General Description
The MAX4210/MAX4211 low-cost, low-power, high-side
power/current monitors provide an analog output volt-
age proportional to the power consumed by a load by
multiplying load current and source voltage. The
MAX4210/MAX4211 measure load current by using a
high-side current-sense amplifier, making them espe-
cially useful in battery-powered systems by not interfer-
ing with the ground path of the load.
The MAX4210 is a small, simple 6-pin power monitor
intended for limited board space applications. The
MAX4210A/B/C integrate an internal 25:1 resistor-divider
network to reduce component count. The MAX4210D/E/F
use an external resistor-divider network for greater design
flexibility.
The MAX4211 is a full-featured current and power mon-
itor. The device combines a high-side current-sense
amplifier, 1.21V bandgap reference, and two compara-
tors with open-drain outputs to make detector circuits
for overpower, overcurrent, and/or overvoltage condi-
tions. The open-drain outputs can be connected to
potentials as high as 28V, suitable for driving high-side
switches for circuit-breaker applications.
Both the MAX4210/MAX4211 feature three different cur-
rent-sense amplifier gain options: 16.67V/V, 25.00V/V, and
40.96V/V. The MAX4210 is available in 3mm x 3mm, 6-pin
TDFN and 8-pin µMAX®packages and the MAX4211 is
available in 4mm x 4mm, 16-pin thin QFN and 16-pin
TSSOP packages. Both parts are specified for the -40°C
to +85°C extended operating temperature range.
Applications
Overpower Circuit Breakers
Smart Battery Packs/Chargers
Smart Peripheral Control
Short-Circuit Protection
Power-Supply Displays
Measurement Instrumentation
Baseband Analog Multipliers
VGA Circuits
Power-Level Detectors
Features
Real-Time Current and Power Monitoring
±1.5% (max) Current-Sense Accuracy
±1.5% (max) Power-Sense Accuracy
Two Uncommitted Comparators (MAX4211)
1.21V Reference Output (MAX4211)
Three Current/Power Gain Options
100mV/150mV Current-Sense Full-Scale Voltage
+4V to +28V Input Source Voltage Range
+2.7V to +5.5V Power-Supply Voltage Range
Low Supply Current: 380µA (MAX4210)
220kHz Bandwidth
Small 6-Pin TDFN and 8-Pin µMAX Packages
(MAX4210)
MAX4210/MAX4211
High-Side Power and
Current Monitors
________________________________________________________________ Maxim Integrated Products 1
Ordering Information
+
-
MAX4211A
MAX4211B
MAX4211C
IOUT
VCC
+
RS-RS+
-
RSENSE
VSENSE
LOAD
1.21V
REFERENCE
POUT
REF
2.7V TO
5.5V
+
-
4V TO
28V
CIN1+
INHIBIT
COUT1
COUT2
LE
CIN1-
CIN2+
CIN2-
GND
25:1
PART TEMP RANGE PIN-PACKAGE TOP
MARK
MAX4210AETT-T -40°C to +85°C6 TDFN-6-EP*
(3mm x 3mm) AHF
MAX4210AEUA -40°C to +85°C 8 µMAX
Functional Diagrams
19-3285; Rev 1; 5/05
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
*EP = Exposed paddle.
Ordering Information continued at end of data sheet.
Pin Configurations and Selector Guide appear at end of data
sheet.
EVALUATION KITS
AVAILABLE
Functional Diagrams continued at end of data sheet.
µMAX is a registered trademark of Maxim Integrated Products, Inc.
MAX4210/MAX4211
High-Side Power and
Current Monitors
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS
(VCC = 5.0V, VRS+ = 25V, VSENSE = 5mV, VIN = 1.0V, VLE = 0V, RIOUT = RPOUT = 1M, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- =
GND, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kconnected to VCC, TA= -40°C to +85°C, unless otherwise noted. Typical values are at
TA= +25°C, unless otherwise noted.) (Note 1)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
VCC, IN, CIN1, CIN2 to GND....................................-0.3V to +6V
RS+, RS-, INHIBIT, LE, COUT1, COUT2 to GND ...-0.3V to +30V
IOUT, POUT, REF to GND..........................-0.3V to (VCC + 0.3V)
Differential Input Voltage (VRS+ - VRS-) .................................±5V
Maximum Current into Any Pin..........................................±10mA
Output Short-Circuit Duration to VCC or GND ........................10s
Continuous Power Dissipation (TA= +70°C)
6-Pin TDFN (derate 24.4mW/°C above +70°C) ..........1951mW
8-Pin µMAX (derate 4.5mW/°C above +70°C) .............362mW
16-Pin TSSOP (derate 9.4mW/°C above +70°C) ..........754mW
16-Pin Thin QFN (derate 25mW/°C above +70°C) .....2000mW
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
PARAMETER SYMBOL CONDITIONS
MIN
TYP
MAX
UNITS
Operating Voltage Range
(Note 2) VCC 2.7 5.5 V
Common-Mode Input Range
(Note 3) VCMR Measured at RS+ 4 28 V
MAX4210
380 570
TA = +25°C,
VCC = +5.5V MAX4211
670 960
MAX4210
670
Supply Current ICC
VCC = +5.5V MAX4211
1100
µA
MAX421_A/B/C 14 25
IRS+ VSENSE = 0mV MAX421_D/E/F 3 8
Input Bias Current
IRS- VSENSE = 0mV 3 8
µA
IN Input Bias Current IIN MAX421_D/E/F
-0.1
-1 µA
Leakage Current IRS+, IRS- VCC = 0V 0.1 1 µA
MAX421_A/B/D/E 150
VSENSE Full-Scale Voltage
(Note 4) VSENSE_FS MAX421_C/F 100 mV
IN Full-Scale Voltage
(Note 4) VIN_FS MAX421_D/E/F, VSENSE = 10mV to
100mV 1V
IN Input Voltage Range
(Note 5) VIN MAX421_D/E/F, VSENSE = 10mV to
100mV
0.16 1.10
V
VRS+ Full-Scale Voltage
(Note 4)
MAX421_A/B/C, VSENSE = 10mV to
100mV 25 V
VRS+ Input Voltage Range
(Note 5) VRS+ MAX421_A/B/C, VSENSE = 10mV to
100mV 428V
Current into IOUT = 10µA
1.5
Current into IOUT = 100µA
2.5 80
Current into POUT = 10µA
1.5
Minimum IOUT/POUT Voltage VOUT_MIN
VSENSE =
0V, VRS+ =
25V
C ur r ent i nto P O U T = 100µA
2.5 80
mV
Current out of
IOUT = 500µA
VCC -
0.25
Maximum IOUT/POUT Voltage
(Note 6) VOUT_MAX
VSENSE =
300mV,
VRS+ = 25V
Current out of
POUT = 500µA
VCC -
0.25
V
PARAMETER SYMBOL CONDITIONS
MIN TYP MAX
UNITS
MAX4211A/D
16.67
MAX4211B/E
25.00
Current-Sense Amplifier Gain VIOUT/
VSENSE MAX4211C/F
40.96
V/V
MAX421_A
0.667
MAX421_B
1.00
VPOUT/
(VSENSE x
VRS+)MAX421_C
1.64
MAX421_D
16.67
MAX421_E
25.00
Power-Sense Amplifier Gain
VPOUT/
(VSENSE x VIN)
MAX421_F
40.96
1/V
IOUT Common-Mode Rejection
CMRI MAX4211, VRS+ = 4V to 28V 60 80 dB
POUT Common-Mode Rejection
CMRP MAX421_D/E/F, VRS+ = 4V to 28V 60 80 dB
IOUT Power-Supply Rejection PSRI VCC = 2.7V to 5.5V 52 80 dB
POUT Power-Supply Rejection PSRP VCC = 2.7V to 5.5V 52 70 dB
Output Resistance for POUT,
IOUT, REF ROUT 0.5
IOUT -3dB Bandwidth
BWIOUT/SENSE
VSENSE = 100mV, VSENSE AC source 220 kHz
BWPOUT/SENSE
VSENSE = 100mV, VSENSE AC source 220
BWPOUT/VIN
VSENSE = 100mV, VIN AC source,
MAX421_D/E/F 500
POUT -3dB Bandwidth
BWPOUT/RS+
VSENSE = 100mV, VRS+ AC source,
MAX421_A/B/C 250
kHz
Capacitive-Load Stability
(POUT, IOUT, REF) CLOAD No sustained oscillations 450 pF
V
S E N S E
= 10m V to 100m V
15
Current Output (IOUT) Settling
Time to 1% of Final Value MAX4211
V
S E N S E
= 100m V to 10m V
15 µs
V
S E N S E
= 10m V to 100m V
10
V
S E N S E
= 100m V to 10m V
10
VRS+ = 4V to 25V,
VSENSE = 100mV 15
M AX 421_A/B/C
VRS+ = 25V to 4V,
VSENSE = 100mV 15
V
S E N S E
= 10m V to 100m V
10
V
S E N S E
= 100m V to 10m V
10
VIN = 160mV to 1V,
VSENSE = 100mV 10
Power Output (POUT) Settling
Time to 1% of Final Value
M AX 421_D /E /F
VIN = 1V to 160mV,
VSENSE = 100mV 10
µs
MAX4210/MAX4211
High-Side Power and
Current Monitors
_______________________________________________________________________________________ 3
ELECTRICAL CHARACTERISTICS (continued)
(VCC = 5.0V, VRS+ = 25V, VSENSE = 5mV, VIN = 1.0V, VLE = 0V, RIOUT = RPOUT = 1M, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- =
GND, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kconnected to VCC, TA= -40°C to +85°C, unless otherwise noted. Typical values are at
TA= +25°C, unless otherwise noted.) (Note 1)
PARAMETER SYMBOL CONDITIONS
MIN TYP MAX
UNITS
Power-Up Time to 1% of
Current Output Final Value
VSENSE = 100mV, CLOAD = 10pF,
MAX4211 100 µs
Power-Up Time to 1% of Power
Output Final Value VSENSE = 100mV, CLOAD = 10pF 100 µs
CLOAD = 10pF, VSENSE = -100mV to
+100mV 35
Saturation Recovery Time for
Current Out (Note 7)
CLOAD = 10pF, VSENSE = 1.5V to 100mV
35
µs
VCC = 5V, VRS+ = 10V, CLOAD = 10pF,
VSENSE = -100mV to +100mV 25
Saturation Recovery Time for
Power Out (Note 7) VCC = 5V, VRS+ = 10V, CLOAD = 10pF,
VSENSE = 1.5V to 100mV 25
µs
IREF = 0 to 100µA, TA = +25°C
1.20 1.21 1.22
Reference Voltage VREF IREF = 0 to 100µA, TA = -40°C to +85°C
1.19 1.23
V
Comparator Input Offset Common-mode voltage = REF
±0.5
±5mV
Comparator Hysteresis 5mV
Comparator Common-Mode
Low Functional test 0.1 V
Comparator Common-Mode
High Functional test VCC -
1.15
V
IBIAS -2 nA
Comparator Output Low
Voltage VOL ISINK = 1mA 0.2 0.6 V
Comparator Output-High
Leakage Current (Note 8) VPULLUP = 28V 1 µA
LE Logic Input-High Voltage
Threshold VIH 0.67 x
VCC
V
LE Logic Input-Low Voltage
Threshold VIL 0.33 x
VCC
V
LE Logic Input Internal
Pulldown Current
0.68
1
2.20
µA
INHIBIT Logic Input-High
Voltage Threshold 1.3 V
INHIBIT Logic Input-Low
Voltage Threshold 0.5 V
0.6 V
INHIBIT Logic Input Internal
Pulldown Current
0.68
1
2.20
µA
MAX4210/MAX4211
High-Side Power and
Current Monitors
4 _______________________________________________________________________________________
ELECTRICAL CHARACTERISTICS (continued)
(VCC = 5.0V, VRS+ = 25V, VSENSE = 5mV, VIN = 1.0V, VLE = 0V, RIOUT = RPOUT = 1M, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- =
GND, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kconnected to VCC, TA= -40°C to +85°C, unless otherwise noted. Typical values are at
TA= +25°C, unless otherwise noted.) (Note 1)
PARAMETER SYMBOL CONDITIONS
MIN TYP MAX
UNITS
Comparator Propagation
Delay tPD+, tPD- CLOAD = 10pF, RLOAD = 10k pullup to
VCC, 5mV overdrive s
Minimum INHIBIT Pulse
Width s
Minimum LE Pulse Width s
Comparator Power-Up
Blanking Time From VCC tON VCC from 0 to (2.7V to 5.5V)
300
µs
LATCH Setup Time tSETUP s
MAX4210A/MAX4211A (power gain = 0.667)
TA = +25°C
±0.5 ±1.5
VPOUT/
VSENSE
VSENSE = 10mV to
100mV, VRS+ = 25V
TA = TMIN to TMAX ±3.0
TA = +25°C
±0.5 ±1.5
POUT Gain Accuracy
(Note 9) VPOUT/
VRS+
VSENSE = 100mV,
VRS+ = 5V to 25V
TA = TMIN to TMAX ±3.0
%
TA = +25°C
±0.15 ±1.5
VPOUT_MAX/
FSO
VSENSE = 5mV to
100mV, VRS+ = 5V to
25V
TA = TMIN to TMAX ±3.0
% FSO*
TA = +25°C
±0.2 ±1.5
VSENSE = 150mV,
VRS+ 15V
TA = TMIN to TMAX ±3.0
VSENSE = 100mV, VRS+ 4V
±2.5
VSENSE = 100mV, VRS+ 9V
±1.2
VSENSE = 50mV, VRS+ 6V
±1.8
Total POUT Output Error
(Note 10)
VPOUT_MAX/
VPOUT
VSENSE = 25mV, VRS+ 15V
±1.8
%
TA = +25°C 1.5 5
POUT Output Offset Voltage
(Note 11)
VSENSE = 0V,
VRS+ = 25V
TA = TMIN to TMAX
15 mV
MAX4210B/MAX4211B (power gain = 1.00)
TA = +25°C
±0.5 ±1.5
VPOUT/
VSENSE
VSENSE = 10mV to
100mV, VRS+ = 25V
TA = TMIN to TMAX ±3.0
TA = +25°C
±0.5 ±1.5
POUT Gain Accuracy
(Note 9) VPOUT/
VRS+
VSENSE = 100mV,
VRS+ = 5V to 25V
TA = TMIN to TMAX ±3.0
%
MAX4210/MAX4211
High-Side Power and
Current Monitors
_______________________________________________________________________________________ 5
ELECTRICAL CHARACTERISTICS (continued)
(VCC = 5.0V, VRS+ = 25V, VSENSE = 5mV, VIN = 1.0V, VLE = 0V, RIOUT = RPOUT = 1M, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- =
GND, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kconnected to VCC, TA= -40°C to +85°C, unless otherwise noted. Typical values are at
TA= +25°C, unless otherwise noted.) (Note 1)
*FSO refers to full-scale output under the conditions: VSENSE = 100mV, VRS+ = +25V, or VIN = 1V.
PARAMETER SYMBOL CONDITIONS
MIN TYP MAX
UNITS
TA = +25°C
±0.15 ±1.5
VPOUT_MAX/
FSO
VSENSE = 5mV to
100mV, VRS+ = 5V to
25V
TA = TMIN to TMAX ±3.0
% FS O*
TA = +25°C
±0.2 ±1.5
VSENSE = 150mV,
VRS+ > 15V
TA = TMIN to TMAX ±3.0
VSENSE = 100mV, VRS+ > 4V
±2.5
VSENSE = 100mV, VRS+ > 9V
±1.2
VSENSE = 50mV, VRS+ > 6V
±1.8
Total POUT Output Error
(Note 10)
VPOUT_MAX/
VPOUT
VSENSE = 25mV, VRS+ > 15V
±1.8
%
TA = +25°C 2 6.5
POUT Output Offset Voltage
(Note 11)
VSENSE = 0V,
VRS+ = 25V
TA = TMIN to TMAX
20 mV
MAX4210C/MAX4211C (power gain = 1.64)
TA = +25°C
±0.5 ±1.5
VPOUT/
VSENSE
VSENSE = 10mV to
100mV, VRS+ = 25V TA = TMIN to TMAX ±3.0
TA = +25°C
±0.5 ±1.5
POUT Gain Accuracy
(Note 9) VPOUT/
VRS+
VSENSE = 100mV,
VRS+ = 5V to 25V
TA = TMIN to TMAX ±3.0
%
TA = +25°C
±0.15 ±1.5
VPOUT_MAX/
FSO
VSENSE = 5mV to
100mV, VRS+ = 5V
to 25V
TA = TMIN to TMAX ±3.0
% FS O*
VSENSE = 100mV, VRS+ 4V
±2.5
VSENSE = 100mV, VRS+ 9V
±1.2
VSENSE = 50mV, VRS+ 6V
±1.8
Total POUT Output Error
(Note 10)
VPOUT_MAX/
VPOUT
VSENSE = 25mV, VRS+ 15V
±1.8
%
TA = +25°C310
POUT Output Offset Voltage
(Note 11)
VSENSE = 0V,
VRS+ = 25V
TA = TMIN to TMAX
30
mV
MAX4210D/MAX4211D (power gain = 16.67)
TA = +25°C
±0.5 ±1.5
VPOUT/
VSENSE
VSENSE = 10mV to
100mV, VIN = 1V
TA = TMIN to TMAX ±3.0
TA = +25°C
±0.5 ±1.5
POUT Gain Accuracy
(Note 9) VPOUT/
VIN
VSENSE = 100mV,
VIN = 0.2V to 1V
TA = TMIN to TMAX ±3.0
%
MAX4210/MAX4211
High-Side Power and
Current Monitors
6 _______________________________________________________________________________________
ELECTRICAL CHARACTERISTICS (continued)
(VCC = 5.0V, VRS+ = 25V, VSENSE = 5mV, VIN = 1.0V, VLE = 0V, RIOUT = RPOUT = 1M, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- =
GND, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kconnected to VCC, TA= -40°C to +85°C, unless otherwise noted. Typical values are at
TA= +25°C, unless otherwise noted.) (Note 1)
*FSO refers to full-scale output under the conditions: VSENSE = 100mV, VRS+ = +25V, or VIN = 1V.
PARAMETER SYMBOL CONDITIONS
MIN
TYP
MAX
UNITS
TA = +25°C
±0.15 ±1.5
VPOUT_MAX/
FSO
VSENSE = 5mV to
100mV, VRS+ = 25V,
VIN = 0.2V to 1V
TA = TMIN to TMAX ±3.0
% FS O*
TA = +25°C
±0.2 ±1.5
VSENSE = 150mV, VRS+
= 25V, VIN = 600mV
TA = TMIN to TMAX ±3.0
VSENSE = 100mV, VRS+ = 15V,
VIN 160mV
±2.5
VSENSE = 100mV, VRS+ = 15V,
VIN 360mV
±1.2
VSENSE = 50mV, VRS+ = 15V,
VIN 240mV
±1.8
Total POUT Output Error
(Note 10)
VPOUT_MAX/
VPOUT
VSENSE = 25mV, VRS+ = 15V,
VIN 600mV
±1.8
%
TA = +25°C 1.5 5
POUT Output Offset Voltage
(Note 11)
VSENSE = 0V,
VRS+ = 25V, VIN = 1V TA = TMIN to TMAX
15 mV
MAX4210E/MAX4211E (power gain = 25.00)
TA = +25°C
±0.5 ±1.5
VPOUT/
VSENSE
VSENSE = 10mV to
100mV, VIN = 1V
TA = TMIN to TMAX ±3.0
TA = +25°C
±0.5 ±1.5
POUT Gain Accuracy
(Note 9) VPOUT/
VIN
VSENSE = 100mV,
VIN = 0.2V to 1V
TA = TMIN to TMAX ±3.0
%
TA = +25°C
±0.15 ±1.5
VPOUT_MAX/
FSO
VSENSE = 5mV to
100mV, VRS+ = 25V,
VIN = 0.2V to 1V
TA = TMIN to TMAX ±3.0
% FS O*
TA = +25°C
±0.2 ±1.5
VSENSE = 150mV,
VRS+ =25V, VIN =
600mV
TA = TMIN to TMAX ±3.0
VSENSE = 100mV, VRS+ = 15V,
VIN 160mV
±2.5
VSENSE = 100mV, VRS+ = 15V,
VIN 360mV
±1.2
VSENSE = 50mV, VRS+ = 15V,
VIN 240mV
±1.8
Total POUT Output Error
(Note 10)
VPOUT_MAX/
VPOUT
VSENSE = 25mV, VRS+ = 15V,
VIN 600mV
±1.8
%
TA = +25°C 2 6.5
POUT Output Offset Voltage
(Note 11)
VSENSE = 0V,
VRS+ = 25V, VIN = 1V
TA = TMIN to TMAX
20 mV
MAX4210/MAX4211
High-Side Power and
Current Monitors
_______________________________________________________________________________________ 7
ELECTRICAL CHARACTERISTICS (continued)
(VCC = 5.0V, VRS+ = 25V, VSENSE = 5mV, VIN = 1.0V, VLE = 0V, RIOUT = RPOUT = 1M, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- =
GND, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kconnected to VCC, TA= -40°C to +85°C, unless otherwise noted. Typical values are at
TA= +25°C, unless otherwise noted.) (Note 1)
*FSO refers to full-scale output under the conditions: VSENSE = 100mV, VRS+ = +25V, or VIN = 1V.
MAX4210/MAX4211
High-Side Power and
Current Monitors
8 _______________________________________________________________________________________
PARAMETER SYMBOL CONDITIONS
MIN TYP MAX
UNITS
MAX4210F/MAX4211F (power gain = 40.96)
TA = +25°C
±0.5 ±1.5
VPOUT/
VSENSE
VSENSE = 10mV to
100mV, VIN = 1V
TA = TMIN to TMAX ±3.0
TA = +25°C
±0.5 ±1.5
POUT Gain Accuracy
(Note 9) VPOUT/
VIN
VSENSE = 100mV,
VIN = 0.2V to 1V
TA = TMIN to TMAX ±3.0
%
TA = +25°C
±0.15 ±1.5
VPOUT_MAX/
FSO
VSENSE = 5mV to
100mV, VRS+ = 25V,
VIN = 0.2V to 1V
TA = TMIN to TMAX ±3.0
% FS O*
VSENSE = 100mV, VRS+ = 15V,
VIN 160mV
±2.5
VSENSE = 100mV, VRS+ = 15V,
VIN 360mV
±1.2
VSENSE = 50mV, VRS+ = 15V,
VIN 240mV
±1.8
Total POUT Output Error
(Note 10)
VPOUT_MAX/
VPOUT
VSENSE = 25mV, VRS+ = 15V,
VIN 600mV
±1.8
%
TA = +25°C310
POUT Output Offset Voltage
(Note 11)
VSENSE = 0V,
VRS+ = 25V, VIN = 1V TA = TMIN to TMAX
30 mV
MAX4211A/MAX4211D (current gain = 16.67)
TA = +25°C
±0.5 ±1.5
IOUT Gain Accuracy VIOUT/
VSENSE
VSENSE = 20mV to
100mV, VRS+ = 25V
TA = TMIN to TMAX ±3.0
%
TA = +25°C
±0.15 ±1.5
VIOUT_MAX/
FSO
VSENSE = 5mV to
100mV
TA = TMIN to TMAX ±3.0
% FS O*
TA = +25°C
±0.2 ±1.5
VSENSE = 150mV TA= TMIN to TMAX
±3.0
VSENSE = 50mV
±1.2
VSENSE = 25mV
±1.8
Total IOUT Output Error
(Note 10)
VIOUT_MAX/
VIOUT
VSENSE = 5mV ±20
%
ELECTRICAL CHARACTERISTICS (continued)
(VCC = 5.0V, VRS+ = 25V, VSENSE = 5mV, VIN = 1.0V, VLE = 0V, RIOUT = RPOUT = 1M, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- =
GND, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kconnected to VCC, TA= -40°C to +85°C, unless otherwise noted. Typical values are at
TA= +25°C, unless otherwise noted.) (Note 1)
*FSO refers to full-scale output under the conditions: VSENSE = 100mV, VRS+ = +25V, or VIN = 1V.
MAX4210/MAX4211
High-Side Power and
Current Monitors
_______________________________________________________________________________________ 9
*FSO refers to full-scale output under the conditions: VSENSE = 100mV, VRS+ = +25V, or VIN = 1V.
Note 1: All devices are 100% production tested at TA= +25°C. All temperature limits are guaranteed by design.
Note 2: Guaranteed by power-supply rejection test.
Note 3: Guaranteed by output voltage error tests (IOUT).
Note 4: Guaranteed by output voltage error tests (IOUT or POUT, or both).
Note 5: IN Input Voltage Range (MAX421_D/E/F) and VRS+ Input Voltage Range (MAX421_A/B/C) are guaranteed by design
(GBD) and not production tested. See Multiplier Transfer Characteristics graphs in the Typical Operating Characteristics.
Note 6: This test does not apply to the low gain options, MAX421_A/D, because OUT is clamped at approximately 4V.
Note 7: The device does not experience phase reversal when overdriven.
Note 8: VPULLUP is defined as an externally applied voltage through a resistor, RPULLUP, to pull up the comparator output.
Note 9: POUT gain accuracy is the sum of gain error and multiplier nonlinearity.
Note 10: Total output voltage error is the sum of gain and offset voltage errors.
Note 11: POUT Output Offset Voltage is the sum of offset and multiplier feedthrough.
PARAMETER SYMBOL CONDITIONS
MIN TYP MAX
UNITS
MAX4211B/MAX4211E (current gain = 25.00)
TA = +25°C
±0.5 ±1.5
IOUT Gain Accuracy VIOUT/
VSENSE
VSENSE = 20mV to
100mV, VRS+ = 25V
TA = TMIN to TMAX
±3.0
%
TA = +25°C
±0.15 ±1.5
VIOUT_MAX/
FSO
VSENSE = 5mV to
100mV TA = TMIN to TMAX
±3.0
% FS O*
TA = +25°C
±0.2 ±1.5
VSENSE = 150mV TA = TMIN to TMAX
±3.0
VSENSE = 50mV
±1.2
VSENSE = 25mV
±1.8
Total IOUT Output Error
(Note 10)
VIOUT_MAX/
VIOUT
VSENSE = 5mV ±20
%
MAX4211C/MAX4211F (current gain = 40.96)
TA = +25°C
±0.5 ±1.5
IOUT Gain Accuracy VIOUT/
VSENSE
VSENSE = 20mV to
100mV, VRS+ =25V TA = TMIN to TMAX
±3.0
%
TA = +25°C
±0.15 ±1.5
VIOUT_MAX/
FSO
VSENSE = 5mV to
100mV TA = TMIN to TMAX
±3.0
% FS O*
TA = +25°C
±0.2 ±1.5
VSENSE = 100mV TA = TMIN to TMAX
±3.0
VSENSE = 50mV
±1.2
VSENSE = 25mV
±1.8
Total IOUT Output Error
(Note 10)
VIOUT_MAX/
VIOUT
VSENSE = 5mV ±20
%
ELECTRICAL CHARACTERISTICS (continued)
(VCC = 5.0V, VRS+ = 25V, VSENSE = 5mV, VIN = 1.0V, VLE = 0V, RIOUT = RPOUT = 1M, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- =
GND, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kconnected to VCC, TA= -40°C to +85°C, unless otherwise noted. Typical values are at
TA= +25°C, unless otherwise noted.) (Note 1)
MAX4210/MAX4211
High-Side Power and
Current Monitors
10 ______________________________________________________________________________________
0.3
0.4
0.6
0.5
0.7
0.8
-40 10-15 35 60 85
MAX4211
SUPPLY CURRENT vs. TEMPERATURE
MAX4210/11 toc04
TEMPERATURE (°C)
SUPPLY CURRENT (mA)
VSENSE = 5mV
VCC = 5.5V
VCC = 4.0V
VCC = 2.7V
0
2
4
6
8
10
12
14
16
-40 -15 10 35 60 85
RS+/RS- BIAS CURRENT
vs. TEMPERATURE
MAX4210/11 toc05
TEMPERATURE (°C)
BIAS CURRENT (µA)
RS+ (D/E/F VERSIONS)
RS+ (A/B/C VERSIONS)
VRS+ = VRS- = 25V
RS-
0
2
4
6
8
10
12
14
16
4128 16202428
RS+/RS- BIAS CURRENT
vs. COMMON-MODE VOLTAGE
MAX4210/11 toc06
COMMON-MODE VOLTAGE (V)
BIAS CURRENT (µA)
RS-
RS+ (D/E/F VERSIONS)
RS+ (A/B/C VERSIONS)
VRS+ = VRS-
-0.8
-0.6
-0.7
-0.4
-0.5
-0.1
-0.2
-0.3
0
2.7 3.53.1 3.9 4.3 4.7 5.1 5.5
POWER OUTPUT ERROR
vs. SUPPLY VOLTAGE
MAX4210/11 toc07
SUPPLY VOLTAGE (V)
OUTPUT ERROR (%)
TA = -40°C
TA = 0°C
TA = +85°C
TA = +25°C
-0.8
-0.6
-0.7
-0.4
-0.5
-0.1
-0.2
-0.3
0
2.7 3.53.1 3.9 4.3 4.7 5.1 5.5
CURRENT OUTPUT ERROR
vs. SUPPLY VOLTAGE
MAX4210/11 toc08
SUPPLY VOLTAGE (V)
OUTPUT ERROR (%)
TA = -40°C
TA = 0°C
TA = +85°C
TA = +25°C
-2.0
-1.4
-1.6
-1.8
-1.2
-1.0
-0.8
-0.6
-0.4
-0.2
0
05025 75 100 125 150
POWER OUTPUT ERROR
vs. SENSE VOLTAGE
MAX4210/11 toc09
SENSE VOLTAGE (mV)
OUTPUT ERROR (%)
TA = -40°C
TA = +85°C
TA = +25°C
TA = 0°C
0.20
0.30
0.25
0.40
0.35
0.45
0.50
-40 10-15 35 60 85
MAX4210
SUPPLY CURRENT vs. TEMPERATURE
MAX4210/11 toc03
TEMPERATURE (°C)
SUPPLY CURRENT (mA)
VCC = 5.5V
VCC = 4.0V
VCC = 2.7V
VSENSE = 5mV
VCC = 5V
0.3
0.4
0.6
0.5
0.7
0.8
2.7 3.53.1 3.9 4.3 4.7 5.1 5.5
SUPPLY CURRENT vs. SUPPLY VOLTAGE
MAX4210/11 toc01
SUPPLY VOLTAGE (V)
SUPPLY CURRENT (mA)
MAX4210
MAX4211
VSENSE = 5mV
0.2
0.4
0.3
0.6
0.5
0.7
0.8
412168 202428
SUPPLY CURRENT
vs. COMMON-MODE VOLTAGE
MAX4210/11 toc02
RS+ VOLTAGE (V)
SUPPLY CURRENT (mA)
MAX4210
MAX4211
VSENSE = 5mV
VCC = 5V
Typical Operating Characteristics
(VCC = 5.0V, VRS+ = 25V, VSENSE = 100mV, VIN = 1V, VLE = 0V, RIOUT = RPOUT = 1M, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- =
0V, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kconnected to VCC, TA= +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VCC = 5.0V, VRS+ = 25V, VSENSE = 100mV, VIN = 1V, VLE = 0V, RIOUT = RPOUT = 1M, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- =
0V, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kconnected to VCC, TA= +25°C, unless otherwise noted.)
MAX4210/MAX4211
High-Side Power and
Current Monitors
______________________________________________________________________________________ 11
24.80
24.90
24.85
25.00
24.95
25.05
25.10
-40 10-15 35 60 85
POWER GAIN vs. TEMPERATURE
MAX4210/11 toc13
TEMPERATURE (°C)
GAIN (1/V)
MAX4211E
24.70
24.80
24.75
24.90
24.85
24.95
25.00
-40 10-15 35 60 85
CURRENT GAIN vs. TEMPERATURE
MAX4210/11 toc14
TEMPERATURE (°C)
CURRENT GAIN (V/V)
MAX4211E
0
0.5
1.5
1.0
2.0
2.5
0 0.60.3 0.9 1.2 1.5
MULTIPLIER TRANSFER CHARACTERISTICS
MAX4210/11 toc15
IN VOLTAGE (V)
POUT VOLTAGE (V)
MAX4211D VSENSE = 100mV
VSENSE = 70mV
VSENSE = 30mV
0
1
3
2
4
5
0 10050 150 200 250 300
MULTIPLIER TRANSFER CHARACTERISTICS
MAX4210/11 toc16
SENSE VOLTAGE (mV)
POUT VOLTAGE (V)
VRS+ = 25V
VRS+ = 15V
VRS+ = 4V
MAX4211B
0
1.0
0.5
2.0
1.5
2.5
3.0
412168 202428
MULTIPLIER TRANSFER CHARACTERISTICS
MAX4210/11 toc17
RS+ VOLTAGE (V)
POUT VOLTAGE (V)
VSENSE = 100mV
VSENSE = 70mV
VSENSE = 30mV
MAX4211B
1.200
1.205
1.210
1.215
1.220
REFERENCE VOLTAGE
vs. SUPPLY VOLTAGE
MAX4210/11 toc18
SUPPLY VOLTAGE (V)
REFERENCE VOLTAGE (V)
2.7 3.9 4.33.1 3.5 4.7 5.1 5.5
-2.0
-1.4
-1.6
-1.8
-1.2
-1.0
-0.8
-0.6
-0.4
-0.2
0
0 400200 600 800 1000 1200
POWER OUTPUT ERROR
vs. IN VOLTAGE
MAX4210/11 toc12
IN VOLTAGE (mV)
OUTPUT ERROR (%)
TA = 0°C
TA = -40°C
TA = +25°C
TA = +85°C
-2.0
-1.4
-1.6
-1.8
-1.2
-1.0
-0.8
-0.6
-0.4
-0.2
0
05025 75 100 125 150
CURRENT OUTPUT ERROR
vs. SENSE VOLTAGE
MAX4210/11 toc10
SENSE VOLTAGE (mV)
OUTPUT ERROR (%)
TA = +85°C
TA = +25°C
TA = 0°C
TA = -40°C
-1.0
-0.4
-0.6
-0.8
0
-0.2
0.8
0.6
0.4
0.2
1.0
4 7 10 13 16 19 22 25
POWER OUTPUT ERROR vs. VRS+
MAX4210/11 toc11
VRS+ VOLTAGE (V)
OUTPUT ERROR (%)
MAX4211B
TA = -40°C
TA = 0°C
TA = +85°C
TA = +25°C
Typical Operating Characteristics (continued)
(VCC = 5.0V, VRS+ = 25V, VSENSE = 100mV, VIN = 1V, VLE = 0V, RIOUT = RPOUT = 1M, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- =
0V, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kconnected to VCC, TA= +25°C, unless otherwise noted.)
MAX4210/MAX4211
High-Side Power and
Current Monitors
12 ______________________________________________________________________________________
0
200
100
400
300
500
600
02134
COMPARATOR OUTPUT VOLTAGE (VOL)
vs. CURRENT SINK
MAX4210/11 toc22
CURRENT SINK (mA)
COUT VOLTAGE (mV)
0
50
100
150
200
250
300
350
400
-40 -15 10 35 60 85
COMPARATOR OUTPUT VOLTAGE (VOL)
vs. TEMPERATURE
MAX4210/11 toc23
TEMPERATURE (°C)
COUT VOLTAGE (mV)
CURRENT SINK = 1mA
200µs/div
COMPARATOR POWER-UP DELAY
COUT
2V/div
VCC
2V/div
MAX4210/11 toc24
5V
0V
5V
0V
2µs/div
COMPARATOR PROPAGATION DELAY
COUT
2V/div
VCIN+
MAX4210/11 toc25
VOD = 5mV
5V
0V
4µs/div
COMPARATOR AC RESPONSE
COUT
2V/div
0.95V
MAX4210/11 toc26
CIN- = 1.21V
1.45V
CIN+
5V
0V
200µs/div
POUT POWER-UP DELAY
POUT
1V/div
MAX4210/11 toc27
VCC
2V/div
MAX4211E 5V
0V
2.5V
0V
0.6
1.0
0.8
1.4
1.2
1.6
1.8
-40 10-15 356085
COMPARATOR PROPAGATION DELAY
vs. TEMPERATURE
MAX4210/11 toc21
TEMPERATURE (°C)
PROPAGATION DELAY (µs)
1.220
1.215
1.210
1.205
1.200
-40 10-15 35 60 85
REFERENCE VOLTAGE
vs. TEMPERATURE
MAX4210/11 toc19
TEMPERATURE (°C)
REFERENCE VOLTAGE (V)
0
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0 50 100 150 200
COMPARATOR PROPAGATION DELAY
vs. OVERDRIVE VOLTAGE
MAX4210/11 toc20
OVERDRIVE VOLTAGE (mV)
PROPAGATION DELAY (µs)
0.2
MAX4210/MAX4211
High-Side Power and
Current Monitors
______________________________________________________________________________________ 13
20ms/div
RS POWER-UP/DOWN RESPONSE POUT
POUT
1V/div
MAX4210/11 toc31
VRS+
5V/div
0V
0V
2.5V
10V
20ms/div
RS POWER-UP/DOWN RESPONSE IOUT
IOUT
1V/div
MAX4210/11 toc32
VRS+
5V/div
0V
0V
2.5V
10V
10µs/div
POUT SMALL-SIGNAL PULSE RESPONSE
POUT
100mV/div
MAX4210/11 toc33
VSENSE = 10mV
TO 20mV STEP
470pF
LOAD
200µs/div
IOUT POWER-UP DELAY
IOUT
1V/div
MAX4210/11 toc28
VCC
2V/div
5V
2.5V
0V
MAX4211E
0V
2ms/div
VCC POWER-UP/DOWN RESPONSE POUT
POUT
2V/div
MAX4210/11 toc29
VCC
2V/div
VSENSE = 150mV
MAX4211E
0V
0V
2ms/div
VCC POWER-UP/DOWN RESPONSE IOUT
IOUT
2V/div
MAX4210/11 toc30
VCC
2V/div
VSENSE
MAX4211E
VSENSE = 150mV
0V
0V
Typical Operating Characteristics (continued)
(VCC = 5.0V, VRS+ = 25V, VSENSE = 100mV, VIN = 1V, VLE = 0V, RIOUT = RPOUT = 1M, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- =
0V, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kconnected to VCC, TA= +25°C, unless otherwise noted.)
MAX4210/MAX4211
High-Side Power and
Current Monitors
14 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(VCC = 5.0V, VRS+ = 25V, VSENSE = 100mV, VIN = 1V, VLE = 0V, RIOUT = RPOUT = 1M, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- =
0V, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kconnected to VCC, TA= +25°C, unless otherwise noted.)
POUT COMMON-MODE REJECTION RATIO
vs. FREQUENCY
MAX4210/11 toc39
FREQUENCY (MHz)
CMRR (dB)
0.10.01
-80
-70
-60
-50
-40
-30
-20
-90
0.001 1
VSENSE = 100mV
10µs/div
POUT SLEW-RATE PULSE RESPONSE
POUT
1V/div
MAX4210/11 toc37
VSENSE = 10mV
TO 90mV STEP
NO LOAD
10µs/div
IOUT SLEW-RATE PULSE RESPONSE
IOUT
1V/div
MAX4210/11 toc38
VSENSE = 10mV
TO 90mV STEP
NO LOAD
10µs/div
POUT LARGE-SIGNAL PULSE RESPONSE
POUT
1V/div
MAX4210/11 toc35
VSENSE = 10mV
TO 90mV STEP
470pF
LOAD
10µs/div
IOUT LARGE-SIGNAL PULSE RESPONSE
POUT
1V/div
MAX4210/11 toc36
VSENSE = 10mV
TO 90mV STEP
470pF
LOAD
10µs/div
IOUT SMALL-SIGNAL PULSE RESPONSE
IOUT
100mV/div
MAX4210/11 toc34
VSENSE = 10mV
TO 20mV STEP
470pF
LOAD
MAX4210/MAX4211
High-Side Power and
Current Monitors
______________________________________________________________________________________ 15
IOUT COMMON-MODE REJECTION RATIO
vs. FREQUENCY
MAX4210/11 toc40
FREQUENCY (MHz)
CMRR (dB)
0.10.01
-80
-70
-60
-50
-40
-30
-20
-90
0.001 1
VSENSE = 100mV
POWER-SUPPLY REJECTION
vs. FREQUENCY
MAX4210/11 toc41
FREQUENCY (Hz)
PSR (dB)
10k1k100
-70
-60
-50
-40
-30
-20
-10
0
-80
10 100k
POUT SMALL-SIGNAL GAIN
vs. FREQUENCY
MAX4210/11 toc42
FREQUENCY (MHz)
GAIN (dB)
10.10.01
5
10
15
20
25
30
0
0.001 10
VSENSE = 10mVP-P
IOUT SMALL-SIGNAL GAIN
vs. FREQUENCY
MAX4210/11 toc43
FREQUENCY (MHz)
GAIN (dB)
10.10.01
5
10
15
20
25
30
0
0.001 10
VSENSE = 10mVP-P
POUT LARGE-SIGNAL GAIN
vs. FREQUENCY
MAX4210/11 toc44
FREQUENCY (MHz)
GAIN (dB)
0.10.01
5
10
15
20
25
30
0
0.001 1
VSENSE = 90mVP-P
IOUT LARGE-SIGNAL GAIN
vs. FREQUENCY
MAX4210/11 toc45
FREQUENCY (MHz)
GAIN (dB)
0.10.01
5
10
15
20
25
30
0
0.001 1
VSENSE = 90mVP-P
IN SMALL-SIGNAL GAIN
vs. FREQUENCY
MAX4210/11 toc46
FREQUENCY (MHz)
GAIN (dB)
10.10.01
-15
-10
-5
0
-20
0.001 10
VIN = 10mVP-P
MEASURED AT POUT
VSENSE = 40mV
5
Typical Operating Characteristics (continued)
(VCC = 5.0V, VRS+ = 25V, VSENSE = 100mV, VIN = 1V, VLE = 0V, RIOUT = RPOUT = 1M, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- =
0V, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kconnected to VCC, TA= +25°C, unless otherwise noted.)
MAX4210/MAX4211
High-Side Power and
Current Monitors
16 ______________________________________________________________________________________
MAX4210A/B/C Pin Description
*TDFN package only.
PIN
6 TDFN 8 µMAX NAME FUNCTION
1 1 GND Ground
2 2, 3, 6 N.C. No Connection. Not internally connected.
34 V
CC Power-Supply Voltage. Connect a 0.1µF bypass capacitor from VCC to GND.
4 5 RS+ Power Connection to External-Sense Resistor and Internal Resistor-Divider
5 7 RS- Load-Side Connection for External-Sense Resistor
6 8 POUT Power Output Voltage. Voltage output proportional to source power (input voltage
multiplied by load current).
EP EP* Exposed Paddle. EP is internally connected to GND.
MAX4210D/E/F Pin Description
*TDFN package only.
PIN
6 TDFN 8 µMAX NAME FUNCTION
1 1 GND Ground
2 2 IN Multiplier Input Voltage. Voltage input for internal multiplier.
34 V
CC Power-Supply Voltage. Connect a 0.1µF bypass capacitor from VCC to GND.
4 5 RS+ Power Connection to External-Sense Resistor
5 7 RS- Load-Side Connection for External-Sense Resistor
6 8 POUT Power Output Voltage. Voltage output proportional to source power (input voltage
multiplied by load current).
EP EP* Exposed Paddle. EP is internally connected to GND.
3, 6 N.C. No Connection. Not internally connected.
MAX4210/MAX4211
High-Side Power and
Current Monitors
______________________________________________________________________________________ 17
MAX4211A/B/C Pin Description
*Thin QFN package only.
PIN
16 THIN QFN
16 TSSOP
NAME FUNCTION
13V
CC Power-Supply Voltage. Connect a 0.1µF bypass capacitor from VCC to GND.
2 4 N.C. No Connection. Not internally connected.
35 LE
Latch Enable for Comparator 1. Driving logic low makes the comparator
transparent (regular comparator). Driving logic high latches the output.
4 6 COUT1 Op en- D r ai n C om p ar ator 1 Outp ut. LE and IN H IBIT contr ol the com p ar ator 1 outp ut.
5 7 INHIBIT INHIBIT for Comparator 1 Output. Driving logic high inhibits the comparator
operation. Drive logic low for normal operation.
6 8 COUT2 Open-Drain Comparator 2 Output
7 9 GND Ground
8 10 CIN2+ Comparator 2 Positive Input
9 11 CIN2- Comparator 2 Negative Input
10 12 CIN1+ Comparator 1 Positive Input
11 13 CIN1- Comparator 1 Negative Input
12 14 REF 1.21V Internal Reference Output
13 15 POUT Power Output Voltage. Voltage output proportional to source power (input voltage
multiplied by load current).
14 16 IOUT Current Output Voltage. Voltage output proportional to VSENSE (VRS+ - VRS-) load
current.
15 1 RS- Load-Side Connection for External-Sense Resistor
16 2 RS+ Power Connection to External-Sense Resistor and Internal Resistor-Divider
EP EP* Exposed Paddle. EP is internally connected to GND.
MAX4210/MAX4211
High-Side Power and
Current Monitors
18 ______________________________________________________________________________________
*Thin QFN package only.
MAX4211D/E/F Pin Description
Functional Diagrams
PIN
16 THIN QFN
16 TSSOP
NAME FUNCTION
13V
CC Power-Supply Voltage. Connect a 0.1µF bypass capacitor from VCC to GND.
2 4 IN Multiplier Input Voltage. Voltage input for internal multiplier.
35 LE
Latch Enable for Comparator 1. Driving logic low makes the comparator
transparent (regular comparator). Driving logic high latches the output.
4 6 COUT1 Open-Drain Comparator 1 Output. Output controlled by LE and INHIBIT.
5 7 INHIBIT INHIBIT for Comparator 1 Output. Driving logic high inhibits the comparator
operation. Drive logic low for normal operation.
6 8 COUT2 Open-Drain Comparator 2 Output
7 9 GND Ground
8 10 CIN2+ Comparator 2 Positive Input
9 11 CIN2- Comparator 2 Negative Input
10 12 CIN1+ Comparator 1 Positive Input
11 13 CIN1- Comparator 1 Negative Input
12 14 REF 1.21V Internal Reference Output
13 15 POUT Power Output Voltage. Voltage output proportional source power (input voltage
multiplied by load current).
14 16 IOUT Current Output Voltage. Voltage output proportional VSENSE (VRS+ - VRS-) load
current.
15 1 RS- Load-Side Connection for External-Sense Resistor
16 2 RS+ Power Connection to External-Sense Resistor
EP EP* Exposed Paddle. EP is internally connected to GND.
+
-
MAX4210A
MAX4210B
MAX4210C
VCC
+
RS-RS+
-
RSENSE
VSENSE
LOAD
POUT
2.7V TO
5.5V
+
-
4V TO
28V
GND
+
-
MAX4210D
MAX4210E
MAX4210F
VCC
+
RS-RS+
-
RSENSE
VSENSE
LOAD
POUT
2.7V TO
5.5V
+
-
IN
0 TO 1V
+
-
4V TO
28V
GND
25:1
Detailed Description
The MAX4210/MAX4211 families of current- and power-
monitoring ICs integrate a precision current-sense
amplifier and an analog multiplier for a variety of cur-
rent and power measurements. The MAX4211 inte-
grates an additional uncommitted 1.21V reference and
two comparators with open-drain outputs. These fea-
tures enable the design of detector circuits for over-
power, overcurrent, overvoltage, or any combination of
fault conditions. The MAX4210/MAX4211 offer various
gains, packages, and configurations allowing for
greater design flexibility and lower overall cost.
These devices monitor the load current with their high-
side current-sense amplifiers and provide an analog
output voltage proportional to that current at IOUT
(MAX4211). This voltage is fed to the analog multiplier
for multiplying the load current with a source voltage to
obtain a voltage proportional to load power at POUT.
Current-Sense Amplifier
The integrated current-sense amplifier is a differential
amplifier that amplifies the voltage across RS+ and RS-.
A sense resistor, RSENSE, is connected across RS+
and RS-. A voltage drop across RSENSE is developed
when a load current is passed through it. This voltage
is amplified and is proportional to the load current. This
voltage is also fed to the analog multiplier for power-
sensing applications (see the Analog Multiplier sec-
tion). The current-sense amplifiers feature three gain
options: 16.67V/V, 25.0V/V, and 40.96V/V (see Table 1).
MAX4210/MAX4211
High-Side Power and
Current Monitors
______________________________________________________________________________________ 19
Functional Diagrams (continued)
+
-
MAX4211A
MAX4211B
MAX4211C
IOUT
VCC
+
RS-RS+
-
RSENSE
VSENSE
LOAD
1.21V
REFERENCE
POUT
REF
2.7V TO
5.5V
+
-
4V TO
28V
CIN1+
INHIBIT
COUT1
COUT2
LE
CIN1-
CIN2+
CIN2-
GND
+
-
MAX4211D
MAX4211E
MAX4211F
IOUT
VCC
+
RS-RS+
-
RSENSE
VSENSE
LOAD
1.21V
REFERENCE
POUT
REF
2.7V TO
5.5V
+
-
0 TO 1V
+
-
4V TO
28V
CIN1+
INHIBIT
COUT1
COUT2
LE
CIN1-
CIN2+
CIN2-
GND
IN
25:1
MAX4210/MAX4211
The common-mode voltage range is +4V to +28V and
independent of the supply voltage. With this feature, the
device can monitor the output current of a high-voltage
source while running at a lower system voltage typically
between 2.7V and 5.5V.
The MAX4211 has a current-sense amplifier output. The
voltage at IOUT is proportional to the voltage across
VSENSE:
VIOUT = AVIOUT x VSENSE
where VSENSE is the voltage across RS+ and RS-, and
AVIOUT is the amplifier gain of the device given in Table 1.
Analog Multiplier
The MAX4210/MAX4211 integrate an analog multiplier
that enables real-time monitoring of power delivered to
a load. The voltage proportional to the load current is
fed to one input of the multiplier and a voltage propor-
tional to the source voltage is fed to the other. The ana-
log multiplier multiplies these two voltages to obtain an
output voltage proportional to the load power. The ana-
log multiplier is designed only to operate in the positive
quadrant, that is, the inputs and outputs are always
positive voltages.
For the MAX4210D/E/F and MAX4211D/E/F, the analog
multiplier full-scale input at IN is approximately 1V. This
independent multiplier input allows greater design flexi-
bility when using an external voltage-divider. For the
MAX4210A/B/C and MAX4211A/B/C, an integrated volt-
age-divider divides the source voltage at the RS+ pin
by a nominal value of 25 and passes this voltage to the
multiplier. Thus, the full-scale input voltage at RS+ is
25V. The integrated, trimmed resistor-dividers reduce
external component count and cost.
The voltage output at POUT is proportional to the output
power:
For the MAX4210A/B/C and MAX4211A/B/C:
VPOUT = AVPOUT x VSENSE x VRS+
For the MAX4210D/E/F and MAX4211D/E/F:
VPOUT = AVPOUT x VSENSE x VIN
where VSENSE is the voltage across RS+ and RS- and
AVPOUT is the amplifier gain of the device given in
Table 2.
Internal Comparators (MAX4211)
The MAX4211 features two uncommitted open-drain
output comparators. These comparators can be config-
ured to trip when load current or power reaches a set
limit. They can also be configured as a window com-
parator with wire-OR output. Comparator 1 (COUT1)
features latch-enable (LE) and inhibit (INHIBIT) inputs.
When LE is low, the comparator is transparent (it func-
tions as a regular unlatched comparator). When LE is
high, the comparator output (COUT1) is latched. When
high, the INHIBIT input suspends the comparator oper-
ation and latches the output to the current state. The
operation of INHIBIT is similar to LE, except it has a dif-
ferent input threshold and wider hysteresis. The INHIB-
IT logic-high threshold is 1.21V and logic-low threshold
is 0.6V with 0.6V hysteresis. INHIBIT is useful in pre-
venting the comparator from giving false output during
fast RS+ transients. INHIBIT is generally triggered by
an RC network connected to RS+ (see the Applications
Information). Both comparators have a built-in 300µs
blanking period at power-up to prevent false outputs.
The comparator outputs are open drain and they can
be pulled up to VCC, RS+, or any voltage less than
+28V. LE and INHIBIT are internally pulled down by a
1µA source.
High-Side Power and
Current Monitors
20 ______________________________________________________________________________________
PART
CURRENT-SENSE
AMPLIFIER GAIN
(AVIOUT, V/V)
FULL-SCALE
SENSE VOLTAGE
(mV)
MAX4211A/D 16.67 150
MAX4211B/E 25.00 150
MAX4211C/F 40.96 100
Table 1. MAX4211 Current-Sense
Amplifier Gain and Full-Scale Sense
Voltage
PART
POWER-SENSE
AMPLIFIER GAIN
(AVPOUT, 1/V)
FULL-SCALE
SENSE VOLTAGE
(mV)
MAX4210A 0.667 150
MAX4210B 1.000 150
MAX4210C 1.640 100
MAX4210D 16.670 150
MAX4210E 25.000 150
MAX4210F 40.960 100
MAX4211A 0.667 150
MAX4211B 1.000 150
MAX4211C 1.640 100
MAX4211D 16.670 150
MAX4211E 25.000 150
MAX4211F 40.960 100
Table 2. MAX4210/MAX4211 Power-Sense
Amplifier Gain and Full-Scale Sense
Voltage
Internal Reference (MAX4211)
The MAX4211 features a 1.21V bandgap reference out-
put, stable over supply voltage and temperature.
Typically, the reference output is connected to one of
the comparators inputs. This is the comparison refer-
ence voltage. If a lower reference voltage is needed,
use an external voltage-divider. The reference can
source or sink a load current up to 100µA.
MAX4210/MAX4211
High-Side Power and
Current Monitors
______________________________________________________________________________________ 21
+
-
MAX4211A
MAX4211B
MAX4211C
IOUT
VCC
+
RS-
-
RSENSE
VSENSE
LOAD
1.21V
REFERENCE
POUT
REF
2.7V TO
5.5V
+
-
4V TO
28V
CIN1+
INHIBIT
COUT1
COUT2
LE
CIN1-
CIN2+
R5
R4
R2
R7
RP
VPULLUP
R6
VPULLUP
R3
C1
R1
CIN2-
GND
RS+
25:1
Typical Operating Circuit
MAX4210/MAX4211
Applications Information
Recommended Component Values
Ideally, the maximum load current develops the full-
scale sense voltage across the current-sense resistor.
Choose the gain version needed to yield the maximum
current-sense amplifier output voltage without saturat-
ing it. The typical high-side saturation voltage is about
VCC - 0.25V. The current-sense amplifier output voltage
is given by:
VIOUT = VSENSE x AVIOUT
where VIOUT is the voltage fed to the analog multiplier
or at IOUT. VSENSE is the sense voltage. AVIOUT is the
current-sense amplifier gain of the device specified in
Table 1. Calculate the maximum value for RSENSE so
the differential voltage across RS+ and RS- does not
exceed the full-scale sense voltage:
Choose the highest value resistance possible to maxi-
mize VSENSE and thus minimize total output error. In
applications monitoring high current, ensure that
RSENSE is able to dissipate its own I2R power dissipa-
tion. If the resistors power dissipation is exceeded, its
value can drift or it can fail altogether, causing a differ-
ential voltage across the terminals in excess of the
absolute maximum ratings. Use resistors specified for
current-sensing applications.
Window Comparator
In some applications where undercurrent or underpow-
er (open-circuit fault) and overcurrent or overpower
(short-circuit fault) needs to be monitored, a window
comparator is desirable. Figure 1 shows a simple circuit
suitable for window detection. Let POVER be the mini-
mum load power required to cause a low state at
COUT2, and let PUNDER be the maximum load current
required to cause a high state at COUT1:
where AVPOUT is the power-sense amplifier gain given
in Table 2, and VREF is the internal reference voltage
(1.2V, typ). The resulting comparator output is high
when the current is inside the current window and low
when the current is outside the window. Note that
COUT1 and COUT2 are wire-ORed together.
Overpower Circuit Breaker
Figure 2 shows a circuit breaker that shuts off current to
the load when an overpower fault is detected (the same
circuit can be used to detect overcurrent conditions by
connecting the R1-R2 resistor-divider to IOUT, instead
of POUT). This circuit is useful for protecting the battery
from short-circuit or overpower conditions. When a
power fault is detected, the P-MOSFET, M1, is turned
off and stays off until the manual reset button is
pressed. Also, cycling the input power causes the LE
pin to go low, which unlatches the comparator output
OUT1 and resets the circuit breaker.
During power-up or when the characteristics of the load
change, there can be an inrush current into the load. The
temporary inrush current results in a higher voltage at
POUT. This can bring the voltage at CIN+ above the ref-
erence voltage at CIN-, and, as a result, COUT1 goes
high triggering the circuit-breaker function. This unwanted
behavior can be disabled by bringing comparator 1s
INHIBIT input high. An RC network connected to INHIBIT
(R4 and C1) can be incorporated to suspend comparator
1s operation for a brief period. In this way, short surges in
load power can be made invisible to the circuit-breaker
function, while longer term overpower load demands (or a
load short circuit) still trip the breaker.
The logic-high threshold for INHIBIT is typically 1.2V,
and the logic-low threshold is 0.6V. During power-up,
INHIBIT quickly exceeds 1.2V through C1 and inhibits
COUT1 from changing state. The comparator inputs are
inhibited until the INHIBIT voltage is discharged to
0.6V. R3 is a current-limiting resistor, typically 10k,
which protects the INHIBIT input. Since INHIBIT is a
high-impedance input, R3 has no effect on the R4-C1
charge/discharge time. The time during which the com-
parator is suspended is approximated by:
where V is the voltage change at the load. For
improved transient immunity, tINHIBIT can be increased
as required, with the understanding that the breaker
function will be suspended for this period.
If any comparator is not used, its input must be biased
to a known state. For example, connect CIN+ to VCC
and CIN- to GND.
tRCIn
V
V
INHIBIT .
4106
P WATTS V
AR
RR
R
P WATTS V
AR
RR
R
UNDER REF
VPOUT SENSE
OVER REF
VPOUT SENSE
()
()
=×
+
=×
+
1
4
2
2
5
5
RV
I
SENSE
SENSE FULL SCALE
LOAD FULL SCALE
()
()
=
High-Side Power and
Current Monitors
22 ______________________________________________________________________________________
Variable-Gain Amplifier
Figure 3 shows single-ended input, variable-gain ampli-
fiers (VGA). This VGA features more than 200kHz band-
width and is useful in automatic gain-control circuits
commonly found in baseband processors. The gain is
controlled by applying 0 to 1V to IN (VGC) of the
MAX4210D/E/F; 0V corresponds to minimum gain and
1V corresponds to maximum gain.
Measure Load Power
The MAX4210A/B/C and MAX4211A/B/C have internal
voltage-divider resistors connected to RS+ and the
analog multiplier input. This configuration measures
source power accurately and provides protection to the
power source such as a battery. To measure the load
power accurately, choose the MAX4210D/E/F and
MAX4211D/E/F with an external resistor-divider con-
nected directly to the load as shown in Figure 4. This
configuration improves the load-power measurement
accuracy by excluding the additional power dissipated
by RSENSE.
Power-Supply Bypassing
Bypass VCC to GND with a 0.1µF ceramic capacitor to
isolate the IC from supply-voltage transients. To pre-
vent high-frequency coupling, bypass RS+ or RS- with
a 0.1µF capacitor. On the TDFN and thin QFN pack-
ages, there is an exposed paddle that does not carry
any current, but should also be connected to the
ground plane for rated power dissipation.
MAX4210/MAX4211
High-Side Power and
Current Monitors
______________________________________________________________________________________ 23
+
-
MAX4211A
MAX4211B
MAX4211C
IOUT
VCC
+
RS-
-
RSENSE
VSENSE
LOAD
1.21V
REFERENCE
POUT
REF
2.7V TO
5.5V
+
-
4V TO
28V
CIN1+
INHIBIT
COUT1
COUT2
OVER/
UNDERPOWER
LE
CIN1-
CIN2+
R5
R4
R2
VPULLUP R1
CIN2-
GND
RS+
25:1
Figure 1. Window Comparator for Detecting Underpower and Overpower Faults (Also Detects Undercurrent and Overcurrent Faults
by R1 and R4 to IOUT Instead of POUT)
MAX4210/MAX4211
High-Side Power and
Current Monitors
24 ______________________________________________________________________________________
+
-
MAX4211A
MAX4211B
MAX4211C
IOUT
VCC
+
RS-RS+
-
RSENSE
VSENSE
LOAD
1.21V
REFERENCE
POUT
REF
2.7V TO
5.5V
+
-
4V TO
28V
CIN1+
INHIBIT
COUT1
COUT2
LE
CIN1-
CIN2+
R2
R4
MANUAL
RESET
RESET
(FROM µC)
R3
C1
R1
M1
CIN2-
GND
R5
25:1
Figure 2. Overpower Circuit Breaker (For a Detailed Example, Refer to the MAX4211E EV Kit)
MAX4210/MAX4211
High-Side Power and
Current Monitors
______________________________________________________________________________________ 25
IN
RS-
RS+
VCC
R1
R2
VOUTPUT = VINPUT
(R2/R1) AVPOUT VIN
VIN
GAIN CONTROL
(0 TO 1V)
POUT
OUTPUT
INPUT
MAX4210D/E/F
Figure 3. Single-Ended-Input, Variable-Gain Amplifier
+
-
MAX4210D/E/F
MAX4211D/E/F
VCC
+
RS-RS+
-
RSENSE
VSENSE
LOAD
IN
POUT
2.7V TO
5.5V
+
-
4V TO
28V
GND
Figure 4. Load-Power Measurement with External Voltage-Divider
MAX4210/MAX4211
High-Side Power and
Current Monitors
26 ______________________________________________________________________________________
Selector Guide
C = Current Measurement Output Available (IOUT).
P = Power Measurement Output Available (POUT).
Y = Yes.
N = No.
INT = Internal Resistor-Divider.
EXT = External Input Pin.
PART PIN-
PACKAGE
CURRENT GAIN
(V/V)
POWER GAIN (1/V)
CURRENT/
POWER
MEASUREMENT
OUTPUT
NO. OF COMPARATORS
INTERNAL
REFERENCE
VOLTAGE-
MULTIPLIER INPUT
(INTERNAL
RESISTOR-DIVIDER/
EXTERNAL INPUT)
FULL-SCALE VSENSE
VOLTAGE (mV)
MAX4210AETT
6 TDFN 0.667 P None N INT 150
MAX4210AEUA
8 µMAX 0.667 P None N INT 150
MAX4210BETT
6 TDFN 1.000 P None N INT 150
MAX4210BEUA
8 µMAX 1.000 P None N INT 150
MAX4210CETT
6 TDFN 1.640 P None N INT 100
MAX4210CEUA
8 µMAX 1.640 P None N INT 100
MAX4210DETT
6 TDFN
16.670
P None N EXT 150
MAX4210DEUA
8 µMAX
16.670
P None N EXT 150
MAX4210EETT
6 TDFN
25.000
P None N EXT 150
MAX4210EEUA
8 µMAX
25.000
P None N EXT 150
MAX4210FETT 6 TDFN
40.960
P None N EXT 100
MAX4210FEUA
8 µMAX
40.960
P None N EXT 100
MAX4211AETE
16 Thin QFN
16.67
0.667 C/P 2 Y INT 150
MAX4211AEUE
16 TSSOP
16.67
0.667 C/P 2 Y INT 150
MAX4211BETE
16 Thin QFN
25.00
1.000 C/P 2 Y INT 150
MAX4211BEUE
16 TSSOP
25.00
1.000 C/P 2 Y INT 150
MAX4211CETE
16 Thin QFN
40.96
1.640 C/P 2 Y INT 100
MAX4211CEUE
16 TSSOP
40.96
1.640 C/P 2 Y INT 100
MAX4211DETE
16 Thin QFN
16.67 16.670
C/P 2 Y EXT 150
MAX4211DEUE
16 TSSOP
16.67 16.670
C/P 2 Y EXT 150
MAX4211EETE
16 Thin QFN
25.00 25.000
C/P 2 Y EXT 150
MAX4211EEUE
16 TSSOP
25.00 25.000
C/P 2 Y EXT 150
MAX4211FETE
16 Thin QFN
40.96 40.960
C/P 2 Y EXT 100
MAX4211FEUE
16 TSSOP
40.96 40.960
C/P 2 Y EXT 100
MAX4210/MAX4211
High-Side Power and
Current Monitors
______________________________________________________________________________________ 27
Ordering Information (continued)
PART
TEMP RANGE PIN-PACKAGE
TOP
MARK
MAX4210BETT
-40°C to +85°C
6 TDFN-6-EP*
(3mm x 3mm)
AHG
MAX4210BEUA
-40°C to +85°C
8 µMAX
MAX4210CETT
-40°C to +85°C
6 TDFN-6-EP*
(3mm x 3mm)
AHH
MAX4210CEUA
-40°C to +85°C
8 µMAX
MAX4210DETT
-40°C to +85°C
6 TDFN-6-EP*
(3mm x 3mm)
AHI
MAX4210DEUA
-40°C to +85°C
8 µMAX
MAX4210EETT
-40°C to +85°C
6 TDFN-6-EP*
(3mm x 3mm)
AHJ
MAX4210EEUA
-40°C to +85°C
8 µMAX
MAX4210FETT
-40°C to +85°C
6 TDFN-6-EP*
(3mm x 3mm)
AHK
MAX4210FEUA
-40°C to +85°C
8 µMAX
MAX4211AETE
-40°C to +85°C16 Thin QFN-EP*
(4mm x 4mm)
MAX4211AEUE
-40°C to +85°C
16 TSSOP
MAX4211BETE
-40°C to +85°C16 Thin QFN-EP*
(4mm x 4mm)
MAX4211BEUE
-40°C to +85°C
16 TSSOP
MAX4211CETE
-40°C to +85°C16 Thin QFN-EP*
(4mm x 4mm)
MAX4211CEUE
-40°C to +85°C
16 TSSOP
MAX4211DETE
-40°C to +85°C16 Thin QFN-EP*
(4mm x 4mm)
MAX4211DEUE
-40°C to +85°C
16 TSSOP
MAX4211EETE
-40°C to +85°C16 Thin QFN-EP*
(4mm x 4mm)
MAX4211EEUE
-40°C to +85°C
16 TSSOP
MAX4211FETE
-40°C to +85°C16 Thin QFN-EP*
(4mm x 4mm)
MAX4211FEUE
-40°C to +85°C
16 TSSOP
*EP = Exposed paddle.
Chip Information
MAX4210 TRANSISTOR COUNT: 515
MAX4211 TRANSISTOR COUNT: 1032
PROCESS: BiCMOS
MAX4210/MAX4211
High-Side Power and
Current Monitors
28 ______________________________________________________________________________________
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
RS- IOUT
POUT
REF
CIN1-
CIN1+
CIN2-
CIN2+
GND
TOP VIEW
MAX4211
TSSOP
( ) ARE FOR MAX421_D/E/F.
RS+
VCC
COUT1
(IN) N.C.
LE
INHIBIT
COUT2
16
1234
12 11 10 9
15
14
13
5
6
7
8
RS+
RS-
IOUT
POUT
REF
CIN1-
CIN1+
CIN2-
(IN) N.C.
LE
COUT1
CIN2+
GND
COUT2
INHIBIT
VCC
MAX4211
1
2
3
4
8
7
6
5
POUT
RS-
N.C.
RS+VCC
N.C.
(IN) N.C.
GND
MAX4210
µMAX
3mm x 3mm TDFN
4mm x 4mm THIN QFN
123
654
POUT
RS-
RS+
GND
(IN) N.C.
VCC
MAX4210
Pin Configurations
MAX4210/MAX4211
High-Side Power and
Current Monitors
______________________________________________________________________________________ 29
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information
go to www.maxim-ic.com/packages.)
6, 8, &10L, DFN THIN.EPS
L
CL
C
PIN 1
INDEX
AREA
D
E
L
e
L
A
e
E2
N
G
1
2
21-0137
PACKAGE OUTLINE, 6,8,10 & 14L,
TDFN, EXPOSED PAD, 3x3x0.80 mm
-DRAWING NOT TO SCALE-
k
e
[(N/2)-1] x e
REF.
PIN 1 ID
0.35x0.35
DETAIL A
b
D2
A2
A1
COMMON DIMENSIONS
SYMBOL MIN. MAX.
A0.70 0.80
D2.90 3.10
E2.90 3.10
A1 0.00 0.05
L0.20 0.40
PKG. CODE ND2 E2 eJEDEC SPEC b[(N/2)-1] x e
PACKAGE VARIATIONS
0.25 MIN.k
A2 0.20 REF.
2.30–0.101.50–0.106T633-1 0.95 BSC MO229 / WEEA 1.90 REF0.40–0.05
1.95 REF0.30–0.05
0.65 BSC
2.30–0.108T833-1
2.00 REF0.25–0.05
0.50 BSC
2.30–0.1010T1033-1
2.40 REF0.20–0.05- - - -
0.40 BSC
1.70–0.10 2.30–0.1014T1433-1
1.50–0.10
1.50–0.10
MO229 / WEEC
MO229 / WEED-3
0.40 BSC - - - - 0.20–0.05 2.40 REFT1433-2 14 2.30–0.101.70–0.10
T633-2 6 1.50–0.10 2.30–0.10 0.95 BSC MO229 / WEEA 0.40–0.05 1.90 REF
T833-2 8 1.50–0.10 2.30–0.10 0.65 BSC MO229 / WEEC 0.30–0.05 1.95 REF
T833-3 8 1.50–0.10 2.30–0.10 0.65 BSC MO229 / WEEC 0.30–0.05 1.95 REF
-DRAWING NOT TO SCALE-
G2
2
21-0137
PACKAGE OUTLINE, 6,8,10 & 14L,
TDFN, EXPOSED PAD, 3x3x0.80 mm
DOWNBONDS
ALLOWED
NO
NO
NO
NO
YES
NO
YES
NO
NOTE: THE TDFN EXPOSED PADDLE SIZE-VARIATION PACKAGE CODE: T633-1
MAX4210/MAX4211
High-Side Power and
Current Monitors
30 ______________________________________________________________________________________
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information
go to www.maxim-ic.com/packages.)
24L QFN THIN.EPS
PACKAGE OUTLINE,
21-0139
2
1
D
12, 16, 20, 24, 28L THIN QFN, 4x4x0.8mm
PACKAGE OUTLINE,
21-0139 2
2
D
12, 16, 20, 24, 28L THIN QFN, 4x4x0.8mm
NOTE: THE THIN QFN EXPOSED PADDLE SIZE-VARIATION PACKAGE CODE: T1644-4
MAX4210/MAX4211
High-Side Power and
Current Monitors
______________________________________________________________________________________ 31
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information
go to www.maxim-ic.com/packages.)
8LUMAXD.EPS
PACKAGE OUTLINE, 8L uMAX/uSOP
1
1
21-0036 J
REV.DOCUMENT CONTROL NO.APPROVAL
PROPRIETARY INFORMATION
TITLE:
MAX
0.043
0.006
0.014
0.120
0.120
0.198
0.026
0.007
0.037
0.0207 BSC
0.0256 BSC
A2 A1
c
eb
A
L
FRONT VIEW SIDE VIEW
E H
0.60.1
0.60.1
0.50–0.1
1
TOP VIEW
D
8
A2 0.030
BOTTOM VIEW
16
S
b
L
H
E
D
e
c
0
0.010
0.116
0.116
0.188
0.016
0.005
8
4X S
INCHES
-
A1
A
MIN
0.002
0.950.75
0.5250 BSC
0.25 0.36
2.95 3.05
2.95 3.05
4.78
0.41
0.65 BSC
5.03
0.66
60
0.13 0.18
MAX
MIN
MILLIMETERS
- 1.10
0.05 0.15
α
α
DIM
MAX4210/MAX4211
High-Side Power and
Current Monitors
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
32 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2005 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products, Inc.
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information
go to www.maxim-ic.com/packages.)
TSSOP4.40mm.EPS
ENGLISH ???? ??? ???
WHAT'S NEW
PRODUCTS
SOLUTIONS
DESIGN
APPNOTES
SUPPORT
BUY
COMPANY
MEMBERS
MAX4211
Part Number Table
Notes:
See the MAX4211 QuickView Data Sheet for further information on this product family or download the
MAX4211 full data sheet (PDF, 676kB).
1.
Other options and links for purchasing parts are listed at: http://www.maxim-ic.com/sales.2.
Didn't Find What You Need? Ask our applications engineers. Expert assistance in finding parts, usually within
one business day.
3.
Part number suffixes: T or T&R = tape and reel; + = RoHS/lead-free; # = RoHS/lead-exempt. More: See full
data sheet or Part Naming Conventions.
4.
* Some packages have variations, listed on the drawing. "PkgCode/Variation" tells which variation the
product uses.
5.
Part Number
Free
Sample
Buy
Direct
Package:
TYPE PINS SIZE
DRAWING CODE/VAR *
Temp
RoHS/Lead-Free?
Materials Analysis
MAX4211AETE
THIN QFN;16 pin;4X4X0.8mm
Dwg: 21-0139E (PDF)
Use pkgcode/variation: T1644-4*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX4211EETE-T
THIN QFN;16 pin;4X4X0.8mm
Dwg: 21-0139E (PDF)
Use pkgcode/variation: T1644-4*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX4211EETE
THIN QFN;16 pin;4X4X0.8mm
Dwg: 21-0139E (PDF)
Use pkgcode/variation: T1644-4*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX4211FETE-T
THIN QFN;16 pin;4X4X0.8mm
Dwg: 21-0139E (PDF)
Use pkgcode/variation: T1644-4*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX4211DETE+
THIN QFN;16 pin;4X4X0.8mm
Dwg: 21-0139E (PDF)
Use pkgcode/variation: T1644+4*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX4211DETE-T
THIN QFN;16 pin;4X4X0.8mm
Dwg: 21-0139E (PDF)
Use pkgcode/variation: T1644-4*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX4211DETE
THIN QFN;16 pin;4X4X0.8mm
Dwg: 21-0139E (PDF)
Use pkgcode/variation: T1644-4*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX4211DETE+T
THIN QFN;16 pin;4X4X0.8mm
Dwg: 21-0139E (PDF)
Use pkgcode/variation: T1644+4*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX4211EETE+
THIN QFN;16 pin;4X4X0.8mm
Dwg: 21-0139E (PDF)
Use pkgcode/variation: T1644+4*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX4211CETE-T
-40C to +85C
RoHS/Lead-Free: No
MAX4211CETE
THIN QFN;16 pin;4X4X0.8mm
Dwg: 21-0139E (PDF)
Use pkgcode/variation: T1644-4*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX4211EETE+T
THIN QFN;16 pin;4X4X0.8mm
Dwg: 21-0139E (PDF)
Use pkgcode/variation: T1644+4*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX4211FETE+
THIN QFN;16 pin;4X4X0.8mm
Dwg: 21-0139E (PDF)
Use pkgcode/variation: T1644+4*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX4211BETE-T
-40C to +85C
RoHS/Lead-Free: No
MAX4211BETE
THIN QFN;16 pin;4X4X0.8mm
Dwg: 21-0139E (PDF)
Use pkgcode/variation: T1644-4*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX4211FETE+T
THIN QFN;16 pin;4X4X0.8mm
Dwg: 21-0139E (PDF)
Use pkgcode/variation: T1644+4*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX4211AETE-T
-40C to +85C
RoHS/Lead-Free: No
MAX4211FETE
THIN QFN;16 pin;4X4X0.8mm
Dwg: 21-0139E (PDF)
Use pkgcode/variation: T1644-4*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX4211AEUE+
TSSOP;16 pin;4.4mm
Dwg: 21-0066I (PDF)
Use pkgcode/variation: U16+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX4211AEUE+T
-40C to +85C
RoHS/Lead-Free: Yes
MAX4211EEUE-T
TSSOP;16 pin;4.4mm
Dwg: 21-0066I (PDF)
Use pkgcode/variation: U16-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX4211AEUE
TSSOP;16 pin;4.4mm
Dwg: 21-0066I (PDF)
Use pkgcode/variation: U16-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX4211AEUE-T
-40C to +85C
RoHS/Lead-Free: No
MAX4211BEUE
TSSOP;16 pin;4.4mm
Dwg: 21-0066I (PDF)
Use pkgcode/variation: U16-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX4211EEUE+T
TSSOP;16 pin;4.4mm
Dwg: 21-0066I (PDF)
Use pkgcode/variation: U16+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX4211EEUE+
TSSOP;16 pin;4.4mm
Dwg: 21-0066I (PDF)
Use pkgcode/variation: U16+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX4211BEUE-T
TSSOP;16 pin;4.4mm
Dwg: 21-0066I (PDF)
Use pkgcode/variation: U16-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX4211CEUE
TSSOP;16 pin;4.4mm
Dwg: 21-0066I (PDF)
Use pkgcode/variation: U16-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX4211CEUE-T
-40C to +85C
RoHS/Lead-Free: No
MAX4211DEUE
TSSOP;16 pin;4.4mm
Dwg: 21-0066I (PDF)
Use pkgcode/variation: U16-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX4211BEUE+T
TSSOP;16 pin;4.4mm
Dwg: 21-0066I (PDF)
Use pkgcode/variation: U16+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX4211BEUE+
TSSOP;16 pin;4.4mm
Dwg: 21-0066I (PDF)
Use pkgcode/variation: U16+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX4211FEUE-T
TSSOP;16 pin;4.4mm
Dwg: 21-0066I (PDF)
Use pkgcode/variation: U16-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX4211FEUE
TSSOP;16 pin;4.4mm
Dwg: 21-0066I (PDF)
Use pkgcode/variation: U16-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX4211DEUE-T
-40C to +85C
RoHS/Lead-Free: No
MAX4211EEUE
TSSOP;16 pin;4.4mm
Dwg: 21-0066I (PDF)
Use pkgcode/variation: U16-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
Didn't Find What You Need?
CONTACT US: SEND US AN EMAIL
C opyright 20 07 by Maxim Integrated P roducts, Dallas Semic onductor Legal Notices Privacy P olicy