The RF MOSFET Line
 
 
N–Channel Enhancement–Mode
Designed for broadband commercial and military applications using push pull
circuits at frequencies to 500 MHz. The high power, high gain and broadband
performance of these devices makes possible solid state transmitters for FM
broadcast or TV channel frequency bands.
Electrical Performance
MRF176GU @ 50 V, 400 MHz (“U” Suffix)
Output Power — 150 Watts
Power Gain — 14 dB Typ
Efficiency — 50% Typ
MRF176GV @ 50 V, 225 MHz (“V” Suffix)
Output Power — 200 Watts
Power Gain — 17 dB Typ
Efficiency — 55% Typ
100% Ruggedness Tested At Rated Output Power
Low Thermal Resistance
Low Crss — 7.0 pF Typ @ VDS = 50 V
MAXIMUM RATINGS
Rating Symbol Value Unit
Drain–Source Voltage VDSS 125 Vdc
Gate–Source Voltage VGS ±40 Vdc
Drain Current — Continuous ID16 Adc
Total Device Dissipation @ TC = 25°C
Derate above 25°CPD400
2.27 Watts
W/°C
Storage Temperature Range Tstg 65 to +150 °C
Operating Junction Temperature TJ200 °C
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Thermal Resistance, Junction to Case RθJC 0.44 °C/W
Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and
packaging MOS devices should be observed.
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic Symbol Min Typ Max Unit
OFF CHARACTERISTICS (1)
Drain–Source Breakdown Voltage
(VGS = 0, ID = 100 mA) V(BR)DSS 125 Vdc
Zero Gate Voltage Drain Current
(VDS = 50 V, VGS = 0) IDSS 2.5 mAdc
Gate–Body Leakage Current
(VGS = 20 V, VDS = 0) IGSS 1.0 µAdc
NOTE:
1. Each side of device measured separately.


200/150 W, 50 V, 500 MHz
N–CHANNEL MOS
BROADBAND
RF POWER FETs
CASE 375–04, STYLE 2

Order this document
by MRF176GU/D
SEMICONDUCTOR TECHNICAL DATA
1
REV 9
ELECTRICAL CHARACTERISTICS — continued (TC = 25°C unless otherwise noted)
Characteristic Symbol Min Typ Max Unit
ON CHARACTERISTICS (1)
Gate Threshold Voltage (VDS = 10 V, ID = 100 mA) VGS(th) 1.0 3.0 6.0 Vdc
Drain–Source On–Voltage (VGS = 10 V, ID = 5.0 A) VDS(on) 1.0 3.0 5.0 Vdc
Forward Transconductance (VDS = 10 V, ID = 2.5 A) gfs 2.0 3.0 mhos
DYNAMIC CHARACTERISTICS (1)
Input Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz) Ciss 180 pF
Output Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz) Coss 100 pF
Reverse Transfer Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz) Crss 6.0 pF
FUNCTIONAL CHARACTERISTICS — MRF176GV (2) (Figure 1)
Common Source Power Gain
(VDD = 50 Vdc, Pout = 200 W, f = 225 MHz, IDQ = 2.0 x 100 mA) Gps 15 17 dB
Drain Efficiency
(VDD = 50 Vdc, Pout = 200 W, f = 225 MHz, IDQ = 2.0 x 100 mA) η50 55 %
Electrical Ruggedness
(VDD = 50 Vdc, Pout = 200 W, f = 225 MHz, IDQ = 2.0 x 100 mA,
VSWR 10:1 at all Phase Angles)
ψNo Degradation in Output Power
NOTES:
1. Each side of device measured separately.
2. Measured in push–pull configuration.
Figure 1. 225 MHz Test Circuit
C1 — Arco 404, 8.060 pF
C2, C3, C6, C8 — 1000 pF Chip
C4, C9 — 0.1 µF Chip
C5 — 180 pF Chip
C7 — Arco 403, 3.035 pF
C10 — 0.47 µF Chip, Kemet 1215 or Equivalent
L1 — 10 Turns AWG #16 Enameled Wire,
L1 — Close Wound, 1/4 I.D.
Board material — .062 fiberglass (G10),
Two sided, 1 oz. copper, εr 5
Unless otherwise noted, all chip capacitors
are ATC Type 100 or Equivalent
L2 — Ferrite Beads of Suitable Material
L2 — for 1.52.0 µH, Total Inductance
R1 — 100 Ohms, 1/2 W
R2 — 1.0 kOhms, 1/2 W
T1 — 4:1 Impedance Ratio RF Transformer.
T1 — Can Be Made of 25 Ohm Semirigid
T1 — Co–Ax, 4762 Mils O.D.
T2 — 1:4 Impedance Ratio RF Transformer.
T2 — Can Be Made of 25 Ohm Semirigid
T2 — Co–Ax, 6290 Mils O.D.
NOTE: For stability, the input transformer T1 should be loaded
NOTE: with ferrite toroids or beads to increase the common
NOTE: mode inductance. For operation below 100 MHz. The
NOTE: same is required for the output transformer.
 

 

 


 
 



2
REV 9
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic Symbol Min Typ Max Unit
FUNCTIONAL CHARACTERISTICS — MRF176GU (1) (Figure 2)
Common Source Power Gain
(VDD = 50 Vdc, Pout = 150 W, f = 400 MHz, IDQ = 2.0 x 100 mA) Gps 12 14 dB
Drain Efficiency
(VDD = 50 Vdc, Pout = 150 W, f = 400 MHz, IDQ = 2.0 x 100 mA) η45 50 %
Electrical Ruggedness
(VDD = 50 Vdc, Pout = 150 W, f = 400 MHz, IDQ = 2.0 x 100 mA,
VSWR 10:1 at all Phase Angles)
ψNo Degradation in Output Power
NOTE:
1. Measured in push–pull configuration.
Figure 2. 400 MHz Test Circuit
B1 — Balun, 50 Semirigid Coax .086 OD 2 Long
B2 — Balun, 50 Semirigid Coax .141 OD 2 Long
C1, C2, C9, C10 — 270 pF ATC Chip Capacitor
C3 — 15 pF ATC Chip Cap
C4, C8 — 1.020 pF Piston Trimmer Cap
C5 — 27 pF ATC Chip Cap
C6, C7 — 22 pF Mini Unelco Capacitor
C11, C13, C14, C15, C16 — 0.01 µF Ceramic Capacitor
C12 — 1.0 µF 50 V Tantalum Cap
C17, C18 — 680 pF Feedthru Capacitor
C19 — 10 µF 100 V Tantalum Cap
L1, L2 — Hairpin Inductor #18 W
L3, L4 — Hairpin Inductor #18 W
L5, L6 — 13T #18 W .250 ID
L7 — Ferroxcube VK–200 20/4B
L8 — 3T #18 W .340 ID
R1 — 1.0 k 1/4 W Resistor
R2, R3 — 10 k 1/4 W Resistor
Z1, Z2 — Microstrip Line .400L x .250W
Z3, Z4 — Microstrip Line .450L x .250W
Ckt Board Material — .060 teflon–fiberglass, copper clad both sides, 2 oz. copper,
εr = 2.55




    


   
 




 


 



 


 








3
REV 9
Figure 3. Common Source Unity Current Gain*
Gain–Frequency versus Drain Current Figure 4. DC Safe Operating Area
TYPICAL CHARACTERISTICS
*Data shown applies to each half of MRF176GU/GV




 
  




   

 

 
°
Figure 5. Series Equivalent Input/Output Impedance

 








 


















 
 
 
 
 
 
 
 
  





 
 
 
 
 
 
 
 
 
 
  
   


  
     
     
     
 
                 
4
REV 9
Figure 6. Capacitance versus Drain–Source Voltage* Figure 7. Power Gain versus Frequency
TYPICAL CHARACTERISTICS
*Data shown applies to each half of MRF176GU/GV
MRF176GV
Figure 8. Power Input versus Power Output Figure 9. Output Power versus Supply Voltage







   






   
  







   

   




   








         





 

 
  
 

  
 
  
 

5
REV 9
TYPICAL CHARACTERISTICS
MRF176GU
Figure 10. Output Power versus Input Power Figure 11. Output Power versus Input Power
Figure 12. Output Power versus Supply Voltage



   









 



   









 



   










  
 
 
  
 
  
 
 
 
 
  
 
6
REV 9
NOTE: S–Parameter data represents measurements taken from one chip only.
Table 1. Common Source S–Parameters (VDS = 50 V, ID = 0.35 A)
f
S11 S21 S12 S22
f
MHz |S11|φ|S21|φ|S12|φ|S22|φ
ÁÁÁÁÁ
ÁÁÁÁÁ
30
ÁÁÁÁÁ
ÁÁÁÁÁ
0.804
ÁÁÁÁ
ÁÁÁÁ
–159
ÁÁÁÁÁ
ÁÁÁÁÁ
17.80
ÁÁÁÁ
ÁÁÁÁ
87
ÁÁÁÁÁ
ÁÁÁÁÁ
0.018
ÁÁÁÁÁ
ÁÁÁÁÁ
–1
ÁÁÁÁ
ÁÁÁÁ
0.602
ÁÁÁÁÁ
ÁÁÁÁÁ
–149
ÁÁÁÁÁ
ÁÁÁÁÁ
40
ÁÁÁÁÁ
ÁÁÁÁÁ
0.851
ÁÁÁÁ
ÁÁÁÁ
–163
ÁÁÁÁÁ
ÁÁÁÁÁ
12.50
ÁÁÁÁ
ÁÁÁÁ
77
ÁÁÁÁÁ
ÁÁÁÁÁ
0.018
ÁÁÁÁÁ
ÁÁÁÁÁ
–9
ÁÁÁÁ
ÁÁÁÁ
0.606
ÁÁÁÁÁ
ÁÁÁÁÁ
–147
ÁÁÁÁÁ
ÁÁÁÁÁ
50
ÁÁÁÁÁ
ÁÁÁÁÁ
0.846
ÁÁÁÁ
ÁÁÁÁ
–166
ÁÁÁÁÁ
ÁÁÁÁÁ
10.40
ÁÁÁÁ
ÁÁÁÁ
70
ÁÁÁÁÁ
ÁÁÁÁÁ
0.018
ÁÁÁÁÁ
ÁÁÁÁÁ
–14
ÁÁÁÁ
ÁÁÁÁ
0.610
ÁÁÁÁÁ
ÁÁÁÁÁ
–149
ÁÁÁÁÁ
ÁÁÁÁÁ
60
ÁÁÁÁÁ
ÁÁÁÁÁ
0.842
ÁÁÁÁ
ÁÁÁÁ
–167
ÁÁÁÁÁ
ÁÁÁÁÁ
8.45
ÁÁÁÁ
ÁÁÁÁ
67
ÁÁÁÁÁ
ÁÁÁÁÁ
0.017
ÁÁÁÁÁ
ÁÁÁÁÁ
–16
ÁÁÁÁ
ÁÁÁÁ
0.652
ÁÁÁÁÁ
ÁÁÁÁÁ
–154
ÁÁÁÁÁ
ÁÁÁÁÁ
70
ÁÁÁÁÁ
ÁÁÁÁÁ
0.846
ÁÁÁÁ
ÁÁÁÁ
–168
ÁÁÁÁÁ
ÁÁÁÁÁ
7.28
ÁÁÁÁ
ÁÁÁÁ
65
ÁÁÁÁÁ
ÁÁÁÁÁ
0.017
ÁÁÁÁÁ
ÁÁÁÁÁ
–15
ÁÁÁÁ
ÁÁÁÁ
0.708
ÁÁÁÁÁ
ÁÁÁÁÁ
–157
ÁÁÁÁÁ
ÁÁÁÁÁ
80
ÁÁÁÁÁ
ÁÁÁÁÁ
0.858
ÁÁÁÁ
ÁÁÁÁ
–169
ÁÁÁÁÁ
ÁÁÁÁÁ
6.13
ÁÁÁÁ
ÁÁÁÁ
63
ÁÁÁÁÁ
ÁÁÁÁÁ
0.016
ÁÁÁÁÁ
ÁÁÁÁÁ
–15
ÁÁÁÁ
ÁÁÁÁ
0.786
ÁÁÁÁÁ
ÁÁÁÁÁ
–159
ÁÁÁÁÁ
ÁÁÁÁÁ
90
ÁÁÁÁÁ
ÁÁÁÁÁ
0.875
ÁÁÁÁ
ÁÁÁÁ
–170
ÁÁÁÁÁ
ÁÁÁÁÁ
5.36
ÁÁÁÁ
ÁÁÁÁ
59
ÁÁÁÁÁ
ÁÁÁÁÁ
0.015
ÁÁÁÁÁ
ÁÁÁÁÁ
–17
ÁÁÁÁ
ÁÁÁÁ
0.883
ÁÁÁÁÁ
ÁÁÁÁÁ
–158
ÁÁÁÁÁ
ÁÁÁÁÁ
100
ÁÁÁÁÁ
ÁÁÁÁÁ
0.890
ÁÁÁÁ
ÁÁÁÁ
–171
ÁÁÁÁÁ
ÁÁÁÁÁ
4.61
ÁÁÁÁ
ÁÁÁÁ
53
ÁÁÁÁÁ
ÁÁÁÁÁ
0.014
ÁÁÁÁÁ
ÁÁÁÁÁ
–22
ÁÁÁÁ
ÁÁÁÁ
0.916
ÁÁÁÁÁ
ÁÁÁÁÁ
–157
ÁÁÁÁÁ
ÁÁÁÁÁ
110
ÁÁÁÁÁ
ÁÁÁÁÁ
0.902
ÁÁÁÁ
ÁÁÁÁ
–171
ÁÁÁÁÁ
ÁÁÁÁÁ
4.04
ÁÁÁÁ
ÁÁÁÁ
46
ÁÁÁÁÁ
ÁÁÁÁÁ
0.013
ÁÁÁÁÁ
ÁÁÁÁÁ
–29
ÁÁÁÁ
ÁÁÁÁ
0.919
ÁÁÁÁÁ
ÁÁÁÁÁ
–158
ÁÁÁÁÁ
ÁÁÁÁÁ
120
ÁÁÁÁÁ
ÁÁÁÁÁ
0.909
ÁÁÁÁ
ÁÁÁÁ
–172
ÁÁÁÁÁ
ÁÁÁÁÁ
3.41
ÁÁÁÁ
ÁÁÁÁ
41
ÁÁÁÁÁ
ÁÁÁÁÁ
0.012
ÁÁÁÁÁ
ÁÁÁÁÁ
–31
ÁÁÁÁ
ÁÁÁÁ
0.857
ÁÁÁÁÁ
ÁÁÁÁÁ
–156
ÁÁÁÁÁ
ÁÁÁÁÁ
130
ÁÁÁÁÁ
ÁÁÁÁÁ
0.915
ÁÁÁÁ
ÁÁÁÁ
–172
ÁÁÁÁÁ
ÁÁÁÁÁ
2.92
ÁÁÁÁ
ÁÁÁÁ
39
ÁÁÁÁÁ
ÁÁÁÁÁ
0.011
ÁÁÁÁÁ
ÁÁÁÁÁ
–29
ÁÁÁÁ
ÁÁÁÁ
0.819
ÁÁÁÁÁ
ÁÁÁÁÁ
–157
ÁÁÁÁÁ
ÁÁÁÁÁ
140
ÁÁÁÁÁ
ÁÁÁÁÁ
0.920
ÁÁÁÁ
ÁÁÁÁ
–173
ÁÁÁÁÁ
ÁÁÁÁÁ
2.61
ÁÁÁÁ
ÁÁÁÁ
38
ÁÁÁÁÁ
ÁÁÁÁÁ
0.010
ÁÁÁÁÁ
ÁÁÁÁÁ
–24
ÁÁÁÁ
ÁÁÁÁ
0.816
ÁÁÁÁÁ
ÁÁÁÁÁ
–160
ÁÁÁÁÁ
ÁÁÁÁÁ
150
ÁÁÁÁÁ
ÁÁÁÁÁ
0.924
ÁÁÁÁ
ÁÁÁÁ
–173
ÁÁÁÁÁ
ÁÁÁÁÁ
2.41
ÁÁÁÁ
ÁÁÁÁ
38
ÁÁÁÁÁ
ÁÁÁÁÁ
0.009
ÁÁÁÁÁ
ÁÁÁÁÁ
–20
ÁÁÁÁ
ÁÁÁÁ
0.858
ÁÁÁÁÁ
ÁÁÁÁÁ
–162
ÁÁÁÁÁ
ÁÁÁÁÁ
160
ÁÁÁÁÁ
ÁÁÁÁÁ
0.928
ÁÁÁÁ
ÁÁÁÁ
–174
ÁÁÁÁÁ
ÁÁÁÁÁ
2.24
ÁÁÁÁ
ÁÁÁÁ
38
ÁÁÁÁÁ
ÁÁÁÁÁ
0.008
ÁÁÁÁÁ
ÁÁÁÁÁ
–21
ÁÁÁÁ
ÁÁÁÁ
0.951
ÁÁÁÁÁ
ÁÁÁÁÁ
–164
ÁÁÁÁÁ
ÁÁÁÁÁ
170
ÁÁÁÁÁ
ÁÁÁÁÁ
0.934
ÁÁÁÁ
ÁÁÁÁ
–174
ÁÁÁÁÁ
ÁÁÁÁÁ
2.10
ÁÁÁÁ
ÁÁÁÁ
35
ÁÁÁÁÁ
ÁÁÁÁÁ
0.007
ÁÁÁÁÁ
ÁÁÁÁÁ
–24
ÁÁÁÁ
ÁÁÁÁ
1.046
ÁÁÁÁÁ
ÁÁÁÁÁ
–164
ÁÁÁÁÁ
ÁÁÁÁÁ
180
ÁÁÁÁÁ
ÁÁÁÁÁ
0.940
ÁÁÁÁ
ÁÁÁÁ
–175
ÁÁÁÁÁ
ÁÁÁÁÁ
1.96
ÁÁÁÁ
ÁÁÁÁ
30
ÁÁÁÁÁ
ÁÁÁÁÁ
0.008
ÁÁÁÁÁ
ÁÁÁÁÁ
–23
ÁÁÁÁ
ÁÁÁÁ
1.130
ÁÁÁÁÁ
ÁÁÁÁÁ
–163
ÁÁÁÁÁ
ÁÁÁÁÁ
190
ÁÁÁÁÁ
ÁÁÁÁÁ
0.945
ÁÁÁÁ
ÁÁÁÁ
–175
ÁÁÁÁÁ
ÁÁÁÁÁ
1.78
ÁÁÁÁ
ÁÁÁÁ
24
ÁÁÁÁÁ
ÁÁÁÁÁ
0.007
ÁÁÁÁÁ
ÁÁÁÁÁ
–18
ÁÁÁÁ
ÁÁÁÁ
1.120
ÁÁÁÁÁ
ÁÁÁÁÁ
–165
ÁÁÁÁÁ
ÁÁÁÁÁ
200
ÁÁÁÁÁ
ÁÁÁÁÁ
0.950
ÁÁÁÁ
ÁÁÁÁ
–176
ÁÁÁÁÁ
ÁÁÁÁÁ
1.56
ÁÁÁÁ
ÁÁÁÁ
22
ÁÁÁÁÁ
ÁÁÁÁÁ
0.006
ÁÁÁÁÁ
ÁÁÁÁÁ
–8
ÁÁÁÁ
ÁÁÁÁ
1.030
ÁÁÁÁÁ
ÁÁÁÁÁ
–165
ÁÁÁÁÁ
ÁÁÁÁÁ
210
ÁÁÁÁÁ
ÁÁÁÁÁ
0.953
ÁÁÁÁ
ÁÁÁÁ
–176
ÁÁÁÁÁ
ÁÁÁÁÁ
1.36
ÁÁÁÁ
ÁÁÁÁ
20
ÁÁÁÁÁ
ÁÁÁÁÁ
0.005
ÁÁÁÁÁ
ÁÁÁÁÁ
2
ÁÁÁÁ
ÁÁÁÁ
0.940
ÁÁÁÁÁ
ÁÁÁÁÁ
–165
ÁÁÁÁÁ
ÁÁÁÁÁ
220
ÁÁÁÁÁ
ÁÁÁÁÁ
0.955
ÁÁÁÁ
ÁÁÁÁ
–176
ÁÁÁÁÁ
ÁÁÁÁÁ
1.22
ÁÁÁÁ
ÁÁÁÁ
21
ÁÁÁÁÁ
ÁÁÁÁÁ
0.004
ÁÁÁÁÁ
ÁÁÁÁÁ
7
ÁÁÁÁ
ÁÁÁÁ
0.900
ÁÁÁÁÁ
ÁÁÁÁÁ
–164
ÁÁÁÁÁ
ÁÁÁÁÁ
230
ÁÁÁÁÁ
ÁÁÁÁÁ
0.956
ÁÁÁÁ
ÁÁÁÁ
–177
ÁÁÁÁÁ
ÁÁÁÁÁ
1.14
ÁÁÁÁ
ÁÁÁÁ
21
ÁÁÁÁÁ
ÁÁÁÁÁ
0.004
ÁÁÁÁÁ
ÁÁÁÁÁ
6
ÁÁÁÁ
ÁÁÁÁ
0.940
ÁÁÁÁÁ
ÁÁÁÁÁ
–167
ÁÁÁÁÁ
ÁÁÁÁÁ
240
ÁÁÁÁÁ
ÁÁÁÁÁ
0.958
ÁÁÁÁ
ÁÁÁÁ
–177
ÁÁÁÁÁ
ÁÁÁÁÁ
1.08
ÁÁÁÁ
ÁÁÁÁ
22
ÁÁÁÁÁ
ÁÁÁÁÁ
0.004
ÁÁÁÁÁ
ÁÁÁÁÁ
13
ÁÁÁÁ
ÁÁÁÁ
0.940
ÁÁÁÁÁ
ÁÁÁÁÁ
–170
ÁÁÁÁÁ
ÁÁÁÁÁ
250
ÁÁÁÁÁ
ÁÁÁÁÁ
0.960
ÁÁÁÁ
ÁÁÁÁ
–178
ÁÁÁÁÁ
ÁÁÁÁÁ
1.05
ÁÁÁÁ
ÁÁÁÁ
21
ÁÁÁÁÁ
ÁÁÁÁÁ
0.005
ÁÁÁÁÁ
ÁÁÁÁÁ
29
ÁÁÁÁ
ÁÁÁÁ
1.010
ÁÁÁÁÁ
ÁÁÁÁÁ
–169
ÁÁÁÁÁ
ÁÁÁÁÁ
260
ÁÁÁÁÁ
ÁÁÁÁÁ
0.963
ÁÁÁÁ
ÁÁÁÁ
–178
ÁÁÁÁÁ
ÁÁÁÁÁ
1.01
ÁÁÁÁ
ÁÁÁÁ
18
ÁÁÁÁÁ
ÁÁÁÁÁ
0.006
ÁÁÁÁÁ
ÁÁÁÁÁ
44
ÁÁÁÁ
ÁÁÁÁ
1.120
ÁÁÁÁÁ
ÁÁÁÁÁ
–170
ÁÁÁÁÁ
ÁÁÁÁÁ
270
ÁÁÁÁÁ
ÁÁÁÁÁ
0.965
ÁÁÁÁ
ÁÁÁÁ
–178
ÁÁÁÁÁ
ÁÁÁÁÁ
0.96
ÁÁÁÁ
ÁÁÁÁ
13
ÁÁÁÁÁ
ÁÁÁÁÁ
0.005
ÁÁÁÁÁ
ÁÁÁÁÁ
55
ÁÁÁÁ
ÁÁÁÁ
1.160
ÁÁÁÁÁ
ÁÁÁÁÁ
–172
ÁÁÁÁÁ
ÁÁÁÁÁ
280
ÁÁÁÁÁ
ÁÁÁÁÁ
0.967
ÁÁÁÁ
ÁÁÁÁ
–179
ÁÁÁÁÁ
ÁÁÁÁÁ
0.87
ÁÁÁÁ
ÁÁÁÁ
10
ÁÁÁÁÁ
ÁÁÁÁÁ
0.005
ÁÁÁÁÁ
ÁÁÁÁÁ
57
ÁÁÁÁ
ÁÁÁÁ
1.150
ÁÁÁÁÁ
ÁÁÁÁÁ
–172
ÁÁÁÁÁ
ÁÁÁÁÁ
290
ÁÁÁÁÁ
ÁÁÁÁÁ
0.968
ÁÁÁÁ
ÁÁÁÁ
–179
ÁÁÁÁÁ
ÁÁÁÁÁ
0.78
ÁÁÁÁ
ÁÁÁÁ
8
ÁÁÁÁÁ
ÁÁÁÁÁ
0.005
ÁÁÁÁÁ
ÁÁÁÁÁ
47
ÁÁÁÁ
ÁÁÁÁ
1.030
ÁÁÁÁÁ
ÁÁÁÁÁ
–171
ÁÁÁÁÁ
ÁÁÁÁÁ
300
ÁÁÁÁÁ
ÁÁÁÁÁ
0.969
ÁÁÁÁ
ÁÁÁÁ
–180
ÁÁÁÁÁ
ÁÁÁÁÁ
0.72
ÁÁÁÁ
ÁÁÁÁ
8
ÁÁÁÁÁ
ÁÁÁÁÁ
0.006
ÁÁÁÁÁ
ÁÁÁÁÁ
46
ÁÁÁÁ
ÁÁÁÁ
0.964
ÁÁÁÁÁ
ÁÁÁÁÁ
–170
ÁÁÁÁÁ
ÁÁÁÁÁ
310
ÁÁÁÁÁ
ÁÁÁÁÁ
0.970
ÁÁÁÁ
ÁÁÁÁ
–180
ÁÁÁÁÁ
ÁÁÁÁÁ
0.68
ÁÁÁÁ
ÁÁÁÁ
11
ÁÁÁÁÁ
ÁÁÁÁÁ
0.008
ÁÁÁÁÁ
ÁÁÁÁÁ
58
ÁÁÁÁ
ÁÁÁÁ
0.926
ÁÁÁÁÁ
ÁÁÁÁÁ
–169
ÁÁÁÁÁ
ÁÁÁÁÁ
320
ÁÁÁÁÁ
ÁÁÁÁÁ
0.971
ÁÁÁÁ
ÁÁÁÁ
180
ÁÁÁÁÁ
ÁÁÁÁÁ
0.65
ÁÁÁÁ
ÁÁÁÁ
11
ÁÁÁÁÁ
ÁÁÁÁÁ
0.009
ÁÁÁÁÁ
ÁÁÁÁÁ
72
ÁÁÁÁ
ÁÁÁÁ
0.940
ÁÁÁÁÁ
ÁÁÁÁÁ
–172
ÁÁÁÁÁ
ÁÁÁÁÁ
330
ÁÁÁÁÁ
ÁÁÁÁÁ
0.973
ÁÁÁÁ
ÁÁÁÁ
179
ÁÁÁÁÁ
ÁÁÁÁÁ
0.61
ÁÁÁÁ
ÁÁÁÁ
10
ÁÁÁÁÁ
ÁÁÁÁÁ
0.009
ÁÁÁÁÁ
ÁÁÁÁÁ
83
ÁÁÁÁ
ÁÁÁÁ
0.980
ÁÁÁÁÁ
ÁÁÁÁÁ
–173
ÁÁÁÁÁ
ÁÁÁÁÁ
340
ÁÁÁÁÁ
ÁÁÁÁÁ
0.973
ÁÁÁÁ
ÁÁÁÁ
179
ÁÁÁÁÁ
ÁÁÁÁÁ
0.61
ÁÁÁÁ
ÁÁÁÁ
11
ÁÁÁÁÁ
ÁÁÁÁÁ
0.008
ÁÁÁÁÁ
ÁÁÁÁÁ
82
ÁÁÁÁ
ÁÁÁÁ
1.053
ÁÁÁÁÁ
ÁÁÁÁÁ
–175
ÁÁÁÁÁ
ÁÁÁÁÁ
350
ÁÁÁÁÁ
ÁÁÁÁÁ
0.974
ÁÁÁÁ
ÁÁÁÁ
179
ÁÁÁÁÁ
ÁÁÁÁÁ
0.58
ÁÁÁÁ
ÁÁÁÁ
7
ÁÁÁÁÁ
ÁÁÁÁÁ
0.008
ÁÁÁÁÁ
ÁÁÁÁÁ
70
ÁÁÁÁ
ÁÁÁÁ
1.095
ÁÁÁÁÁ
ÁÁÁÁÁ
–174
ÁÁÁÁÁ
ÁÁÁÁÁ
360
ÁÁÁÁÁ
ÁÁÁÁÁ
0.975
ÁÁÁÁ
ÁÁÁÁ
178
ÁÁÁÁÁ
ÁÁÁÁÁ
0.55
ÁÁÁÁ
ÁÁÁÁ
3
ÁÁÁÁÁ
ÁÁÁÁÁ
0.010
ÁÁÁÁÁ
ÁÁÁÁÁ
61
ÁÁÁÁ
ÁÁÁÁ
1.135
ÁÁÁÁÁ
ÁÁÁÁÁ
–173
ÁÁÁÁÁ
ÁÁÁÁÁ
370
ÁÁÁÁÁ
ÁÁÁÁÁ
0.975
ÁÁÁÁ
ÁÁÁÁ
178
ÁÁÁÁÁ
ÁÁÁÁÁ
0.50
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁ
ÁÁÁÁÁ
0.013
ÁÁÁÁÁ
ÁÁÁÁÁ
65
ÁÁÁÁ
ÁÁÁÁ
1.086
ÁÁÁÁÁ
ÁÁÁÁÁ
–175
ÁÁÁÁÁ
ÁÁÁÁÁ
380
ÁÁÁÁÁ
ÁÁÁÁÁ
0.976
ÁÁÁÁ
ÁÁÁÁ
178
ÁÁÁÁÁ
ÁÁÁÁÁ
0.47
ÁÁÁÁ
ÁÁÁÁ
–1
ÁÁÁÁÁ
ÁÁÁÁÁ
0.013
ÁÁÁÁÁ
ÁÁÁÁÁ
74
ÁÁÁÁ
ÁÁÁÁ
1.045
ÁÁÁÁÁ
ÁÁÁÁÁ
–175
ÁÁÁÁÁ
ÁÁÁÁÁ
390
ÁÁÁÁÁ
ÁÁÁÁÁ
0.976
ÁÁÁÁ
ÁÁÁÁ
177
ÁÁÁÁÁ
ÁÁÁÁÁ
0.44
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁ
ÁÁÁÁÁ
0.012
ÁÁÁÁÁ
ÁÁÁÁÁ
84
ÁÁÁÁ
ÁÁÁÁ
0.979
ÁÁÁÁÁ
ÁÁÁÁÁ
–174
ÁÁÁÁÁ
ÁÁÁÁÁ
400
ÁÁÁÁÁ
ÁÁÁÁÁ
0.976
ÁÁÁÁ
ÁÁÁÁ
177
ÁÁÁÁÁ
ÁÁÁÁÁ
0.42
ÁÁÁÁ
ÁÁÁÁ
4
ÁÁÁÁÁ
ÁÁÁÁÁ
0.010
ÁÁÁÁÁ
ÁÁÁÁÁ
84
ÁÁÁÁ
ÁÁÁÁ
0.940
ÁÁÁÁÁ
ÁÁÁÁÁ
–174
ÁÁÁÁÁ
ÁÁÁÁÁ
410
ÁÁÁÁÁ
ÁÁÁÁÁ
0.977
ÁÁÁÁ
ÁÁÁÁ
177
ÁÁÁÁÁ
ÁÁÁÁÁ
0.40
ÁÁÁÁ
ÁÁÁÁ
4
ÁÁÁÁÁ
ÁÁÁÁÁ
0.011
ÁÁÁÁÁ
ÁÁÁÁÁ
71
ÁÁÁÁ
ÁÁÁÁ
1.015
ÁÁÁÁÁ
ÁÁÁÁÁ
–175
ÁÁÁÁÁ
ÁÁÁÁÁ
420
ÁÁÁÁÁ
ÁÁÁÁÁ
0.978
ÁÁÁÁ
ÁÁÁÁ
176
ÁÁÁÁÁ
ÁÁÁÁÁ
0.39
ÁÁÁÁ
ÁÁÁÁ
4
ÁÁÁÁÁ
ÁÁÁÁÁ
0.015
ÁÁÁÁÁ
ÁÁÁÁÁ
67
ÁÁÁÁ
ÁÁÁÁ
1.038
ÁÁÁÁÁ
ÁÁÁÁÁ
–177
7
REV 9
Table 1. Common Source S–Parameters (VDS = 50 V, ID = 0.35 A) continued
f
S11 S21 S12 S22
f
MHz |S11|φ|S21|φ|S12|φ|S22|φ
ÁÁÁÁÁ
ÁÁÁÁÁ
430
ÁÁÁÁÁ
ÁÁÁÁÁ
0.978
ÁÁÁÁ
ÁÁÁÁ
176
ÁÁÁÁÁ
ÁÁÁÁÁ
0.38
ÁÁÁÁ
ÁÁÁÁ
3
ÁÁÁÁÁ
ÁÁÁÁÁ
0.017
ÁÁÁÁÁ
ÁÁÁÁÁ
74
ÁÁÁÁ
ÁÁÁÁ
1.073
ÁÁÁÁÁ
ÁÁÁÁÁ
–178
ÁÁÁÁÁ
ÁÁÁÁÁ
440
ÁÁÁÁÁ
ÁÁÁÁÁ
0.979
ÁÁÁÁ
ÁÁÁÁ
176
ÁÁÁÁÁ
ÁÁÁÁÁ
0.37
ÁÁÁÁ
ÁÁÁÁ
0
ÁÁÁÁÁ
ÁÁÁÁÁ
0.017
ÁÁÁÁÁ
ÁÁÁÁÁ
83
ÁÁÁÁ
ÁÁÁÁ
1.091
ÁÁÁÁÁ
ÁÁÁÁÁ
–178
ÁÁÁÁÁ
ÁÁÁÁÁ
450
ÁÁÁÁÁ
ÁÁÁÁÁ
0.979
ÁÁÁÁ
ÁÁÁÁ
176
ÁÁÁÁÁ
ÁÁÁÁÁ
0.37
ÁÁÁÁ
ÁÁÁÁ
–2
ÁÁÁÁÁ
ÁÁÁÁÁ
0.015
ÁÁÁÁÁ
ÁÁÁÁÁ
86
ÁÁÁÁ
ÁÁÁÁ
1.107
ÁÁÁÁÁ
ÁÁÁÁÁ
–177
ÁÁÁÁÁ
ÁÁÁÁÁ
460
ÁÁÁÁÁ
ÁÁÁÁÁ
0.979
ÁÁÁÁ
ÁÁÁÁ
175
ÁÁÁÁÁ
ÁÁÁÁÁ
0.32
ÁÁÁÁ
ÁÁÁÁ
–6
ÁÁÁÁÁ
ÁÁÁÁÁ
0.013
ÁÁÁÁÁ
ÁÁÁÁÁ
71
ÁÁÁÁ
ÁÁÁÁ
1.118
ÁÁÁÁÁ
ÁÁÁÁÁ
–178
ÁÁÁÁÁ
ÁÁÁÁÁ
470
ÁÁÁÁÁ
ÁÁÁÁÁ
0.979
ÁÁÁÁ
ÁÁÁÁ
175
ÁÁÁÁÁ
ÁÁÁÁÁ
0.30
ÁÁÁÁ
ÁÁÁÁ
–5
ÁÁÁÁÁ
ÁÁÁÁÁ
0.015
ÁÁÁÁÁ
ÁÁÁÁÁ
60
ÁÁÁÁ
ÁÁÁÁ
1.003
ÁÁÁÁÁ
ÁÁÁÁÁ
–178
ÁÁÁÁÁ
ÁÁÁÁÁ
480
ÁÁÁÁÁ
ÁÁÁÁÁ
0.979
ÁÁÁÁ
ÁÁÁÁ
175
ÁÁÁÁÁ
ÁÁÁÁÁ
0.30
ÁÁÁÁ
ÁÁÁÁ
–3
ÁÁÁÁÁ
ÁÁÁÁÁ
0.019
ÁÁÁÁÁ
ÁÁÁÁÁ
66
ÁÁÁÁ
ÁÁÁÁ
0.975
ÁÁÁÁÁ
ÁÁÁÁÁ
–176
ÁÁÁÁÁ
ÁÁÁÁÁ
490
ÁÁÁÁÁ
ÁÁÁÁÁ
0.980
ÁÁÁÁ
ÁÁÁÁ
174
ÁÁÁÁÁ
ÁÁÁÁÁ
0.29
ÁÁÁÁ
ÁÁÁÁ
–1
ÁÁÁÁÁ
ÁÁÁÁÁ
0.021
ÁÁÁÁÁ
ÁÁÁÁÁ
80
ÁÁÁÁ
ÁÁÁÁ
0.963
ÁÁÁÁÁ
ÁÁÁÁÁ
–178
ÁÁÁÁÁ
ÁÁÁÁÁ
500
ÁÁÁÁÁ
ÁÁÁÁÁ
0.981
ÁÁÁÁ
ÁÁÁÁ
174
ÁÁÁÁÁ
ÁÁÁÁÁ
0.28
ÁÁÁÁ
ÁÁÁÁ
0
ÁÁÁÁÁ
ÁÁÁÁÁ
0.021
ÁÁÁÁÁ
ÁÁÁÁÁ
92
ÁÁÁÁ
ÁÁÁÁ
0.993
ÁÁÁÁÁ
ÁÁÁÁÁ
–179
ÁÁÁÁÁ
ÁÁÁÁÁ
600
ÁÁÁÁÁ
ÁÁÁÁÁ
0.972
ÁÁÁÁ
ÁÁÁÁ
172
ÁÁÁÁÁ
ÁÁÁÁÁ
0.24
ÁÁÁÁ
ÁÁÁÁ
–5
ÁÁÁÁÁ
ÁÁÁÁÁ
0.012
ÁÁÁÁÁ
ÁÁÁÁÁ
93
ÁÁÁÁ
ÁÁÁÁ
0.943
ÁÁÁÁÁ
ÁÁÁÁÁ
178
ÁÁÁÁÁ
ÁÁÁÁÁ
700
ÁÁÁÁÁ
ÁÁÁÁÁ
0.971
ÁÁÁÁ
ÁÁÁÁ
169
ÁÁÁÁÁ
ÁÁÁÁÁ
0.15
ÁÁÁÁ
ÁÁÁÁ
–8
ÁÁÁÁÁ
ÁÁÁÁÁ
0.027
ÁÁÁÁÁ
ÁÁÁÁÁ
75
ÁÁÁÁ
ÁÁÁÁ
0.999
ÁÁÁÁÁ
ÁÁÁÁÁ
176
ÁÁÁÁÁ
ÁÁÁÁÁ
800
ÁÁÁÁÁ
ÁÁÁÁÁ
0.971
ÁÁÁÁ
ÁÁÁÁ
166
ÁÁÁÁÁ
ÁÁÁÁÁ
0.13
ÁÁÁÁ
ÁÁÁÁ
–9
ÁÁÁÁÁ
ÁÁÁÁÁ
0.022
ÁÁÁÁÁ
ÁÁÁÁÁ
70
ÁÁÁÁ
ÁÁÁÁ
0.977
ÁÁÁÁÁ
ÁÁÁÁÁ
174
ÁÁÁÁÁ
ÁÁÁÁÁ
900
ÁÁÁÁÁ
ÁÁÁÁÁ
0.972
ÁÁÁÁ
ÁÁÁÁ
164
ÁÁÁÁÁ
ÁÁÁÁÁ
0.10
ÁÁÁÁ
ÁÁÁÁ
–5
ÁÁÁÁÁ
ÁÁÁÁÁ
0.032
ÁÁÁÁÁ
ÁÁÁÁÁ
73
ÁÁÁÁ
ÁÁÁÁ
0.972
ÁÁÁÁÁ
ÁÁÁÁÁ
172
ÁÁÁÁÁ
ÁÁÁÁÁ
1000
ÁÁÁÁÁ
ÁÁÁÁÁ
0.972
ÁÁÁÁ
ÁÁÁÁ
161
ÁÁÁÁÁ
ÁÁÁÁÁ
0.08
ÁÁÁÁ
ÁÁÁÁ
–9
ÁÁÁÁÁ
ÁÁÁÁÁ
0.030
ÁÁÁÁÁ
ÁÁÁÁÁ
83
ÁÁÁÁ
ÁÁÁÁ
0.999
ÁÁÁÁÁ
ÁÁÁÁÁ
169
RF POWER MOSFET CONSIDERATIONS
MOSFET CAPACITANCES
The physical structure of a MOSFET results in capacitors
between the terminals. The metal oxide gate structure deter-
mines the capacitors from gate–to–drain (Cgd), and gate–to–
source (Cgs). The PN junction formed during the fabrication
of the MOSFET results in a junction capacitance from drain–
to–source (Cds).
These capacitances are characterized as input (Ciss), out-
put (Coss) and reverse transfer (Crss) capacitances on data
sheets. The relationships between the inter–terminal capaci-
tances and those given on data sheets are shown below. The
Ciss can be specified in two ways:
1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero
volts at the gate. In the latter case the numbers are lower.
However, neither method represents the actual operat-
ing conditions in RF applications.














The Ciss given in the electrical characteristics table was
measured using method 2 above. It should be noted that
Ciss, Coss, Crss are measured at zero drain current and are
provided for general information about the device. They are
not RF design parameters and no attempt should be made to
use them as such.
LINEARITY AND GAIN CHARACTERISTICS
In addition to the typical IMD and power gain, data pre-
sented in Figure 3 may give the designer additional informa-
tion on the capabilities of this device. The graph represents
the small signal unity current gain frequency at a given drain
current level. This is equivalent to fT for bipolar transistors.
Since this test is performed at a fast sweep speed, heating of
the device does not occur. Thus, in normal use, the higher
temperatures may degrade these characteristics to some ex-
tent.
DRAIN CHARACTERISTICS
One figure of merit for a FET is its static resistance in the
full–on condition. This on–resistance, VDS(on), occurs in the
linear region of the output characteristic and is specified un-
der specific test conditions for gate–source voltage and drain
current. For MOSFETs, VDS(on) has a positive temperature
coefficient and constitutes an important design consideration
at high temperatures, because it contributes to the power
dissipation within the device.
GATE CHARACTERISTICS
The gate of the MOSFET is a polysilicon material, and is
electrically isolated from the source by a layer of oxide. The
input resistance is very high — on the order of 109 ohms —
resulting in a leakage current of a few nanoamperes.
Gate control is achieved by applying a positive voltage
slightly in excess of the gate–to–source threshold voltage,
VGS(th).
Gate Voltage Rating — Never exceed the gate voltage
rating (or any of the maximum ratings on the front page). Ex-
ceeding the rated VGS can result in permanent damage to
the oxide layer in the gate region.
Gate Termination — The gates of this device are essen-
tially capacitors. Circuits that leave the gate open–circuited
or floating should be avoided. These conditions can result in
turn–on of the devices due to voltage build–up on the input
capacitor due to leakage currents or pickup.
Gate Protection — This device does not have an internal
monolithic zener diode from gate–to–source. The addition of
an internal zener diode may result in detrimental effects on
the reliability of a power MOSFET. If gate protection is re-
quired, an external zener diode is recommended.
8
REV 9
HANDLING CONSIDERATIONS
The gate of the MOSFET, which is electrically isolated
from the rest of the die by a very thin layer of SiO2, may be
damaged if the power MOSFET is handled or installed im-
properly. Exceeding the 40 V maximum gate–to–source volt-
age rating, VGS(max), can rupture the gate insulation and
destroy the FET. RF Power MOSFETs are not nearly as sus-
ceptible as CMOS devices to damage due to static discharge
because the input capacitances of power MOSFETs are
much larger and absorb more energy before being charged
to the gate breakdown voltage. However, once breakdown
begins, there is enough energy stored in the gate–source ca-
pacitance to ensure the complete perforation of the gate ox-
ide. To avoid the possibility of device failure caused by static
discharge, precautions similar to those taken with small–sig-
nal MOSFET and CMOS devices apply to power MOSFETs.
When shipping, the devices should be transported only in
antistatic bags or conductive foam. Upon removal from the
packaging, careful handling procedures should be adhered
to. Those handling the devices should wear grounding straps
and devices not in the antistatic packaging should be kept in
metal tote bins. MOSFETs should be handled by the case
and not by the leads, and when testing the device, all leads
should make good electrical contact before voltage is ap-
plied. As a final note, when placing the FET into the system it
is designed for, soldering should be done with grounded
equipment.
The gate of the power MOSFET could still be in danger af-
ter the device is placed in the intended circuit. If the gate may
see voltage transients which exceed VGS(max), the circuit de-
signer should place a 40 V zener across the gate and source
terminals to clamp any potentially destructive spikes. Using a
resistor to keep the gate–to–source impedance low also
helps damp transients and serves another important func-
tion. Voltage transients on the drain can be coupled to the
gate through the parasitic gate–drain capacitance. If the
gate–to–source impedance and the rate of voltage change
on the drain are both high, then the signal coupled to the gate
may be large enough to exceed the gate–threshold voltage
and turn the device on.
DESIGN CONSIDERATIONS
The MRF176G is a RF power N–channel enhancement
mode field–effect transistor (FETs) designed for VHF and
UHF power amplifier applications. M/A-COM RF MOSFETs
feature a vertical structure with a planar design, thus avoid-
ing the processing difficulties associated with V–groove
MOS power FETs.
M/A-COM Application Note AN211A, FETs in Theory and
Practice, is suggested reading for those not familiar with the
construction and characteristics of FETs.
The major advantages of RF power FETs include high
gain, low noise, simple bias systems, relative immunity from
thermal runaway, and the ability to withstand severely mis-
matched loads without suffering damage. Power output can
be varied over a wide range with a low power dc control sig-
nal, thus facilitating manual gain control, ALC and modula-
tion.
DC BIAS
The MRF176G is an enhancement mode FET and, there-
fore, does not conduct when drain voltage is applied. Drain
current flows when a positive voltage is applied to the gate.
RF power FETs require forward bias for optimum perfor-
mance. The value of quiescent drain current (IDQ) is not criti-
cal for many applications. The MRF176G was characterized
at IDQ = 100 mA, each side, which is the suggested minimum
value of IDQ. For special applications such as linear amplifi-
cation, IDQ may have to be selected to optimize the critical
parameters.
The gate is a dc open circuit and draws no current. There-
fore, the gate bias circuit may be just a simple resistive divid-
er network. Some applications may require a more elaborate
bias system.
GAIN CONTROL
Power output of the MRF176G may be controlled from its
rated value down to zero (negative gain) by varying the dc
gate voltage. This feature facilitates the design of manual
gain control, AGC/ALC and modulation systems.
9
REV 9
PACKAGE DIMENSIONS
CASE 375–04
ISSUE D
 
  
 
 
 
 


D
Q
U
G
R
K
RADIUS 2 PL
–B–
–T–
E
H
J
C


N

–A–
    

   
   
   
   
   
   
   
   
   
   
   
   
 

     
 
   
10
Specifications subject to change without notice.
n North America: Tel. (800) 366-2266, Fax (800) 618-8883
n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298
n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020
Visit www.macom.com for additional data sheets and product information.
REV 9