Numerical Index 2N3856-2N3961 ale MAXIMUM RATINGS ELECTRICAL CHARACTERISTICS sie = a || REPLACE: | PAGE Py | El] | Vee | Vee | = lire @ Ie Vegan @ | Bl] y |= TYPE z 5 MENT _ | NUMBER USE = cB E 5 2 CEISAT) Cy n_ 18 2/5 =\a @25C | B| C | (alts) | (volts) |S | (min) (max) 5 (volts) 5 3 s/e 2N3856 | S| N] MPS6513 | 5-109] RFC} 0.2W/ AJ 150 18 18,0] 100] 200] 2.0M 140M | T 2N3856A4 | S| N | MPS6513 5-109] RFC 0.2W] A] 150 30 30] 07 100} 200 2,0M 140M | T 2N3857 | S| P AFA] 0.6W | A {| 200 45 45|0] 50] 200 1.0M O.1 10M 45/E |] 4,.0M}T 2N3858 S| N{ MPS6512 5-109| RFC O.2W| A | 125 30 3010 60 | 120 2.0M 90M | T 2N3858A | S| N | MPS6566 | 5-148] RFA} 200M] A | 100 60 60; 0] 45 1.0M 90M | T 2N3859 | S| N | MPS6513 5~109] RFC} O.2W] AJ 125 30 30} 01100} 200} 2.0M 90M | T 2N3859A | S| N| MPS6566 5~-148| AFA 200M | Aj 100 60 60] 0 75 1.0M 90M | T 2N3860 S] N| MPS6514 5-109] RFC 0O.2W] A] 125 30 30 | 0} 150] 300 2.0M 90M | T 2N3861 |S] N LPA} 2.0W|A]175| 530] 530)V] 30] 200 25M 1.5 25M 20] 50M | T 2N3862 | S| N HSS | 0,36W | A | 200 50 20; 0] 50] 150 1OM | 0.25 10M 600M | T 2N3863 | S| N |} 2N3715 7-125] PMS LL7W | C | 200 70 50/0] 30] 90} 3.0A 1.0] 3.0A 0.5M|T 2N3864 [| S{N | 2N3716 7-125] PMS 117W | c | 200 110 90} 0] 30] 90] 3.0A 1.0] 3.04 O.5MjT 2N3865 S|N PMS L17W | Cc } 200 160 150} 0 30 90 3.0A 1.0 3.0A O.5M/T 2N3866 | S| N 9-91 | HPA] 5.,0W] Cc } 200 55 30} Oj] 10} 200 50M 1.0] O.1A 250M | T 2N3867 | S| P HSS 1.0W | A } 200 40 40]0 7] 40] 200 1.5A | 0.75 1,54 60M | T 2N3868 |S] P HSS 1.0W | A | 200 60 60] 0} 30] 150 1.5A | 0.75 1.54 60M | T BN3869 SIN HPA] 2.5W]C } 175 40 20]0] 20] 150 30M 0.7] 0.454 0.4G]T N3870 thru Thyristors, see Table on Page 1-154 2N3873 2N3876 | SIN LPA| 150W {C1175 140 5070} 25 | 150 LOA 1.0 10A 86] E 50M | T 2N3877 S| N | 2N4410 5-45 | AFC) 0.2W] A | 150 70 70)}0] 20] 250] 2.0M 2N3877A | S| N { 2N4410 5-45 | AFC] 0.2W | A} 150 85 8510] 204250] 2.0M 2N3878 | S{[N HPA 35W | c {| 200 120 5010}; 40] 200] 0.54 2.04, 4.0A 40 |E 40M | T 2N3879 SyN PMS 35W | Cc | 200 120 7510 12 ] 100 4.0A 1.2 4.0A 40M | T 2N3880 A RFA 0.2W | A | 200 30 15} 0 30 | 200 3.0M 50 1E 1.26 |T 2N3881 {S| N RFA | 0.6W|A | 200 60 35 | 0 1.5] 0.154 S50 | E 70M | T 2N3882 Field Effect Transistor, see Table on Page 1-166 2N3883 | GP { | 8-282] Hss| 0.3w | A | 100 25 15] 0] 30 0.2A 0.5) 0.28 LOOM | T 2N3884 thru Thyristors, see Table on Page 1-154 2N3899 2N3900 S| N | 2N5088 5*59 AFC 0.2W | A] 125 18 18 | 0 | 250 | 500 2.0M 170 |E 2N3900A | S | N | 2N5088 5-59 | AFC| 0.2W)A | 125 18 18 }0 | 250} 500] 2.0M 170 | E 2N3901 | S| N | 2N5088 5-59 | AFC| O,.2W}A {125 18 18} 0 |350] 700} 2.0M 350] E 2N3902 S| N PMS LoOW | c | 150 400 400 | 0 20 | 100 LOA 2.5 2.5A 40K [ E 2N3903 | S|N 5-11 | HSS | 0.31W] A | 135 60 40]0] 507150 10M 0.2 1OM 50}E |} 250M/T 2N3904 S| N 5-11 HSS | 0.31W] A | 135 60 40 | 0 | 100 | 300 10M 0.2 10M 100, E 300M | T 2N3905 |S] P 5-16 | HSS |] 0.31W] A | 135 40 40}0] 50/150 10M | 0.25 10M 50{E } 200M/T 2N3906 s]|P 5-16 HSS | 0.31W] A | 135 40 40 | O | 100 | 300 LOM 0.25 10M LOO JE 250M | T 2N3907 | S| N | 2N2915 11-27] DFA} 0.3W] A | 200 60 45 |0] 60] 300 10* | 0.35 1.0M 60M | T 2N3908 S| Nj 2N2916 11-27 | DFA 0.3W | A | 200 60 60 | 0 | 100 | 500 10* 0.35 1.0M 60M | T 2N3909 | Field Effect Transistor, see Table on Page 1-166 2N3910 | S| P CHP {| 0.5W | A | 200 60 50}0 4 40] 160 1.0M 0.3 10M 4.0M | T 2N3911 Ss) P CHP 0.5W )A ) 200 60 40) 0 60 | 240 L.0M 0.3 LOM 8.0M)T 2N3912 |S] P CHP | O.5W | A | 200 60 30]; 0] 90 L.OM 0.3 10M 10M | T 2N3913 Ss] P CHP 0.4W | A | 200 60 501, 0 40 | 160 1.0M 0.3 10M 4.0M/T 2N3914 | S|P CHP | 0,4W 1} A | 200 60 40} 0 | 60 | 240 1.0M 0.3 10M 8.0M|T 2N3915 S| P CHP O.4W] A 00 60 30] 0 90 , OM 0.3 10M 10M | T 2N3916 STN LPA 5.0W | | 150 150 5 0 40 | 200] 0.154 5,0] 0,154 30 50M | T 2N3917 S| N LPA 20W | C | 150 80 4010 30 | 120 1.0A 1.2 0A 15] E 30M {T 2N3918 S| N A 20W |] Cc} 150 80 40 | 0 | LOO | 300 L.OA 1.2 1,0A 30 | E 50M | T 2N3919 S| N PMS 15w jC} 150 120 60/0 40] 120 2,0A 1.2 10A 80M | T 2N3920 S|] N PMS 15W}] Cc} 150 120 60} 0} 100) 300 2.04 1.2 10A 80M | T aaa Field Effect Transistors, see Table on Page 1-166 2N3923 S| N VID 0.8wW | A | 200 150 150] 0 30} 120 25M 1.0 25M 20) E 40M | T 2N3924 | SIN 9-96 | HPA| 7.0W | c | 200 36 18 | 0 250M | T 2N3925 |S|N 9-96 | HPA 10W | C | 200 36 18 | 0 250M 1T 2N3926 S|N 9-96 HPA | 11.6W | C | 200 36 18 | 0 250M | T 2N3927 | S|N 9-96 | HPA | 23.2wW] Cc | 200 36 1840 200M | T 2N3928 }S] N PHS) 7.5W|C]175 80 40)0) 20}300]) 1.54 5.0} 1.54 200M | T 2N3929 S|N PHS 30W }C 1175 80 40] 0 20 | 300 1L.5A 5.0 1L.5A 200M | T 2N3930 |S] P AFA] 0.4W {A | 200 180 180 | O | 80 | 300 10M | 0.25 LOM | 100 40M | T 2N3931 |S|P AFA] 0.7W {| A | 200 180 180 | 0 | 80 | 300 10M | 0.25 10M | 100 40M | T 2N3932 S| N RFA 0.2W | A | 200 30 20)0 40 | 150 2.0M 50 750M | T 2N3933 Sy N RFA 0.2wW | A | 200 40 30] 0 60 | 200 2.0M 60 750M | T 3N3334 Field Effect Transistors, see Table on Page 1-166 2N3936 thru Thyristors, see Table on Page 1-154 2N3940 2N3941L_ [| S|N DFA | 0.75W | G | 200 60 45 | 0 | 400 10* 300 | E | 200M/T 2N3942 S|N DFA j 0.75W | Cc j 200 60 45 | 0 {400 10% 300 | E | 200M] T 2N3943 S|N DFA O.5W | c | 200 60 45 | 0 {400 10* 300] E 200M; T 2N3944 S| N DFA O.5W fc 7 200 60 45 | 0 | 400 1o* 300] 5 200M { T 2N3945 S| N MNS] 5.0W}C {200 70 50 ]0O] 40 | 250 | 0.154 0.5] 0.15A 60M | T 2N3946 S\N 8-286 | HSA 360M | A | 200 60 40 |0 504,150 10M 0.3 50M 50 | E 250M | T 2N3947 S|] N 8-286] HSA 360M | A | 200 60 40 | 0 | 100 | 300 10M 0.3 50M 100] E 300M | T 2N3948 S| N 9-102 | HPA 1.0W | A | 200 36 207,0 15 50M 700M | T 2N3950 |S|N 9-106] HPA 70W | C | 200 65 35 | 0 150M | T 2N3953 S| N RFA 0.2W {A {200 15 12 10 30 | 360 2.0M 40] E 1,36, T 2N3954 thru Field Effect Transistors, see Table on Page 1-166 2N3958 2N3959 |S|N 8-292| HNS | 400M | A | 200 20 12} 01} 40 | 200 10M 0.3 30M 13; E 1.3G | T 2N3960 |) S)N 8-292} HNS |} 400M] A } 200 20 12} 0} 40 } 260 LOM 8.3 30M 16} E] 1.66)T 2N396L |S|N 9-74 | HPA 10W } c | 200 65 40,0 400M | T 1-144Switching and General Purpose Transistors 2N3724, 2N3725 2N4013, 2N4014 (continued) ELECTRICAL CHARACTERISTICS (1, = 25C unless otherwise noted) Characteristic Symbol | Min | Max | Unit ON CHARACTERISTICS (continued) Collector-Emitter Saturation Voltage* Vor(sat)* Vdc a, = 10 mAdc, Ig = 1.0 mAdc) - 0, 25 I. = mAdc, I, = mAdc N 2N - . Cc 100 B 10 mA 2N3724, 2N4013 0.20 2N3725, 2N4014 - 0.26 Mp = 300 mAdc, I3e 30 mAdc) 2N3724, 2N4013 - 0.32 2N3725, 2N4014 - 0.40 (lg = 500 mAdc, I, = 50 mAdc) 2N3724, 2N4013 - 0. 42 2N3725, 2N4014 - 0. 52 de = 800 mAdc, I, = 80 mAdc) 2N3724, 2N4013 - 0. 65 2N3725, 2N4014 - 0. 80 (I, = 1.0 Ade, I,, = 100 mAde) 2N3724, 2N4013 - 0.75 2N3725, 2N4014 - 0.95 Base-Emitter Saturation Voltage* Vv * Vdc (I, = 10 mAde, Tg = 1.0 mAde) BE(sat) - 0.76 (a mAdc, I, = mAdc - . c 100 B 10 mA 0. 86 Co = 300 mAdc, I, = 30 mAdc) - 11 Gy = 500 mAdc, Ip 50 mAdc) 0.9 1.2 dg = 800 mAdc, Int 80 mAdc) - 1.5 My = 1,0 Ade, 1, = 100 mAdc) - 1.7 SMALL-SIGNAL CHARACTERISTICS Current-GainBandwidth Product fp MHz a, = 50 mAdc, Vor = 10 Vdc, f = 100 MHz) 300 - Output Capacitance Cob pF (Vop = 10 Vdc, Ip = 0, f = 140 kHz) 2N3724, 2N4013 - 12 2N3725, 2N4014 - 10 Input Capacitance Ciy pF (Var = 0.5 Vdc, Ine 0, f = 140 kHz) - 55 SWITCHING CHARACTERISTICS Turn-On Time ton - 35 ns (Vaan = 30 Vde, Vip = 3,8 Vdc 5 cc > "BE (aff) ; _ Delay Time Ig = 500 mAde, I; = 50 mAdc) a *0 ns Rise Time (See Figure 1) t. - 30 ns Turn-Off Time tote - 60 ns (Vog = 30 Vde, I, = 500 mAdc, Storage Time ~ . t - 50 ns 31 =lp2 = 50 mAdc) s Fall Time (See Figure 1) 2N3724, 2N4013 te - 25 ns 2N3725, 2N4014 - 30 * Pulse Test: Pulse Width = 300 us, Duty Cycle = 1.0%. FIGURE 1 SWITCHING TIMES TEST CIRCUIT +30Vv < > 15 -3.8V > 1.0 PF ( (o TO SAMPLING OSCILLOSCOPE 1.0k e 4 7 | Zin & 100 k22 TL t< 1.0 ns Vin = 19-7 1.0 BF 100 PULSE GENERATOR . t,. tp < 1.0ns 62 PW. ~ 1.0 ps Zin = 80.Q + == D.C. < 2.0% - ~ 8-258 RF Transistors RF POWER TRANSISTORS (Listed in order of operating test frequency and power output) ALL SILICON NPN f Pout @ Pin Type MHz Ww Ww 2N3295 30 0.3 0.012 2N3296 30 3.0 0.075 2N3297 30 12 1.2 2N2948 30 15 2.0 2N2951, 52 50 0.6 O.1 2N2949, 50 50 3.5 0.35 2N2947 50 15 2.0 2N3950 50 50 4.5 2N3298 30 0.1 - 2N3375 100 7.5 1.0 2N3818 100 15 3.0 2N3553 175 2.5 0.25 2N3961 175 4.0 0.5 2N3924 175 4.0 1.0 2N3925 175 5.0 1.3 2N3926 175 7.0 2.0 2N3927 175 12 4.0 2N3632 175 13.5 3.5 2N3137 250 0.7 0.1 2N3664 250 2.2 0.4 2N3866 400 1.0 0.1 2N3948 400 1.0 90.25 2N4012 400 3.0 (typ) 1.0 2N3375 400 3. 0 (min) 1.0 2N3733 400 10 4.0 HIGH-VOLTAGE TRANSISTORS fp (MHz) @ Ic Type Vcro min max mA 2N4924 100 100 500 20 2N4925 150 100 500 20 2N4926 200 30 300 10 2N4927 250 30 300 10 9-7 BCWwWC WW. KL)[N XQ ,' $)p0D0) 'DYi MWiwyWV BWwiwyisXsiidd;i WM WW RF Transistors 2N3924 thru 2N3927 (continued) Posh POWER OUTPUT (WATTS) Pos POWER OUTPUT (WATTS) ~ 30 "05 FIGURE 13 POWER OUTPUT vs FREQUENCY 50 70 100 , FREQUENCY (MHz) 200 FIGURE 14 POWER OUTPUT vs POWER INPUT 10 Vor = 15 Vde 15 2.0 Pin POWER INPUT (WATTS) f = 175 MHz 2.5 13.6 Vde 2N3926 300 3.0 9-100 FIGURE 15 PARALLEL EQUIVALENT INPUT RESISTANCE Pot = 3.5 W Rin, INPUT RESISTANCE (OHMS) Pour = 7.0W 30 50 70 100 200 300 f, FREQUENCY (MHz) FIGURE 16 PARALLEL EQUIVALENT INPUT CAPACITANCE 400 300 = 200 3 Poy = 38W 5 109 ~ 4 Pout = 7.0W =100 30 50 70 100 200 300 f, FREQUENCY (MHz) FIGURE 17 PARALLEL EQUIVALENT OUTPUT CAPACITANCE S 2 Pour = 3.5 W 30 50 70 100 200 300 f, FREQUENCY (MHz)2N3924 thru 2N3927 (continued) Pou, POWER OUTPUT (WATTS) Pout. POWER OUTPUT (WATTS) FIGURE 18 POWER INPUT vs FREQUENCY 2.0W 3.0W Pi. = 4.0W 30 50 70 100 f, FREQUENCY (MHz) 200 300 FIGURE 19 POWER OUTPUT vs POWER INPUT Vee = 15 Vde 13.6 Vdc f= 175 MHz 2.0 3.0 5.0 Pia, POWER INPUT (WATTS) 40 DESIGN NOTE For Class C power-amplifier designs, small-signal param- eters are not applicable. The parallel equivalent output and input and for Class C power-amplifier design are used. The parallel resistive portion of the collector load im- pedance for a power amplifier, Ri, may be computed by assuming a peak voltage swing equal to Vcc, and using the expression R, = Voc?/2P where P = RF power output. The computed R, may then be combined with the data for Class C design to complete device impedance data. RF Transistors 2N3927 Rin, INPUT RESISTANCE (OHMS) Cout, OUTPUT CAPACITANCE (pF) 9-101 INPUT CAPACITANCE (pF) FIGURE 20-- PARALLEL EQUIVALENT INPUT RESISTANCE - a baad o Pour = 6.0W > o > o y cs 70 100 f, FREQUENCY (MHz) 50 200 300 FIGURE 21 PARALLEL EQUIVALENT INPUT CAPACITANCE 2 88 88 8s38 8 Pou = 6.0W Ss eo 8 & ~100 200 300 Pout = 12 W 30 70 100 200 f, FREQUENCY (MHz) 50 300 FIGURE 22 PARALLEL EQUIVALENT OUTPUT CAPACITANCE Pos = 12 Pour = 6.0W 30 50 70 100 f, FREQUENCY (MHz) 200 300 RF Transistors 2N392A4 (sILICON) Vero O83 OA thru = 7.0.2. P, = 7.0-23.2 W 2n3927 NPN silicon annular RF power transistors, opti- mized for large-signal power-amplifier and driver applications to 300 MHz. Collector electrically connected to case; stud electrically isolated from case CASE 24 2N3925 (TO-102) a CASE 36 ( CASE 79 2N3926 2N3924 2N3927 (TO-39) (TO-60) Stud and case electrically Collector connected to case connected to emitter MAXIMUM RATINGS (Ta = 25C unless otherwise noted) Rating Symbol | 2N3924 | 2N3925| 2N3926 | 2N3927| Unit Collector-Emitter Voltage Voro 18 18 18 18 Vde Collector-Base Voltage Von 36 36 36 36 Vde Emitter-Base Voltage Vip 4.0 4.0 4.0 4.0 Vdc Collector Current Io 0.5 1.0 1.5 3.0 Adc Power Dissipation @ To = 25C Py 7.0 10 11.6 23.2 Watts Derate above 25C 40 57.1 66.3 132.5 | mw/C Operating and Storage Junction | T_, T + -65 to +200 -+ C J stg Temperature Range 9-96RF Transistors 2N3924 thru 2N3927 (continued) ELECTRICAL CHARACTERISTICS (1, = 25C unless otherwise noted) Characteristic L Conditions | Symbol { Min | Typ | Max | Unit | OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage I, = 200 mAdc All Types. BV or0(sus) 18 - - Vde Collector-Base Breakdown Voltage Iq = (0.25 mAdc, Lb =O 2N3924 thru 2N3926 BY oRO 36 - - Vde I, = 0.50 mAde, i, =0 2N3927 36 - - Emitter-Base Breakdown Voltage Ib =1.0 mAdc, I, =0 2N3924 thru 2N3926 BYE. BO 4.0 - - Vde I, = 2.0 mAdc, 1, =0 2N3927 4.0 - - E Cc Collector Cutoff Current v =15 Vde, I, =0 2N3924 thru 2N3926 I - - 0.1 | mAdc cB E 2n3927 | CBO 0.25 V..,, =15 Vde, L, = 0, T, = 150C cB E A 2N3024 thru 2N3926 - - | 5.0 2N3927 - - 10 DYNAMIC CHARACTERISTICS Current-Gain Bandwidth Product I, = 100 mAde, Vor = 13.6 Vde, f = 100 MHz fp MHz 2N3924 thru 2N3926 - 350 - I, = 200 mAdc, Vor = 13.6 Vdc, f = 100 MHz 2N3927 - 350 a Output Capacitance Yop = 13.6 Vde, I, =0, f = 100 kHz Cob pF 2N3924 thru 2N3926 - 12.5 20 2N3927 - 25 45 FUNCTIONAL TESTS 2Na924 Power Input Test Circuit Figure 1 Pin - oT 1.0 | Watt Common-Emitter Amplifier Vox = 15.6 Vde, R, = 50 ohms, Goo 60173] - | a Power Gain R,, = 50 ohms, f = 175 MHz Pr Collector Efficiency Pout = 4-0 Watts n 70 - - % 2N30925 Power Input Test Circuit Figure 1 in - - 1.3 | Watts Common-Emitter Amplifier Vog = 18.6 Vde, Rg = 50 ohms, G., 5.841 6.5 - dB Power Gain RL = 50 ohms, f = 175 MHz P Collector Efficiency Pout ~ 5-0 Watts 7 70 . . % 2N3926 Power Input Test Circuit Figure 1 in - - 2.0 | Watts Common-Emitter Amplifier Vog = 15-6 Vde, Rg = 50 ohms, G 5.44{ 6.0 | - | ap Power Gain RL = 50 ohms, f = 175 MHz pe Collector Efficiency Pout ~ 7-0 Watts 7 70 . - % 2N3927 Power Input Test Circuit Figure 1 in - - 4.0 | Watts Common-Emitter Amplifier Vor = 13.6 Vde, Rs = 50 ohms, G 4.77} 5.0 - dB Power Gain R, = 50 ohms, f = 175 MHz pe Collector Efficiency Pout * 12 Watts 7 80 . . * Pulsed thru a 25-mH inductor (See Figure 2) FIGURE 1175 MHz TEST CIRCUIT FIGURE 2 PULSE TEST CIRCUIT C Cy ly i TO o PULSED @ " 10X PROBE SCOPE 60 Hz S eetay VERT. 50% DUTY TEKTRONX |_cy CYCLE ote pine OR 10 L QUIVALENT _TrexTRONIX 503 OR mH EQUIVALENT I$ +ec = POWER 13.6 Vde SUPPLY C1, C3, Cy os... 5-50 pF (Air variable) Ly 11/2 turns #14 AWG tinned wire; POWER C;.. . 7-100 pF (Air variable) 3/8 ID Air wound; winding length SUPPLY Cs -470 pF (Disc ceramic) 3/16; base tapped 1 turn from JO SCOPE GQ. 0.01 pF (Disc ceramic) ground HORIZONTAL c;. +. 0.001 juF (Disc ceramic) Lz RFC L SENSING L; 2 turns #14 AWG tinned wire; = = 1/4 ID Air wound; winding length 3/16 9-97RF Transistors 2N3924 thru 2N3927 (continued) Pout, POWER OUTPUT (WATTS) Pout, POWER OUTPUT (WATTS) nd CLASS C DESIGN DATA FOR V; = 13.6 Wde, T. = 25C (Emitter Grounded Directly to the Chassis No Tuned-Emitter Techniques Used) 2N3924 FIGURE 5 PARALLEL EQUIVALENT INPUT RESISTANCE FIGURE 3 POWER OUTPUT vs FREQUENCY Rig, INPUT RESISTANCE (OHMS) P= 0.25 0 "30 50 70 100 200 {, FREQUENCY (MHZ) FIGURE (} PARALLEL EQUIVALENT INPUT CAPACITANCE 30 50 70 100 200 300 f, FREQUENCY (MHz) FIGURE 4 POWER OUTPUT vs POWER INPUT Ci, INPUT CAPACITANCE (pF) 8.0 Vcg = 15 Vdc 6.0 30 50 70 100 200 f, FREQUENCY (MHz) 13.6 Vde 40 FIGURE 7 ~- PARALLEL EQUIVALENT QUTPUT CAPACITANCE Pow = 4.00 0 05 10 15 2.0 Pi, POWER INPUT (WATTS) Pout = 2.00 Cous, OUTPUT CAPACITANCE (pF) 30 50 70 100 200 1, FREQUENCY (MHz) 9-98 300 300 3002N3924 thru 2N3927 (continued) FIGURE 8 - POWER QUTPUT vs FREQUENCY Pi, = O.5W 1.0W 20W--~3.0W Voce = 13.6 Vde Pour, POWER OUTPUT (WATTS) x 50 79 100 f, FREQUENCY (MHz) 200 FIGURE S POWER OUTPUT vs POWER INPUT Vce = 15 Vde 13.6 Vde 12 Vde P;,, POWER INPUT (WATTS) {= 175 MHz 0.5 10 15 2.0 25 Pip, POWER INPUT (WATTS) 3.0 RF Transistors 2N3925 9-99 ;,, INPUT CAPACITANCE (pF) R;,, INPUT RESISTANCE (OHMS) Cut, OUTPUT CAPACITANCE (pF) FIGURE 10 . PARALLEL EQUIVALENT INPUT RESISTANCE Pour = 3.0W Pour = 5.0 W 30 50 70 100 200 300 f, FREQUENCY (MHz) FIGURE 11 PARALLEL EQUIVALENT INPUT CAPACITANCE 8 s 300 200 Pout = SOW 30 50 70 100 f, FREQUENCY (MHz) 200 300 FIGURE 12 PARALLEL EQUIVALENT OUTPUT CAPACITANCE Pou = 5.0 W Pour = 3.0 30 50 70 100 200 , FREQUENCY (MHz) 300