/Ruggedness (In NXP Test Fixture, 50 ohm system) IDQ = 350 mA
Frequency
(MHz) Signal Type VSWR
Pin
(W) Test Voltage, VDD Result
2500 Pulse
(100 μsec,
20% Duty Cycle)
> 20:1 at All Phase Angles 5.0 Peak
(3 dB Overdrive)
50 No Device Degradation
Table 5. Ordering Information
Device Tape and Reel Information Package
MMRF5014HR5 R5 Suffix = 50 Units, 32 mm Tape Width, 13--inch Reel NI--360H--2SB
NOTE: Correct Biasing Sequence for GaN Depletion Mode Transistors
Turning the device ON
1. Set VGS to –5 V
2. Turn on VDS to nominal supply voltage (50 V)
3. Increase VGS until IDS current is attained
4. Apply RF input power to desired level
Turning the device OFF
1. Turn RF power off
2. Reduce VGS downto–5V
3. Reduce VDS down to 0 V (Adequate time must be allowed
for VDS to reduce to 0 V to prevent severe damage to device.)
4. Turn off VGS
4
RF Device Data
NXP Semiconductors
MMRF5014H
500–2500 MHz WIDEBAND REFERENCE CIRCUIT 2.0″×4.0(5.1 cm ×10.2 cm)
Figure 2. MMRF5014H Wideband Reference Circuit Component Layout 500–2500 MHz
*C1, C2, C4, C5, C7, C8, C10, C11, C12, C13, C14, C15 and C16 are mounted vertically.
R1
MMRF5014H
D1
R2
C3 R3
C4*
C5*
R4 R5
C1*
C2*
L1
L2
Q1
C10* C11*
C6
C7*
C8*
C12*
C13*
C14* C15*
C16*
D77847
+
C9
Rev. 0
Table 6. MMRF5014H Wideband Reference Circuit Component Designations and Values 500–2500 MHz
Part Description Part Number Manufacturer
C1, C5, C7 33 pF Chip Capacitors ATC800B330JT500XT ATC
C2 0.4 pF Chip Capacitor ATC800B0R4BT500XT ATC
C3 2.2 μF, 16 V Tantalum Capacitor T491A225K016AT Kemet
C4, C8 1000 pF Chip Capacitors ATC800B102JT50XT ATC
C6 220 μF, 50 V Electrolytic Capacitor EEV-HA1H221P Panasonic-ECG
C9 2.2 μF Chip Capacitor HMK432B7225KM-T Taiyo Yuden
C10, C11 0.8 pF Chip Capacitors ATC800B0R8BT500XT ATC
C12, C13 9.1 pF Chip Capacitors ATC800B9R1BT500XT ATC
C14, C16 0.5 pF Chip Capacitors ATC800B0R5BT500XT ATC
C15 0.2 pF Chip Capacitor ATC800B0R2BT500XT ATC
D1 LED Green Diffused 1206, SMD LGN971-KN-1 OSRAM
L1 33 nH Inductor 1812SMS-33NJLC Coilcraft
L2 17.5 nH Inductor, 5 Turns GA3095-ALC Coilcraft
Q1 RF Power GaN Transistor MMRF5014H NXP
R1 75 , 1/4 W Chip Resistor CRCW120675R0FKEA Vishay
R2 500 Trimming Potentiometer, 11 Turns 3224W-1-501E Bourns
R3 470 , 1/4 W Chip Resistor CRCW1206470RFKEA Vishay
R4, R5 39 , 1/4 W Chip Resistors CRCW120639R0FKEA Vishay
PCB Rogers RO4350B 0.030,εr=3.66 D77847 MTL
Note: Refer to MMRF5014H’s printed circuit boards and schematics to download the 500–2500 MHz heatsink drawing.
MMRF5014H
5
RF Device Data
NXP Semiconductors
TYPICAL CHARACTERISTICS 500–2500 MHz
WIDEBAND REFERENCE CIRCUIT
Figure 3. 500–2500 MHz Wideband Circuit Performance
f, FREQUENCY (MHz)
Gps, POWER GAIN (dB)
11
400
20
22
21
100 W
Gps
17
19
18
10
70
ηD, DRAIN EFFICIENCY (%)
800
20
30
40
50
60
ηD
10 W
100 W
VDD =50Vdc,I
DQ = 300 mA, CW
12
14
13
15
16
600 1000 1200 1400 1600
15
25
35
45
55
65
1800 2000 2200 2400 2600
10
6
RF Device Data
NXP Semiconductors
MMRF5014H
200–2500 MHz WIDEBAND REFERENCE CIRCUIT 4.0″×5.0(10.2 cm ×12.7 cm)
Figure 4. MMRF5014H Wideband Reference Circuit Component Layout 200–2500 MHz
**C1, C2, C3, C6, C12, C13, C15, C16, C17, R1, and R2 are mounted vertically.
**Stacked
MMRF5014H
Rev. 6
VGG
VDD
C1**
R2**
R1**
C2* C3*
C4 C7 C8
C6*
C5
L1
R3 R4
C9 C10
C11
C12*
L2 C13*
C14
C15*
C16*
C17* B1 B2
T2
T1
D68303
Q1
C15*
C16*
C17*
B1 B2
T2
T1
T2
T1
B1
Detail BB 2X
See
Detail BB
Section AA
Section AA
T2
MMRF5014H
7
RF Device Data
NXP Semiconductors
Table 7. MMRF5014H Wideband Reference Circuit Component Designations and Values 200–2500 MHz
Part Description Part Number Manufacturer
B1, B2 Ferrite Beads T22-6 Micro Metals
C1 56 pF Chip Capacitor ATC800B560JT500XT ATC
C2 75 pF Chip Capacitor ATC800B750JT500XT ATC
C3 1.6 pF Chip Capacitor ATC800B1R6BT500XT ATC
C4 6.8 μF Chip Capacitor C4532X7R1H685K TDK
C5, C8, C9, C11 0.015 μF Chip Capacitors GRM319R72A153KA01D Murata
C6, C12 5.6 pF Chip Capacitors ATC800B5R6BT500XT ATC
C7, C10 1μF Chip Capacitors GRM31CR72A105KAO1L Murata
C13 1.4 pF Chip Capacitor ATC800B1R4BT500XT ATC
C14 220 μF, 100 V Electrolytic Capacitor EEV-FK2A221M Panasonic-ECG
C15, C17 0.9 pF Chip Capacitors ATC800B0R9BT500XT ATC
C16 47 pF Chip Capacitor ATC800B470JT500XT ATC
L1 12.5 nH Inductor, 4 Turns A04TJLC Coilcraft
L2 22 nH Inductor 1812SMS-22NJLC Coilcraft
Q1 RF Power GaN Transistor MMRF5014H NXP
R1, R2 10 , 3/4 W Chip Resistors CRCW201010R0FKEF Vishay
R3, R4 39 , 1/4 W Chip Resistors CRCW120639R0FKEA Vishay
T1 25 Semi Rigid Coax, 0.770Shield Length UT-070-25 Micro--Coax
T2 25 Semi Rigid Coax, 0.850Shield Length UT-070-25 Micro--Coax
PCB Rogers RO4350B, 0.030,εr=3.66 D68303 MTL
Note: Refer to MMRF5014H’s printed circuit boards and schematics to download the 200–2500 MHz heatsink drawing.
8
RF Device Data
NXP Semiconductors
MMRF5014H
TYPICAL CHARACTERISTICS 200–2500 MHz
WIDEBAND REFERENCE CIRCUIT
Figure 5. 200–2500 MHz Wideband Circuit Performance
f, FREQUENCY (MHz)
Gps, POWER GAIN (dB)
11
23
200
20
22
21
100 W
Gps
17
19
18
10
70
ηD, DRAIN EFFICIENCY (%)
1000
20
30
40
50
60
ηD
10 W
100 W
VDD =50Vdc,I
DQ = 350 mA, CW
12
14
13
15
16
600 1400 1800 2200 2600
15
25
35
45
55
65
MMRF5014H
9
RF Device Data
NXP Semiconductors
TYPICAL CHARACTERISTICS OPTIMIZED NARROWBAND PERFORMANCE
Narrowband Performance and Impedance Information (TC=25°C)
The measured input and output impedances are presented to the input of the device at the package reference plane.
Measurements are performed in NXP narrowband fixture tuned at 500, 1000, 1500, 2000 and 2500 MHz.
Figure 6. Power Gain and Drain Efficiency
versus CW Output Power
Pout, OUTPUT POWER (WATTS)
Gps, POWER GAIN (dB)
12
32
0
26
30
28
Gps
20
24
22
0
80
ηD, DRAIN EFFICIENCY (%)
40
16
32
48
64
1000 MHz
VDD =50Vdc,I
DQ = 300 mA, CW
14
16
18
20 60 200
8
24
56
72
80 100 120 140 160 180
40
500 MHz
500 MHz
2000 MHz
1500 MHz
2500 MHz
1000 MHz
1500 MHz
2500 MHz
2000 MHz
ηD
f
MHz
Zsource
Zload
500 1.3 + j3.9 5.9 + j3.5
1000 1.0 + j0.3 5.5 + j2.9
1500 0.8 j0.5 3.4 + j2.0
2000 1.2 j2.0 4.7 + j0.3
2500 2.7 j3.8 3.7 + j1.4
Zsource = Test circuit impedance as measured
from gate to ground.
Zload = Test circuit impedance as measured
from drain to ground.
Figure 7. Narrowband Fixtures: Series Equivalent Source and Load Impedances
50
50
Input
Matching
Network
Device
Under
Test
Output
Matching
Network
Zsource Zload
10
RF Device Data
NXP Semiconductors
MMRF5014H
1300–1900 MHz WIDEBAND REFERENCE CIRCUIT 2.0″×3.0(5.1 cm ×7.6 cm)
Figure 8. MMRF5014H Wideband Reference Circuit Component Layout 1300–1900 MHz
*C9 is mounted vertically.
MMRF5014H
Rev. 1
VGG
VDD
D67114
C9*
R1
R2
R3 R4 R5
C1
C2 C3 C4
C5 C6 C7
C8
Q1
L1
L2
D1
Table 8. MMRF5014H Wideband Reference Circuit Component Designations and Values 1300–1900 MHz
Part Description Part Number Manufacturer
C1 18 pF Chip Capacitor ATC600S180CT250XT ATC
C2 2.2 μF Tantalum Capacitor T491A225K016AT Kemet
C3, C6 1000 pF Chip Capacitors ATC800B102JT50XT ATC
C4, C5 33 pF Chip Capacitors ATC800B330JT500XT ATC
C7 2.2 μF Chip Capacitor HMK432B7225KM-T Taiyo Tuden
C8 47 μF, 100 V Electrolytic Capacitor 476KXM050M Panasonic-ECG
C9 9.1 pF Chip Capacitor ATC800B9R1BT500XT ATC
D1 LED Green Diffused 1206, SMD LGN971--KN--1 OSRAM
Q1 RF Power GaN Transistor MMRF5014H NXP
R1 75 , 1/4 W Chip Resistor CRCW120675R0FKEA Vishay
R2 5kTrimming Potentiometer, 11 Turns 3224W-1-502E Bourns
R3 5k, 1/4 W Chip Resistor CRCW12065K00FKEA Vishay
R4, R5 39 , 1/4 W Chip Resistors CRCW120639R0FKEA Vishay
L1, L2 33 nH Inductors 1812SMS-33NJLC Coilcraft
PCB Rogers 3010, 0.025,εr= 10.2 D67114 MTL
MMRF5014H
11
RF Device Data
NXP Semiconductors
TYPICAL CHARACTERISTICS 1300–1900 MHz
WIDEBAND REFERENCE CIRCUIT
Figure 9. Power Gain and Drain Efficiency
versus Frequency
f, FREQUENCY (MHz)
Gps, POWER GAIN (dB)
12
1300
26
30
28
Gps
20
24
22
30
70
ηD, DRAIN EFFICIENCY (%)
38
46
54
62
ηD
VDD =50Vdc,I
DQ = 200 mA, Pout = 125 W, CW
14
16
18
1900
34
42
58
66
50
10
1400 1500 1600 1700 1800
Figure 10. Power Gain and Drain Efficiency
versus CW Output Power
Pout, OUTPUT POWER (WATTS)
Gps, POWER GAIN (dB)
0
20
0
14
18
16
Gps
8
12
10
25
75
ηD, DRAIN EFFICIENCY (%)
40
35
45
55
65
ηD
VDD =50Vdc,I
DQ = 200 mA, CW
2
4
6
20 60 180
30
40
60
70
80 100 120 140 160
50
1300 MHz
1600 MHz
1900 MHz
1900 MHz
1600 MHz
1300 MHz
12
RF Device Data
NXP Semiconductors
MMRF5014H
2500 MHz NARROWBAND PRODUCTION TEST FIXTURE 4.0″×5.0(10.2 cm ×12.7 cm)
Figure 11. MMRF5014H Narrowband Test Circuit Component Layout 2500 MHz
MMRF5014H
Rev. 4
CUT OUT AREA
C14 C7
C8 C12
C2 C3
R1
C1
C4 C5 C13 C9
C11 C6
C10
VDD
VGG
D65152
R2
Table 9. MMRF5014H Narrowband Test Circuit Component Designations and Values 2500 MHz
Part Description Part Number Manufacturer
C1 3.9 pF Chip Capacitor ATC600F3R9BT250XT ATC
C2, C3, C4, C5, C6 12 pF Chip Capacitors ATC600F120JT250XT ATC
C7, C14 4.7 μF Chip Capacitors C4532X7R1H475K200KB TDK
C8 0.1 μF Chip Capacitor GRM319R72A104KA01D Murata
C9 1.0 μF Chip Capacitor GRM32CR72A105KA35L Murata
C10 220 μF, 100 V Electrolytic Capacitor EEV-FK2A221M Panasonic-ECG
C11 1 pF Chip Capacitor ATC600F1R0BT250XT ATC
C12, C13 1000 pF Chip Capacitors ATC800B102JT50XT ATC
R1 56 , 1/4 W Chip Resistor CRCW120656R0FKEA Vishay
R2 0, 5 A Chip Resistor CRCW12100000Z0EA Vishay
PCB Rogers RO4350B, 0.030,εr=3.66 D65152 MTL
MMRF5014H
13
RF Device Data
NXP Semiconductors
Figure 12. MMRF5014H Narrowband Test Circuit Schematic 2500 MHz
Z1
RF
INPUT
C1
Z2 Z3 Z4 Z5
DUT
Z13
C6
RF
OUTPUT
VBIAS VSUPPLY
C9 C10C5C14 C8
Z9
Z14
C11
R1
+
Z7
C7
Z12
C2C12 C3
Z8
Z6
Z10 Z11
Z15
C13
Z17
C4
Z16
DescriptionMicrostripDescriptionMicrostrip
Z1 1.870″×0.064Microstrip
Z2, Z3 0.030″×0.070Microstrip
Z4 0.105″×0.525Microstrip
Z5* 0.240″×0.525Microstrip
Z6 0.037″×0.050Microstrip
Z7 0.465″×0.050Microstrip
Z8 0.090″×0.050Microstrip
Z9 0.190″×0.050Microstrip
* Line length include microstrip bends
Z10 0.145″×0.515Microstrip
Z11 0.353″×0.515Microstrip
Z12 0.040″×0.064Microstrip
Z13 0.687″×0.064Microstrip
Z14 1.020″×0.064Microstrip
Z15 0.468″×0.050Microstrip
Z16 0.158″×0.050Microstrip
Z17 0.078″×0.050Microstrip
Table 10. MMRF5014H Narrowband Test Circuit Microstrips 2500 MHz
R2
14
RF Device Data
NXP Semiconductors
MMRF5014H
TYPICAL CHARACTERISTICS 2500 MHz
9
22
10
Pout, OUTPUT POWER (WATTS) PEAK
Figure 13. Power Gain versus Output Power
and Drain Voltage (1)
Gps, POWER GAIN (dB)
30
20
150 190
18
50 70 90 130
VDD =25V
50 V
17
19
21
45 V
110 170
15
14
16
12
11
13
10
IDQ = 350 mA, f = 2500 MHz
Pulse Width = 100 μsec
Duty Cycle = 20%
30 V
35 V
40 V
10
70
0
Pout, OUTPUT POWER (WATTS) PEAK
Figure 14. Drain Efficiency versus Output Power
and Drain Voltage (1)
ηD, DRAIN EFFICIENCY (%)
20
60
140 180
50
40 60 80 120
VDD =25V
50 V
40
45 V
100 160
30
20 IDQ = 350 mA, f = 2500 MHz
Pulse Width = 100 μsec
Duty Cycle = 20%
30 V 35 V 40 V
0
180
0
Pin, INPUT POWER (WATTS) PEAK
Figure 15. Output Power versus Input Power (1)
Pout, OUTPUT POWER (WATTS) PEA
K
2
160
6
140
345
TC=25°C
120
100
20 VDD =50Vdc,I
DQ = 350 mA, f = 2500 MHz
Pulse Width = 100 μsec, Duty Cycle = 20%
40
60
80
1
85°C
–55°C
Figure 16. Power Gain and Drain Efficiency
versus Output Power (1)
Pout, OUTPUT POWER (WATTS) PEAK
Gps, POWER GAIN (dB)
15
22
0
19
21
20
100 200
25_C
85_C
Gps
16
18
17
0
70
10
ηD
,
DRAIN EFFICIENCY (%)
85_C
25_C
20
20
30
40
50
60
IDQ = 350 mA, f = 2500 MHz
Pulse Width = 100 μsec
Duty Cycle = 20%
ηD
–55_C
TC= –55_C
40 60 80 140120 180160
1. Circuit tuned for maximum power.
MMRF5014H
15
RF Device Data
NXP Semiconductors
PACKAGE DIMENSIONS
Pin 1. Drain
2. Gate
3. Source
16
RF Device Data
NXP Semiconductors
MMRF5014H
MMRF5014H
17
RF Device Data
NXP Semiconductors
PRODUCT DOCUMENTATION AND TOOLS
Refer to the following resources to aid your design process.
Application Notes
AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Development Tools
Printed Circuit Boards
To Download Resources Specific to a Given Part Number:
1. Go to http://www.nxp.com/RF
2. Search by part number
3. Click part number link
4. Choose the desired resource from the drop down menu
REVISION HISTORY
The following table summarizes revisions to this document.
Revision Date Description
0May 2015 Initial Release of Data Sheet
1Sept. 2015 Table 1, Maximum Ratings: added Maximum Forward Gate Current, p. 2
Table 4, Electrical Characteristics: changed Load Mismatch/Ruggedness signal type to pulse to reflect
correct modulation signal, p. 3
2Apr. 2017 Biasing sequence for GaN depletion mode transistors: revised note to clarify correct biasing sequence for
GaNparts,p.3
500–2500 MHz wideband reference circuit: added performance data and graph, reference circuit
component layout and component designations, pp. 4–5
18
RF Device Data
NXP Semiconductors
MMRF5014H
How to Reach Us:
Home Page:
nxp.com
Web Support:
nxp.com/support
Information in this document is provided solely to enable system and software
implementers to use NXP products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits based on the information
in this document. NXP reserves the right to make changes without further notice to any
products herein.
NXP makes no warranty, representation, or guarantee regarding the suitability of its
products for any particular purpose, nor does NXP assume any liability arising out of the
application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in NXP data sheets and/or specifications can and do vary in
different applications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer application by
customer’s technical experts. NXP does not convey any license under its patent rights
nor the rights of others. NXP sells products pursuant to standard terms and conditions of
sale, which can be found at the following address: nxp.com/SalesTermsandConditions.
NXP, the NXP logo, Freescale, and the Freescale logo are trademarks of NXP B.V.
All other product or service names are the property of their respective owners.
E2015, 2017 NXP B.V.
Document Number: MMRF5014H
Rev. 2, 04/2017