©2012 Fairchild Semiconductor Corporation FDB3632_F085 Rev. C1
FDB3632_F085
FDB3632_F085
N-Channel PowerTrench® MOSFET
100V, 80A, 9m
Features
•r
DS(ON) = 7.5m (Typ.), VGS = 10 V, I D = 80A
•Q
g(tot ) = 84nC (Typ .), VGS = 10V
Low Miller Charge
•Low Q
RR Body Diode
UIS Capability (Single Pulse and Repetitive Pulse)
Qualified to AEC Q101
Applications
DC/DC converters and Off-Line UPS
Dist ributed Power Ar chitectures and VRMs
Primary Switch for 24V and 48V Systems
High Volt age Synch ronous Recti fier
Direct Injection / Diesel Injection Systems
42V Automot ive Load Control
Electronic Val v e Train Systems
MOSFET Maximum R at ings TC = 25°C unless ot herwise noted
Thermal Chara cteristics
Thi s produ ct has bee n desi gned to mee t the ex treme te st condi ti ons an d environme nt de mande d by the au tomot ive indust ry. For a
copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/
Reliability data can be found at: http://www.fairchildsemi.co m/products/discrete/reliability/index.html.
All Fairchild Semiconductor produc ts are ma nufactured, a ssembled and teste d under ISO9000 and QS9000 quality systems
certification.
Symbol Parameter Ratings Units
VDSS Drain to Source Voltage 100 V
VGS Gate to Sourc e Volta ge ±20 V
ID
Drain Cur re nt 80 A
Continuous (TC < 111oC, VGS = 10V)
Continuous (Tamb = 25oC, VGS = 10V, RθJA = 43oC/W) 12 A
Pulsed Figure 4 A
EAS Single Pulse A v alanche Energy (Note 1) 338 mJ
PDPower dissipation 310 W
Derate above 25oC2.07W/
oC
TJ, TSTG Operating an d Storage Tempe rature -55 to +175 oC
RθJC Thermal Resistance J unction to Case TO-220, TO-263, TO-26 2 0.48 oC/W
RθJA Thermal Resistance Junction to Ambient TO -2 20, TO-262 (Note 2) 62 oC/W
RθJA Thermal Re sistan ce Junction t o Ambient TO-2 63, 1i n2 co pp er pad ar ea 43 oC/W
S
G
D
TO-263AB
FDB SERIES
GATE
SOURCE
DRAIN
(FLANGE)
March 2012
• RoHS Compliant
Package Marking and Order ing Information
Electrical Characteristics TC = 25°C unless ot herwise note d
Off Characteri stics
On Characteristics
Dynamic Characteristic s
Resistive Switching Characteristics (VGS = 10V)
Drain-Source Diode Character istics
Notes:
1: Starting TJ = 25°C, L = 0.12mH, IAS = 75A.
2: Pulse Width = 100s
Device Marking Device Package Reel Size Tape Width Quantity
FDB3632 FDB3632_F085 TO-263AB 330mm 24mm 800 units
Symbo l Parame ter Te st Cond itions Min Typ Max Unit s
BVDSS Drain to Source Breakdown Voltage ID = 250µA, VGS = 0V 100 - - V
IDSS Zero Gate Voltage Drain Current VDS = 8 0V - - 1 µA
VGS = 0V TC= 150oC- - 250
IGSS Gate to Source Leakage Current VGS = ±20V - - ±100 nA
VGS(TH) Gate to Source Threshold Voltage VGS = VDS, ID = 250µA2-4V
rDS(ON) Drain to Source On Resistance ID=80A, V GS=10V - 0.0075 0.009
ID=80A, VGS=10V, TC=175oC - 0.018 0.022
CISS Input Capacitance VDS = 25V, VGS = 0V,
f = 1MHz
-6000- pF
COSS Output Capacitance - 820 - pF
CRSS Rever se Tra nsfer Capacitance - 200 - pF
Qg(TOT) Total G ate Ch arg e at 10 V VGS = 0V to 10V
VDD = 50V
ID = 80A
Ig = 1.0mA
-84110nC
Qg(TH) Threshold Gate Charge VGS = 0V to 2V - 11 14 nC
Qgs Gate to Source Gate Charge - 30 - nC
Qgs2 Gate Charge Threshold to Plateau - 20 - nC
Qgd Gate to Drain “Miller” Charge - 20 - nC
tON Turn-On Time
VDD = 50V, ID = 80A
VGS = 10 V, RGS = 3.6
--102ns
td(ON) Turn-On Delay Time - 30 - ns
trRise Time - 39 - ns
td(OFF) Turn-Off Delay Time - 96 - ns
tfFall Time - 46 - ns
tOFF Turn-Off Time - - 213 ns
VSD Source to Drain Diode Voltage ISD = 80A - - 1.25 V
ISD = 40A - - 1.0 V
trr Rev erse Recovery Time ISD = 75A, dISD/dt= 100A/µs- - 64ns
QRR Reve rse Recove red Char ge ISD = 75 A, dISD/dt= 100A/µs - - 120 nC
©2012 Fairchild Semiconductor Corporation FDB3632_F085 Rev. C1
FDB3632_F085
FDB3632_F085
©2012 Fairchild Semiconductor Corporation FDB3632_F085 Rev. C1
Typical Characteristics TA = 25°C unless otherwise noted
Figure 1. Normalized Power Dissipation vs
Ambient Temperature Figure 2. Maximum Continuous Drai n Current vs
Case Temperature
Figure 3. Normalized Maximum Transient Thermal Impedance
Figure 4. Peak Current Capability
TC, CASE TEMPERATURE (oC)
POWER DISSIPATION MULTIPLIER
00255075100 175
0.2
0.4
0.6
0.8
1.0
1.2
125 150 0
25
50
75
100
125
25 50 75 100 125 150 175
ID, DRAIN CURRENT (A)
TC, CASE TEMPERATURE (oC)
VGS = 10V
CURRENT LIMITED
BY PACKAGE
0.01
0.1
1
10-5 10-4 10-3 10-2 10-1 100101
2
t, RECTANGULAR PULSE DURATION (s)
ZθJC, NORMALIZ ED
THERMAL IMPEDANCE
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
PDM
t1t2
0.5
0.2
0.1
0.05
0.01
0.02
DUTY CYCLE - DESCENDING ORDER
SINGLE PULSE
100
1000
10-5 10-4 10-3 10-2 10-1 100101
50
2000
IDM, PEAK CURRENT (A)
t, PULSE WIDTH (s)
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
VGS = 10V
TC = 25oC
I = I25 175 - TC
150
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
FDB3632_F085
©2012 Fairchild Semiconductor Corporation FDB3632_F085 Rev. C1
Figure 5. Forward Bias Safe Operating Area NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
Figure 6. Unclamped Inductive Switching
Capability
Figure 7. Transfer Characteristics Figure 8. Saturation Characteristics
Figure 9. Drain to Source On Resistance vs Drain
Current Figure 10. Normalized Drain to Source On
Resistance vs Junction Temper ature
Typical Characteristics TA = 25°C unless otherwise noted
0.1
1
10
100
110100
200
400
ID, DRAIN CURRENT (A)
VDS, DRAIN TO SOURCE VOLTAGE (V)
TJ = MAX RATED
TC = 25oC
SINGLE PULSE
LIMITED BY rDS(ON)
AREA MAY BE
OPERATION IN THIS
10µs
10ms
1ms
DC
100µs
10
100
0.1 1 10
200
0.01
IAS, AVALANCHE CURRENT (A)
tAV, TIME IN AVALANCHE (ms)
STARTING TJ = 25oC
STARTING TJ = 150oC
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R = 0
If R 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
0
30
60
90
120
150
3.0 3.5 4.0 4.5 5.0 5.5 6.0
ID, DRAIN CURRENT (A)
VGS, GATE TO SOURCE VOLTAGE (V)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
TJ = 175oC
TJ = 25oC
TJ = -55oC
0
30
60
90
120
150
01234
ID, DRAIN CURRENT (A)
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 5.5V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = 5V
TC = 25oC
VGS = 10V VGS = 6V
6
7
8
9
10
0 20406280
ID, DRAIN CURRENT (A)
VGS = 10V
DRAIN TO SOURCE ON RESISTANCE (m )
VGS = 6V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
0.5
1.0
1.5
2.0
2.5
-80 -40 0 40 80 120 160 200
NORMALIZED DRAIN TO SOURCE
TJ, JUNCTION TEMPERATURE (oC)
ON RESISTANCE
VGS = 10V, ID =80A
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
FDB3632_F085
©2012 Fairchild Semiconductor Corporation FDB3632_F085 Rev. C1
Figure 11. Normalized Gate Threshold Voltage vs
Junction Temperature Figure 12. Normalized Drain to Source
Breakdow n Voltage vs Junc tion Temperatu r e
Figure 13. Capacitance vs Drain to Source
Voltage Figure 14. Gate Charge Waveforms for Constant
Gate Currents
Typical Characteristics TA = 25°C unless otherwise noted
0.2
0.4
0.6
0.8
1.0
1.2
1.4
-80 -40 0 40 80 120 160 200
NORMALIZED GATE
TJ, JUNCTION TEMPERATURE (oC)
VGS = VDS, ID = 250µA
THRESHOLD VOLTAGE
0.9
1.0
1.1
1.2
-80 -40 0 40 80 120 160 200
TJ, JUNCTION TEMPERATURE (oC)
NORMALIZED DRAIN TO SOURCE
ID = 250µA
BREAKDO WN VOLTAGE
100
1000
10000
0.1 1 10 100
C, CAPACITANCE (pF)
VGS = 0V, f = 1MHz
CISS = CGS + CGD
COSS CDS + CGD
CRSS = CGD
VDS, DRAIN TO SOURCE VOLTAGE (V)
0
2
4
6
8
10
0 20406080100
VGS, GATE TO SOURCE VOLTAGE (V)
Qg, GATE CHARGE (nC)
VDD = 50V
ID = 80A
ID = 40A
WAVEFORMS IN
DESCENDING ORDER:
FDB3632_F085
©2012 Fairchild Semiconductor Corporation FDB3632_F085 Rev. C1
Test Circuits and Waveforms
Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Waveforms
Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms
Figure 19. Switching Time Test Circuit Figure 20. Switching Time Waveforms
tP
VGS
0.01
L
IAS
+
-
VDS
VDD
RG
DUT
VARY tP TO OBTAIN
REQUIRED PEAK IAS
0V
VDD
VDS
BVDSS
tP
IAS
tAV
0
VGS +
-
VDS
VDD
DUT
Ig(REF)
L
VDD
Qg(TH)
VGS = 2V
Qg(TOT)
VGS = 10V
VDS
VGS
Ig(REF)
0
0
Qgs Qgd
Qgs2
VGS
RL
RGS
DUT
+
-VDD
VDS
VGS
tON
td(ON)
tr
90%
10%
VDS 90%
10%
tf
td(OFF)
tOFF
90%
50%
50%
10% PULSE WIDTH
VGS
0
0
FDB3632_F085
©2012 Fairchild Semiconductor Corporation FDB3632_F085 Rev. C1
Thermal Resistance vs. Mounting Pad Area
The maximum rated junction temperature, TJM, and the
thermal resistance of the heat dissipating path determines
the maximum allowable device power dissipation, PDM, in an
application. Therefore the application’s ambient
temperature, TA (oC), and thermal resistance RθJA (oC/W)
must be reviewed to ensure that TJM is never exceeded.
Equation 1 mathematically represents the relationship and
serves as the basis for establishing the rating of the part.
In using surface mount devices such as the TO-263
package, the environment in which it is applied will have a
significant influence on the part’s current and maximum
power dissipation ratings. Precise determination of PDM is
complex and influenced by many factors:
1. Mounting pad area onto which the device is attached and
whether there is copper on one side or both sides of the
board.
2. The number of copper layers and the thickness of the
board.
3. The use of external heat sinks.
4. The use of thermal vias.
5. Air flow and board orientation.
6. For non steady state applications, the pulse width, the
duty cycle and the transient thermal response of the part,
the board and the environment they are in.
Fairchild provides thermal information to assist the
designer’s preliminary application evaluation. Figure 21
defines the RθJA for the device as a function of the top
copper (component side) area. This is for a horizontally
positioned FR-4 board with 1oz cop per after 1000 seconds
of steady state power with no air flow. This graph provides
the necessary information for calculation of the steady state
junction temperature or power dissipation. Pulse
applications can be evaluated using the Fairchild device
Spice thermal model or manually utilizing the normalized
maximum transient thermal impedance curve.
Thermal resistances corresponding to other copper areas
can be obtained from Figure 21 or by calculation using
Equation 2 or 3. Equation 2 is used for copper area defined
in inches square and equation 3 is for area in centimeters
square. The area, in square inches or square centimeters is
the top copper area including the gate and source pads.
(EQ. 1)
PDM
TJM TA
()
RθJA
-----------------------------=
Area in Inches Squared
(EQ. 2)
RθJA 26.51 19.84
0.262 Area+()
-------------------------------------+=
(EQ. 3)
RθJA 26.51 128
1.69 Area+()
----------------------------------+=
Area in Centimeters Squared
Figure 21. Thermal Resistance vs Mounting
Pad Area
20
40
60
80
110
0.1
RθJA = 26.51+ 19.84/(0.262+Area) EQ.2
RθJA (oC/W)
AREA, TOP COPPER AREA in2 (cm2)
(0.645) (6.45) (64.5)
RθJA = 26.51+ 128/(1.69+Area) EQ.3
FDB3632_F085
©2012 Fairchild Semiconductor Corporation FDB3632_F085 Rev. C1
PSPICE Electrical Model
.SUBCKT FDB3632 2 1 3 ; rev May 2002
CA 12 8 1.7e-9
Cb 15 14 2.5e-9
Cin 6 8 6.0e-9
Dbody 7 5 DbodyMOD
Dbreak 5 11 DbreakMOD
Dplcap 10 5 DplcapMOD
Ebreak 11 7 17 18 102.5
Eds 14 8 5 8 1
Egs 13 8 6 8 1
Esg 6 10 6 8 1
Evthres 6 21 19 8 1
Evtemp 20 6 18 22 1
It 8 17 1
Lgate 1 9 5.61e-9
Ldrain 2 5 1.0e-9
Lsource 3 7 2.7e-9
RLgate 1 9 56.1
RLdrain 2 5 10
RLsource 3 7 27
Mmed 16 6 8 8 MmedMOD
Mstro 16 6 8 8 MstroMOD
Mweak 16 21 8 8 MweakMOD
Rbreak 17 18 RbreakMOD 1
Rdrain 50 16 RdrainMOD 3.8 e-3
Rgate 9 20 1.1
RSLC1 5 51 RSLCMOD 1.0e-6
RSLC2 5 50 1.0e3
Rsource 8 7 RsourceMOD 2.5e-3
Rvthres 22 8 RvthresMOD 1
Rvtemp 18 19 RvtempMOD 1
S1a 6 12 13 8 S1AMOD
S1b 13 12 13 8 S1BMOD
S2a 6 15 14 13 S2AMOD
S2b 13 15 14 13 S2BMOD
Vbat 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*350),3))}
.MODEL DbodyMOD D (IS=5.9E-11 N=1.07 RS=2.3e-3 TRS1=3.0e-3 TRS2=1.0e-6
+ CJO=4e-9 M=0.58 TT=4.8e-8 XTI=4.2)
.MODEL DbreakMOD D (R S =0.17 TRS1=3.0e -3 TRS 2 =-8.9e-6)
.MODEL DplcapMOD D (CJO=15e-10 IS=1.0e-30 N=10 M=0.6)
.MODEL MstroMOD NMOS (VTO=4.1 KP=200 IS=1e-30 N=1 0 TOX=1 L=1u W=1u)
.MODEL MmedMOD NMOS (VTO=3.4 KP=10.0 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=1.1)
.MODEL MweakMOD NMOS (VTO=2.75 KP=0. 05 IS =1e-30 N=10 TOX=1 L=1u W=1u RG=1.1e+1 RS =0 .1)
.MODEL RbreakMOD RES (TC1=1.0e-3 TC2=-1.7e-6)
.MODEL RdrainMOD RES (TC1=8.5e-3 TC2=2.8e-5)
.MODEL RSLCMOD RES (TC1=2.0e-3 TC 2=2.0e- 6)
.MODEL RsourceMOD RES (TC1=4e-3 TC2=1e-6)
.MODEL RvthresMOD RES (TC1=-4.0e-3 TC2=- 1.8e-5)
.MODEL RvtempMOD RE S (TC1=-4.4e-3 TC2=2.2e-6)
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-2)
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-4)
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.8 VOFF=0.4)
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.4 VOFF=-0.8)
.ENDS
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank
Wheatley.
18
22
+-
6
8
+
-
5
51
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ESLC
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
FDB3632_F085
©2012 Fairchild Semiconductor Corporation FDB3632_F085 Rev. C1
SABER Electrical Model
REV May 2002
template FDB3632 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
dp..model dbodymod = (isl=5.9e-11,n l=1.07,rs=2.3e-3,trs1=3.0e-3,trs2=1.0e-6,cjo=4e-9,m=0.58,tt=4.8e-8,xti=4.2)
dp..model dbreakmod = (rs=0. 17,trs1=3.0e-3,trs2=-8.9e-6)
dp..model dplcapmod = (cjo=1 5e- 10,isl=10.0e-30,nl=10,m=0.6)
m..model mstrongmod = (type=_n,vto=4.1,kp=200,is=1e-30 , tox=1)
m..model mmedmod = (type=_n,vto=3.4,kp=10.0,is=1e-30, tox=1)
m..model mweak mod = (type=_n,vto=2.75,kp=0.05,is=1e-30, tox=1,rs=0.1)
sw_vcsp..model s1a m od = (ron=1e-5,roff=0.1,von=-4,voff=-2)
sw_vcsp..model s1b m od = (ron=1e-5,roff=0.1,von=-2,voff=-4)
sw_vcsp..model s2a m od = (ron=1e-5,roff=0.1,von=-0.8,voff=0.4)
sw_vcsp..model s2b m od = (ron=1e-5,roff=0.1,von=0.4,voff=-0.8)
c.ca n12 n8 = 1.7e-9
c.cb n15 n14 = 2.5e-9
c.cin n6 n8 = 6.0e-9
dp.dbody n7 n5 = model=db odymod
dp.dbreak n5 n11 = model=dbreakm od
dp.dplcap n10 n5 = m odel=dplcapmod
spe.ebreak n11 n7 n17 n18 = 102.5
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evthres n6 n21 n19 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
i.it n8 n17 = 1
l.lgate n1 n9 = 5.61e-9
l.ldrain n2 n5 = 1.0e-9
l.lsource n3 n7 = 2.7e-9
res.rlgate n1 n9 = 56.1
res.rldrain n2 n5 = 10
res.rlsource n3 n7 = 27
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstr ongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
res.rbreak n17 n18 = 1, tc1=1.0e-3,tc2=-1.7e-6
res.rdrain n50 n16 = 3.8e-3, tc1=8.5e-3 ,tc2=2.8e-5
res.rg ate n9 n20 = 1.1
res.rslc1 n5 n51 = 1.0e-6, tc 1=2.0e-3,tc2=2.0e-6
res.rs lc2 n5 n50 = 1.0e3
res.rsource n8 n7 = 2.5e-3, tc1=4e- 3,tc 2=1e-6
res.rvthres n22 n8 = 1, tc1=-4.0e-3,tc2=-1.8e-5
res.rvtemp n18 n19 = 1, tc1=-4.4e -3,tc2=2.2e -6
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/350))** 3))
}
}
18
22
+-
6
8
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK
DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ISCL
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
FDB3632_F085
©2012 Fairchild Semiconductor Corporation FDB3632_F085 Rev. C1
SPICE Thermal Model
REV May 2002
FDB3632
CTHERM1 TH 6 7.5e-3
CTHERM2 6 5 8.0e-3
CTHERM3 5 4 9.0e-3
CTHERM4 4 3 2.4e-2
CTHERM5 3 2 3.4e-2
CTHERM6 2 TL 6.5e-2
RTHERM1 TH 6 3.1e-4
RTHERM2 6 5 2.5e-3
RTHERM3 5 4 2.2e-2
RTHERM4 4 3 8.1e-2
RTHERM5 3 2 1.35e-1
RTHERM6 2 TL 1.5e-1
SABER Thermal Model
SABER thermal model FDB3632
templ a te thermal_ model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 =7 .5e-3
ctherm.ctherm2 6 5 =8.0e-3
ctherm.ctherm3 5 4 =9.0e-3
ctherm.ctherm4 4 3 =2.4e-2
ctherm.ctherm5 3 2 =3.4e-2
ctherm.ctherm6 2 tl =6.5e-2
rtherm.rtherm1 th 6 =3.1e-4
rtherm. rtherm2 6 5 =2.5e-3
rtherm. rtherm3 5 4 =2.2e-2
rtherm. rtherm4 4 3 =8.1e-2
rtherm. rtherm5 3 2 =1.35e-1
rtherm.rtherm6 2 tl =1.5e-1
}
RTHERM4
RTHERM6
RTHERM5
RTHERM3
RTHERM2
RTHERM1
CTHERM4
CTHERM6
CTHERM5
CTHERM3
CTHERM2
CTHERM1
tl
2
3
4
5
6
th JUNCTION
CASE
TRADEMARKS
The following includes regist ered and unregistered trademarks and service ma rks, owned by Fairch ild Semiconductor a nd/or its global subsi diaries, and is not
intended to be an exhaustive list of all such trademarks.
*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE
RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY
PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AN D CONDITIONS, SPECIFICALLY THE WARRANTY
THEREIN, WHICH COVERS THESE PRODUCTS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN L IFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used here in:
1. Life support devices or systems are devices or systems which, (a) are
intended for surgical impl ant into the body or (b) support or sustain life,
and (c) whose failure to perform when properly used in accordance with
instructions for use provided in the labeling, can be reasonably
expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or
system whose failure to perform can be reasonably expected to cause
the failure of the life support device or system, or to affect its safety or
effectiveness.
PRODUCT STATUS DEFINITIONS
Definition of Terms
2Cool™
AccuPower™
Auto-SPM™
AX-CAP™*
BitSiC®
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT
CTL™
Current Transfer Logic™
DEUXPEED®
Dual Cool™
EcoSPARK®
EfficentMax™
ESBC™
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®
FastvCore™
FETBench™
FlashWriter® *
FPS™
F-PFS™
FRFET®
Global Power ResourceSM
GreenBridge™
Green FPS™
Green FPS™ e-Series™
Gmax
GTO™
IntelliMAX™
ISOPLANAR™
Marking Small Speakers Sound Louder
and Better™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MicroPak2™
MillerDrive™
MotionMax™
Motion-SPM™
mWSaver™
OptoHiT™
OPTOLOGIC®
OPTOPLANAR®
PowerTrench®
PowerXS™
Programmable Active Droop™
QFET®
QS™
Quiet Series™
RapidConfigure™
Saving our world, 1mW/W/kW at a time™
SignalWise™
SmartMax™
SMART START™
Solutions for Your Success™
SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™®*
The Power Franchise®
®
TinyBoost™
TinyBuck™
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
TranSiC®
TriFault Detect™
TRUECURRENT®*
μSerDes™
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™
tm
®
tm
Datasheet Identification Product Status Definition
Advance Information Formative / In Design Datasheet contains the design specifications for product development. Specifications
may change in any manner without notice.
Preliminary First Production Datashee t contains preliminary data; supplementary data will be published at a later
date. Fairchild Semiconducto r reserves the right to make changes at any time without
notice to improve design.
No Identification Neede d Full Production Datasheet contains final specifications. Fairchild Semiconductor reser ves the right to
make changes at any time without notice to improve t he design.
Obsolete Not In Production Datasheet contains specifications on a pro duct that is discontinued by Fairchild
Semiconductor. The datasheet is for reference information only.
ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website,
www.Fairchildsemi.com, under Sales Support.
Counterfeiti ng of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products a re experiencing counte rfeiting of their
parts. Customers who i nadvert ently p urchase count erfeit parts exper ience many problems su ch as l oss of bra nd reput ation , su bstan dard per fo rmance, f ailed
application, and increase d cost of production and manuf acturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the
proliferation of coun terfeit parts. Fairchild strongly encoura ges customers to purchase Fairchild parts ei ther directl y from Fairchild or from Authorized Fairchild
Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild
Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handing and storage and provide access to Fairchild’s full range of
up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and
warranty issues that may arise. Fairchild wi ll not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is
committed to combat this global prob lem and encourage our customers to do their part in stopping th is practice by buying direct or from authorized dist ributors.
Rev. I60
tm
®
©2012 Fairchild Semiconductor Corporation FDB3632_F085 Rev. C1
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Fairchild Semiconductor:
FDB3632_F085