MF1542-01 LCD Controller ICs S1D13700 Technical Manual No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency. In this manual, Zilog's Z80-CPU or its equivalent shall be called Z80, Intel's 8085A or its equivalent shall be called 8085 and Motorola's MC6809 and MC6802 or their equivalents shall be called 6809 and 6802, respectively. (R) stands for registered trade mark. All other product names mentioned herein are trademarks and/or registered trademarks of their respective owners. (c) Seiko Epson Corporation 2003 All rights reserved. Configuration of product number Devices S1 D 13706 F 00A0 00 Packing specification Specification Package (B: CSP, F: QFP) Corresponding model number Model name (D: driver, digital products) Product classification (S1: semiconductor) Evaluation Board S5U 13705 P00C0 00 Packing specification Specification Corresponding model number (13705: for S1D13705) Product classification (S5U: development tool for semiconductor) CONTENTS Table of Contents 1 Overview ............................................................................................................................... 1 1.1 1.2 1.3 2 Pins ....................................................................................................................................... 5 2.1 2.2 3 4.2 4.3 4.4 Display Functions....................................................................................................................... 45 4.1.1 Screen Management .................................................................................................... 45 4.1.2 Character Generator (CG)............................................................................................ 47 4.1.3 Screen Configuration.................................................................................................... 50 4.1.4 Cursor........................................................................................................................... 61 4.1.5 Relationship between Display Memory and Screens ................................................... 62 4.1.6 Determining Various Parameters.................................................................................. 64 4.1.7 Scrolling........................................................................................................................ 65 4.1.8 Attribute Display using the Layered Function ............................................................... 68 Oscillator Circuit......................................................................................................................... 70 Example of Initial Settings.......................................................................................................... 71 Character Codes and Character Fonts ...................................................................................... 81 4.4.1 Character Fonts (Internal CG)...................................................................................... 81 4.4.2 Character Codes .......................................................................................................... 82 Specifications..................................................................................................................... 83 5.1 5.2 5.3 5.4 6 Types of Commands (when Indirectly Interfaced) ...................................................................... 14 Command Register Map (when Directly Interfaced) .................................................................. 15 Command Description ............................................................................................................... 17 3.3.1 Operation Control Commands...................................................................................... 17 3.3.2 Display Control Commands.......................................................................................... 25 3.3.3 Drawing Control Commands ........................................................................................ 43 3.3.4 Memory Control Commands ........................................................................................ 44 Function Description ......................................................................................................... 45 4.1 5 Pin Connection............................................................................................................................. 5 2.1.1 Pin Assignments............................................................................................................. 5 2.1.2 Pin Description ............................................................................................................... 6 2.1.3 Package Dimensions...................................................................................................... 8 Pin Functions ............................................................................................................................... 9 2.2.1 Power Supply Pins ......................................................................................................... 9 2.2.2 Oscillator and Clock Input Pins ...................................................................................... 9 2.2.3 System Bus Connecting Pins ....................................................................................... 10 2.2.4 LCD Driver Control Pins ............................................................................................... 13 2.2.5 TEST Control Pins........................................................................................................ 13 Commands and Command Registers .............................................................................. 14 3.1 3.2 3.3 4 Features ....................................................................................................................................... 1 System Overview ......................................................................................................................... 2 List of Abbreviations..................................................................................................................... 4 Absolute Maximum Ratings ....................................................................................................... 83 Recommended Operating Conditions........................................................................................ 83 Electrical Characteristics ........................................................................................................... 84 Timing Characteristics ............................................................................................................... 86 5.4.1 System Bus (Generic Bus/80-series MPU) .................................................................. 86 5.4.2 System Bus Read/write characteristics II (MC68K-series MPU).................................. 89 5.4.3 External Clock Input Characteristics ............................................................................ 92 5.4.4 LCD Control Signal Timing Characteristics .................................................................. 93 MPU Interface ..................................................................................................................... 95 6.1 6.2 Connection to the System Bus................................................................................................... 95 6.1.1 80-series MPU.............................................................................................................. 95 6.1.2 68-series MPU.............................................................................................................. 95 Interfaces with the MPU (Reference) ......................................................................................... 96 S1D13700 Technical Manual EPSON i CONTENTS Table of Figures Figure 1-1 Figure 3-1 Figure 3-2 Figure 3-3 Figure 3-4 Figure 4-1 Figure 4-2 Figure 4-3 Figure 4-4 Figure 4-5 Figure 4-6 Figure 4-7 Figure 4-8 Figure 4-9 Figure 4-10 Block diagram of the S1D13700 ............................................................................................ 2 Combination of IV and HDOT SCR...................................................................................... 20 Typical relationship between FX/FY and display addresses................................................ 21 Example of screen compositions ......................................................................................... 37 Prioritized overlay ................................................................................................................ 38 Character display ([FX] 8 dots) ......................................................................................... 45 Example of character generator definition ........................................................................... 45 Example of character configuration consisting of two or more memory addresses (when [FX] = 9) ................................................................................................................... 46 Relationship between virtual and physical screens ............................................................. 50 Basic read cycle of display memory..................................................................................... 60 Relationship between TC/R and C/R ................................................................................... 60 Relationship between display memory and screens ............................................................ 62 Window and display memory settings.................................................................................. 63 Example of display memory mapping .................................................................................. 63 Example of using HDOT SCR ([FX] = 8).............................................................................. 67 List of Tables Table 3-1 Table 4-1 Table 4-2 Table 4-3 ii W/S Related Registers ......................................................................................................... 20 Row Select Addresses ......................................................................................................... 48 Example of Parameters for the LCD Unit ............................................................................. 64 Character Codes .................................................................................................................. 82 EPSON S1D13700 Technical Manual 1: OVERVIEW 1 OVERVIEW The S1D13700 Controller displays text and graphics on a midsize, dot-matrix liquid crystal display (LCD). A very flexible, low-power display system can be configured using the S1D13700 in combination with various LCD modules. The character code or bitmap display data from the microprocessor is temporarily stored in frame buffer memory, then periodically read out and converted into LCD module signals for output to the LCD. Its abundant command functions make it possible to overlay the text and graphic screens, scroll the screen in any direction (except in grayscale mode), and split the screen for multi-window display, as well as display pictures in grayscale mode. Moreover, the embedded-type 32-KB SRAM display buffer, built-in LCD module control circuit, and high-speed character generator allow you to build an LCD control block with only a few external circuits. 1.1 Features Number of display dots:........................... Text display mode 80 columns x 30 rows (monochrome, 1 bpp) 40 columns x 30 rows (4 gray shades, 2 bpp) 30 columns x 20 rows (16 gray shades, 4 bpp) + graphic screen overlay Graphic display mode 640 dots x 240 dots (monochrome, 1 bpp) 320 dots x 240 dots (4 gray shades, 2 bpp) 240 dots x 160 dots (16 gray shades, 4 bpp) x threescreen overlay Three display modes: .............................. Text display mode, graphic display mode, and text/ graphic overlay mode (Layered display functions) Grayscale display function: .................... 1 bpp, 2 bpp, or 4 bpp selectable Flexible scroll function: .......................... The text/graphics display screen can be easily moved and smoothly scrolled horizontally. Frame buffer: .......................................... Up to 32 KB of SRAM, virtual screen configuration Internal character generator: ................... 160 characters (Internal mask ROM dots 5 x 7 dots) + 64 characters (internal CGRAM 8 dots x 16 dots) or 256 characters (internal CGRAM 8 dots x 16 dots) Drive duty cycle: ..................................... Can be set without any required increments from 1/2 up to 1/256 duty cycles. MPU interface ......................................... Generic, 6800 series or M68K series Direct access or indirect access selectable Power supply voltage .............................. 5 V/3.3 V (dual power supplies) with MPU interface and LCD interface pins independently selectable or 3.3 V (single power supply) Package: .................................................. 64-pin QFP13 (Pd-free) S1D13700 Technical Manual EPSON 1 1: OVERVIEW 1.2 System Overview Positioned midway between the MPU and LCD panel, the S1D13700 enables the sending and receiving of control commands and data, and access of registers by the MPU for display, thus making it possible to control up to 32 Kbytes of internal display memory (VRAM). Moreover, because the S1D13700 has a built-in a control circuit for LCD units, it is possible to take full advantage of the features of midsize, dot-matrix liquid crystal display units without using any external circuit. EPDAT# to FFDAT0 FESHIFT XECL YSCL FPLINE EPFLAME MOD YDIS LCD Character Generator ROM LCD Controller Video RAM Arbitrate Display Address Generator Cursor Address Controller Layered Controller Layered Dot Clock Generator GrayScale FRM Controller Dot Counter Internal Clock CLK1 CNF0 to CFN4 TSTEN Oscillator RESET# AB0 to AB15 DB0 to DB7 CS# RD# WR# AS# WAIT# Microprocessor Interface XCD1 Character Generator RAM XCO1 Video RAM Figure 1-1 Block diagram of the S1D13700 The S1D13700 divides the display memory space into the four areas shown below. When this configuration is combined with the layered (overlaid) display and flexible scroll functions of the S1D13700, it is possible to greatly reduce the MPU load when inverting or underlining text, displaying graphs with text, or creating simple animation. The S1D13700 uses the display memory space by dividing it into the four areas shown below to realize the layered display functions using only a single controller. 2 EPSON S1D13700 Technical Manual 1: OVERVIEW Example of display memory mapping by the S1D13700 (1)Character code table * A memory area to store character code when displaying text * 1 character = 8 bits * Variable table mapping (by altering the scroll start address) (2)Graphic data table * A memory area to store bitmap data * 1 word = 8 bits * Variable table mapping (3)CG RAM table (for external characters) * A character generator whose character patterns can be altered by the MPU as desired * Maximum 8 x 16 bits (16 bytes per character) * Maximum 64 discrete characters, or 256 characters when not using CGROM * Internal CG RAM used * Variable table mapping (4)CG ROM table * Maximum 5 x 7 bits * Maximum 160 characters * Mapped to addresses 8030h-85AFh. Data cannot be read out by the MPU. To make the most of the above-mentioned functions of the S1D13700, a high-speed interfacing method is used to enable pipelined command processing between the MPU and S1D13700. Most commands of the S1D13700 are processed so that the controller completes the processing of any input command before the next command is issued from the MPU. Therefore, the MPU does not need to frequently check the status of the S1D13700, and is not kept waiting by the S1D13700. Thus, the high-speed interfacing method adopted for the S1D13700 helps minimize possible reduction in the MPU's processing capability. Moreover, the MPU can access the above display space at any time irrespective of display mode (except in sleep mode). S1D13700 Technical Manual EPSON 3 1: OVERVIEW 1.3 List of Abbreviations Abbreviation Meaning AB ............................ Address AP ............................ Address pitch C .............................. Text display mode (Denotes a command in command code descriptions.) CD ............................ Cursor movement direction CG ............................ Character generator CGRAM ADR ........... Character generator memory offset address CM ........................... Cursor shape C/R ........................... Number of characters per line CRX ......................... Cursor size in the X direction CRY.......................... Cursor size in the Y direction CSRDIR .................... Direction of cursor movement CSRFORM ................ Cursor shape CSRR........................ Cursor address read CSRW ....................... Cursor address write DM ........................... Display mode FC ............................ Flashing cursor fFR ............................ Frame frequency fOSC .......................... Oscillation frequency FP ............................. Layer flashing FY ............................ Character field in the Y direction G .............................. Graphic display mode GLC.......................... Graphic liquid crystal unit controller HDOT SCR ............... Smooth scrolling in horizontal direction IV ............................. Inverse L............................... Layer L/F............................ Number of lines per screen MREAD .................... Display memory readout MX ........................... Screen composition method MWRITE .................. Display memory write OV ............................ Screen overlay OVRAY..................... Screen overlay P ............................... Parameter R .............................. Row RAM......................... Random access memory ROM ......................... Read-only memory SAD.......................... Display start address SL............................. Number of scanning lines TC/R ......................... Total number of characters per line VRAM ...................... Display memory MOD(WF)................. AC drive waveform W/S .......................... Double common/single common XDr .......................... X direction driver YDr .......................... Y direction driver * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 4 EPSON S1D13700 Technical Manual 2: PINS 2 PINS 2.1 Pin Assignments HIOVDD DB4 DB5 DB6 DB7 CS# WR# RD# COREVDD CLKI TESTEN SCANEN RESET# XCG1 XCD1 VSS 2.1.1 Pin Connection 33 32 48 49 S1D13700F00A Index 64 1 16 17 NIOVDD YDIS FPFRAME YSCL VSS MOD FPLI NE COREV DD XECL FPSHI FT NIOVDD FPDAT0 FPDAT1 FPDAT2 FPDAT3 VSS VSS AB12 AB11 AB10 AB9 AB8 HIOVDD AB7 AB6 AB5 AB4 COREVDD AB3 AB2 AB1 AB0 DB3 DB2 DB1 DB0 VSS WAIT# HIOVDD1 CNF0 CNF1 CNF2 CNF3 CNF4 AS# AB15 AB14 AB13 S1D13700 Technical Manual EPSON 5 2: PINS 2.1.2 Pin Description Key : I = Input O = Output IO = Input/output P = Power supply HIBC = CMOS input HIBH = CMOS Schmitt input HIBCD1 = CMOS input with pulldown resistor (60 ohms typ. at 5.0 V) HOB2T = Normal buffer (8 mA/-8 mA at 5 V) HBC2T = LVTTL I/O buffer (6 mA/-6 mA at 3.3 V) HTB2T = Tri-state output (6 mA/-6 mA at 3.3 V) HLIN = Transparent input HLOT = Transparent output ITST1 = Test mode control input with pulldown resistor (50 ohms typ. at 3.3 V) Pin Name Pin No. I/O Voltage I/O Cell RESET# State Description -- -- Power supply for host interface HIOVDD(VDD) 7 * 48 * 55 NIOVDD(VDD) 22 * 32 P NIOVDD -- -- Power supply for LCD interface 12 * 25 * 40 P COREVDD -- -- Power supply for core logic 1 * 17 * 28 * 33 * 53 P VSS -- -- Ground COREVDD(VDD) VSS P HIOVDD CLKI 39 I HIOVDD HIBH -- Externally sourced system clock XCG1(XG) 35 I HIOVDD HLOT -- Gate input for oscillator XCD1(XD) 34 O HIOVDD HLIN -- Drain output for oscillator 56-60 I HIOVDD HIBH 0 Input pin for S1D13700 settings IO HIOVDD HBC2T Hi-Z CNF0 - CNF4 (SEL0 - SEL4) DB0 - DB7 (D0 - D7) 44-47 * 49-52 AB0 - AB15 (A0 - A15) 2-6 * 8-11 * 13-16 I HIOVDD HIBC 0 Address bus for MPU interface RD# 41 I HIOVDD HIBH 1 Read strobe for MPU interface WR# 42 I HIOVDD HIBH 1 Write strobe for MPU interface CS# 43 I HIOVDD HIBH 1 Chip select for MPU interface WAIT# 54 O HIOVDD HOB2T Hi-Z Wait output for MPU interface AS# 61 I HIOVDD HIBC 1 Address strobe for MPU interface O NIOVDD HOB2T X Data bus for X driver O NIOVDD HOB2T X Shift clock for X driver FPDAT0 - 18-21 FPDAT3(XD0 - XD3) FPSHIFT(XSCL) 6 I/O Type 23 Data bus for MPU interface XECL 24 O NIOVDD HOB2T X X driver enable chain clock FPLINE(LP) 26 O NIOVDD HOB2T X Latch pulse MOD(WF) 27 O NIOVDD HOB2T X Frame signal YSCL 29 O NIOVDD HOB2T X Scan shift clock FPFRAME (YD) 30 O NIOVDD HOB2T X Scan start pulse EPSON S1D13700 Technical Manual 2: PINS Pin Name Pin No. I/O Type YDIS 31 RESET# (RES) TESTEN SCANEN Note: I/O Voltage I/O Cell RESET# State O NIOVDD HOB2T L LCD power-down output 36 I HIOVDD HIBH 0 Reset input 38 I HIOVDD ITST1 0 Test mode setup input 37 I HIOVDD HIBCD1 0 Test mode setup input Description The corresponding pin names of the earlier LCD controller (i.e., S1D13305) are enclosed in parentheses. S1D13700 Technical Manual EPSON 7 2: PINS 2.1.3 Package Dimensions HD D 48 PIN 33 PIN 49 PIN E ED 32 PIN 64 PIN 17 PIN e ICL A2 Symbol * * * * 8 16 PIN R1 R A1 Amax 1 PIN E D Amax AL AP e ICL CL E L L1 L2 HE HD E2 E3 R R1 L2 Dimension in Milimeters Nom. Max. 10.2 10.3 10.2 10.3 1.2 0.1 0.9 1 1.1 0.5 0.17 0.2 0.27 0.125 0.15 0.2 0 10 0.3 0.5 0.7 1 0.5 11.6 12 12.4 11.6 12 12.4 15 15 0.1 0.1 D L L1 Min. 10.1 10.1 EPSON * E,D ICL CL Excluding the tie bar cutting stub. Lead width of basemetal. Lead thickness of basemetal. 1 = 1mm S1D13700 Technical Manual 2: PINS 2.2 Pin Functions 2.2.1 Power Supply Pins Pin Name Function HIOVDD Power supply for host interface I/O drive. Connect a 5 V or 3.3 V power supply to this pin. (Shared with MPU power supply pin, VCC) Note 1 NIOVDD Power supply for LCD I/O drive other than host of interface I/O. Connect a 5 V or 3.3 V power supply to this pin. Note 1 COREVDD VSS Power supply for internal logic. Connect a 3.3 V power supply to this pin. Note 1 Connects to 0 V earth ground (GND). Note 1: Because the spike power supply current in the S1D13700 could reach levels that are several tens higher than the average amount of dynamically consumed current, measures must be taken to minimize the power supply impedance of the S1D13700. For example, use thick power supply wiring from the power supply to the S1D13700 or insert a capacitor of 0.47 mF or more (with good frequency characteristics) between VDD and VSS close to the S1D13700. These measures will help to reduce power supply impedance. 2.2.2 Oscillator and Clock Input Pins CLKI Generally used as the input clock source for the bus and memory clocks. XCG1 These pins are used to connect a crystal resonator for the internal clock-generating oscillator. For details, see Section 4.2 "Oscillator Circuit" on page 70. To use the external clock (fed in from the CLKI pin), fix XCG1 for input with a pullup resistor and leave XCD1 open. Note 2 XCD1 Input, active low Set the frequency divide ratio of the display clock (pixel clock) relative to CLKI or an internally generated system clock. CNF3 CNF2 Clock Retio CNF0 0 0 1/4 CNF1 0 1 1/8 1 0 1/16 1 1 Not USE Note 2: Because the external clock fed in from the CLKI pin is needed to internally generate the fundamental timing in the S1D13700, the oscillation characteristic requirements given in Section 5.4.3 "External Clock Input Characteristics" on page 92 must be met. S1D13700 Technical Manual EPSON 9 2: PINS 2.2.3 System Bus Connecting Pins DB0 - DB7 Tristate input/output, active high These pins comprise an 8-bit bidirectional data bus, which is connected to the 8-bit or 16-bit MPU data bus. Input, active high The S1D13700 allows the MPU interface format to be changed depending on how CNF2 and CNF3 are set, so that it can be connected directly to the 80-series MPU (e.g., Z80 (R) or GenericBus), 68-series MPU (6809 or 6802), or the MC68K-series MPU (68000) bus. CNF2 Mode AB15 - AB1 AB0 RD# WR# CS# DB7 - DB0 WAIT# 0 0 80 series - 0 1 * * * * * * * * * 1 0 6800 E R/W# - - 1 1 MC68K LDS# R/W# DTACK# CNF3 CNF2 CNF3 AS# Settings marked with * are inhibited. Note 3 Note 3: Normally, CNF2 and CNF3 should be corrected directly to power supply VDD or VSS to prevent the mixture of noise. Should noise be mixed in, insert a capacitor between the CNF2 and CNF3 lines and VSS, as close to the IC pins as possible. This will help to effectively eliminate noise. AB15 - AB1 AB0 Input, active high Normally, the MPU address bus is connected to these pins. The data bus signal is discriminated by a combination of RD# and WR# signals, or R/W#, E, and LDS signals, as listed in the table below. Input: CNF4 = 0 selects direct access; CNF4 = 1 selects indirect access. CNF4 AB15 - AB1 AB0 RD# WR# 0 0or1 0or1 0 1 Read from command/parameter registers 0 0or1 0or1 1 0 Write to command/parameter registers Function *AB15-AB0 are used as register addresses. CMF4 10 CNF4 AB15 - AB1 AB0 RD# WR# 1 - 0 0 1 - Function 1 - 1 0 1 Data (display data and cursor address) read 1 - 0 1 0 Data (display data and parameter) write 1 - 1 1 0 Command write (code only) EPSON S1D13700 Technical Manual 2: PINS Input: CNF4 = 0 selects direct access; CNF4 = 1 selects indirect access. CNF4 AB15 - AB1 AB0 WR# (R/W#) RD# (E) 0 0or1 0or1 1 1 Read from command/parameter registers 0 0or1 0or1 0 1 Write to command/parameter registers Function *A15-A0 are used as register addresses. CMF4 CNF4 AB15 - AB1 AB0 WR# (R/W#) RD# (E) 1 - 0 1 1 - Function 1 - 1 1 1 Data (display data and cursor address) read 1 - 0 0 1 Data (display data and parameter) write 1 - 1 0 1 Command write (code only) RD# (E) * When the 80-series MPU is connected Input, active low This is the strobe signal used by the MPU as it reads data or status flags from the S1D13700. The data bus of the S1D13700 is in output mode while this signal remains low. * When the 68-series MPU is connected Input, active high This is an enable clock input pin of the 68-series MPU. * When the MC68K-series MPU is connected Input, active low Normally, this is an LDS# input pin of the MC68K-series MPU. WR# (R/W#) * When the 80-series MPU is connected Input, active low This is the strobe signal used by the 80-series MPU as it writes data or parameters to the S1D13700. The S1D13700 latches the data bus signal at the rising edge of WR#. * When the 68-series MPU is connected Input This is a R/W# control signal input pin of the 68-series MPU. R/W# = HIGH : READ R/W# = LOW : WRITE * When the MC68K-series MPU is connected Input This is a R/W# control signal input pin of the MC68K-series MPU. R/W# = HIGH : READ R/W# = LOW : WRITE CS# Input, active low This chip select signal is used by the MPU to activate the S1D13700 before accessing it, and is normally derived by decoding the address bus signal. S1D13700 Technical Manual EPSON 11 2: PINS WAIT# AS# RESET# This signal forcibly inserts a wait state into the system during data transfer. When this signal is deasserted, data transfer is completed. After data transfer is complete, this signal is left free (placed in high-impedance state). * When the 80-series MPU is connected Tri-state output, active low (wait state when asserted low) Connect this pin to WAIT# of the 80-series MPU. * When the 68-series MPU is connected Unused. Therefore, leave this pin open. * When the MC68K-series MPU is connected Tri-state output, active low (no wait state when asserted low) This pin serves as the DTACK# pin of the MC68K-series MPU. * When the 80-series MPU is connected Unused. Therefore, fix this pin low. * When the 68-series MPU is connected Unused. Therefore, fix this pin low. * When the MC68K-series MPU is connected Input, active low Connect this pin to the address strobe AS# pin of the MC68K-series MPU. Input, active low The RESET# input is used to initially reset the S1D13700 in hardware. Note 4 Note 4: Although this pin is a Schmitt trigger input to prevent the S1D13700 from being inavertently reset by noise, care must be taken when intentionally lowering the power supply voltage. 12 EPSON S1D13700 Technical Manual 2: PINS 2.2.4 LCD Driver Control Pins The S1D13700 can directly control both the X and Y drivers based on an enable chain, which is a method of effectively reducing the amount of current consumption needed to drive dot-matrix liquid crystal display elements. FPDAT0 - FPDAT3 Output, active high This 4-bit dot data bus for the X driver (column driver) is connected to the data input pins of the X driver. FPSHIFT Output, falling edge triggered This signal causes the dot data bus signals (FPDAT0-FPDAT3) to be stored in the X driver at the signal's falling edge, and thus functions as a shift clock for the internal shift register of the X driver. To reduce power consumption, this clock is turned off until the MPU starts sending data for the next display line after outputting the LP signal. (For details, see Section 5.4.4 "LCD Control Signal Timing Characteristics" on page 93.) XECL Output, falling edge triggered XECL is a dedicated clock signal for the X drivers cascaded by an enable chain. It causes the enable signal to be successively passed to the next X driver every 16 XSCL periods. FPLINE Output, falling edge triggered For the liquid crystal display elements to be successively driven, the X driver contains a circuit to latch each output bit of the internal shift register at the falling edge of LP. This signal is output for every display line. MOD Output This signal provides a one-frame interval for the X and Y drivers to determine the AC drive waveform for the LCD panel. Two types of cyclic signals are output depending on how the System Set command parameters are set. YSCL Output, active high, rising edge triggered This signal is a clock for the Y driver, and is equivalent to XSCL for the X driver. The Y data signal (YD) is stored in the Y driver at the beginning of a frame, and YSCL is used as an internal shift clock. FPFRAME Output, active high YD is data for the Y driver, and is a cyclic signal output at the first display line interval of a frame. The electrodes on the common side of liquid crystal display elements are sequentially scanned as the YD signal is sequentially shifted inside the Y driver synchronously with the YSCL signal. YDIS Output, active high This signal is used to power down the LCD unit and is held high during the display period. Note 5 Note 5: The YDIS signal goes low at a time equivalent to one to two frames after the sleep command is written. When the YDIS signal goes low, all Y driver outputs are forcibly brought to an intermediate level (unselected), thus causing display to turn off. Therefore, to power off the LCD unit, the liquid crystal drive power supply (with relatively large steady-state current) must be turned off at the same time display is turned off by using the YDIS signal. 2.2.5 TEST Control Pins TESTEN Input, active high Test-enable input used only for production testing (with type-1 pulldown resistor, 50 ohms typ. at 3.3 V). SCANEN Input, active high Test-enable input used only for production testing (with type-1 pulldown resistor, 50 ohms typ. at 3.3 V). S1D13700 Technical Manual EPSON 13 3: COMMANDS AND COMMAND REGISTERS 3 COMMANDS AND COMMAND REGISTERS 3.1 Types of Commands (when Indirectly Interfaced) When indirect mode is selected for the system interface, use commands to set up the display. The table below lists the types of commands, including the code of each command. Code Purpose Command WR# RD# AB0 Operation SYSTM SET control SLEEP IN Display control Drawing control Memory control DB BIN 7 6 5 4 3 2 1 0 DB HEX 1 0 1 0 1 0 0 0 0 0 0 40 1 0 1 0 1 0 1 0 0 1 1 53 DISPON/OFF 1 0 1 0 1 0 1 1 0 0 D 58 * 59 SCROLL 1 0 1 0 1 0 0 0 1 0 0 44 CSRFORM 1 0 1 0 1 0 1 1 1 0 1 5D CSRDIR 1 0 1 CD CD 4C - 0 1 0 0 1 1 1 0 4F OVLAY 1 0 1 0 1 0 1 1 0 1 1 5B CGRAM ADR 1 0 1 0 1 0 1 1 1 0 0 5C HDOT SCR 1 0 1 0 1 0 1 1 0 1 0 5A GRAY SCALE 1 0 1 0 1 1 0 0 0 0 0 60 CSRW 1 0 1 0 1 0 0 0 1 1 0 46 CSRR 1 0 1 0 1 0 0 0 1 1 1 47 MWRITE 1 0 1 0 1 0 0 0 0 1 0 42 MREAD 1 0 1 0 1 0 0 0 0 1 1 43 Command description Sets initial operation and window size. Sleep operation. Instructs to turn display on or off and make the screen flash on and off. Sets the display start address and display area. Sets the cursor shape, etc. Sets the direction of cursor movement. Instructs screen overlay mode. Sets the start address of CG RAM. Sets the horizontal direction dot unit and scroll position. Sets grayscale mode. Sets the cursor address. Instructs to read the cursor address. Instructs to write to display memory. Instructs to read display memory data. Parameters following the command Remarks See No. of parameters pages 8 19 0 27 Note 1 1 28 Note 1 10 29 2 37 0 38 1 39 2 43 1 44 0 45 2 45 Note 1 2 46 Note 1 -- 47 Note 1 -- 47 Note 1: As a rule, each command is executed every time a parameter for the command is input to the S1D13700, and completed before the next parameter (P) or command (C) is input. Therefore, the MPU can stop sending parameters in the middle and send the next command. In this case, the parameters that have already been sent are effective and other parameters not input to the S1D13700 retain their original values. However, two-byte parameters are handled as described below. Note 1: 1. CSRW and CSRR commands: The parameter is executed one byte at a time. Therefore, the MPU can only alter or check the low-order byte. 2. Commands other than CSRW and CSRR: The parameter is not executed until its second byte is input. SYSTEM SET SCROLL CGRAM ADR 3. Two-byte parameters consist of two bytes of data (as in the case of APL and APH). 4. Because the value of each register after power-on is indeterminate, make sure all command parameters are set. 14 EPSON S1D13700 Technical Manual 3: COMMANDS AND COMMAND REGISTERS 3.2 Command Register Map (when Directly Interfaced) When direct mode is selected for the system interface, directly access the registers to set up the display. Hard Reset Register name 0 x 8000 0 x 10 0 x 8001 Address bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 R_P1_ SystemSet 0 0 IV 1 WS M2 M1 M0 0 x 00 R_P2_ SystemSet WF 0 0 0 FX 0 x 8002 0 x 00 R_P3_ SystemSet 0 0 0 0 FY 0 x 8003 0 x 00 R_P4_ SystemSet CR 0 x 8004 0 x 00 R_P5_ SystemSet TCR 0 x 8005 0 x 00 R_P6_ SystemSet LF 0 x 8006 0 x 00 R_P7_ SystemSet APL 0 x 8007 0 x 00 R_P8_ SystemSet APH 0 x 8008 *2 0 x 01 R_SleepIn 0 0 0 0 0 0 0 Sleep In 0 x 8009 0 x 00 r_DispOnOff 0 0 0 0 0 0 0 Disp On 0 x 800A 0 x 00 r_P1_ DispOnOff FP5 FP4 FP3 FP2 FP1 FP0 FC1 FC0 0 x 800B 0 x 00 r_P1_Scroll SAD1L A7 SAD1L A6 SAD1L A5 SAD1L A4 SAD1L A3 SAD1L A2 SAD1L A1 SAD1L A0 0 x 800C *1 0 x 00 r_P2_Scroll SAD1H A15 SAD1H A14 SAD1H A13 SAD1H A12 SAD1H A11 SAD1H A10 SAD1H A9 SAD1H A8 0 x 800D 0 x 00 r_P3_Scroll SL1L7 SL1L6 SL1L5 SL1L4 SL1L3 SL1L2 SL1L1 SL1L0 SAD2L A6 SAD2L A5 SAD2L A4 SAD2L A3 SAD2L A2 SAD2L A1 SAD2L A0 0 x 800E 0 x 00 r_P4_Scroll SAD2L A7 0 x 800F *1 0 x 00 r_P5_Scroll SAD2H A15 SAD2H A14 SAD2H A13 SAD2H A12 SAD2H A11 SAD2H A10 SAD2H A9 SAD2H A8 0 x 8010 0 x 00 r_P6_Scroll SL2L7 SL2L6 SL2L5 SL2L4 SL2L3 SL2L2 SL2L1 SL2L0 0 x 8011 0 x 00 r_P7_Scroll SAD3L A7 SAD3L A6 SAD3L A5 SAD3L A4 SAD3L A3 SAD3L A2 SAD3L A1 SAD3L A0 0 x 8012 *1 0 x 00 r_P8_Scroll SAD3H A15 SAD3H A14 SAD3H A13 SAD3H A12 SAD3H A11 SAD3H A10 SAD3H A9 SAD3H A8 0 x 8013 0 x 00 r_P9_Scroll SAD4L A7 SAD4L A6 SAD4L A5 SAD4L A4 SAD4L A3 SAD4L A2 SAD4L A1 SAD4L A0 0 x 8014 *1 0 x 00 r_P10_Scroll SAD4H A15 SAD4H A14 SAD4H A13 SAD4H A12 SAD4H A11 SAD4H A10 SAD4H A9 SAD4H A8 0 x 8015 0 x 00 r_P1_ CsrForm 0 0 0 0 CRX3 CRX2 CRX1 CRX0 0 x 8016 0 x 00 r_P2_ CsrForm CM 0 0 0 CRY3 CRY2 CRY1 CRY0 0 x 8017 0 x 00 r_P1_CsrDir 0 0 0 0 0 0 CD1 CD2 0 x 8018 0 x 00 r_P1_OvLay 0 0 0 OV DM2 DM1 MX1 MX0 S1D13700 Technical Manual EPSON 15 3: COMMANDS AND COMMAND REGISTERS Hard Reset Register name 0 x 8019 0 x 00 0 x 801A *1 Address bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 r_P1_ CGRAMAdr SAGL A7 SAGL A6 SAGL A5 SAGL A4 SAGL A3 SAGL A2 SAGL A1 SAGL A0 0 x 00 r_P2_ CGRAMAdr SAGH A15 SAGH A14 SAGH A13 SAGH A12 SAGH A11 SAGH A10 SAGH A9 SAGH A8 0 x 801B 0 x 00 r_P1_HdotScr 0 0 0 0 0 D2 D1 D0 0 x 801C *3 0 x 00 r_P1_CSRW CSRL A7 CSRL A6 CSRL A5 CSRL A4 CSRL A3 CSRL A2 CSRL A1 CSRL A0 0 x 801D *3 0 x 00 r_P2_CSRW CSRH A15 CSRH A14 CSRH A13 CSRH A12 CSRH A11 CSRH A10 CSRH A9 CSRH A8 0 x 801E *3 0 x 00 r_P1_CSRR CSRL A7 CSRL A6 CSRL A5 CSRL A4 CSRL A3 CSRL A2 CSRL A1 CSRL A0 0 x 801F *3 0 x 00 r_P2_CSRR CSRH A15 CSRH A14 CSRH A13 CSRH A12 CSRH A11 CSRH A10 CSRH A9 CSRH A8 0 x 8020 0 x 00 r_P1_ GrayScale 0 0 0 0 0 0 BPP1 BPP0 *1 To ensure that two bytes are set at the same time, the low-order byte is fixed when the high-order byte is written. *2 SLEEPIN = 0: Clock enable Using the internal oscillator circuit causes the oscillator to start oscillating. Using an externally sourced clock causes the clock to propagate to the internal circuits. The internal timing circuit is released from reset status by writing to any register after setting SLEEPIN = 0. (Therefore, internal SRAM cannot be accessed until that time.) *3 CSRW: Write only (00h when read), CSRR: read only (write invalid). Other registers can be written to or read from (in units of bits). The following shows the relationship between memory and register maps in the S1D13700. 0000h (MSB DB7 - LSB DB0) Display RAM Area 7FFFh 8000h Register Area 802Fh 8030h 0x8021 - 0x802F Reserve (CGROM Area) 85AFh 85B0h Not Use FFFFh S1D13700 Memory Mapping (AB15 - AB0) * The S1D13700 ignores any attempt to access address space 8030h-FFFFh. This address space may be employed as a user area, but because there is no negate output available for the WAIT# pin of the S1D13700, inhibit access to this address space when not in use. 16 EPSON S1D13700 Technical Manual 3: COMMANDS AND COMMAND REGISTERS 3.3 3.3.1 Command Description Operation Control Commands SYSTEM SET This command and the parameters that follow specify initial reset of the device, set the window size, and the method of connecting with the LCD unit. This command determines the fundamental operation of the S1D13700. Therefore, if this command is incorrectly set, the functions of other commands may not work normally. MSB D7 D6 D5 D4 D3 D2 D1 LSB D0 Address Register name C 0 1 0 0 0 0 0 0 - - P1 0 0 IV 1 W/S M2 M1 M0 0x8000 r_P1_SystemSet bit5 : IV bit3 : WS bit2 : M2 bit1 : M1 bit0 : M0 P2 WF 0 0 0 0 FX 0x8001 r_P2_SystemSet bit7 : WF bit2-0 : FX P3 0 0 0 FY 0 0x8002 r_P3_SystemSet bit3-0 : FX P4 C/R 0x8003 r_P4_SystemSet bit7-0 : CR P5 TC/R 0x8004 r_P5_SystemSet bit7-0 : TCR P6 0x8005 L/F r_P6_SystemSet bit7-0 : LF P7 APL 0x8006 r_P7_SystemSet bit7-0 : APL P8 APH 0x8007 r_P8_SystemSet bit7-0 : APH C The command alone has the following initial reset functions: * Resets the internal timing circuit. * Turns display off. * Deactivates sleep mode (internal operation stopped state) (thus starting the oscillator). To deactivate sleep mode, make sure the command and one parameter (P1) are input. In direct interface mode, clearing the SleepIn bit has the same effect. S1D13700 Technical Manual EPSON 17 3: COMMANDS AND COMMAND REGISTERS [Parameter P1] M0 Specify the CG ROM to be used for display. Although internal CG ROM can generate 160 discrete character fonts (each consisting of 5 x 7 dots as shown in Section 4.4.1 "Character Fonts (Internal CG)" on page 81), internal CG RAM may be used when different character fonts or more characters (up to 256) are needed. M0 0: Internal CG ROM (160 characters) + internal CG RAM (64 characters) 1: Internal CG RAM (256 characters) Note: When the CG area is mapped in the display memory space, the memory area available to store display data is reduced by the amount of CG area mapped. M1 Selects the CG RAM definition area where the user can define any desired character pattern. The CG RAM code may be selected from the 64 discrete codes assigned in Section 4.4.2 "Character Codes" on page 82. M1 0: Without bit D6 correction The CG RAM1 and CG RAM2 areas are noncontiguous. Only CG RAM1 is handled as CG RAM, with CG RAM2 handled as CG ROM. 1: With bit D6 correction M2 The CG RAM1 and CG RAM2 areas are contiguous. Both CG RAM1 and RAM2 are handled as CG RAM. Select the CG size in the Y direction for more economical use of internal CG RAM. CGs whose sizes in the Y direction are 17 dots or more cannot be handled with the character codes of the S1D13700. In such case, characters may be decomposed into bit images and displayed in graphic display mode of the S1D13700. M2 0: 8 dots 1: 16 dots The table below summarizes bank configurations by M1, M2, and M3. Bank configurations M2 M1 M0 Internal ROM 0 0 18 0 1 160 characters (5 x 7 x 160) 0 0 10 - 1F 20 - 2F 30 - 3F 40 - 4F 50 - 5F 60 - 6F 70 - 7F A0 - AF B0 - BF C0 - CF D0 - DF External RAM 64 characters (8 x 6 x 64) SAG+ { [80 - 8F], Row [2 : 0]} [90 - 9F] [E0 - EF] [F0 - FF] Internal ROM 160 characters (5 x 7 x 160) Same as shown above. 64 characters (6 x 8 x 64) SAG+ { [A0 - AF], Row [2 : 0]} [B0 - BF] [C0 - CF] [D0 - DF] External RAM EPSON Internal ROM used Without correction Y size = 8 Internal ROM used With correction Y size = 8 S1D13700 Technical Manual 3: COMMANDS AND COMMAND REGISTERS M2 M1 M0 Internal ROM 1 1 0 1 0 0 160 characters (5 x 7 x 160) Same as shown above. External RAM 64 characters (6 x 8 x 64) SAG+ { [80 - 8F], Row [3 : 0]} [90 - 9F] [E0 - EF] [F0 - FF] Internal ROM 160 characters (5 x 7 x 160) Same as shown above. External RAM 64 characters (6 x 16 x 64) SAG+ { [A0 - AF], Row [3 : 0]} [B0 - BF] [C0 - CF] [D0 - DF] Internal ROM used Without correction Y size = 16 Internal ROM used With correction Y size = 16 0 0 1 External RAM 256 characters (8 x 8 x 256) F000 - F7FF External RAM Without correction Y size = 8 0 1 1 External RAM 256 characters (8 x 8 x 256) F000 - F7FF External RAM With correction Y size = 8 1 0 1 External RAM 256 characters (8 x 16 x 256) F000 - FFFF External RAM Without correction Y size = 16 1 1 1 External RAM 256 characters (8 x 16 x 256) F000 - FFFF External RAM With correction Y size = 16 M1 = 0 M1 = 1 (code [6] converted) 00 - 0F 00000000 - 00001111 Blank 40 - 4F 00000000 - 00001111 ROM 10 - 1F 00010000 - 00011111 ROM 50 - 5F 01010000 - 01011111 ROM 20 - 2F 00100000 - 00101111 ROM 60 - 6F 01100000 - 01101111 ROM 30 - 3F 00110000 - 00111111 ROM 70 - 7F 01110000 - 01111111 ROM 40 - 4F 01000000 - 01001111 ROM 00 - 0F 00000000 - 00001111 Blank 50 - 5F 01010000 - 01011111 ROM 10 - 1F 00010000 - 00011111 ROM 60 - 6F 01100000 - 01101111 ROM 20 - 2F 00100000 - 00101111 ROM 70 - 7F 01110000 - 01111111 ROM 30 - 3F 00110000 - 00111111 ROM 80 - 8F 10000000 - 10001111 RAM C0 - CF 11000000 - 11001111 ROM 90 - 9F 10010000 - 10011111 RAM D0 - DF 11010000 - 11011111 ROM A0 - AF 10100000 - 10101111 ROM E0 - EF 11100000 - 11101111 RAM B0 - BF 10110000 - 10111111 ROM F0 - FF 11110000 - 11111111 RAM C0 - CF 11000000 - 11001111 ROM 80 - 8F 10000000 - 10001111 RAM D0 - DF 11010000 - 11011111 ROM 90 - 9F 10010000 - 10011111 RAM E0 - EF 11100000 - 11101111 RAM A0 - AF 10100000 - 10101111 ROM F0 - FF 11110000 - 11111111 RAM B0 - BF 10110000 - 10111111 ROM *M1: The 6th bit of the character code is automatically converted by hardware. The memory area accessed changes. S1D13700 Technical Manual EPSON 19 3: COMMANDS AND COMMAND REGISTERS W/S Selects the LCD unit drive method. W/S 0: Single-screen drive method 1: Dual-screen drive method Table 3-1 W/S Related Registers Parameter C/R TC/R W/S = 0 W/S = 1 IV = 1 IV = 0 IV = 1 IV = 0 C/R C/R C/R C/R TC/R TC/R TC/R TC/R L/F L/F L/F L/F L/F SL1 00H - L/F 00H - L/F + 1 (L/F)/2 (L/F)/2 SL2 00H - L/F 00H - L/F + 1 (L/F)/2 (L/F)/2 SAD1 First screen block First screen block First screen block First screen block SAD2 Second screen block Second screen block Second screen block Second screen block SAD3 Third screen block Third screen block Third screen block Third screen block SAD4 Invalid Invalid Fourth screen block Fourth screen block Cursor Upper/lower screen configuration: Successively movable on all screens Successively movable on all screens Note: 1. For details on how to set C/R and TC/R when using the HDOT SCR command, see Section 4.1.6 "Determining Various Parameters" on page 64. 2. The SL value for IV = 0 is the SL value for IV = 1 plus 1. IV Corrects the screen origin during inverse display. Normally set IV = 1. The most effective way to display characters in inverse video is to use a unique function of the S1D13700 that allows the text screen and graphics back-layered screen to be exclusive OR'd. However, because the character origin is at the upper-left corner of the screen when characters are mapped on the screen by the S1D13700, the uppermost line and leftmost column on the display screen do not have dots to draw the outline of characters, thus making the displayed characters illegible. Therefore, the S1D13700 uses the IV specification and horizontal direction dot scroll function (HDOTSCR command) to shift the origin of the text screen for correction with respect to the graphics back-layered screen, allowing characters to be displayed in inverse video anywhere on the screen. For details, see Section 4.1.7 "Scrolling" on page 65. IV 0: Uppermost line of screen corrected 1: Uppermost line of screen not corrected Origin of the screen IV 1 dot Background layer HDOT SCR Text 1 - 7 dots Figure 3-1 Combination of IV and HDOT SCR Note: If the leftmost column must also be corrected, shift dots in the horizontal direction. 20 EPSON S1D13700 Technical Manual 3: COMMANDS AND COMMAND REGISTERS [Parameter P2] FX Defines the size of the character field in the X direction (i.e., size of one character including a space). HEX 00 01 * * 07 BIN D4 D3 D2 D1 D0 0 0 * * 0 0 0 * * 0 0 0 * * 1 0 0 * * 1 Number of dots [FX] 0 1 * * 1 1 2 * * 8 Structure of the character field 1. Because the S1D13700 processes the display data in 8-bit units, if the character font exceeds 8 bits, the text screen must configure one character with two or more display memory addresses as normally practiced. In this case, odd-numbered bits less than a unit of 8 bits are not displayed as shown below. Oddnumbered bits less than a unit of 8 bits are also not displayed on the back-layered screen as shown below. 2. In graphic display mode, the character field must normally be 8 bits long. For other character fields, oddnumbered bits less than a unit of 8 bits are not displayed. FX FX 8 bits 8 bits 8 bits FY FY 8 bits 8 bits 8 bits Not displayed Address A Address B Address C Figure 3-2 Typical relationship between FX/FY and display addresses In grayscale mode, FX must be fixed to `00111' (8 dots). WF Specifies the AC drive method of the liquid crystal. WF 0: Line inversion drive method 1: Two-frame AC drive method (method B) The two-frame AC drive method is an AC drive method in which the half period of the WF signal constitutes a one-frame interval. Normally, set WF = 1. The line inversion drive method is a modified AC drive method in which the WF signal has its waveform inverted every 16 Y lines. Note: Although the LCD may look better when WF is set to 0, stripes in the X direction will appear when the LCD drive voltage is high or viewing angle large. S1D13700 Technical Manual EPSON 21 3: COMMANDS AND COMMAND REGISTERS [Parameter P3] FY Defines the size of the character field in the Y direction. HEX BIN Number of dots [FX] D3 D2 D1 D0 00 01 * * 07 * 0E 0F 0 0 * * 0 * 1 1 0 0 * * 1 * 1 1 0 0 * * 1 * 1 1 0 1 * * 1 * 0 1 1 2 * * 8 * 15 16 [Parameter P4] C/R Defines the display interval in the X direction by indicating the number of display characters counted in address units, as described in the section on parameter FX. When [FX] = 10 dots, for example, two memory addresses are counted per character. For details on how to calculate the [C/R] value, see Section 4.1.6 "Determining Various Parameters" on page 64. The value set for this parameter cannot be greater than the calculated [C/R] value, but can be equal to or less than the calculated [C/R] value. In that case, excess display sections are left blank. HEX 00 01 * * 4F * * EE EF BIN D7 D6 D5 D4 D3 D2 D1 D0 0 0 * * 0 * * 1 1 0 0 * * 1 * * 1 1 0 0 * * 0 * * 1 1 0 0 * * 0 * * 0 0 0 0 * * 1 * * 1 1 0 0 * * 1 * * 1 1 0 0 * * 1 * * 1 1 0 1 * * 1 * * 0 1 Characters per line [C/R] 1 2 * * 80 * * 239 240 Note: 1. Make sure the number of dots in excess display sections is within 64. 2. For grayscale to be set to 2 Bpp or 4 Bpp, the set value of CR must be increased. CR (bytes) = [ (Panel Width) /8pixel character]*Bpp 22 EPSON S1D13700 Technical Manual 3: COMMANDS AND COMMAND REGISTERS [Parameter P5] TC/R The condition [TC/R] [C/R] + 4 must always be met. To minimize the amount of current consumed by the S1D13700 and LCD unit for a given display capacity, the S1D13700's oscillation frequency (fosc) must be adjusted. Moreover, because the one-frame time (1/fFR) must be made constant to prevent flicker, define [TC/R] according to the equation to calculate [TC/R] as described in Chapter 4 and adjust the S1D13700's divide-by-n ratio. HEX 00 01 * * 52 * * FE FF BIN D7 D6 D5 D4 D3 D2 D1 D0 0 0 * * 0 * 1 1 0 0 * * 1 * * 1 1 0 0 * * 0 * * 1 1 0 0 * * 1 * * 1 1 0 0 * * 0 * * 1 1 0 0 * * 0 * * 1 1 0 0 * * 1 * * 1 1 0 1 * * 0 ** * 0 1 Characters per line [TC/R] 1 2 * * 83 * * 255 256 [Parameter P6] L/F Defines the display interval in the Y direction by indicating the number of display lines per screen. HEX 00 01 * * 7F * * FE FF BIN D7 D6 D5 D4 D3 D2 D1 D0 0 0 * * 0 * * 1 1 0 0 * * 1 * * 1 1 0 0 * * 1 * * 1 1 0 0 * * 1 * * 1 1 0 0 * * 1 * * 1 1 0 0 * * 1 * * 1 1 0 0 * * 1 * * 1 1 0 1 * * 1 * * 0 1 Number of lines per screen 1 2 * * 128 * * 255 256 Note: When W/S = 1, [L/F] must be defined as an even number because dual-screen display is assumed. S1D13700 Technical Manual EPSON 23 3: COMMANDS AND COMMAND REGISTERS [Parameters P7, P8] AP Defines the number of memory addresses in the X direction of a virtual screen. MSB LSB D7 D6 D5 D4 D3 D2 D1 D0 APL AP7 AP6 AP5 AP4 AP3 AP2 AP1 AP0 APH AP15 AP14 AP13 AP12 AP11 AP10 AP9 AP8 HEX APH APL 0 0 * * 0 * * F F 0 0 * * 5 * * F F 0 0 * * 0 * * F F Number of memory addresses per line [AP] Display screen 0 1 * * 80 * * 216-2 216-1 0 1 * * 0 * * E F C/R Defined area of display memory AP SLEEP IN C When this command is input, the S1D13700 blanks the display for at least a one-frame period, then stops all internal operations including clock oscillation before entering sleep mode. At this time, the LCD unit sends OFF data to the X driver while simultaneously sending the YDIS signal to the Y driver to turn the bias voltage off. Therefore, in no case will unexpected display remain on the screen when the liquid crystal is powered off by the YDIS signal. In sleep mode, the S1D13700 registers retain the original state before entering sleep mode. Moreover, the display memory control pins are fixed high or low to maintain the integrity of data stored in display memory. To restore the S1D13700 from sleep mode, write the command and one parameter (P1) of the SYSTEM SET to the S1D13700 once to immediately wake up the S1D13700. In direct interface mode, the S1D13700 can be restored from sleep mode by clearing the SleepIn bit. However, display memory cannot be accessed immediately after exiting sleep mode. The display RAM space (0000h-7FFFh) can be accessed by first accessing any other register once. To restore display, execute the DISP ON command immediately after exiting sleep mode. Regardless of whether the S1D13700 is directly or indirectly interfaced, the entire screen must be set to the ON state before entering sleep mode. When in indirect interface mode, issue the DISP ON command. When in direct interface mode, set the DispOn bit to 1 before entering sleep mode. MSB D7 C 0 D6 D5 D4 D3 D2 D1 1 0 1 0 0 1 LSB D0 1 Address Register name 0x8008 r_SleepIn bit0 : SleepIn Note: 1. The YDIS signal goes low at a time equivalent to one to two frames after the sleep command is written. When the YDIS signal goes low, all Y driver outputs are forcibly brought to an inter24 EPSON S1D13700 Technical Manual 3: COMMANDS AND COMMAND REGISTERS mediate level (unselected), causing display to turn off. Therefore, for the LCD unit to be powered down, the liquid crystal drive power supply (with relatively large steady-state current) must be turned off at the same time display is turned off by using the YDIS signal. 2. If the drive power supply of the liquid crystal remains on in sleep mode, a DC component may be applied to the LCD panel because all internal operations of the S1D13700 have been stopped in that mode. When priority is placed on reliability, however, the liquid crystal drive power supply must be turned off before writing the sleep command to prevent DC components from being applied to the LCD panel. 3. Although the bus is placed in the high-impedance state during sleep mode, some voltage may be supplied to the bus line for a bus with pull-up/pull-down resistors. 3.3.2 Display Control Commands DISP ON/OFF This command turns display of the entire screen on or off. The parameters that follow this command turn the cursor and each layered screen on or off individually, and select the cursor blink rate and screen flashing rate. Setting a blink rate and flashing rate makes area flashing possible (i.e., flashing one entire line) instead of flashing just one character by means of cursor display. MSB D7 C 0 D6 D5 D4 D3 D2 D1 1 0 1 1 0 0 LSB D0 0 Address 0x8009 Register name r_DispOnOff bit0 : DispOn P1 FP5 FP4 FP3 FP2 FP1 FP0 FC1 FC0 0x800A r_P1_DispOnOff bit7-2 : FP5-FP0 bit1-0 : FC1-FC0 C D 0: Disables entire screen display. 1: Restores entire screen display. Note: Parameter D (to disable entire screen display) has priority over parameter FP. Note: When the entire screen display is disabled (D=0), power to the panel is off (YDIS = 0 level) and the panel timing signal is off. [Parameter P1] FC Selects turning the cursor on or off and defines a blink rate. FC1, FC0 0 0 1 1 0 1 0 1 Cursor display OFF (blank) ON Blinking off Blink at fFR/32 Hz (approx. 2 Hz) Blink at fFR/64 Hz (approx. 1 Hz) Cusor blink on/off ratio ON : OFF = 7 : 3 Note: As the MWRITE command always enables the cursor, the cursor position can be checked, even when performing consecutive writes to display memory while the cursor is flashing. S1D13700 Technical Manual EPSON 25 3: COMMANDS AND COMMAND REGISTERS Note: To display the cursor in direct interface mode, read or write data to the frame buffer. This action causes the cursor to move automatically to that position. FP FP1, FP0 First screen block (SAD1) FP3, FP2 Second screen block (SAD2, SAD4) Note FP5, FP4 Third screen block (SAD3) 0 0 1 1 0 1 0 1 Screen display off (blank) Display on Screen flashing off Flash at fFR/32 Hz (approx. 2 Hz) Flash at fFR/4 Hz (approx. 15 Hz) Screen flashing on/off ratio ON:OFF = 7:3 Note: Although SAD4 is assumed when W/S = 1, the screens specified by SAD2 and SAD4 cannot be made to flash independently of each other due to simultaneous control by parameters FP2 and FP3. 26 EPSON S1D13700 Technical Manual 3: COMMANDS AND COMMAND REGISTERS SCROLL C Defines the scroll start address (SAD) and number of lines per block to be scrolled (SL). Parameters P1 through P10 can be omitted when not required. However, the parameters must be set sequentially as shown below. MSB D7 D6 D5 D4 D3 D2 D1 LSB D0 Address Register name - C 0 1 0 0 0 1 0 0 - P1 A7 A6 A5 A4 A3 A2 A1 A0 0x800B bit7-0 : A7-A0 (SAD1L) A15 P2 A14 A13 A12 A11 A10 A9 A8 0x800C L7 L6 L5 L4 L3 L2 L1 L0 0x800D A7 A6 A5 A4 A3 A2 A1 A0 0x800E A15 A14 A13 A12 A11 A10 A9 A8 0x800F L7 L6 L5 L4 L3 L2 L1 L0 0x8010 A7 A6 A5 A4 A3 A2 A1 A0 0x8011 (SAD3L) P8 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 0x8012 A15 A14 A13 A12 A11 A10 A9 A8 (SAD4H) Note r_P8_Scroll bit7-0 : A15-A8 0x8013 r_P9_Scroll bit7-0 : A7-A0 (SAD4L) Note P10 r_P7_Scroll bit7-0 : A7-A0 (SAD3H) P9 r_P6_Scroll bit7-0 : L7-L0 (SL2) P7 r_P5_Scroll bit7-0 : A15-A8 (SAD2H) P6 r_P4_Scroll bit7-0 : A7-A0 (SAD2L) P5 r_P3_Scroll bit7-0 : L7-L0 (SL1) P4 r_P2_Scroll bit7-0 : A15-A8 (SAD1H) P3 r_P1_Scroll 0x8014 r_P10_Scroll bit7-0 : A15-A8 Note: Parameters P9 and P10 must be set only when the dual-screen drive method (W/S = 1) and two-layered configuration are selected. SAD4 defines the fourth screen block display start address. S1D13700 Technical Manual EPSON 27 3: COMMANDS AND COMMAND REGISTERS HEX 00 01 * * 7F * * FE FF BIN L7 L6 L5 L4 L3 L2 L1 L0 0 0 * * 0 * * 1 1 0 0 * * 1 * * 1 1 0 0 * * 1 * * 1 1 0 0 * * 1 * * 1 1 0 0 * * 1 * * 1 1 0 0 * * 1 * * 1 1 0 0 * * 1 * * 1 1 0 1 * * 1 * * 0 1 Number of lines [SL] 1 2 * * 128 * * 255 256 The next page shows the relationship between display modes and SAD and SL. 28 EPSON S1D13700 Technical Manual 3: COMMANDS AND COMMAND REGISTERS [Display modes] W/S OV DM2, 1 First screen block Second screen block First layer Second layer SAD1 SL1 SAD2 SL2 Third screen block (split) SAD3 Note 1 When not using split screens, set both SL1 and SL2 to L/F + 1. Note 3 Second screen block (graphics) SAD2 0 0 00 SAD1 G2 SL1 First screen block (text) SL2 SAD3 Third screen block (text) L2 L1 W/S OV DM2, 1 First screen block Second screen block First layer Second layer SAD1 SL1 SAD2 SL2 Third screen block (split) SAD3 Note 1 When not using split screens, set both SL1 and SL2 to L/F + 1. Note 3 Second screen block (graphics) SAD2 0 0 01 SAD1 SL1 First screen block (graphics) G2 SL2 SAD3 Third screen block (text) L2 L1 S1D13700 Technical Manual EPSON 29 3: COMMANDS AND COMMAND REGISTERS W/S OV DM2, 1 First screen block Second screen block First layer Second layer SAD1 SL1 SAD2 SL2 Third screen block (split) SAD3 Note 1 When not using split screens, set both SL1 and SL2 to L/F + 1. Note 3 Second screen block (graphics) SAD2 0 0 10 SAD1 G2 SL1 First screen block (text) SL2 SAD3 Third screen block (graphics) L2 L1 W/S OV DM2, 1 First screen block Second screen block First layer Second layer SAD1 SL1 SAD2 SL2 Third screen block (split) SAD3 Note 1 SL1 SL2 Note 3 Second screen block (graphics) SAD2 0 0 11 SAD1 SL1 First screen block (graphics) G2 SL2 SAD3 Third screen block (graphics) L2 L1 30 EPSON S1D13700 Technical Manual 3: COMMANDS AND COMMAND REGISTERS W/S OV DM2, 1 First screen block Second screen block First layer Second layer SAD1 SL1 SAD2 SL2 Third screen block (split) SAD3 Note 1 SL1 > SL2 Note 3 Second screen block (graphics) SAD2 0 0 11 SAD1 SL1 First screen block (graphics) SL2 G2 Third screen block (graphics) SAD3 Blank L2 L1 W/S OV DM2, 1 First layer Second layer Upper screen SAD1 SL1 SAD2 SL2 Lower screen SAD3 Note 2 SAD4 Note 2 Note 3 Second screen block (graphics) SAD2 1 0 00 SAD1 SL1 First screen block (text) SAD3 G2 Fourth screen block (graphics) G4 (SAD4) L2 Third screen block (text) L1 S1D13700 Technical Manual EPSON 31 3: COMMANDS AND COMMAND REGISTERS W/S OV DM2, 1 First layer Second layer Upper screen SAD1 SL1 SAD2 SL2 Lower screen SAD3 Note 2 SAD4 Note 2 Note 3 Second screen block (graphics) SAD2 SAD1 1 0 01 SL1 G2 First screen block (graphics) Fourth screen block (graphics) SAD3 G4 (SAD4) L2 Third screen block (text) L1 W/S OV DM2, 1 First layer Second layer Upper screen SAD1 SL1 SAD2 SL2 Lower screen SAD3 Note 2 SAD4 Note 2 Note 3 Second screen block (graphics) SAD2 SAD1 1 0 10 SL1 First screen block (text) G2 Fourth screen block (graphics) SAD3 G4 (SAD4) L2 Third screen block (graphics) L1 32 EPSON S1D13700 Technical Manual 3: COMMANDS AND COMMAND REGISTERS W/S OV DM2, 1 First layer Second layer Upper screen SAD1 SL1 SAD2 SL2 Lower screen SAD3 Note 2 SAD4 Note 2 Note 3 Second screen block (graphics) SAD2 SAD1 1 0 11 SL1 First screen block (graphics) G2 Fourth screen block (graphics) SAD3 G4 (SAD4) L2 Third screen block (graphics) L1 W/S OV DM2, 1 Three-layer composition First layer Second layer Third layer SAD1 SL1 SAD2 SL2 SAD3 Note 3 Second screen block (graphics) Third screen block (graphics) SAD3 G3 SAD2 0 1 11 G2 SAD1 SL1 First screen block (graphics) SL2 L3 L2 L1 Note 1: SAD3 is added to SL1 or SL2 (whichever has the fewest lines). Note 2: Parameters corresponding to SL3 and SL4 are determined by L/F, and thus need not be set. Note 3: When W/S = 1, the differences between SL1 and (L/F) / 2 and between SL2 and (L/F) / 2 are blanked. SL1 Upper screen L/F Blanked Lower screen (L/F) / 2 S1D13700 Technical Manual EPSON 33 3: COMMANDS AND COMMAND REGISTERS No. WS OV DM2 DM1 Panel Layer (block3,block1) 1 0 0 0 0 Single 2 (char, char) 2 0 0 0 1 Single 2 (char, graph) 3 0 0 1 0 Single 2 (graph, char) 4 0 0 1 1 Single 2 (graph, graph) 5 0 1 0 0 Single 2 No.1 6 0 1 0 1 Single 2 No.2 7 0 1 1 0 Single 2 No.3 8 0 1 1 1 Single 3 (graph, graph,graph) 9 1 0 0 0 Dual 2 (char, char) 10 1 0 0 1 Dual 2 (char, graph) 11 1 0 1 0 Dual 2 (graph, char) 12 1 0 1 1 Dual 2 (graph, graph) 13 1 1 0 0 Dual 2 No.9 14 1 1 0 1 Dual 2 No.10 15 1 1 1 0 Dual 2 No.11 16 1 1 1 1 Dual 2 No.12 CSRFORM Defines the size and shape of the cursor displayed. Although the cursor is normally used in text display mode, the S1D13700 can also display the cursor in graphic display mode to display kanji and other special characters. MSB D7 D6 D5 D4 D3 D2 D1 LSB D0 Address C 0 1 0 1 1 1 0 1 - P1 0 0 0 0 X3 X2 X1 X0 0x8015 Register name - r_P1_CsrForm bit3-0 : CRX3-CRX0 P2 CM 0 0 0 Y3 Y2 Y1 Y0 0x8016 r_P2_CsrForm bit7 : CM bit3-0 : CRX3-CRX0 34 EPSON S1D13700 Technical Manual 3: COMMANDS AND COMMAND REGISTERS [Parameter P1] CRX Defines the size of the cursor in the X direction by the number of dots counted from the character origin. Always make sure that CRX FX. BIN HEX X3 X2 X1 X0 0 1 * 4 * E F 0 0 * 0 * 1 1 0 0 * 1 * 1 1 0 0 * 0 * 1 1 Number of dots [CRX] 0 1 * 0 * 0 1 1 2 * 5 * 15 16 [Parameter P2] CRY Defines the display line position of an underscored cursor in a character field by the number of dots counted from the character origin, or the size of a block cursor in the Y direction by the number of dots counted from the character origin. Character origin HEX 0 1 * 8 * E F CM BIN Y3 Y2 Y1 Y0 0 0 * 1 * 1 1 0 0 * 0 * 1 1 0 0 * 0 * 1 1 Number of dots [CRX] 0 1 * 0 * 0 1 Illegal 2 * 9 * 15 16 Defines the cursor shape. CM 0: Underscore cursor 1: Block cursor The S1D13700 allows CM to be set to either 0 or 1 on the graphic display screen. If CRY < FY when CM is set to 1 on the text display screen, the set value of FY has priority. S1D13700 Technical Manual EPSON [CRX] = 5 dots [CRY] = 9 dots CM = 0 35 3: COMMANDS AND COMMAND REGISTERS CSRDIR C Specifies the direction in which the cursor address counter is automatically shifted. When horizontal screen movement is specified, the cursor address is shifted -1 or +1 by the S1D13700 internal arithmetic/logic circuit. When vertical screen movement is specified, the cursor address is made to jump as many as the number of memory addresses defined by the address pitch (AP). Therefore, when accessing display memory successively in a given direction, it is only necessary to set the start address first. Then the cursor address need not be set by the MPU from the next data on. MSB D7 C 0 D6 D5 D4 D3 D2 D1 1 0 0 1 1 CD1 LSB D0 CD2 Address Register name 0x8017 r_P1_CsrDir bit1-0 : CD1-CD2 10 BIN HEX CD1 CD2 4C 4D 4E 4F 0 0 1 1 Shift direction 0 1 0 1 -AP Right Left Up Down +1 01 00 -1 +AP 11 Note: Because the cursor moves in address units even if FX 9, the cursor address must be preset for movement in character units. (See Section 4.1.4 "Cursor" on page 61. OVLAY C Specifies the method of composing layered screens and text or graphic display mode for each screen. MSB D7 D6 D5 D4 D3 D2 D1 LSB D0 Address C 0 1 0 1 1 0 1 1 - P1 0 0 0 OV DM2 DM1 MX1 MX0 0x8018 Register name - r_P1_OvLay bit4 : OV bit3-2 : DM2-DM1 bit4 : MX1-MX0 36 EPSON S1D13700 Technical Manual 3: COMMANDS AND COMMAND REGISTERS [Parameter P1] MX0 Specifies the method of composing layered screens. MX1 Selects the method of screen composition from OR, AND, Exclusive OR, and Prioritized OR as listed in the table below. Because screens are composed in units of layers, different composition methods cannot be used for individual screen blocks, even if a layer is divided into two screen blocks. Prioritized OR is the same as simple OR unless the flashing of individual screens is used in combination with it. MX1 MX0 Composition method Application example Underlining, rules, mixed text, and graphic display 0 0 L1 L2 L3 Simple overlay (OR) 0 1 (L1 L2) L3 Black & white reverse overlay Characters in inverse video, area flashing, (EOR) underlining 1 0 (L1 L2) L3 Selective overlay (AND) 1 1 L1 > L2 > L3 Prioritized overlay (As in Figure 3-4) Note: Simple animation, three-dimensional appearance L1: First layer (text or graphics) L2: Second layer (graphics only) L3: Third layer (graphics only) Note Figure 3-3 Example of screen compositions Note: L1: Not flashing L2: Flashing at 17 Hz (as specified by DISP ON/OFF command) L3: Flashing at 2 Hz S1D13700 Technical Manual EPSON 37 3: COMMANDS AND COMMAND REGISTERS The table below shows the relationship between L and FP when MX = 11b. Prioritized OR MX[1:0]=1 Flash = OFF Flash is ON for any screen. FP1 FP3 FP5 no yes L1 is not blank. L1 is blank. FP[1:0]=00 no yes no FP[3:2]=00 L2 is blank. yes no L1 L2 L3 L1 L2 FP[5:4]=00 L3 is blank. yes L3 L1 L2 L3 (Same result as when MX = 00) (All layers are blank. Therefore, 00) Figure 3-4 Prioritized overlay Layered MX[1:0] FP[5:0] Flash 3 38 11 Layered MX[1:0] FP[5:0] Flash Blank-off - 000000 x - - L1 | L2 | L3 2 000000 x - - - L1 | L2 3 000001 x - - L1 L1 | L2 | L3 2 000001 x - - L1 L1 | L2 3 000010 - - L1 L1 2 000010 - - L1 L1 3 000011 - - L1 L1 2 000011 - - L1 L1 3 000100 x - L2 L1 | L2 | L3 2 000100 x - L2 3 000101 x - L2 L1 L1 | L2 | L3 2 000101 x - L2 L1 L1 | L2 3 000110 - L2 L1 L1 2 000110 - L2 L1 L1 3 000111 - L2 L1 L1 2 000111 - L2 L1 L1 3 001000 - L2 L2 2 001000 - L2 3 001001 - L2 L1 L1 2 001001 - L2 L1 L1 3 001010 - L2 L1 L1 2 001010 - L2 L1 L1 3 001011 - L2 L1 L1 2 001011 - L2 L1 L1 3 001100 - L2 L2 2 001100 - L2 3 001101 - L2 L1 L1 2 001101 - L2 L1 L1 3 001110 - L2 L1 L1 2 001110 - L2 L1 L1 3 001111 - L2 L1 L1 2 001111 - L2 L1 L1 3 010000 x L3 - L1 | L2 | L3 2 010000 x - - - L1 | L2 3 010001 x L3 - L1 L1 | L2 | L3 2 010001 x - - L1 L1 | L2 3 010010 L3 - L1 L1 2 010010 - - L1 L1 - - - - EPSON 11 Blank-off - L1 | L2 - L2 - L2 S1D13700 Technical Manual 3: COMMANDS AND COMMAND REGISTERS Layered MX[1:0] FP[5:0] Flash Layered MX[1:0] FP[5:0] Flash Blank-off 3 010011 L3 3 010100 x L3 L2 3 010101 3 010110 3 010111 3 011000 3 3 Blank-off L1 L1 2 010011 - - - L1 | L2 | L3 2 010100 x - L2 x L3 L2 L1 L1 | L2 | L3 2 010101 x - L2 L1 L1 | L2 L3 L2 L1 L1 2 010110 - L2 L1 L1 L3 L2 L1 L1 2 010111 - L2 L1 L1 L3 L2 L2 2 011000 - L2 011001 L3 L2 L1 L1 2 011001 - L2 L1 L1 011010 L3 L2 L1 L1 2 011010 - L2 L1 L1 3 011011 L3 L2 L1 L1 2 011011 - L2 L1 L1 3 011100 L3 L2 L2 2 011100 - L2 3 011101 L3 L2 L1 L1 2 011101 - L2 L1 L1 3 011110 L3 L2 L1 L1 2 011110 - L2 L1 L1 3 011111 L3 L2 L1 L1 2 011111 - L2 L1 L1 3 100000 L3 - L3 2 100000 - - - 00 3 100001 L3 - L1 L1 2 100001 - - L1 L1 3 100010 L3 - L1 L1 2 100010 - - L1 L1 3 100011 L3 - L1 L1 2 100011 - - L1 L1 3 100100 L3 L2 L2 2 100100 - L2 - L2 3 100101 L3 L2 L1 L1 2 100101 - L2 L1 L1 3 100110 L3 L2 L1 L1 2 100110 - L2 L1 L1 3 100111 L3 L2 L1 L1 2 100111 - L2 L1 L1 3 101000 L3 L2 L2 2 101000 - L2 3 101001 L3 L2 L1 L1 2 101001 - L2 L1 L1 3 101010 L3 L2 L1 L1 2 101010 - L2 L1 L1 3 101011 L3 L2 L1 L1 2 101011 - L2 L1 L1 3 101100 L3 L2 L2 2 101100 - L2 3 101101 L3 L2 L1 L1 2 101101 - L2 L1 L1 3 101110 L3 L2 L1 L1 2 101110 - L2 L1 L1 3 101111 L3 L2 L1 L1 2 101111 - L2 L1 L1 3 110000 L3 - L3 2 110000 - - - 00 3 110001 L3 - L1 L1 2 110001 - - L1 L1 3 110010 L3 - L1 L1 2 110010 - - L1 L1 3 110011 L3 - L1 L1 2 110011 - - L1 L1 3 110100 L3 L2 L2 2 110100 - L2 - L2 3 110101 L3 L2 L1 L1 2 110101 - L2 L1 L1 3 110110 L3 L2 L1 L1 2 110110 - L2 L1 L1 3 110111 L3 L2 L1 L1 2 110111 - L2 L1 L1 3 111000 L3 L2 L2 2 111000 - L2 3 111001 L3 L2 L1 L1 2 111001 - L2 L1 L1 3 111010 L3 L2 L1 L1 2 111010 - L2 L1 L1 3 111011 L3 L2 L1 L1 2 111011 - L2 L1 L1 3 111100 L3 L2 L2 2 111100 - L2 3 111101 L3 L2 L1 L1 2 111101 - L2 L1 L1 3 111110 L3 L2 L1 L1 2 111110 - L2 L1 L1 3 111111 L3 L2 L1 L1 2 111111 - L2 L1 L1 S1D13700 Technical Manual - - - - - - - - - - - EPSON L1 L1 - L1 | L2 - L2 - L2 - L2 - L2 - L2 - L2 39 3: COMMANDS AND COMMAND REGISTERS DM1 Specifies the display mode of the first screen block. DM2 Specifies the display mode of the third screen block. DM1 (block1) 0: Text mode 1: Graphic mode DM2 (block3) 0: Text mode 1: Graphic mode Note: The second and fourth screen blocks are limited to graphics mode. OV Specifies a two-layer or three-layer composition in graphics mode. OV 0: Tow-layer composition 1: Three-layer composition Note: Set OV = 0 for mixed text and graphics mode. When three-layer composition is specified, both the first and third screen blocks should be set to the graphics mode. (OV, DM2, DM1) = (1, 1, 1) CGRAM ADR C Defines the offset address of CG RAM in the display memory space. MSB D7 D6 D5 D4 D3 D2 D1 LSB D0 Address Register name C 0 1 0 1 1 1 0 0 - - P1 A7 A6 A5 A4 A3 A2 A1 A0 0x8019 r_P1_CGRAMAdr bit7-0 : A7-A0 (SAGL) P2 A14 A13 A12 A11 A10 A9 A8 (SAGH) 0x801A r_P2_CGRAMAdr bit7-0 : A15-A8 Note: For details on how to define CG RAM, see Section 4.1.2 "Character Generator (CG)" on page 47. 40 EPSON S1D13700 Technical Manual 3: COMMANDS AND COMMAND REGISTERS HDOT SCR Although the screen can be scrolled left or right only in units of characters using the SCROLL command alone, the combined use of this command allows the screen to be scrolled in units of dots. The scrolling on individual layers, however, cannot be controlled. This command defines the number of dots to be shifted from the character origin. MSB D7 D6 D5 D4 D3 D2 D1 LSB D0 Address Register name - C 0 1 0 1 1 0 1 0 - P1 0 0 0 0 0 D2 D1 D0 0x801B r_P1_HDotScr bit2-0 : D2-D0 [Parameter P1] D0 - D2 The C/R value must be set to one more than the number of display characters before using HDOT SCR to scroll the screen in units of dots. Smooth scrolling (dotwise scrolling) is possible when the MPU resends the HDOT SCR command to the S1D13700 at given time intervals for setting the number of dots to be shifted from the character origin. HEX BIN D2 D1 D0 00 01 02 * * 06 07 0 0 0 * * 1 1 0 0 1 * * 1 1 Number of dots to be shifted 0 1 0 * * 0 1 0 1 2 * * 6 7 M A Z X B A Z X B A : Shifted M dots to the left (M increment) Y Y X B Screen : Fixed position M = 0 dots N = 0 dots : Shifted N dots to the right (N decrement) Y N Note: See Section 4.1.7 "Scrolling" on page 65, for more information about this function. S1D13700 Technical Manual EPSON 41 3: COMMANDS AND COMMAND REGISTERS GRAY SCALE This command sets up grayscale display mode. MSB D7 D6 D5 D4 D3 D2 D1 LSB D0 Address Register name C 0 1 1 0 0 0 0 0 - - P1 0 0 0 0 0 0 D1 D0 0x8020 r_P1_GrayScale bit1-0 : D1-D0 [Parameter P1] D0 - D1 Specify the depth of grayscale. HEX 00 01 02 03 BIN D2 D1 0 0 1 1 0 1 0 1 Grayscale depth 1bpp 2bpp 4bpp reserved Note: For grayscale display, text and graphic mode overlays are inhibited. 42 EPSON S1D13700 Technical Manual 3: COMMANDS AND COMMAND REGISTERS 3.3.3 Drawing Control Commands CSRW C This command is used to write the cursor address to the cursor register. Because the S1D13700 has only one address input bit, only two addresses in the address space of the MPU can be specified at a time. Therefore, the MPU cannot directly access display memory. To compensate for this inconvenience, the S1D13700 has a 16-bit cursor register that serves the purpose of MPU addresses. MSB D7 D6 D5 D4 D3 D2 D1 LSB D0 Address Register name - C 0 1 0 0 0 1 1 0 - P1 A7 A6 A5 A4 A3 A2 A1 A0 0x801C bit7-0 : A7-A0 (CSRL) P2 A15 A14 A13 A12 A11 A10 A9 r_P1_CSRW 0x801D A8 r_P2_CSRW bit7-0 : A15-A8 (CSRH) The cursor address is set in the S1D13700 before display memory (VRAM, CG RAM, or CG ROM) is automatically accessed. If this address is not set, display starts from the address set last or an automatically shifted address. (The cursor address register can only be modified by other than the CSRW command by executing a memory control command.) The cursor address is not affected by scrolling display because it is managed by the absolute display memory addresses fixed in hardware. Note also that the cursor address points to the absolute display memory address where data for the origin part of the character field is stored. CSRR C This command is used to read a cursor address from the cursor register.When this command is written to the S1D13700, the low-order byte of the cursor address (CSRL) is set in the output buffer. Therefore, the high-order byte of the cursor address (CSRH) also can be read out by entering the RD signal following this command. MSB D7 D6 D5 D4 D3 D2 D1 LSB D0 Address Register name - C 0 1 0 0 0 1 1 0 - P1 A7 A6 A5 A4 A3 A2 A1 A0 0x801E bit7-0 : A7-A0 (CSRL) Note P2 A15 A14 A13 A12 A11 A10 A9 A8 (CSRH) Note Note: r_P1_CSRR 0x801F r_P2_CSRR bit7-0 : A15-A8 This is the read data. S1D13700 Technical Manual EPSON 43 3: COMMANDS AND COMMAND REGISTERS 3.3.4 Memory Control Commands MWRITE This command is used by the MPU to place the S1D13700 in the data input state before writing data to display memory. Each time the WR# signal is input following this command, the S1D13700 automatically modifies the cursor address at which to write display memory according to the CSRDIR value. This allows the MPU to write two or more consecutive items of data to display memory. MSB LSB 0 C 1 0 0 0 0 1 0 P1 P2 n1 Pn P1, P2, ..., Pn: Display data MREAD This command is used to place the S1D13700 in the data output state and store the contents of display memory (specified by the cursor address) in the data bus buffer before reading data from display memory. Each time the RD# signal is input following this command, the read cursor address of display memory is automatically modified according to the CSRDIR value, and read data is stored in the data bus buffer. Because the command is executed in a manner similar to pipelined processing, high-speed readout limited only by the MPU cycle time is possible. When the cursor is displayed, the read data and cursor positions do not match (with the cursor two positions ahead). MSB C LSB 0 1 0 0 0 0 1 1 P1 Read data P2 n1 Pn 44 EPSON S1D13700 Technical Manual 4: FUNCTION DESCRIPTION 4 FUNCTION DESCRIPTION 4.1 Display Functions 4.1.1 Screen Management (1) Character configuration The S1D13700 can display characters using a row-scanning type of character generator that defines character patterns in the fourth quadrant with respect to the character origin as shown below. Although the character generator used determines the size of the character font area, the size of the character field can be varied in both the X and Y directions. Character origin D7 MSB FX Character font area FY Space Character font area D0 LSB - R0 0 1 1 1 0 0 0 0 R1 1 0 0 0 1 0 0 0 R2 1 0 0 0 1 0 0 0 R3 1 0 0 0 1 0 0 0 R4 1 1 1 1 1 0 0 0 R5 1 0 0 0 1 0 0 0 R6 1 0 0 0 1 0 0 0 R7 0 0 0 0 0 0 0 0 R8 0 0 0 0 0 0 0 0 R9 0 0 0 0 0 0 0 0 R10 0 0 0 0 0 0 0 0 R11 0 0 0 0 0 0 0 R12 0 0 0 0 0 0 0 0 Space 0 data R13 0 0 0 0 0 0 0 0 R14 0 0 0 0 0 0 0 0 R15 0 0 0 0 0 0 0 0 Space Space data Figure 4-1 Character display ([FX] 8 dots) Figure 4-2 Example of character generator definition Character font area: An area in which the character pattern is drawn Character field: Character font area + space To alter the character field, leave any portions other than the character font area set to 0 and increase FX or FY to enlarge the size of space as desired. S1D13700 Technical Manual EPSON 45 4: FUNCTION DESCRIPTION Even when one character requires two or more memory addresses, the character field can be set to any desired size. Note 1 Portion not displayed on the screen FX Character font area FY 16 dots Space Portion not displayed on the screen 8 dots 8 dots Character font area Space Figure 4-3 Example of character configuration consisting of two or more memory addresses (when [FX] = 9) Note 1: The S1D13700 does not automatically insert character spaces. If the character field is greater than or equal to 9 dots, two memory addresses are required to configure one character even when the character font area may be within 8 dots. 46 EPSON S1D13700 Technical Manual 4: FUNCTION DESCRIPTION 4.1.2 Character Generator (CG) (1) Features of each character generator 1 Internal character generator The internal character generator is effective for a minimum display system consisting of the S1D13700, display memory (data RAM), LCD unit, single-chip MPU, and a power supply. Moreover, because the internal character generator includes CMOS mask ROM, it is very advantageous when low power consumption is desired. Character font * 5 x 7 dots (See Section 4.4.1 "Character Fonts (Internal CG)" on page 81.) Number of characters * JIS-compliant 160 characters Combined use with CG RAM possible (up to 64 characters) Processing of the character field space part The S1D13700 automatically sets spaces in the range of 8 x 16 dots maximum. 2 CG RAM CG RAM as a graphic generator allows any desired character font to be defined by the user. Moreover, because the MPU can alter address mapping in the display memory space can be altered as required, unused portions of display memory can be effectively utilized. Character font * 8 x 8 dots maximum * 8 x 16 dots maximum Number of characters * Up to 64 characters when used in combination with CG ROM * Up to 256 characters when used only in F000H to FFFFH Defined area of CG RAM in the display memory space * CG RAM (maximum 64 characters) that can be used in combination with CG ROM can be allocated to any desired contiguous addresses. * CG RAM (maximum 65 characters or more) that cannot be used in combination with CG ROM must be allocated to fixed addresses F000H through FFFFH. When 193 characters or more must be defined in this fixed address area, set SAG = F000H and M1 = 0. (2) Concept of how character generator banks are set Because the character codes handled by the S1D13700 consist of 8 bits, the number of discrete characters that can be displayed simultaneously is limited to a maximum of 256. The CGRAM ADR command can be used to switch banks, however, thus extending the number of usable characters as shown below. MO=0 CG ROM (5 x 7 pixels x 160 characters max) CG RAM (8 x 16 pixels x 64cha) SAG Basic CG space CG RAM n CG RAM 3 CG RAM 2 CG RAM 1 (8 x 16 pixels x 256 characters max) MO=1 CG RAM (8 x 16 pixels x 256 characters max) S1D13700 Technical Manual CG RAM n CG RAM 3 CG RAM 2 CG RAM 1 EPSON SAG 47 4: FUNCTION DESCRIPTION Note: Up to 64 characters can be used in one bank when used in combination with CG ROM. When using only CG RAM, up to 256 characters can be used in one bank. Also note that the relationship between CG patterns and character codes changes when banks are switched over. (3) Method of determining the CG address The addition shown below is performed to generate CG RAM addresses. Therefore, note that CG RAM data is not mapped from addresses set in the SAG register to the VRAM space, but are mapped based on the SAG + character code + row select address. 1When number of lines that comprise the character font is equal to or less than 8 (M2 = 0, M1 = 0) SAG Character code + row select address CG RAM address A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R2 R1 R0 VA15 VA14 VA13 VA12 VA11 VA10 VA9 VA8 VA7 VA6 VA5 VA4 VA3 VA2 VA1 VA0 2When number of lines that comprise the character font is from 9 to 16, including both ends (M2 = 1, M1 = 0) SAG Character code + row select address CG RAM address A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R3 R2 R1 R0 VA15 VA14 VA13 VA12 VA11 VA10 VA9 VA8 VA7 VA6 VA5 VA4 VA3 VA2 VA1 VA0 Note: Only the addressing above is supported. Table 4-1 Row Select Addresses ROW0 ROW1 ROW2 R3 0 0 0 R2 0 0 0 R1 0 0 1 R0 0 1 0 Line count 1 ROW7 ROW8 0 1 1 0 1 0 1 0 Line count 2 ROW14 ROW15 1 1 1 1 1 1 0 1 Note: 1. Line count l ... when character font consists of 8 lines or less Line count 2 ... when character font consists of 9 lines or more 3When M1 = 1 For the character codes defined in CG RAM2, the S1D13700 automatically changes the D6 bit in the character code from 1 to 0. This ensures that the data storage area in CG RAM corresponds to 48 EPSON S1D13700 Technical Manual 4: FUNCTION DESCRIPTION contiguous addresses in the display memory space. Therefore, the CG RAM addresses to which to write data must be calculated as follows: * Add addresses the same way as described above (M1 = 0). * Change bit D6 in one character code from 1 to 0 when adding addresses. Example of CG RAM definition (method of storing data) (See Figure 4-9 "Example of display memory mapping" on page 63.) Conditions * The pattern to define: Pattern A (8 x 16 dots per font) shown in Figure 4-1 "Character display ([FX] 8 dots)" on page 45. * Start address of the CG RAM table: 4800H * Character code of defined pattern: 80H (first character code in CG RAM area) Setting list CG RAM ADR P1 P2 CSRDIR CSRW P1 P2 MWRITE P1 P2 P3 P4 P5 P6 P7 P8 P9 P16 S1D13700 Technical Manual 5CH 00H 40H 4CH 46H 00H 48H 42H 70H 88H 88H 88H F8H 88H 88H 00H 00H 00H Set SAG after calculating it by performing the method of CG RAM address calculation in reverse. Shift to the right CG RAM area from 4800H Write data for row 0 Write data for row 1 Write data for row 2 Write data for row 3 Write data for row 4 Write data for row 5 Write data for row 6 Write data for row 7 Write data for row 8 Write data for row 15 EPSON 49 4: FUNCTION DESCRIPTION 4.1.3 Screen Configuration (1) Screen configuration The basic screen configuration of the S1D13700 consists of a text or graphics screen and an overlapping graphics screen. The graphics screen uses at least eight times as much display memory as the text screen. Figure 4-4 schematically shows the relationship between the virtual and physical screens. A/P C/R Character table 0000H 0800H 07FFH Graphics table 47FFH (XW, YM) (0, YM) (XM, YM) Display screen (X, Y) Y (0, 0) (XM, 0) X Figure 4-4 Relationship between virtual and physical screens (2) Display address incrementation The S1D13700 sequentially increments the display address in the X direction from the screen origin (home position) in the same way as a raster scan CRT. When the display address is incremented until the number of addresses equals C/R, one line of data is read from display memory. Next, to read the second line of data when in graphics mode, the S1D13700 starts from the address incremented by the distance equal to the address pitch (AP) from the address of the screen origin (SAD), then repeats the same operation as described above for the first line. Conversely, in text mode the S1D13700 repeats the same operation as described above for the first line until the display address for one character is completed. (Character code is read from the same area, and data is read out in order of R0-R15 of the character generator.) (See Figure 4-2 "Example of character generator definition" on page 45.) 50 EPSON S1D13700 Technical Manual S1D13700 Technical Manual EPSON LF-7 LF-6 LF-5 LF-4 LF-3 LF-2 LF-1 LF SAD3+(LD/8)AP SAD3+AP SAD2+(LF-7)AP SAD2+(LF-6)AP SAD2+(LF-5)AP SAD2+(LF-4)AP SAD2+(LF-3)AP SAD2+(LF-2)AP SAD2+(LF-1)AP SAD2+(LF)AP SAD2+(SL1-7)AP SAD2+(SL1-6)AP SAD2+(SL1-5)AP SAD2+(SL1-4)AP SAD2+(SL1-3)AP SAD2+(SL1-2)AP SAD2+(SL1- 1)AP SAD2+(SL1)AP SAD2+(SL1+1)AP SAD2+(SL1+2)AP SAD2+(SL1+3)AP SAD2+(SL1+4)AP SAD2+(SL1+5)AP SAD2+(SL1+6)AP SAD2+(SL1+7)AP SAD2+(SL1+8)AP SAD2+(SL1+9)AP SAD2+(SL1+10)AP SAD2+(SL1+11)AP SAD2+(SL1+12)AP SAD2+(SL1+13)AP SAD2+(SL1+14)AP SAD2+(SL1+15)AP SAD2+(SL1+16)AP SAD1+(SL1-7)AP SAD1+(SL1-6)AP SAD1+(SL1-5)AP SAD1+(SL1-4)AP SAD1+(SL1-3)AP SAD1+(SL1-2)AP SAD1+(SL1- 1)AP SAD1+(SL1)AP SL1-7 SL1-6 SL1-5 SL1-4 SL1-3 SL1-2 SL1-1 SL1 SL1+1 SL1+2 SL1+3 SL1+4 SL1+5 SL1+6 SL1+7 SL1+8 SL1+9 SL1+10 SL1+11 SL1+12 SL1+13 SL1+14 SL1+15 SL1+16 SAD3 SAD2 SAD2+A P SAD2+2AP SAD2+3AP SAD2+4AP SAD2+5AP SAD2+6AP SAD2+7AP SAD2+8AP SAD2+9AP SAD2+10AP SAD2+11AP SAD2+12AP SAD2+13AP SAD2+14AP SAD2+15AP SAD1 SAD1+AP SAD1+2AP SAD1+3AP SAD1+4AP SAD1+5AP SAD1+6AP SAD1+7AP SAD1+8AP SAD1+9AP SAD1+10AP SAD1+11AP SAD1+12AP SAD1+13AP SAD1+14AP SAD1+15AP LineNo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 << (W/S, OV, DM2, DM1, FY) = (0, 0, 0, 0, 8) >> CG3 CG3 CG3 SAD3+(LF/8)+1 SAD3+AP+1 SAD3+1 SAD1+(SL1-7)AP+1 SAD1+(SL1-6)AP+1 SAD1+(SL1-5)AP+1 SAD1+(SL1-4)AP+1 SAD1+(SL1-3)AP+1 SAD1+(SL1-2)AP+1 SAD1+(SL1- 1)AP+1 SAD1+(SL1)AP+1 SAD1+1 SAD1+AP+1 SAD1+2AP+1 SAD1+3AP+1 SAD1+4AP+1 SAD1+5AP+1 SAD1+6AP+1 SAD1+7AP+1 SAD1+8AP+1 SAD1+9AP+1 SAD1+10AP+1 SAD1+11AP+1 SAD1+12AP+1 SAD1+13AP+1 SAD1+14AP+1 SAD1+15AP+1 SAD2+(LF-7)AP+1 SAD2+(LF-6)AP+1 SAD2+(LF-5)AP+1 SAD2+(LF-4)AP+1 SAD2+(LF-3)AP+1 SAD2+(LF-2)AP+1 SAD2+(LF-1)AP+1 SAD2+(LF)AP+1 SAD2+(SL1-7)AP+1 SAD2+(SL1-6)AP+1 SAD2+(SL1-5)AP+1 SAD2+(SL1-4)AP+1 SAD2+(SL1-3)AP+1 SAD2+(SL1-2)AP+1 SAD2+(SL1- 1)AP+1 SAD2+(SL1)AP+1 SAD2+(SL1+1)AP+1 SAD2+(SL1+2)AP+1 SAD2+(SL1+3)AP+1 SAD2+(SL1+4)AP+1 SAD2+(SL1+5)AP+1 SAD2+(SL1+6)AP+1 SAD2+(SL1+7)AP+1 SAD2+(SL1+8)AP+1 SAD2+(SL1+9)AP+1 SAD2+(SL1+10)AP+1 SAD2+(SL1+11)AP+1 SAD2+(SL1+12)AP+1 SAD2+(SL1+13)AP+1 SAD2+(SL1+14)AP+1 SAD2+(SL1+15)AP+1 SAD2+(SL1+16)AP+1 SAD2+1 SAD2+AP+1 SAD2+2AP+1 SAD2+3AP+1 SAD2+4AP+1 SAD2+5AP+1 SAD2+6AP+1 SAD2+7AP+1 SAD2+8AP+1 SAD2+9AP+1 SAD2+10AP+1 SAD2+11AP+ 1 SAD2+12AP+1 SAD2+13AP+1 SAD2+14AP+1 SAD2+15AP+1 CG3 CG3 CG3 (BK1, BK2, BK3, BK4) = (Character (Layer1), Graphic (Layer2), Character (Layer1), -) ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... SAD3+(LF/8)+CR SAD3+AP+CR SAD3+CR SAD1+(SL1-7)AP+CR SAD1+(SL1-6)AP+CR SAD1+(SL1-5)AP+CR SAD1+(SL1-4)AP+CR SAD1+(SL1-3)AP+CR SAD1+(SL1-2)AP+CR SAD1+(SL1- 1)AP+CR SAD1+(SL1)AP+CR SAD1+CR SAD1+AP+CR SAD1+2AP+CR SAD1+3AP+CR SAD1+4AP+CR SAD1+5AP+CR SAD1+6AP+CR SAD1+7AP+CR SAD1+8AP+CR SAD1+9AP+CR SAD1+10AP+CR SAD1+11AP+CR SAD1+12AP+CR SAD1+13AP+CR SAD1+14AP+CR SAD1+15AP+CR SAD2+(LF-7)AP+CR SAD2+(LF-6)AP+CR SAD2+(LF-5)AP+CR SAD2+(LF-4)AP+CR SAD2+(LF-3)AP+CR SAD2+(LF-2)AP+CR SAD2+(LF-1)AP+CR SAD2+(LF)AP+CR SAD2+(SL1-7)AP+CR SAD2+(SL1-6)AP+CR SAD2+(SL1-5)AP+CR SAD2+(SL1-4)AP+CR SAD2+(SL1-3)AP+CR SAD2+(SL1-2)AP+CR SAD2+(SL1- 1)AP+CR SAD2+(SL1)AP+CR SAD2+(SL1+1)AP+CR SAD2+(SL1+2)AP+CR SAD2+(SL1+3)AP+CR SAD2+(SL1+4)AP+CR SAD2+(SL1+5)AP+CR SAD2+(SL1+6)AP+CR SAD2+(SL1+7)AP+CR SAD2+(SL1+8)AP+CR SAD2+(SL1+9)AP+CR SAD2+(SL1+10)AP+CR SAD2+(SL1+11)AP+CR SAD2+(SL1+12)AP+CR SAD2+(SL1+13)AP+CR SAD2+(SL1+14)AP+CR SAD2+(SL1+15)AP+CR SAD2+(SL1+16)AP+CR SAD2+CR SAD2+AP+CR SAD2+2AP+CR SAD2+3AP+CR SAD2+4AP+CR SAD2+5AP+CR SAD2+6AP+CR SAD2+7AP+CR SAD2+8AP+CR SAD2+9AP+CR SAD2+10AP+CR SAD2+11AP+CR SAD2+12AP+CR SAD2+13AP+CR SAD2+14AP+CR SAD2+15AP+CR CG3 CG3 CG3 (LF-5) (LF-4) (LF-3) (LF-2) (LF-1) (LF) *ReadTurn (1) (2) (3) (4) 4: FUNCTION DESCRIPTION 51 52 EPSON LF-7 LF-6 LF-5 LF-4 LF-3 LF-2 LF-1 LF SL1-7 SL1-6 SL1-5 SL1-4 SL1-3 SL1-2 SL1- 1 SL1 SL1+1 SL1+2 SL1+3 SL1+4 SL1+5 SL1+6 SL1+7 SL1+8 SL1+9 SL1+10 SL1+11 SL1+12 SL1+13 SL1+14 SL1+15 SL1+16 LineNo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 SAD3+(LF-SL1-7)AP SAD3+(LF-SL1-6)AP SAD3+(LF-SL1-5)AP SAD3+(LF-SL1-4)AP SAD3+(LF-SL1-3)AP SAD3+(LF-SL1-2)AP SAD3+(LF-SL1-1)AP SAD3+(LF-SL1)AP SAD3 SAD3+AP SAD3+2AP SAD3+3AP SAD3+4AP SAD3+5AP SAD3+6AP SAD3+7AP SAD3+8AP SAD3+9AP SAD3+10AP SAD3+11AP SAD3+12AP SAD3+13AP SAD3+14AP SAD3+15AP SAD1+(SL1/8)AP SAD1+AP SAD1 SAD2+(LF-7)AP SAD2+(LF-6)AP SAD2+(LF-5)AP SAD2+(LF-4)AP SAD2+(LF-3)AP SAD2+(LF-2)AP SAD2+(LF-1)AP SAD2+(LF)AP SAD2+(SL1-7)AP SAD2+(SL1-6)AP SAD2+(SL1-5)AP SAD2+(SL1-4)AP SAD2+(SL1-3)AP SAD2+(SL1-2)AP SAD2+(SL1- 1)AP SAD2+(SL1)AP SAD2+(SL1+1)AP SAD2+(SL1+2)AP SAD2+(SL1+3)AP SAD2+(SL1+4)AP SAD2+(SL1+5)AP SAD2+(SL1+6)AP SAD2+(SL1+7)AP SAD2+(SL1+8)AP SAD2+(SL1+9)AP SAD2+(SL1+10)AP SAD2+(SL1+11)AP SAD2+(SL1+12)AP SAD2+(SL1+13)AP SAD2+(SL1+14)AP SAD2+(SL1+15)AP SAD2+(SL1+16)AP SAD2 SAD2+AP SAD2+2AP SAD2+3AP SAD2+4AP SAD2+5AP SAD2+6AP SAD2+7AP SAD2+8AP SAD2+9AP SAD2+10AP SAD2+11AP SAD2+12AP SAD2+13AP SAD2+14AP SAD2+15AP << (W/S, OV, DM2, DM1, FY) = (0, 0, 0, 0, 8) >> CG1 CG1 CG1 SAD3+(LF-SL1-7)AP+1 SAD3+(LF-SL1-6)AP+1 SAD3+(LF-SL1-5)AP+1 SAD3+(LF-SL1-4)AP+1 SAD3+(LF-SL1-3)AP+1 SAD3+(LF-SL1-2)AP+1 SAD3+(LF-SL1-1)AP+1 SAD3+(LF-SL1)AP+1 SAD3+1 SAD3+AP+1 SAD3+2AP+1 SAD3+3AP+1 SAD3+4AP+1 SAD3+5AP+1 SAD3+6AP+1 SAD3+7AP+1 SAD3+8AP+1 SAD3+9AP+1 SAD3+10AP+1 SAD3+11AP+1 SAD3+12AP+1 SAD3+13AP+1 SAD3+14AP+1 SAD3+15AP+1 SAD1+(SL1/8)AP+1 SAD1+AP+1 SAD1+1 SAD2+(LF-7)AP+1 SAD2+(LF-6)AP+1 SAD2+(LF-5)AP+1 SAD2+(LF-4)AP+1 SAD2+(LF-3)AP+1 SAD2+(LF-2)AP+1 SAD2+(LF-1)AP+1 SAD2+(LF)AP+1 SAD2+(SL1-7)AP+1 SAD2+(SL1-6)AP+1 SAD2+(SL1-5)AP+1 SAD2+(SL1-4)AP+1 SAD2+(SL1-3)AP+1 SAD2+(SL1-2)AP+1 SAD2+(SL1-1)AP+1 SAD2+(SL1)AP+1 SAD2+(SL1+1)AP+1 SAD2+(SL1+2)AP+1 SAD2+(SL1+3)AP+1 SAD2+(SL1+4)AP+1 SAD2+(SL1+5)AP+1 SAD2+(SL1+6)AP+1 SAD2+(SL1+7)AP+1 SAD2+(SL1+8)AP+1 SAD2+(SL1+9)AP+1 SAD2+(SL1+10)AP+1 SAD2+(SL1+11)AP+1 SAD2+(SL1+12)AP+1 SAD2+(SL1+13)AP+1 SAD2+(SL1+14)AP+1 SAD2+(SL1+15)AP+1 SAD2+(SL1+16)AP+1 SAD2+1 SAD2+AP+1 SAD2+2AP+1 SAD2+3AP+1 SAD2+4AP+1 SAD2+5AP+1 SAD2+6AP+1 SAD2+7AP+1 SAD2+8AP+1 SAD2+9AP+1 SAD2+10AP+1 SAD2+11AP+1 SAD2+12AP+1 SAD2+13AP+1 SAD2+14AP+1 SAD2+15AP+1 CG1 CG1 CG1 (BK1, BK2, BK3, BK4) = (Character (Layer1), Graphic (Layer2), Character (Layer1), -) ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... SAD3+(LF-SL1-7)AP+CR SAD3+(LF-SL1-6)AP+CR SAD3+(LF-SL1-5)AP+CR SAD3+(LF-SL1-4)AP+CR SAD3+(LF-SL1-3)AP+CR SAD3+(LF-SL1-2)AP+CR SAD3+(LF-SL1- 1)AP+CR SAD3+(LF-SL1)AP+CR SAD3+CR SAD3+AP+CR SAD3+2AP+CR SAD3+3AP+CR SAD3+4AP+CR SAD3+5AP+CR SAD3+6AP+CR SAD3+7AP+CR SAD3+8AP+CR SAD3+9AP+CR SAD3+10AP+CR SAD3+11AP+CR SAD3+12AP+CR SAD3+13AP+CR SAD3+14AP+CR SAD3+15AP+CR SAD1+(SL1/8)AP+CR SAD1+AP+CR SAD1+CR SAD2+(LF-7)AP+CR SAD2+(LF-6)AP+CR SAD2+(LF-5)AP+CR SAD2+(LF-4)AP+CR SAD2+(LF-3)AP+CR SAD2+(LF-2)AP+CR SAD2+(LF-1)AP+CR SAD2+(LF)AP+CR SAD2+(SL1-7)AP+CR SAD2+(SL1-6)AP+CR SAD2+(SL1-5)AP+CR SAD2+(SL1-4)AP+CR SAD2+(SL1-3)AP+CR SAD2+(SL1-2)AP+CR SAD2+(SL1- 1)AP+CR SAD2+(SL1)AP+CR SAD2+(SL1+1)AP+CR SAD2+(SL1+2)AP+CR SAD2+(SL1+3)AP+CR SAD2+(SL1+4)AP+CR SAD2+(SL1+5)AP+CR SAD2+(SL1+6)AP+CR SAD2+(SL1+7)AP+CR SAD2+(SL1+8)AP+CR SAD2+(SL1+9)AP+CR SAD2+(SL1+10)AP+CR SAD2+(SL1+11)AP+CR SAD2+(SL1+12)AP+CR SAD2+(SL1+13)AP+CR SAD2+(SL1+14)AP+CR SAD2+(SL1+15)AP+CR SAD2+(SL1+16)AP+CR SAD2+CR SAD2+AP+CR SAD2+2AP+CR SAD2+3AP+CR SAD2+4AP+CR SAD2+5AP+CR SAD2+6AP+CR SAD2+7AP+CR SAD2+8AP+CR SAD2+9AP+CR SAD2+10AP+CR SAD2+11AP+CR SAD2+12AP+CR SAD2+13AP+CR SAD2+14AP+CR SAD2+15AP+CR CG1 CG1 CG1 (LF-5) (LF-4) (LF-3) (LF-2) (LF-1) (LF) *ReadTurn (1) (2) (3) (4) 4: FUNCTION DESCRIPTION S1D13700 Technical Manual S1D13700 Technical Manual EPSON LF-7 LF-6 LF-5 LF-4 LF-3 LF-2 LF-1 LF SL1-7 SL1-6 SL1-5 SL1-4 SL1-3 SL1-2 SL1- 1 SL1 SL1+1 SL1+2 SL1+3 SL1+4 SL1+5 SL1+6 SL1+7 SL1+8 SL1+9 SL1+10 SL1+11 SL1+12 SL1+13 SL1+14 SL1+15 SL1+16 LineNo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 SAD3+(LD/8)AP SAD3+AP SAD3 SAD1+(SL1/8)AP SAD1+AP SAD1 SAD2+(LF-7)AP SAD2+(LF-6)AP SAD2+(LF-5)AP SAD2+(LF-4)AP SAD2+(LF-3)AP SAD2+(LF-2)AP SAD2+(LF-1)AP SAD2+(LF)AP SAD2+(SL1-7)AP SAD2+(SL1-6)AP SAD2+(SL1-5)AP SAD2+(SL1-4)AP SAD2+(SL1-3)AP SAD2+(SL1-2)AP SAD2+(SL1- 1)AP SAD2+(SL1)AP SAD2+(SL1+1)AP SAD2+(SL1+2)AP SAD2+(SL1+3)AP SAD2+(SL1+4)AP SAD2+(SL1+5)AP SAD2+(SL1+6)AP SAD2+(SL1+7)AP SAD2+(SL1+8)AP SAD2+(SL1+9)AP SAD2+(SL1+10)AP SAD2+(SL1+11)AP SAD2+(SL1+12)AP SAD2+(SL1+13)AP SAD2+(SL1+14)AP SAD2+(SL1+15)AP SAD2+(SL1+16)AP SAD2 SAD2+AP SAD2+2AP SAD2+3AP SAD2+4AP SAD2+5AP SAD2+6AP SAD2+7AP SAD2+8AP SAD2+9AP SAD2+10AP SAD2+11AP SAD2+12AP SAD2+13AP SAD2+14AP SAD2+15AP << (W/S, OV, DM2, DM1, FY) = (0, 0, 0, 0, 8) >> VA0-15(case1) CG3 CG3 CG3 CG1 CG1 CG1 SAD3+(LF/8)+1 SAD3+AP+1 SAD3+1 SAD1+(SL1/8)AP+1 SAD1+AP+1 SAD1+1 SAD2+(LF-7)AP+1 SAD2+(LF-6)AP+1 SAD2+(LF-5)AP+1 SAD2+(LF-4)AP+1 SAD2+(LF-3)AP+1 SAD2+(LF-2)AP+1 SAD2+(LF-1)AP+1 SAD2+(LF)AP+1 SAD2+(SL1-7)AP+1 SAD2+(SL1-6)AP+1 SAD2+(SL1-5)AP+1 SAD2+(SL1-4)AP+1 SAD2+(SL1-3)AP+1 SAD2+(SL1-2)AP+1 SAD2+(SL1-1)AP+1 SAD2+(SL1)AP+1 SAD2+(SL1+1)AP+1 SAD2+(SL1+2)AP+1 SAD2+(SL1+3)AP+1 SAD2+(SL1+4)AP+1 SAD2+(SL1+5)AP+1 SAD2+(SL1+6)AP+1 SAD2+(SL1+7)AP+1 SAD2+(SL1+8)AP+1 SAD2+(SL1+9)AP+1 SAD2+(SL1+10)AP+1 SAD2+(SL1+11)AP+1 SAD2+(SL1+12)AP+1 SAD2+(SL1+13)AP+1 SAD2+(SL1+14)AP+1 SAD2+(SL1+15)AP+1 SAD2+(SL1+16)AP+1 SAD2+1 SAD2+AP+1 SAD2+2AP+1 SAD2+3AP+1 SAD2+4AP+1 SAD2+5AP+1 SAD2+6AP+1 SAD2+7AP+1 SAD2+8AP+1 SAD2+9AP+1 SAD2+10AP+1 SAD2+11AP+1 SAD2+12AP+1 SAD2+13AP+1 SAD2+14AP+1 SAD2+15AP+1 CG3 CG3 CG3 CG1 CG1 CG1 (BK1, BK2, BK3, BK4) = (Character (Layer1), Graphic (Layer2), Character (Layer1), -) ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... SAD3+(LF/8)+CR SAD3+AP+CR SAD3+CR SAD1+(SL1/8)AP+CR SAD1+AP+CR SAD1+CR SAD2+(LF-7)AP+CR SAD2+(LF-6)AP+CR SAD2+(LF-5)AP+CR SAD2+(LF-4)AP+CR SAD2+(LF-3)AP+CR SAD2+(LF-2)AP+CR SAD2+(LF-1)AP+CR SAD2+(LF)AP+CR SAD2+(SL1-7)AP+CR SAD2+(SL1-6)AP+CR SAD2+(SL1-5)AP+CR SAD2+(SL1-4)AP+CR SAD2+(SL1-3)AP+CR SAD2+(SL1-2)AP+CR SAD2+(SL1-1)AP+CR SAD2+(SL1)AP+CR SAD2+(SL1+1)AP+CR SAD2+(SL1+2)AP+CR SAD2+(SL1+3)AP+CR SAD2+(SL1+4)AP+CR SAD2+(SL1+5)AP+CR SAD2+(SL1+6)AP+CR SAD2+(SL1+7)AP+CR SAD2+(SL1+8)AP+CR SAD2+(SL1+9)AP+CR SAD2+(SL1+10)AP+CR SAD2+(SL1+11)AP+CR SAD2+(SL1+12)AP+CR SAD2+(SL1+13)AP+CR SAD2+(SL1+14)AP+CR SAD2+(SL1+15)AP+CR SAD2+(SL1+16)AP+CR SAD2+CR SAD2+AP+CR SAD2+2AP+CR SAD2+3AP+CR SAD2+4AP+CR SAD2+5AP+CR SAD2+6AP+CR SAD2+7AP+CR SAD2+8AP+CR SAD2+9AP+CR SAD2+10AP+CR SAD2+11AP+CR SAD2+12AP+CR SAD2+13AP+CR SAD2+14AP+CR SAD2+15AP+CR CG3 CG3 CG3 CG1 CG1 CG1 (LF-5) (LF-4) (LF-3) (LF-2) (LF-1) (LF) *ReadTurn (1) (2) (3) (4) 4: FUNCTION DESCRIPTION 53 54 EPSON SAD2+(SL1-7)AP SAD2+(SL1-6)AP SAD2+(SL1-5)AP SAD2+(SL1-4)AP SAD2+(SL1-3)AP SAD2+(SL1-2)AP SAD2+(SL1- 1)AP SAD2+(SL1)AP SAD2+(SL1+1)AP SAD2+(SL1+2)AP SAD2+(SL1+3)AP SAD2+(SL1+4)AP SAD2+(SL1+5)AP SAD2+(SL1+6)AP SAD2+(SL1+7)AP SAD2+(SL1+8)AP SAD2+(SL1+9)AP SAD2+(SL1+10)AP SAD2+(SL1+11)AP SAD2+(SL1+12)AP SAD2+(SL1+13)AP SAD2+(SL1+14)AP SAD2+(SL1+15)AP SAD2+(SL1+16)AP SAD2+(LF-7)AP SAD2+(LF-6)AP SAD2+(LF-5)AP SAD2+(LF-4)AP SAD2+(LF-3)AP SAD2+(LF-2)AP SAD2+(LF-1)AP SAD2+(LF)AP SAD1+(SL1-7)AP SAD1+(SL1-6)AP SAD1+(SL1-5)AP SAD1+(SL1-4)AP SAD1+(SL1-3)AP SAD1+(SL1-2)AP SAD1+(SL1- 1)AP SAD1+(SL1)AP SAD3 SAD3+AP SAD3+2AP SAD3+3AP SAD3+4AP SAD3+5AP SAD3+6AP SAD3+7AP SAD3+8AP SAD3+9AP SAD3+10AP SAD3+11AP SAD3+12AP SAD3+13AP SAD3+14AP SAD3+15AP SAD3+(LF-SL1-7)AP SAD3+(LF-SL1-6)AP SAD3+(LF-SL1-5)AP SAD3+(LF-SL1-4)AP SAD3+(LF-SL1-3)AP SAD3+(LF-SL1-2)AP SAD3+(LF-SL1- 1)AP SAD3+(LF-SL1)AP SL1-7 SL1-6 SL1-5 SL1-4 SL1-3 SL1-2 SL1-1 SL1 SL1+1 SL1+2 SL1+3 SL1+4 SL1+5 SL1+6 SL1+7 SL1+8 SL1+9 SL1+10 SL1+11 SL1+12 SL1+13 SL1+14 SL1+15 SL1+16 LF-7 LF-6 LF-5 LF-4 LF-3 LF-2 LF-1 LF SAD2 SAD2+AP SAD2+2AP SAD2+3AP SAD2+4AP SAD2+5AP SAD2+6AP SAD2+7AP SAD2+8AP SAD2+9AP SAD2+10AP SAD2+11AP SAD2+12AP SAD2+13AP SAD2+14AP SAD2+15AP SAD1 SAD1+AP SAD1+2AP SAD1+3AP SAD1+4AP SAD1+5AP SAD1+6AP SAD1+7AP SAD1+8AP SAD1+9AP SAD1+10AP SAD1+11AP SAD1+12AP SAD1+13AP SAD1+14AP SAD1+15AP LineNo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 << (W/S, OV, DM2, DM1, FY) = (0, 0, 1, 1, 8) >> VA0-15(case2) SAD3+(LF-SL1-7)AP+1 SAD3+(LF-SL1-6)AP+1 SAD3+(LF-SL1-5)AP+1 SAD3+(LF-SL1-4)AP+1 SAD3+(LF-SL1-3)AP+1 SAD3+(LF-SL1-2)AP+1 SAD3+(LF-SL1- 1)AP+1 SAD3+(LF-SL1)AP+1 SAD1+(SL1-7)AP+1 SAD1+(SL1-6)AP+1 SAD1+(SL1-5)AP+1 SAD1+(SL1-4)AP+1 SAD1+(SL1-3)AP+1 SAD1+(SL1-2)AP+1 SAD1+(SL1- 1)AP+1 SAD1+(SL1)AP+1 SAD3+1 SAD3+AP+1 SAD3+2AP+1 SAD3+3AP+1 SAD3+4AP+1 SAD3+5AP+1 SAD3+6AP+1 SAD3+7AP+1 SAD3+8AP+1 SAD3+9AP+1 SAD3+10AP+1 SAD3+11AP+1 SAD3+12AP+1 SAD3+13AP+1 SAD3+14AP+1 SAD3+15AP+1 SAD1+1 SAD1+AP+1 SAD1+2AP+1 SAD1+3AP+1 SAD1+4AP+1 SAD1+5AP+1 SAD1+6AP+1 SAD1+7AP+1 SAD1+8AP+1 SAD1+9AP+1 SAD1+10AP+1 SAD1+11AP+1 SAD1+12AP+1 SAD1+13AP+1 SAD1+14AP+1 SAD1+15AP+1 SAD2+(LF-7)AP+1 SAD2+(LF-6)AP+1 SAD2+(LF-5)AP+1 SAD2+(LF-4)AP+1 SAD2+(LF-3)AP+1 SAD2+(LF-2)AP+1 SAD2+(LF-1)AP+1 SAD2+(LF)AP+1 SAD2+(SL1-7)AP+1 SAD2+(SL1-6)AP+1 SAD2+(SL1-5)AP+1 SAD2+(SL1-4)AP+1 SAD2+(SL1-3)AP+1 SAD2+(SL1-2)AP+1 SAD2+(SL1-1)AP+1 SAD2+(SL1)AP+1 SAD2+(SL1+1)AP+1 SAD2+(SL1+2)AP+1 SAD2+(SL1+3)AP+1 SAD2+(SL1+4)AP+1 SAD2+(SL1+5)AP+1 SAD2+(SL1+6)AP+1 SAD2+(SL1+7)AP+1 SAD2+(SL1+8)AP+1 SAD2+(SL1+9)AP+1 SAD2+(SL1+10)AP+1 SAD2+(SL1+11)AP+1 SAD2+(SL1+12)AP+1 SAD2+(SL1+13)AP+1 SAD2+(SL1+14)AP+1 SAD2+(SL1+15)AP+1 SAD2+(SL1+16)AP+1 SAD2+1 SAD2+AP+1 SAD2+2AP+1 SAD2+3AP+1 SAD2+4AP+1 SAD2+5AP+1 SAD2+6AP+1 SAD2+7AP+1 SAD2+8AP+1 SAD2+9AP+1 SAD2+10AP+1 SAD2+11AP+1 SAD2+12AP+1 SAD2+13AP+1 SAD2+14AP+1 SAD2+15AP+1 (BK1, BK2, BK3, BK4) = Graphic (Layer1), Graphic (Layer2), Graphic (Layer1), -) ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... SAD3+(LF-SL1-7)AP+CR SAD3+(LF-SL1-6)AP+CR SAD3+(LF-SL1-5)AP+CR SAD3+(LF-SL1-4)AP+CR SAD3+(LF-SL1-3)AP+CR SAD3+(LF-SL1-2)AP+CR SAD3+(LF-SL1-1)AP+CR SAD3+(LF-SL1)AP+CR SAD1+(SL1-7)AP+CR SAD1+(SL1-6)AP+CR SAD1+(SL1-5)AP+CR SAD1+(SL1-4)AP+CR SAD1+(SL1-3)AP+CR SAD1+(SL1-2)AP+CR SAD1+(SL1- 1)AP+CR SAD1+(SL1)AP+CR SAD3+CR SAD3+AP+CR SAD3+2AP+CR SAD3+3AP+CR SAD3+4AP+CR SAD3+5AP+CR SAD3+6AP+CR SAD3+7AP+CR SAD3+8AP+CR SAD3+9AP+CR SAD3+10AP+CR SAD3+11AP+CR SAD3+12AP+CR SAD3+13AP+CR SAD3+14AP+CR SAD3+15AP+CR SAD1+CR SAD1+AP+CR SAD1+2AP+CR SAD1+3AP+CR SAD1+4AP+CR SAD1+5AP+CR SAD1+6AP+CR SAD1+7AP+CR SAD1+8AP+CR SAD1+9AP+CR SAD1+10AP+CR SAD1+11AP+CR SAD1+12AP+CR SAD1+13AP+CR SAD1+14AP+CR SAD1+15AP+CR SAD2+(LF-7)AP+CR SAD2+(LF-6)AP+CR SAD2+(LF-5)AP+CR SAD2+(LF-4)AP+CR SAD2+(LF-3)AP+CR SAD2+(LF-2)AP+CR SAD2+(LF-1)AP+CR SAD2+(LF)AP+CR SAD2+(SL1-7)AP+CR SAD2+(SL1-6)AP+CR SAD2+(SL1-5)AP+CR SAD2+(SL1-4)AP+CR SAD2+(SL1-3)AP+CR SAD2+(SL1-2)AP+CR SAD2+(SL1- 1)AP+CR SAD2+(SL1)AP+CR SAD2+(SL1+1)AP+CR SAD2+(SL1+2)AP+CR SAD2+(SL1+3)AP+CR SAD2+(SL1+4)AP+CR SAD2+(SL1+5)AP+CR SAD2+(SL1+6)AP+CR SAD2+(SL1+7)AP+CR SAD2+(SL1+8)AP+CR SAD2+(SL1+9)AP+CR SAD2+(SL1+10)AP+CR SAD2+(SL1+11)AP+CR SAD2+(SL1+12)AP+CR SAD2+(SL1+13)AP+CR SAD2+(SL1+14)AP+CR SAD2+(SL1+15)AP+CR SAD2+(SL1+16)AP+CR SAD2+CR SAD2+AP+CR SAD2+2AP+CR SAD2+3AP+CR SAD2+4AP+CR SAD2+5AP+CR SAD2+6AP+CR SAD2+7AP+CR SAD2+8AP+CR SAD2+9AP+CR SAD2+10AP+CR SAD2+11AP+CR SAD2+12AP+CR SAD2+13AP+CR SAD2+14AP+CR SAD2+15AP+CR (LF-5) (LF-4) (LF-3) (LF-2) (LF-1) (LF) *ReadTurn (1) (2) (3) (4) 4: FUNCTION DESCRIPTION S1D13700 Technical Manual S1D13700 Technical Manual EPSON LF-15 LF-14 LF-13 LF-12 LF-11 LF-10 LF-9 LF-8 LF-7 LF-6 LF-5 LF-4 LF-3 LF-2 LF-1 LF LineNo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 SAD3 SAD3+AP SAD3+2AP SAD3+3AP SAD3+4AP SAD3+5AP SAD3+6AP SAD3+7AP SAD3+8AP SAD3+9AP SAD3+10AP SAD3+11AP SAD3+12AP SAD3+13AP SAD3+14AP SAD3+15AP SAD3+16AP SAD3+17AP SAD3+18AP SAD3+19AP SAD3+20AP SAD3+21AP SAD3+22AP SAD3+23AP SAD3+(LF-15)AP SAD3+(LF-14)AP SAD3+(LF-13)AP SAD3+(LF-12)AP SAD3+(LF-11)AP SAD3+(LF-10)AP SAD3+(LF-9)AP SAD3+(LF-8)AP SAD3+(LF-7)AP SAD3+(LF-6)AP SAD3+(LF-5)AP SAD3+(LF-4)AP SAD3+(LF-3)AP SAD3+(LF-2)AP SAD3+(LF-1)AP SAD3+(LF)AP SAD2+(LF-15)AP SAD2+(LF-14)AP SAD2+(LF-13)AP SAD2+(LF-12)AP SAD2+(LF-11)AP SAD2+(LF-10)AP SAD2+(LF-9)AP SAD2+(LF-8)AP SAD2+(LF-7)AP SAD2+(LF-6)AP SAD2+(LF-5)AP SAD2+(LF-4)AP SAD2+(LF-3)AP SAD2+(LF-2)AP SAD2+(LF-1)AP SAD2+(LF)AP SAD1+(LF-15)AP SAD1+(LF-14)AP SAD1+(LF-13)AP SAD1+(LF-12)AP SAD1+(LF-11)AP SAD1+(LF-10)AP SAD1+(LF-9)AP SAD1+(LF-8)AP SAD1+(LF-7)AP SAD1+(LF-6)AP SAD1+(LF-5)AP SAD1+(LF-4)AP SAD1+(LF-3)AP SAD1+(LF-2)AP SAD1+(LF-1)AP SAD+(LF)AP SAD1+(LF-15)AP+1 SAD1+(LF-14)AP+1 SAD1+(LF-13)AP+1 SAD1+(LF-12)AP+1 SAD1+(LF-11)AP+1 SAD1+(LF-10)AP+1 SAD1+(LF-9)AP+1 SAD1+(LF-8)AP+1 SAD1+(LF-7)AP+1 SAD1+(LF-6)AP+1 SAD1+(LF-5)AP+1 SAD1+(LF-4)AP+1 SAD1+(LF-3)AP+1 SAD1+(LF-2)AP+1 SAD1+(LF-1)AP+1 SAD+(LF)AP+1 SAD1+1 SAD1+AP+1 SAD1+2AP+1 SAD1+3AP+1 SAD1+4AP+1 SAD1+5AP+1 SAD1+6AP+1 SAD1+7AP+1 SAD1+8AP+1 SAD1+9AP+1 SAD1+10AP+1 SAD1+11AP+1 SAD1+12AP+1 SAD1+13AP+1 SAD1+14AP+1 SAD1+15AP+1 SAD1+16AP+1 SAD1+17AP+1 SAD1+18AP+1 SAD1+19AP+1 SAD1+20AP+1 SAD1+21AP+1 SAD1+22AP+1 SAD1+23AP+1 SAD2+(LF-15)AP+1 SAD2+(LF-14)AP+1 SAD2+(LF-13)AP+1 SAD2+(LF-12)AP+1 SAD2+(LF-11)AP+1 SAD2+(LF-10)AP+1 SAD2+(LF-9)AP+1 SAD2+(LF-8)AP+1 SAD2+(LF-7)AP+1 SAD2+(LF-6)AP+1 SAD2+(LF-5)AP+1 SAD2+(LF-4)AP+1 SAD2+(LF-3)AP+1 SAD2+(LF-2)AP+1 SAD2+(LF-1)AP+1 SAD2+(LF)AP+1 SAD2+1 SAD2+AP+1 SAD2+2AP+1 SAD2+3AP+1 SAD2+4AP+1 SAD2+5AP+1 SAD2+6AP+1 SAD2+7AP+1 SAD2+8AP+1 SAD2+9AP+1 SAD2+10AP+1 SAD2+11AP+1 SAD2+12AP+1 SAD2+13AP+1 SAD2+14AP+1 SAD2+15AP+1 SAD2+16AP+1 SAD2+17AP+1 SAD2+18AP+1 SAD2+19AP+1 SAD2+20AP+1 SAD2+21AP+1 SAD2+22AP+1 SAD2+23AP+1 SAD3+(LF-15)AP+1 SAD3+(LF-14)AP+1 SAD3+(LF-13)AP+1 SAD3+(LF-12)AP+1 SAD3+(LF-11)AP+1 SAD3+(LF-10)AP+1 SAD3+(LF-9)AP+1 SAD3+(LF-8)AP+1 SAD3+(LF-7)AP+1 SAD3+(LF-6)AP+1 SAD3+(LF-5)AP+1 SAD3+(LF-4)AP+1 SAD3+(LF-3)AP+1 SAD3+(LF-2)AP+1 SAD3+(LF-1)AP+1 SAD3+(LF)AP+1 SAD3+1 SAD3+AP+1 SAD3+2AP+1 SAD3+3AP+1 SAD3+4AP+1 SAD3+5AP+1 SAD3+6AP+1 SAD3+7AP+1 SAD3+8AP+1 SAD3+9AP+1 SAD3+10AP+1 SAD3+11AP+1 SAD3+12AP+1 SAD3+13AP+1 SAD3+14AP+1 SAD3+15AP+1 SAD3+16AP+1 SAD3+17AP+1 SAD3+18AP+1 SAD3+19AP+1 SAD3+20AP+1 SAD3+21AP+1 SAD3+22AP+1 SAD3+23AP+1 (BK1, BK2, BK3, BK4) = Graphic (Layer1), Graphic (Layer2), Graphic (Layer3), -) SAD2 SAD2+AP SAD2+2AP SAD2+3AP SAD2+4AP SAD2+5AP SAD2+6AP SAD2+7AP SAD2+8AP SAD2+9AP SAD2+10AP SAD2+11AP SAD2+12AP SAD2+13AP SAD2+14AP SAD2+15AP SAD2+16AP SAD2+17AP SAD2+18AP SAD2+19AP SAD2+20AP SAD2+21AP SAD2+22AP SAD2+23AP SAD1 SAD1+AP SAD1+2AP SAD1+3AP SAD1+4AP SAD1+5AP SAD1+6AP SAD1+7AP SAD1+8AP SAD1+9AP SAD1+10AP SAD1+11AP SAD1+12AP SAD1+13AP SAD1+14AP SAD1+15AP SAD1+16AP SAD1+17AP SAD1+18AP SAD1+19AP SAD1+20AP SAD1+21AP SAD1+22AP SAD1+23AP << (W/S, OV, DM2, DM1, FY) = (0, 1, 1, 1, 8) >> VA0-15(case3) ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... SAD1+(LF-15)AP+CR SAD1+(LF-14)AP+CR SAD1+(LF-13)AP+CR SAD1+(LF-12)AP+CR SAD1+(LF-11)AP+CR SAD1+(LF-10)AP+CR SAD1+(LF-9)AP+CR SAD1+(LF-8)AP+CR SAD1+(LF-7)AP+CR SAD1+(LF-6)AP+CR SAD1+(LF-5)AP+CR SAD1+(LF-4)AP+CR SAD1+(LF-3)AP+CR SAD1+(LF-2)AP+CR SAD1+(LF-1)AP+CR SAD+(LF)AP+CR SAD1+CR SAD1+AP+CR SAD1+2AP+CR SAD1+3AP+CR SAD1+4AP+CR SAD1+5AP+CR SAD1+6AP+CR SAD1+7AP+CR SAD1+8AP+CR SAD1+9AP+CR SAD1+10AP+CR SAD1+11AP+CR SAD1+12AP+CR SAD1+13AP+CR SAD1+14AP+CR SAD1+15AP+CR SAD1+16AP+CR SAD1+17AP+CR SAD1+18AP+CR SAD1+19AP+CR SAD1+20AP+CR SAD1+21AP+CR SAD1+22AP+CR SAD1+23AP+CR SAD2+(LF-15)AP+CR SAD2+(LF-14)AP+CR SAD2+(LF-13)AP+CR SAD2+(LF-12)AP+CR SAD2+(LF-11)AP+CR SAD2+(LF-10)AP+CR SAD2+(LF-9)AP+CR SAD2+(LF-8)AP+CR SAD2+(LF-7)AP+CR SAD2+(LF-6)AP+CR SAD2+(LF-5)AP+CR SAD2+(LF-4)AP+CR SAD2+(LF-3)AP+CR SAD2+(LF-2)AP+CR SAD2+(LF-1)AP+CR SAD2+(LF)AP+CR SAD2+CR SAD2+AP+CR SAD2+2AP+CR SAD2+3AP+CR SAD2+4AP+CR SAD2+5AP+CR SAD2+6AP+CR SAD2+7AP+CR SAD2+8AP+CR SAD2+9AP+CR SAD2+10AP+CR SAD2+11AP+CR SAD2+12AP+CR SAD2+13AP+CR SAD2+14AP+CR SAD2+15AP+CR SAD2+16AP+CR SAD2+17AP+CR SAD2+18AP+CR SAD2+19AP+CR SAD2+20AP+CR SAD2+21AP+CR SAD2+22AP+CR SAD2+23AP+CR SAD3+(LF-15)AP+CR SAD3+(LF-14)AP+CR SAD3+(LF-13)AP+CR SAD3+(LF-12)AP+CR SAD3+(LF-11)AP+CR SAD3+(LF-10)AP+CR SAD3+(LF-9)AP+CR SAD3+(LF-8)AP+CR SAD3+(LF-7)AP+CR SAD3+(LF-6)AP+CR SAD3+(LF-5)AP+CR SAD3+(LF-4)AP+CR SAD3+(LF-3)AP+CR SAD3+(LF-2)AP+CR SAD3+(LF-1)AP+CR SAD3+(LF)AP+CR (LF-5) (LF-4) (LF-3) (LF-2) (LF-1) (LF) *ReadTurn SAD3+CR (1) SAD3+AP+CR (2) SAD3+2AP+CR (3) SAD3+3AP+CR (4) SAD3+4AP+CR SAD3+5AP+CR SAD3+6AP+CR SAD3+7AP+CR SAD3+8AP+CR SAD3+9AP+CR SAD3+10AP+CR SAD3+11AP+CR SAD3+12AP+CR SAD3+13AP+CR SAD3+14AP+CR SAD3+15AP+CR SAD3+16AP+CR SAD3+17AP+CR SAD3+18AP+CR SAD3+19AP+CR SAD3+20AP+CR SAD3+21AP+CR SAD3+22AP+CR SAD3+23AP+CR 4: FUNCTION DESCRIPTION 55 56 EPSON LF-7 LF-6 LF-5 LF-4 LF-3 LF-2 LF-1 LF SL1-7 SL1-6 SL1-5 SL1-4 SL1-3 SL1-2 SL1-1 SL1 SL1+1 SL1+2 SL1+3 SL1+4 SL1+5 SL1+6 SL1+7 SL1+8 SL1+9 SL1+10 SL1+11 SL1+12 SL1+13 SL1+14 SL1+15 SL1+16 LineNo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 SAD3+(LD/8)AP SAD3+AP SAD3 SAD1+(SL1/8)AP SAD1+AP SAD1 SAD4+(LF-SL2-7)AP SAD4+(LF-SL2-6)AP SAD4+(LF-SL2-5)AP SAD4+(LF-SL2-4)AP SAD4+(LF-SL2-3)AP SAD4+(LF-SL2-2)AP SAD4+(LF-SL2-1)AP SAD4+(LF-SL2)AP SAD2+(SL1-7)AP SAD2+(SL1-6)AP SAD2+(SL1-5)AP SAD2+(SL1-4)AP SAD2+(SL1-3)AP SAD2+(SL1-2)AP SAD2+(SL1- 1)AP SAD2+(SL1)AP SAD4 SAD4+AP SAD4+2AP SAD4+3AP SAD4+4AP SAD4+5AP SAD4+6AP SAD4+7AP SAD4+8AP SAD4+9AP SAD4+10AP SAD4+11AP SAD4+12AP SAD4+13AP SAD4+14AP SAD4+15AP SAD2 SAD2+AP SAD2+2AP SAD2+3AP SAD2+4AP SAD2+5AP SAD2+6AP SAD2+7AP SAD2+8AP SAD2+9AP SAD2+10AP SAD2+11AP SAD2+12AP SAD2+13AP SAD2+14AP SAD2+15AP << (W/S, OV, DM2, DM1, FY) = (1, 0, 0, 0, 8) >> VA0-15(case4) CG3 CG3 CG3 CG1 CG1 CG1 SAD3+(LF/8)+1 SAD3+AP+1 SAD3+1 SAD1+(SL1/8)AP+1 SAD1+AP+1 SAD1+1 SAD4+(LF-SL2-7)AP+1 SAD4+(LF-SL2-6)AP+1 SAD4+(LF-SL2-5)AP+1 SAD4+(LF-SL2-4)AP+1 SAD4+(LF-SL2-3)AP+1 SAD4+(LF-SL2-2)AP+1 SAD4+(LF-SL2-1)AP+1 SAD4+(LF-SL2)AP+1 SAD2+(SL1-7)AP+1 SAD2+(SL1-6)AP+1 SAD2+(SL1-5)AP+1 SAD2+(SL1-4)AP+1 SAD2+(SL1-3)AP+1 SAD2+(SL1-2)AP+1 SAD2+(SL1- 1)AP+1 SAD2+(SL1)AP+1 SAD4+1 SAD4+AP+1 SAD4+2AP+1 SAD4+3AP+1 SAD4+4AP+1 SAD4+5AP+1 SAD4+6AP+1 SAD4+7AP+1 SAD4+8AP+1 SAD4+9AP+1 SAD4+10AP+1 SAD4+11AP+1 SAD4+12AP+1 SAD4+13AP+1 SAD4+14AP+1 SAD4+15AP+1 SAD2+1 SAD2+AP+1 SAD2+2AP+1 SAD2+3AP+1 SAD2+4AP+1 SAD2+5AP+1 SAD2+6AP+1 SAD2+7AP+1 SAD2+8AP+1 SAD2+9AP+1 SAD2+10AP+1 SAD2+11AP+1 SAD2+12AP+1 SAD2+13AP+1 SAD2+14AP+1 SAD2+15AP+1 CG3 CG3 CG3 CG1 CG 1 CG1 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... (BK1, BK2, BK3, BK4) = (Character (Layer1), Graphic (Layer2), Character (Layer1), Graphic (Layer2)) SAD3+(LF/8)+CR SAD3+AP+CR SAD3+CR SAD1+(SL1/8)AP+CR SAD1+AP+CR SAD1+CR SAD4+(LF-SL2-7)AP+CR SAD4+(LF-SL2-6)AP+CR SAD4+(LF-SL2-5)AP+CR SAD4+(LF-SL2-4)AP+CR SAD4+(LF-SL2-3)AP+CR SAD4+(LF-SL2-2)AP+CR SAD4+(LF-SL2-1)AP+CR SAD4+(LF-SL2)AP+CR SAD2+(SL1-7)AP+CR SAD2+(SL1-6)AP+CR SAD2+(SL1-5)AP+CR SAD2+(SL1-4)AP+CR SAD2+(SL1-3)AP+CR SAD2+(SL1-2)AP+CR SAD2+(SL1- 1)AP+CR SAD2+(SL1)AP+CR SAD4+CR SAD4+AP+CR SAD4+2AP+CR SAD4+3AP+CR SAD4+4AP+CR SAD4+5AP+CR SAD4+6AP+CR SAD4+7AP+CR SAD4+8AP+CR SAD4+9AP+CR SAD4+10AP+CR SAD4+11AP+CR SAD4+12AP+CR SAD4+13AP+CR SAD4+14AP+CR SAD4+15AP+CR SAD2+CR SAD2+AP+CR SAD2+2AP+CR SAD2+3AP+CR SAD2+4AP+CR SAD2+5AP+CR SAD2+6AP+CR SAD2+7AP+CR SAD2+8AP+CR SAD2+9AP+CR SAD2+10AP+CR SAD2+11AP+CR SAD2+12AP+CR SAD2+13AP+CR SAD2+14AP+CR SAD2+15AP+CR CG3 CG3 CG3 CG 1 CG1 CG1 (LF-4) (LF-2) (LF) (LF-5) (LF-3) (LF-1) (2) (4) (6) (8) *ReadTurn (1) (3) (5) (7) 4: FUNCTION DESCRIPTION S1D13700 Technical Manual S1D13700 Technical Manual EPSON LF-7 LF-6 LF-5 LF-4 LF-3 LF-2 LF-1 LF SAD3+(LD/8)AP SAD3+AP SAD4+(LF-SL2-7)AP SAD4+(LF-SL2-6)AP SAD4+(LF-SL2-5)AP SAD4+(LF-SL2-4)AP SAD4+(LF-SL2-3)AP SAD4+(LF-SL2-2)AP SAD4+(LF-SL2-1)AP SAD4+(LF-SL2)AP SAD2+(SL1-7)AP SAD2+(SL1-6)AP SAD2+(SL1-5)AP SAD2+(SL1-4)AP SAD2+(SL1-3)AP SAD2+(SL1-2)AP SAD2+(SL1-1)AP SAD2+(SL1)AP SAD4 SAD4+AP SAD4+2AP SAD4+3AP SAD4+4AP SAD4+5AP SAD4+6AP SAD4+7AP SAD4+8AP SAD4+9AP SAD4+10AP SAD4+11AP SAD4+12AP SAD4+13AP SAD4+14AP SAD4+15AP SAD1+(SL1-7)AP SAD1+(SL1-6)AP SAD1+(SL1-5)AP SAD1+(SL1-4)AP SAD1+(SL1-3)AP SAD1+(SL1-2)AP SAD1+(SL1- 1)AP SAD1+(SL1)AP SL1-7 SL1-6 SL1-5 SL1-4 SL1-3 SL1-2 SL1-1 SL1 SL1+1 SL1+2 SL1+3 SL1+4 SL1+5 SL1+6 SL1+7 SL1+8 SL1+9 SL1+10 SL1+11 SL1+12 SL1+13 SL1+14 SL1+15 SL1+16 SAD3 SAD2 SAD2+AP SAD2+2AP SAD2+3AP SAD2+4AP SAD2+5AP SAD2+6AP SAD2+7AP SAD2+8AP SAD2+9AP SAD2+10AP SAD2+11AP SAD2+12AP SAD2+13AP SAD2+14AP SAD2+15AP SAD1 SAD1+AP SAD1+2AP SAD1+3AP SAD1+4AP SAD1+5AP SAD1+6AP SAD1+7AP SAD1+8AP SAD1+9AP SAD1+10AP SAD1+11AP SAD1+12AP SAD1+13AP SAD1+14AP SAD1+15AP << (W/S, OV, DM2, DM1, FY) = (1, 0, 0, 0, 8) >> LineNo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CG3 CG3 CG3 SAD3+(LF/8)+1 SAD3+AP+1 SAD3+1 SAD1+(SL1-7)AP+1 SAD1+(SL1-6)AP+1 SAD1+(SL1-5)AP+1 SAD1+(SL1-4)AP+1 SAD1+(SL1-3)AP+1 SAD1+(SL1-2)AP+1 SAD1+(SL1-1)AP+1 SAD1+(SL1)AP+1 SAD1+1 SAD1+AP+1 SAD1+2AP+1 SAD1+3AP+1 SAD1+4AP+1 SAD1+5AP+1 SAD1+6AP+1 SAD1+7AP+1 SAD1+8AP+1 SAD1+9AP+1 SAD1+10AP+1 SAD1+11AP+1 SAD1+12AP+1 SAD1+13AP+1 SAD1+14AP+1 SAD1+15AP+1 SAD4+(LF-SL2-7)AP+1 SAD4+(LF-SL2-6)AP+1 SAD4+(LF-SL2-5)AP+1 SAD4+(LF-SL2-4)AP+1 SAD4+(LF-SL2-3)AP+1 SAD4+(LF-SL2-2)AP+1 SAD4+(LF-SL2-1)AP+1 SAD4+(LF-SL2)AP+1 SAD2+(SL1-7)AP+1 SAD2+(SL1-6)AP+1 SAD2+(SL1-5)AP+1 SAD2+(SL1-4)AP+1 SAD2+(SL1-3)AP+1 SAD2+(SL1-2)AP+1 SAD2+(SL1-1)AP+1 SAD2+(SL1)AP+1 SAD4+1 SAD4+AP+1 SAD4+2AP+1 SAD4+3AP+1 SAD4+4AP+1 SAD4+5AP+1 SAD4+6AP+1 SAD4+7AP+1 SAD4+8AP+1 SAD4+9AP+1 SAD4+10AP+1 SAD4+11AP+1 SAD4+12AP+1 SAD4+13AP+1 SAD4+14AP+1 SAD4+15AP+1 SAD2+1 SAD2+AP+1 SAD2+2AP+1 SAD2+3AP+1 SAD2+4AP+1 SAD2+5AP+1 SAD2+6AP+1 SAD2+7AP+1 SAD2+8AP+1 SAD2+9AP+1 SAD2+10AP+1 SAD2+11AP+1 SAD2+12AP+1 SAD2+13AP+1 SAD2+14AP+1 SAD2+15AP+1 CG3 CG3 CG3 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... (BK1, BK2, BK3, BK4) = (Character (Layer1), Graphic (Layer2), Character (Layer1), Graphic (Layer2)) SAD3+(LF/8)+CR SAD3+AP+CR SAD3+CR SAD1+(SL1-7)AP+CR SAD1+(SL1-6)AP+CR SAD1+(SL1-5)AP+CR SAD1+(SL1-4)AP+CR SAD1+(SL1-3)AP+CR SAD1+(SL1-2)AP+CR SAD1+(SL1- 1)AP+CR SAD1+(SL1)AP+CR SAD1+CR SAD1+AP+CR SAD1+2AP+CR SAD1+3AP+CR SAD1+4AP+CR SAD1+5AP+CR SAD1+6AP+CR SAD1+7AP+CR SAD1+8AP+CR SAD1+9AP+CR SAD1+10AP+CR SAD1+11AP+CR SAD1+12AP+CR SAD1+13AP+CR SAD1+14AP+CR SAD1+15AP+CR SAD4+(LF-SL2-7)AP+CR SAD4+(LF-SL2-6)AP+CR SAD4+(LF-SL2-5)AP+CR SAD4+(LF-SL2-4)AP+CR SAD4+(LF-SL2-3)AP+CR SAD4+(LF-SL2-2)AP+CR SAD4+(LF-SL2-1)AP+CR SAD4+(LF-SL2)AP+CR SAD2+(SL1-7)AP+CR SAD2+(SL1-6)AP+CR SAD2+(SL1-5)AP+CR SAD2+(SL1-4)AP+CR SAD2+(SL1-3)AP+CR SAD2+(SL1-2)AP+CR SAD2+(SL1- 1)AP+CR SAD2+(SL1)AP+CR SAD4+CR SAD4+AP+CR SAD4+2AP+CR SAD4+3AP+CR SAD4+4AP+CR SAD4+5AP+CR SAD4+6AP+CR SAD4+7AP+CR SAD4+8AP+CR SAD4+9AP+CR SAD4+10AP+CR SAD4+11AP+CR SAD4+12AP+CR SAD4+13AP+CR SAD4+14AP+CR SAD4+15AP+CR SAD2+CR SAD2+AP+CR SAD2+2AP+CR SAD2+3AP+CR SAD2+4AP+CR SAD2+5AP+CR SAD2+6AP+CR SAD2+7AP+CR SAD2+8AP+CR SAD2+9AP+CR SAD2+10AP+CR SAD2+11AP+CR SAD2+12AP+CR SAD2+13AP+CR SAD2+14AP+CR SAD2+15AP+CR CG3 CG3 CG3 (LF-4) (LF-2) (LF) (LF-5) (LF-3) (LF-1) (2) (4) (6) (8) *ReadTurn (1) (3) (5) (7) 4: FUNCTION DESCRIPTION 57 58 SAD3 SAD3+AP SAD3+2AP SAD3+3AP SAD3+4AP SAD3+5AP SAD3+6AP SAD3+7AP SAD3+8AP SAD3+9AP SAD3+10AP SAD3+11AP SAD3+12AP SAD3+13AP SAD3+14AP SAD3+15AP SAD3+(LF-SL1-7)AP SAD3+(LF-SL1-6)AP SAD3+(LF-SL1-5)AP SAD3+(LF-SL1-4)AP SAD3+(LF-SL1-3)AP SAD3+(LF-SL1-2)AP SAD3+(LF-SL1- 1)AP SAD3+(LF-SL1)AP LF-7 LF-6 LF-5 LF-4 LF-3 LF-2 LF-1 LF SAD1+(SL1/8)AP SAD1+AP SAD1 SL1-7 SL1-6 SL1-5 SL1-4 SL1-3 SL1-2 SL1-1 SL1 SL1+1 SL1+2 SL1+3 SL1+4 SL1+5 SL1+6 SL1+7 SL1+8 SL1+9 SL1+10 SL1+11 SL1+12 SL1+13 SL1+14 SL1+15 SL1+16 LineNo1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 EPSON SAD4+(LF-SL2-7)AP SAD4+(LF-SL2-6)AP SAD4+(LF-SL2-5)AP SAD4+(LF-SL2-4)AP SAD4+(LF-SL2-3)AP SAD4+(LF-SL2-2)AP SAD4+(LF-SL2-1)AP SAD4+(LF-SL2)AP SAD2+(SL1-7)AP SAD2+(SL1-6)AP SAD2+(SL1-5)AP SAD2+(SL1-4)AP SAD2+(SL1-3)AP SAD2+(SL1-2)AP SAD2+(SL1- 1)AP SAD2+(SL1)AP SAD4 SAD4+AP SAD4+2AP SAD4+3AP SAD4+4AP SAD4+5AP SAD4+6AP SAD4+7AP SAD4+8AP SAD4+9AP SAD4+10AP SAD4+11AP SAD4+12AP SAD4+13AP SAD4+14AP SAD4+15AP SAD2 SAD2+AP SAD2+2AP SAD2+3AP SAD2+4AP SAD2+5AP SAD2+6AP SAD2+7AP SAD2+8AP SAD2+9AP SAD2+10AP SAD2+11AP SAD2+12AP SAD2+13AP SAD2+14AP SAD2+15AP << (W/S, OV, DM2, DM1, FY) = (1, 0, 0, 0, 8) >> CG1 CG1 CG1 SAD3+(LF-SL1-7)AP+1 SAD3+(LF-SL1-6)AP+1 SAD3+(LF-SL1-5)AP+1 SAD3+(LF-SL1-4)AP+1 SAD3+(LF-SL1-3)AP+1 SAD3+(LF-SL1-2)AP+1 SAD3+(LF-SL1- 1)AP+1 SAD3+(LF-SL1)AP+1 SAD1+1 SAD3+AP+1 SAD3+2AP+1 SAD3+3AP+1 SAD3+4AP+1 SAD3+5AP+1 SAD3+6AP+1 SAD3+7AP+1 SAD3+8AP+1 SAD3+9AP+1 SAD3+10AP+1 SAD3+11AP+1 SAD3+12AP+1 SAD3+13AP+1 SAD3+14AP+1 SAD3+15AP+1 SAD1+(SL1/8)AP+1 SAD1+AP+1 SAD1+1 SAD4+(LF-SL2-7)AP+1 SAD4+(LF-SL2-6)AP+1 SAD4+(LF-SL2-5)AP+1 SAD4+(LF-SL2-4)AP+1 SAD4+(LF-SL2-3)AP+1 SAD4+(LF-SL2-2)AP+1 SAD4+(LF-SL2-1)AP+1 SAD4+(LF-SL2)AP+1 SAD2+(SL1-7)AP+1 SAD2+(SL1-6)AP+1 SAD2+(SL1-5)AP+1 SAD2+(SL1-4)AP+1 SAD2+(SL1-3)AP+1 SAD2+(SL1-2)AP+1 SAD2+(SL1-1)AP+1 SAD2+(SL1)AP+1 SAD4+1 SAD4+AP+1 SAD4+2AP+1 SAD4+3AP+1 SAD4+4AP+1 SAD4+5AP+1 SAD4+6AP+1 SAD4+7AP+1 SAD4+8AP+1 SAD4+9AP+1 SAD4+10AP+1 SAD4+11AP+1 SAD4+12AP+1 SAD4+13AP+1 SAD4+14AP+1 SAD4+15AP+1 SAD2+1 SAD2+AP+1 SAD2+2AP+1 SAD2+3AP+1 SAD2+4AP+1 SAD2+5AP+1 SAD2+6AP+1 SAD2+7AP+1 SAD2+8AP+1 SAD2+9AP+1 SAD2+10AP+1 SAD2+11AP+1 SAD2+12AP+1 SAD2+13AP+1 SAD2+14AP+1 SAD2+15AP+1 CG1 CG1 CG1 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... (BK1, BK2, BK3, BK4) = (Character (Layer1), Graphic (Layer2), Character (Layer1), Graphic (Layer2)) SAD3+(LF-SL1-7)AP+CR SAD3+(LF-SL1-6)AP+CR SAD3+(LF-SL1-5)AP+CR SAD3+(LF-SL1-4)AP+CR SAD3+(LF-SL1-3)AP+CR SAD3+(LF-SL1-2)AP+CR SAD3+(LF-SL1- 1)AP+CR SAD3+(LF-SL1)AP+CR SAD3+CR SAD3+AP+CR SAD3+2AP+CR SAD3+3AP+CR SAD3+4AP+CR SAD3+5AP+CR SAD3+6AP+CR SAD3+7AP+CR SAD3+8AP+CR SAD3+9AP+CR SAD3+10AP+CR SAD3+11AP+CR SAD3+12AP+CR SAD3+13AP+CR SAD3+14AP+CR SAD3+15AP+CR SAD1+(SL1/8)AP+CR SAD1+AP+CR SAD1+CR SAD4+(LF-SL2-7)AP+CR SAD4+(LF-SL2-6)AP+CR SAD4+(LF-SL2-5)AP+CR SAD4+(LF-SL2-4)AP+CR SAD4+(LF-SL2-3)AP+CR SAD4+(LF-SL2-2)AP+CR SAD4+(LF-SL2-1)AP+CR SAD4+(LF-SL2)AP+CR SAD2+(SL1-7)AP+CR SAD2+(SL1-6)AP+CR SAD2+(SL1-5)AP+CR SAD2+(SL1-4)AP+CR SAD2+(SL1-3)AP+CR SAD2+(SL1-2)AP+CR SAD2+(SL1-1)AP+CR SAD2+(SL1)AP+CR SAD4+CR SAD4+AP+CR SAD4+2AP+CR SAD4+3AP+CR SAD4+4AP+CR SAD4+5AP+CR SAD4+6AP+CR SAD4+7AP+CR SAD4+8AP+CR SAD4+9AP+CR SAD4+10AP+CR SAD4+11AP+CR SAD4+12AP+CR SAD4+13AP+CR SAD4+14AP+CR SAD4+15AP+CR SAD2+CR SAD2+AP+CR SAD2+2AP+CR SAD2+3AP+CR SAD2+4AP+CR SAD2+5AP+CR SAD2+6AP+CR SAD2+7AP+CR SAD2+8AP+CR SAD2+9AP+CR SAD2+10AP+CR SAD2+11AP+CR SAD2+12AP+CR SAD2+13AP+CR SAD2+14AP+CR SAD2+15AP+CR CG1 CG1 CG1 (LF-4) (LF-2) (LF) (LF-5) (LF-3) (LF-1) (2) (4) (6) (8) *ReadTurn (1) (3) (5) (7) 4: FUNCTION DESCRIPTION S1D13700 Technical Manual S1D13700 Technical Manual EPSON SAD2+(SL1-7)AP SAD2+(SL1-6)AP SAD2+(SL1-5)AP SAD2+(SL1-4)AP SAD2+(SL1-3)AP SAD2+(SL1-2)AP SAD2+(SL1-1)AP SAD2+(SL1)AP SAD4 SAD4+AP SAD4+2AP SAD4+3AP SAD4+4AP SAD4+5AP SAD4+6AP SAD4+7AP SAD4+8AP SAD4+9AP SAD4+10AP SAD4+11AP SAD4+12AP SAD4+13AP SAD4+14AP SAD4+15AP SAD4+(LF-SL2-7)AP SAD4+(LF-SL2-6)AP SAD4+(LF-SL2-5)AP SAD4+(LF-SL2-4)AP SAD4+(LF-SL2-3)AP SAD4+(LF-SL2-2)AP SAD4+(LF-SL2-1)AP SAD4+(LF-SL2)AP SAD1+(SL1-7)AP SAD1+(SL1-6)AP SAD1+(SL1-5)AP SAD1+(SL1-4)AP SAD1+(SL1-3)AP SAD1+(SL1-2)AP SAD1+(SL1-1)AP SAD1+(SL1)AP SAD3 SAD3+AP SAD3+2AP SAD3+3AP SAD3+4AP SAD3+5AP SAD3+6AP SAD3+7AP SAD3+8AP SAD3+9AP SAD3+10AP SAD3+11AP SAD3+12AP SAD3+13AP SAD3+14AP SAD3+15AP SAD3+(LF-SL1-7)AP SAD3+(LF-SL1-6)AP SAD3+(LF-SL1-5)AP SAD3+(LF-SL1-4)AP SAD3+(LF-SL1-3)AP SAD3+(LF-SL1-2)AP SAD3+(LF-SL1- 1)AP SAD3+(LF-SL1)AP SL1-7 SL1-6 SL1-5 SL1-4 SL1-3 SL1-2 SL1- 1 SL1 SL1+1 SL1+2 SL1+3 SL1+4 SL1+5 SL1+6 SL1+7 SL1+8 SL1+9 SL1+10 SL1+11 SL1+12 SL1+13 SL1+14 SL1+15 SL1+16 LF-7 LF-6 LF-5 LF-4 LF-3 LF-2 LF-1 LF SAD2 SAD2+AP SAD2+2AP SAD2+3AP SAD2+4AP SAD2+5AP SAD2+6AP SAD2+7AP SAD2+8AP SAD2+9AP SAD2+10AP SAD2+11AP SAD2+12AP SAD2+13AP SAD2+14AP SAD2+15AP SAD1 SAD1+AP SAD1+2AP SAD1+3AP SAD1+4AP SAD1+5AP SAD1+6AP SAD1+7AP SAD1+8AP SAD1+9AP SAD1+10AP SAD1+11AP SAD1+12AP SAD1+13AP SAD1+14AP SAD1+15AP LineNo1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 << (W/S, OV, DM2, DM1, FY) = (1, 0, 1, 1, 8) >> VA0-15(case5) SAD3+(LF-SL1-7)AP+1 SAD3+(LF-SL1-6)AP+1 SAD3+(LF-SL1-5)AP+1 SAD3+(LF-SL1-4)AP+1 SAD3+(LF-SL1-3)AP+1 SAD3+(LF-SL1-2)AP+1 SAD3+(LF-SL1- 1)AP+1 SAD3+(LF-SL1)AP+1 SAD1+(SL1-7)AP+1 SAD1+(SL1-6)AP+1 SAD1+(SL1-5)AP+1 SAD1+(SL1-4)AP+1 SAD1+(SL1-3)AP+1 SAD1+(SL1-2)AP+1 SAD1+(SL1- 1)AP+1 SAD1+(SL1)AP+1 SAD1+1 SAD3+AP+1 SAD3+2AP+1 SAD3+3AP+1 SAD3+4AP+1 SAD3+5AP+1 SAD3+6AP+1 SAD3+7AP+1 SAD3+8AP+1 SAD3+9AP+1 SAD3+10AP+1 SAD3+11AP+1 SAD3+12AP+1 SAD3+13AP+1 SAD3+14AP+1 SAD3+15AP+1 SAD1+1 SAD1+AP+1 SAD1+2AP+1 SAD1+3AP+1 SAD1+4AP+1 SAD1+5AP+1 SAD1+6AP+1 SAD1+7AP+1 SAD1+8AP+1 SAD1+9AP+1 SAD1+10AP+1 SAD1+11AP+1 SAD1+12AP+1 SAD1+13AP+1 SAD1+14AP+1 SAD1+15AP+1 SAD4+(LF-SL2-7)AP+1 SAD4+(LF-SL2-6)AP+1 SAD4+(LF-SL2-5)AP+1 SAD4+(LF-SL2-4)AP+1 SAD4+(LF-SL2-3)AP+1 SAD4+(LF-SL2-2)AP+1 SAD4+(LF-SL2-1)AP+1 SAD4+(LF-SL2)AP+1 SAD2+(SL1-7)AP+1 SAD2+(SL1-6)AP+1 SAD2+(SL1-5)AP+1 SAD2+(SL1-4)AP+1 SAD2+(SL1-3)AP+1 SAD2+(SL1-2)AP+1 SAD2+(SL1- 1)AP+1 SAD2+(SL1)AP+1 SAD4+1 SAD4+AP+1 SAD4+2AP+1 SAD4+3AP+1 SAD4+4AP+1 SAD4+5AP+1 SAD4+6AP+1 SAD4+7AP+1 SAD4+8AP+1 SAD4+9AP+1 SAD4+10AP+1 SAD4+11AP+1 SAD4+12AP+1 SAD4+13AP+1 SAD4+14AP+1 SAD4+15AP+1 SAD2+1 SAD2+AP+1 SAD2+2AP+1 SAD2+3AP+1 SAD2+4AP+1 SAD2+5AP+1 SAD2+6AP+1 SAD2+7AP+1 SAD2+8AP+1 SAD2+9AP+1 SAD2+10AP+1 SAD2+11AP+1 SAD2+12AP+1 SAD2+13AP+1 SAD2+14AP+1 SAD2+15AP+1 (BK1, BK2, BK3, BK4) = (Graphic (Layer1), Graphic (Layer2), Graphic (Layer1), Graphic (Layer2)) ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... SAD3+(LF-SL1-7)AP+CR SAD3+(LF-SL1-6)AP+CR SAD3+(LF-SL1-5)AP+CR SAD3+(LF-SL1-4)AP+CR SAD3+(LF-SL1-3)AP+CR SAD3+(LF-SL1-2)AP+CR SAD3+(LF-SL1- 1)AP+CR SAD3+(LF-SL1)AP+CR SAD1+(SL1-7)AP+CR SAD1+(SL1-6)AP+CR SAD1+(SL1-5)AP+CR SAD1+(SL1-4)AP+CR SAD1+(SL1-3)AP+CR SAD1+(SL1-2)AP+CR SAD1+(SL1-1)AP+CR SAD1+(SL1)AP+CR SAD3+CR SAD3+AP+CR SAD3+2AP+CR SAD3+3AP+CR SAD3+4AP+CR SAD3+5AP+CR SAD3+6AP+CR SAD3+7AP+CR SAD3+8AP+CR SAD3+9AP+CR SAD3+10AP+CR SAD3+11AP+CR SAD3+12AP+CR SAD3+13AP+CR SAD3+14AP+CR SAD3+15AP+CR SAD1+CR SAD1+AP+CR SAD1+2AP+CR SAD1+3AP+CR SAD1+4AP+CR SAD1+5AP+CR SAD1+6AP+CR SAD1+7AP+CR SAD1+8AP+CR SAD1+9AP+CR SAD1+10AP+CR SAD1+11AP+CR SAD1+12AP+CR SAD1+13AP+CR SAD1+14AP+CR SAD1+15AP+CR SAD4+(LF-SL2-7)AP+CR SAD4+(LF-SL2-6)AP+CR SAD4+(LF-SL2-5)AP+CR SAD4+(LF-SL2-4)AP+CR SAD4+(LF-SL2-3)AP+CR SAD4+(LF-SL2-2)AP+CR SAD4+(LF-SL2-1)AP+CR SAD4+(LF-SL2)AP+CR SAD2+(SL1-7)AP+CR SAD2+(SL1-6)AP+CR SAD2+(SL1-5)AP+CR SAD2+(SL1-4)AP+CR SAD2+(SL1-3)AP+CR SAD2+(SL1-2)AP+CR SAD2+(SL1-1)AP+CR SAD2+(SL1)AP+CR SAD4+CR SAD4+AP+CR SAD4+2AP+CR SAD4+3AP+CR SAD4+4AP+CR SAD4+5AP+CR SAD4+6AP+CR SAD4+7AP+CR SAD4+8AP+CR SAD4+9AP+CR SAD4+10AP+CR SAD4+11AP+CR SAD4+12AP+CR SAD4+13AP+CR SAD4+14AP+CR SAD4+15AP+CR SAD2+CR SAD2+AP+CR SAD2+2AP+CR SAD2+3AP+CR SAD2+4AP+CR SAD2+5AP+CR SAD2+6AP+CR SAD2+7AP+CR SAD2+8AP+CR SAD2+9AP+CR SAD2+10AP+CR SAD2+11AP+CR SAD2+12AP+CR SAD2+13AP+CR SAD2+14AP+CR SAD2+15AP+CR (LF-4) (LF-2) (LF) (LF-5) (LF-3) (LF-1) (2) (4) (6) (8) *ReadTurn (1) (3) (5) (7) 4: FUNCTION DESCRIPTION 59 4: FUNCTION DESCRIPTION (3) Basic timing The basic read cycle of display memory in the S1D13700 varies with the clock divide ratios set, as shown below. When the display clock frequency divide ratio = 1/4, display data is output every 8 system clock periods. When the display clock frequency divide ratio = 1/8, display data is output every 16 system clock periods. When the display clock frequency divide ratio = 1/16, display data is output every 32 system clock periods. Display Data Figure 4-5 Basic read cycle of display memory Display period Frequency division adjustment period TC/R C/R Line 1 0 R 2 0 R 3 0 R 0 R 1-frame period [L/F] LP Figure 4-6 Relationship between TC/R and C/R 60 EPSON S1D13700 Technical Manual 4: FUNCTION DESCRIPTION 4.1.4 Cursor (1) Cursor register function The cursor register in the S1D13700 serves dual purposes as a cursor address register required to display the cursor on the screen, and as an address pointer to be referenced when accessing display memory. Cursor display address register Cursor register Address pointer To access any display memory area other than the screen while displaying the cursor, the cursor address must be preset before attempting such access and restored to the previous value after access is completed. Note: The cursor will disappear if the cursor address is moved to any area other than the screen for more than several 100 ms. (2) Direction of cursor movement The cursor address is automatically shifted in the specified direction from the value preset by a memory control command. (3) Cursor display layer Although the S1D13700 can display up to three overlaid layers, the cursor can be displayed in only one of those layers. In other words, the cursor-attribute layer (or layer in which the cursor can be displayed) is: First layer (L1) during two-layer composition, or Third layer (L3) during three-layer composition. The cursor will not appear if moved to other than those cursor-attribute layers. If the cursor must be displayed, change the layers or move the cursor-attribute layer to the cursor address location. Although the cursor is generally displayed in text mode, the S1D13700 can also display a dummy cursor in graphics mode. This is accomplished by using the graphics screen as a display plane while not displaying the text screen, but using it to only generate addresses for cursor control. Example: DISP ON/OFF D =1 FC1 = 0 FC0 = 1 Cursor ON FP1 = 0 FP0 = 0 First screen block (text screen) OFF FP3 = 0 FP2 = 1 Second screen block (graphics screen) ON S1D13700 Technical Manual EPSON 61 4: FUNCTION DESCRIPTION 4.1.5 Relationship between Display Memory and Screens The display memory of the S1D13700 may be used as a virtual screen of greater width than the physical size of the LCD panel address range (C/R). One layer of the S1D13700 may be considered a window through which to look at the part of display memory that comprises a virtual screen. This window can be divided into two blocks that may correspond to independent areas on the virtual screen. Therefore, it is possible to use one block as a dynamically scrollable data area and the other as a stationary message area. (See Figures 4-7 and 48.) Screen Screen [W/S = 0 ] [W/S = 1 ] AP SAD1 C/R SAD1 C1 SAD1 First screen block SAD3 C3 SAD2 First screen block SAD3 G2 SAD2 L1 SAD2 Second screen block SAD4 SAD4 L1 G4 Second screen block Third screen block C/R Fourth screen block CG RAM L2 L2 C/R SAD1 SAD1 First screen block SAD3 Third screen block C/R C3 SAD3 C/R L1 SAD2 SAD2 Second screen block G2 L2 C/R SAD3 G3 SAD3 SAD2 Third screen block SAD2 C/R G2 SAD1 Second screen block Third screen block C/R SAD1 G1 L1 L2 L3 Figure 4-7 Relationship between display memory and screens 62 EPSON S1D13700 Technical Manual 4: FUNCTION DESCRIPTION AP 0000H SAD1 FX CRY FY Window (display area) CRX CSRA L/F Display memory space (VRAM virtual screen) [FX] 8 Dots [FY] 16 Dots [CRX] 8 Dots [CRY] 16 Dots [C/R] 240 Bytes C/R [L/F] 256 Lines [AP] 64K Byte FFFFH Character code Figure 4-8 Window and display memory settings SAD1 0000 SL1 0300 0400 (MSB) D7 (LSB) (MSB) D0 D7 - A (code) Page 1 B C - (LSB) D0 0000 1 2 ABC Page 2 SAD2 0800 Page 1 X Y E 02FF a (code) b g 0800 1 2 XY SL2 a Back layer 2000 2800 Page 2 b (LSB) (MSB) D0 D7 (LSB) D0 1FFF 4440 4800 4A00 CG RAM Unused F000 CG ROM (MSB) (LSB) HEX D7 - D0 70 01110000 #4800 88 10001000 1 88 10001000 2 88 10001000 3 F8 11111000 4 88 10001000 5 88 10001000 6 00 00000000 #4807 Characters SAG c (MSB) D7 Example of character A Figure 4-9 Example of display memory mapping S1D13700 Technical Manual EPSON 63 4: FUNCTION DESCRIPTION 4.1.6 Determining Various Parameters (1) Determining FX Determine the character field size in the X direction [FX] from the number of dots in the X direction of display [VD] and the number of characters in the X direction [VC]. [VD] / [VC] [FX] The brackets [ ] denote an integral value beginning with 1, and [FX] indicates the number of dots. (2) Determining C/R Next, determine a value for [C/R] from the values of [VC] and [FX]. [C/R] = | [FX] / 8 | rounded up x [VC] Note: [C/R] indicates the number of characters obtained in units of addresses. (3) Determining TC/R TC/R must maintain the relationship [TC/R] [C/R] + 4. (4) Relationship between fOSC and fFR Once TC/R has been determined, the lower-limit value of the oscillation frequency (fOSC) can be obtained from the equation below because the frame frequency (f FR ) and number of display lines [L/F] are predetermined. fOSC {[TC/R] x 9 + 1} x [L/F] x fFR Note: 1. If standard crystals close to fOSC thus obtained are unavailable, determine the appropriate fOSC value for crystals with higher oscillation frequencies than the obtained value. To do so, reverse the calculation of the [TC/R] value in the equation above. 2. For the fFR value of Epson LCD units, refer to the LCD unit specifications. (5) Symptoms observed when TC/R is set incorrectly * Scanning of display in the Y direction stops, with horizontal lines displayed in high contrast. * All pixels go on or go off. * The LP pin output signal is incomplete or inactive. * The display of graphics or text becomes unstable. Should any of the symptoms above be observed, even though the S1D13700's other signals connected to the LCD unit are normal, check whether the TC/R value is correct. If the TC/R value is the cause of the problem, simply set a larger TC/R value to restore normal operation. Table 4-2 Example of Parameters for the LCD Unit Number of pixels (X x Y) 320 x 240 [FX] [FY] [C/R] TC/R X'tal (MHz) e.g., [FX] = 8 dots 320 / 8 = 40...0 No blank dots From a practical point of view, 8, 16, etc. are suitable. [CR] = 40 = address 27H During HDOT SCR, [C/R] = 41 addresses 2BH 5.72 e.g., [FX] = 6 dots 320 / 6 = 53...2 Two blank dots [CR] = 53 = address 34H During HDOT SCR, [C/R] = 54 addresses 38H 7.40 Note: 1. Because the number of display dots varies with each LCD unit, there will be some fractional display dots depending on the value set for FX. In such case, the S1D13700 automatically blanks fractional parts at the right edge of the panel, and thus eliminates the need to manipulate display memory for adjustment. 2. Calculations are made assuming fFR = 60 Hz. 64 EPSON S1D13700 Technical Manual 4: FUNCTION DESCRIPTION 4.1.7 Scrolling The MPU dynamically rewrites the scroll address registers (SAD1-SAD4) that provide the read start address in the S1D13700's display memory, thereby allowing various scroll modes to be set. In this case, the MPU manages all operations to execute scrolling, select scroll mode, and set a scroll rate. (1) Intra-page scrolling This refers to a mode of scroll operation whereby scrolling is performed within display memory space equivalent to one screen. All lines are scrolled one line up and the bottom line is deleted as shown below. Since the S1D13700 does not automatically delete the bottom line, the MPU must rewrite the scroll address registers and simultaneously write blank data to the S1D13700. ABC Before scrolling WXYZ 789 AP C/R SAD1 After scrolling WXYZ 789 ABC WXYZ 789 Cleared Blank SAD3 SAD1 WXYZ 789 (2) Inter-page scrolling and page switching Scrolling between pages and page switching can be performed only when display memory has more than one-screen equivalent capacity. S1D13700 Technical Manual EPSON 65 4: FUNCTION DESCRIPTION (3) Scrolling in the X direction This refers to scrolling display in the X direction one character at a time, regardless of display memory size. Before scrolling ABC 123 XYZ SAD1 ABC 123 XYZ AP C/R After scrolling BC 23 XYZ1 SAD1 ABC 123 XYZ (4) Omnidirectional scrolling This mode of scrolling is available when display memory has ample capacity larger than one screen in both the X and Y directions. Although display is normally scrolled one character at a time, the HDOT SCR command can be used to scroll display in the X direction one dot at a time.Note 1 Before scrolling AP BC EFG TUV ABC EFG TUV 12 C/R After scrolling FG TUV 1234 567 89 ABC EFG TUV 1234 56 1234 567 89 (5) Scroll units Text mode Graphics mode Y direction X direction Characters Dots or characters Dots Dots Note 2 Note 1: Omnidirectional scrolling in units of dots is possible by using the SCROLL and HDOT SCR commands in combination. Note 2: On a split screen, individual screen blocks cannot be independently scrolled in the X direction in dot units. 66 EPSON S1D13700 Technical Manual 4: FUNCTION DESCRIPTION (6) Dotwise scrolling in the X direction (HDOT SCR) Figure 4-10 shows the relationship between commands and display when a display pattern is smoothly scrolled to the left. In this case, the screen (window) moves to the right on a virtual screen. Therefore, the MPU only needs to sequentially increment the value of the HDOT SCR command parameter (number of dots to be shifted) without modifying the display start address (SAD) in the S1D13700 to shift display leftward one dot at a time. Then when display has been dot-shifted a distance equal to the character field, the MPU should reset the value of the HDOT SCR command parameter to 00H and simultaneously increment SAD by one address. Thus, smooth scrolling in the X direction is possible by performing this series of operations at appropriate time intervals. To scroll the display pattern to the right, change the display dot address by reversing the order above. Should the window reach either edge of the virtual screen, use the MPU to manage the screen. Note that when smooth scrolling continues, the screen is not affected. Also note that when scrolling display dotwise in the X direction using the HDOT SCR command, scrolling cannot be controlled separately in each layer because all layers are scrolled at the same time. HDOT SCR parameter value SAD SAD+1 SAD+2 Enlarged view P1 = 00H AP P1 = 01H SAD = SAD Screen P1 = 02H C/R P1 = 03H Virtual screen P1 = 07H SAD = SAD + 1 P1 = 00H Off the screen Screen Figure 4-10 Example of using HDOT SCR ([FX] = 8) Note: Because the speed at which the LCD responds to instructions varies with temperature, smooth scrolling at low temperatures in particular may not easily be recognized. S1D13700 Technical Manual EPSON 67 4: FUNCTION DESCRIPTION 4.1.8 Attribute Display using the Layered Function The S1D13700 provides a means of increasing the ability of expression on a monochrome liquid crystal display. More specifically, it uses the OVLAY and DISP ON/OFF commands to display characters in inverse video, produce halftone menu pads, and flash a given screen area for various highlighting effects as shown below. Highlighting effects MX1 MX0 Screen First layer, single screen Inverse 0 1 1 1 IV EPSON IV EPSON Halftone display 0 1 0 1 ME Yes, No ME Yes, No Area flashing display 0 0 0 1 BL Error BL Rules and underlining 0 0 1 0 1 1 RL LINE LINE RL Second layer, single screen Error LINE LINE Use of the S1D13700's layered function will efficiently accomplish the highlighting effects above. The following describes a few examples of using this function to realize highlighting effects. Not all such effects can be used within the same screen block, however. (1) Inverse 1 Using the layered function [Exclusive OR'ing of first layer (text) and second layer (graphics)] 68 1-1 CSRW CSDIR MWRITE Write turn-on data "1" to the entire graphic area where characters are to be displayed in inverse video. 1-2 OVLAY MX0 = "1" MX1 = "0" Specify an overlay method using the OVALY command so that the first and second layers will be exclusive OR'd. 1-3 DISP ON/OFF FP0 = FP2 = "1" FP1 = FP3 = "0" Turn display of the first and second layers on using the DISP ON/OFF command. Characters are displayed in inverse video. EPSON S1D13700 Technical Manual 4: FUNCTION DESCRIPTION (2) Halftone display The S1D13700 uses the DISP ON/OFF command's FP parameter to produce halftone display. This is accomplished by flashing the screen at 15 Hz. However, because this method of display may cause display to flicker, characteristics of the LCD module used must be carefully considered. 1 Menu pad display [OR'ing by the layered function] OVLAY P1 = 00H DISP ON/OFF P1 = 34H SAD1 Disable flashing of the first layer and enable flashing of the second layer at 17 Hz, then overlay the first and second layers by OR'ing. Halftone SAD2 AB AA BB First layer Second layer Screen 2 Graph display [OR'ing by the layered function] OVLAY P1 = 00H DISP ON/OFF P1 = 34H Disable flashing of the first layer and enable flashing of the second layer at 15 Hz, then overlay the first and second layers by OR'ing. When displaying various data in the form of a graph for comparison purposes, this method of display is very effective because two types of diagrams distinguishable by differences in contrast can be displayed. (3) Area flashing 1 For flashing a few characters Because the S1D13700 has a high-speed interface circuit, alternately rewriting the character and blank codes from the MPU to flash characters is an appropriate method. In this case, the MPU rewrites display data at intervals of 0.5 to 1.0 second as regulated by its internal timer. 2 For flashing a large area Divide the first or second layer into halves with only the area required made to flash at 2 Hz, and overlay the halved layer blocks by OR'ing. Scroll DISP ON/OFF OVLAY AB AB XYZ S1D13700 Technical Manual XYZ EPSON 69 4: FUNCTION DESCRIPTION 4.2 Oscillator Circuit The S1D13700 features a built-in oscillator circuit, with a resonator connected to the XG and XD pins to generate oscillation. In addition to the crystal resonator, the feedback resistor Rf, drain resistor Rd, and oscillation capacitors CG and CD must be externally connected to the chip. The RC time constant needed to produce stable oscillation varies with the crystal resonator used and condition of the board. Determine the appropriate RC value through careful evaluation. S1D13700 XCG1 XCD1 Rf Rd CD CG X'tal Note: 70 Note that the higher the oscillation frequency, the smaller the CG and CD values. EPSON S1D13700 Technical Manual 4: FUNCTION DESCRIPTION 4.3 Example of Initial Settings 8-bit bus interface LCD unit 320 x 240 dot No Command Operation 1 Power on 2 Waits until power supply Waits at least 3 ms after VDD 4.5 V and external reset are deasserted. stabilizes. 3 SYSTEM SET C = 40H P1 = 38H Initializes the S1D13700. M0 : Internal CG ROM M1 : CG RAM (up to 32 characters) M2 : Y-direction character field range (8 lines) W/S : Dual-screen drive method IV : Uppermost line not corrected P2 = 87H FX : WF : X-direction character field (8 dots) Two-frame AC drive P3 = 07H FY : Y-direction character field (8 dots) P4 = 27FH C/R : Display address range (40 columns per line) P5 = 2DH TC/R : Total display address time in X direction (46 addresses per line) fOSC = 6.0MHz, fFR = 60Hz P6 = EFH L/F : P7 = 28H AP : Number of display lines (240) Virtual screen size in X direction (41 addresses) P8 = 00H 4 SCROLL C = 44H P1 = 00H P2 = 00H Sets start address of the first screen block to 0000H. P3 = 7FH Sets number of display lines in the first screen block to 120. P4 = 00H P5 = 10H Sets start address of the second screen block to 1000H. P6 = 7FH Sets number of display lines in the second screen block to 120. P7 = 00H P8 = 04H P9 = 00H P10 = 30H Sets start address of the third screen block to 0400H. S1D13700 Technical Manual Sets start address of the fourth screen block to 3000H. EPSON 71 4: FUNCTION DESCRIPTION No Command Operation Display memory (SAD1)0000H First-screen block memory 0257H (SAD3)0400H Third-screen block memory 0657H (SAD2)1000H Second-screen block memory 22BFH (SAD4)3000H Fourth-screen block memory 42BFH 5 HDOT SCR C = 5AH P1 = 00H Sets number of dots to be shifted in the X direction to 0. 6 OVLAY C = 5BH P1 = 01H MX1, MX0 : DM1 : DM2 : Overlaid for inverse display First screen block in text mode Third screen block in text mode 7 DISP ON/OFF C = 58H P1 = 56H D: FC1, FC0 : FP1, FP0 : FC3, FP2 : FP5, FP4 : Entire screen display disabled Cursor made to blink at 2 Hz Display of first screen block turned on Display of second and fourth screen blocks turned on Display of third screen block turned on 8 CSRW C = 46H P1 = 00H P2 = 00H Sets cursor address to the first screen block's start address (home position). 9 Clears the first layer display data. Writes 20H (space character code) to memory location corresponding to the first layer (text screen). 10 Clears the second layer display data. Writes 00H (dot turn-off data) to memory location corresponding to the second layer (graphics screen). 11 CSR FORM C = 5DH P1 = 04H P2 = 86H CRX : Cursor size in X direction (5 dots) CRY : Cursor size in Y direction (7 dots) CM : Block cursor 12 DISP ON/OFF C = 59H Restores entire screen display. screen 72 EPSON S1D13700 Technical Manual 4: FUNCTION DESCRIPTION No 13 14 Command Operation CSR DIR C = 4CH Sets direction of cursor movement so that the cursor shifts to the right. MWRITE C = 42H P1 = 20H P2 = 45H P3 = 50H P4 = 53H P5 = 4FH P6 = 4EH Sets space code. Sets character code for the letter "E." Sets character code for the letter "P." Sets character code for the letter "S." Sets character code for the letter "O." Sets character code for the letter "N." 15 CSRW C = 46H P1 = 00H P2 = 10H Presets cursor address to the second screen block's start address. 16 CSR DIR C = 4FH Sets direction of cursor movement so that the cursor shifts downward. 17 MWRITE C = 42H P1 = FFH Fills the left side of displayed letter E with dots by entering character code to 9 lines of the second screen block that corresponds to the first column on the first line. - P9 = FFH 18 19 CSRW C = 46H P1 = 01H P2 = 10H MWRITE C = 42H P1 = FFH Presets the cursor address to address 10001H. Fills the second screen block that corresponds to the second column on the first line with dots. - P9 = FFH S1D13700 Technical Manual EPSON 73 4: FUNCTION DESCRIPTION No Command 20 CSRW 29 MWRITE Operation Repeats steps 18 and 19 until the background screen of the EPSON character string is filled with dots as shown below. Inverse display 30 31 32 74 CSRW C = 46H P1 = 00H P2 = 04H Presets the cursor address to the first column on the first line of the third screen block. CSR DIR C = 4CH Sets direction of cursor movement so that the cursor shifts to the right. MWRITE C = 42H P1 = 44H P2 = 6FH P3 = 74H P4 = 20H P5 = 4DH P6 = 61H P7 = 74H P8 = 72H P9 = 69H P10 = 78H P11 = 20H P12 = 4CH P13 = 43H P14 = 44H Sets character code for the letter "D." Sets character code for the letter "o." Sets character code for the letter "t." Sets character code for the letter " " Sets character code for the letter "M." Sets character code for the letter "a." Sets character code for the letter "t." Sets character code for the letter "r." Sets character code for the letter "i." Sets character code for the letter "x." Sets character code for the letter " " Sets character code for the letter "L." Sets character code for the letter "C." Sets character code for the letter "D." EPSON S1D13700 Technical Manual 4: FUNCTION DESCRIPTION Example of display mode settings [1] [1] For overlaying text and graphics 1. Conditions (1) 320 x 240 dots: Single-screen drive method (1/240 duty cycle) (2) First layer: Text display (3) Second layer: Graphic display (4) Character font: 8 x 8 dots (5) CG RAM unused 2. Display memory allocation (1) First layer (text display) Number of characters in horizontal direction = 320 / 8 = 40 Number of characters in vertical direction = 240 / 8 = 30 Therefore, the required size of memory is 40 x 30 = 1,200 bytes. (2) Second layer (graphic display) Number of characters in horizontal direction = 320 / 8 = 40 Number of characters in vertical direction = 240 / 1 = 240 Therefore, the required size of memory is 40 x 240 = 9,600 bytes. [Relationship between display and memory] 04B0h Second layer (graphics) (9,600 bytes) 0000h First layer (text) (1,200 bytes) 2A2Fh 04AFh S1D13700 Technical Manual EPSON 75 4: FUNCTION DESCRIPTION 3. Example of basic register settings SYSTEM SET C = 40H P1 = 30H P2 = 87H P3 = 07H P4 = 27H P5 = 2DH P6 = EFH P7 = 28H P8 = 00H SCROLL C = 44H P1 = 00H P2 = 00H P3 = F0H P4 = B0H P5 = 04H P6 = F0H P7 = *H P8 = *H P9 = *H P10 = *H Determination of TC/R Assuming fFR = 60 Hz when fOSC = 6 MHz, 6 MHz = {[TC/R] x 9 + 1} x 240 x 60 Therefore, [TC/R] = 46 TC/R = 2DH * : don't care CSRFORM C = 5DH P1 = 04H P2 = 86H HDOT SCR C = 5AH P1 = 00H OVLAY C = 5BH P1 = 00H DISP ON/OFF C = 59H P1 = 16H 76 EPSON S1D13700 Technical Manual 4: FUNCTION DESCRIPTION Example of display mode settings [2] [2] For overlaying two graphic screens 1. Conditions (1) 320 x 240 dots: Single-screen drive method (1/240 duty cycle) (2) First layer: Graphic display (3) Second layer: Graphic display 2. Display memory allocation (1) First layer (graphic display) Number of characters in horizontal direction = 320 / 8 = 40 Number of characters in vertical direction = 240 / 1 = 240 Therefore, the required size of memory is 40 x 240 = 9,600 bytes. (2) Second layer (graphic display) For the first layer, the required size of memory is 40 x 240 = 9,600 bytes. [Relationship between display and memory] 2580h Second layer (graphics) (9,600 bytes) 0000h First layer (graphics) (9,600 bytes) 4AFFh 257Fh S1D13700 Technical Manual EPSON 77 4: FUNCTION DESCRIPTION 3. Example of basic register settings SYSTEM SET C = 40H P1 = 30H P2 = 87H P3 = 00H P4 = 27H P5 = 2DH P6 = EFH P7 = 28H P8 = 00H SCROLL C = 44H P1 = 00H P2 = 00H P3 = F0H P4 = 80H P5 = 25H P6 = F0H P7 = *H P8 = *H P9 = *H P10 = *H Determination of TC/R Assuming fFR = 60 Hz when fOSC = 6 MHz, 6 MHz = {[TC/R] x 9 + 1} x 240 x 60 Therefore, [TC/R] = 46 TC/R = 2DH * : don't care CSRFORM C = 5DH P1 = 04H P2 = 86H HDOT SCR C = 5AH P1 = 00H OVLAY C = 5BH P1 = 00H DISP ON/OFF C = 59H P1 = 16H 78 EPSON S1D13700 Technical Manual 4: FUNCTION DESCRIPTION Example of display mode settings [3] [3] For overlaying three graphic screens 1. Conditions (1) 320 x 240 dots: Single-screen drive method (1/240 duty cycle) (2) First layer: Graphic display (3) Second layer: Graphic display (4) Third layer: Graphic display 2. Display memory allocation (1) First layer (graphic display) Number of characters in horizontal direction = 320 / 8 = 40 Number of characters in vertical direction = 240 / 1 = 240 Therefore, the required size of memory is 40 x 240 = 9,600 bytes. (2) Second and third layers (graphic display) For the first layer, the required size of memory is 40 x 240 = 9,600 bytes each. [Relationship between display and memory] 4B00h Third layer (graphics) (9,600 bytes) 2580h Second layer (graphics) (9,600 bytes) 707Fh 0000h First layer (graphics) (9,600 bytes) 4AFFh 257Fh S1D13700 Technical Manual EPSON 79 4: FUNCTION DESCRIPTION 3. Example of basic register settings SYSTEM SET C = 40H P1 = 30H P2 = 87H P3 = 00H P4 = 27H P5 = 2DH P6 = EFH P7 = 28H P8 = 00H SCROLL C = 44H P1 = 00H P2 = 00H P3 = F0H P4 = 80H P5 = 25H P6 = F0H P7 = 00H P8 = 4BH P9 = *H P10 = *H Determination of TC/R Assuming fFR = 60 Hz when fOSC = 6 MHz, 6 MHz = {[TC/R] x 9 + 1} x 240 x 60 Therefore, [TC/R] = 46 TC/R = 2DH * : don't care CSRFORM C = 5DH P1 = 04H P2 = 86H HDOT SCR C = 5AH P1 = 00H OVLAY C = 5BH P1 = 00H DISP ON/OFF C = 59H P1 = 16H 80 EPSON S1D13700 Technical Manual 4: FUNCTION DESCRIPTION 4.4 4.4.1 Character Fonts and Character Codes Character Fonts (Internal CG) 0 1 2 3 Lower 4bit (D0 to D3) or Character Code (Hexadeclmal) 4 5 6 7 8 9 A B C D E F 2 3 Hloner 4bit ( D4 to D7) or Character Code (Hexadeclmal) 4 5 6 7 A B C D 1 Note: The character size is 5 x 7 dots. represents a 6 x 8-dot entirely black pattern. S1D13700 Technical Manual EPSON 81 4: FUNCTION DESCRIPTION 4.4.2 Character Codes Relationship between Character Codes and Those Usable as CG RAM (for combined use with internal CG ROM) Table 4-3 Character Codes 8-bit series YS3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2 3 4 5 6 7 8 9 A B C D E F LS3 D7 D6 D5 D4 D3 D2 D1 D0 4 highorder bits 4 loworder bits 0 0 0 0 0 0 0 0 1 1 0 0 1 0 2 0 0 1 1 3 0 1 0 0 4 0 1 0 1 5 0 1 1 0 6 0 1 1 1 7 1 0 0 0 8 1 0 0 1 9 1 0 1 0 A 10 1 0 1 1 B 11 1 1 0 0 C 12 1 1 0 1 D 13 M 1 1 1 0 E 14 N 1 1 1 1 F 15 " ` CG RAM1 CG RAM2 M1= 0 M1=1 82 EPSON S1D13700 Technical Manual 5: SPECIFICATIONS 5 SPECIFICATIONS 5.1 Absolute Maximum Ratings Parameter Power Supply Voltage Input Voltage Output Voltage Symbol Rating Unit HVDD -0.3 - 7.0 V LVDD -0.3 - 4.0 V HVIN -0.3 - HVDD + 0.5 V LVIN -0.3 - LVDD + 0.5 V HVOUT -0.3 - HVDD + 0.5 V LVOUT -0.3 - LVDD + 0.5 V Output Current per Pin IOUT 30 mA Operating Temperature Topr -40 - 85 C Storage Temperature Tstg -65 - 150 C Soldering Temperature and Time Tsolder Heat resistance rank SE2 -- Remark Note: 1. When using a power supply with high impedance, a large potential difference between the chip's internal power supply voltage and the input voltage may occur, thus making the power supply susceptible to latch-up. Therefore, pay particular attention to the power supply and its wiring. 2. All voltage are based on VSS = 0V 3. The symbol H*** indicates 5 V-block pins; L*** indicates 3.3 V-block pins. 5.2 Recommended Operating Conditions Parameter Symbol Test Condition Power Supply Voltage (High Voltage) HIOVDD VSS = 0V Power Supply Voltage (Low Voltage) NIOVDD VSS = 0V Core Power Supply Voltage COREVDD VSS = 0V Rated Value Unit Applicable Pins V HIOVDD V NIOVDD 3.6 V COREVDD Min. Typ. Max. 4.5 5.0 5.5 3.0 3.3 3.6 4.5 5.0 5.5 3.0 3.3 3.6 3.0 3.3 Input Voltage HIOVIN -- VSS -- HIOVDD V Input Voltage NIOVIN -- VSS -- NIOVDD V Operating Temperature TOPR -- -20 25 70 C S1D13700 Technical Manual EPSON 83 5: SPECIFICATIONS 5.3 Electrical Characteristics [VSS = 0V, HVDD = 4.5 - 5.5V, Ta = -40 - 85C] Parameter Input Leakage Current OFF-state Leakage Current Symbol Test Condition ILI IOZ Rated Value Unit Min. Typ. Max. -- -1 -- 1 uA --Note 2) -1 -- 1 uA HVDD-0.4 -- -- V High Level Output Voltage VOH IOH = -8.0mA HVDD=Min Low Level Output Voltage VOL IOL = 8.0m HVDD=Min -- -- 0.4 V High Level Input Voltage VIH1 CMOS level HVDD = Max 3.5 -- -- V Low Level Input Voltage VIL1 CMOS level HVDD = Min -- -- 1.0 V Positive Trigger Voltage VT1+ CMOS Schmitt 2.0 -- 4.0 V Negative Trigger Voltage VT1- CMOS Schmitt 0.8 -- 3.1 V Hysteresis Voltage VH1 CMOS Schmitt 0.3 -- -- V High Level Input Voltage VIH2 TTL level HVDD = Max 2.0 -- -- V Low Level Input Voltage VIL2 TTL level HVDD = Min -- -- 0.8 V Pulldown Resistance RPD VI = HVDD 30 60 144 k Operating Supply Current Iopr fOSC =10 MHz Nonloaded 256 x 200dot -- TBD TBD mA Quiescent Supply Current (between HVDD and VSS) IQH Sleep mode XCG1, CS#, RD# = VDD -- -- 30 uA Quiescent Supply Current (between LVDD and VSS) IQH Sleep mode XCG1, CS#, RD# = VDD -- -- 35 uA Note: 1. The pulse applied to the RESET# pin must be held low for 200 s or more to be effective. However, avoid keeping the input pulse active for more than several seconds because the LCD's d.c. drive capability may be adversely affected. 2. The VB0-DB7 pins come with a feedback circuit, so that even when input becomes high impedance, the pins retain the state held immediately before. Therefore, input voltage of an intermediate level allows input current to flow to the pin. 84 EPSON S1D13700 Technical Manual 5: SPECIFICATIONS [VSS = 0V, VDD = LVDD = 3.3 - 0.3V, Ta = -40 - 85C] Parameter Input Leakage Current OFF-state Leakage Current Symbol Test Condition ILI IOZ Rated Value Unit Min. Typ. Max. -- -1 -- 1 uA -- Note 2) -1 -- 1 uA HVDD-0.4 -- -- V High Level Output Voltage VOH IOH = -6.0mA HVDD=Min Low Level Output Voltage VOL IOL = 6.0m HVDD=Min -- -- 0.4 V High Level Input Voltage VIH1 LVTTL level VDD = Max 2.0 -- -- V Low Level Input Voltage VIL1 LVTTL level VDD = Min -- -- 0.8 V Positive Trigger Voltage VT1+ LVTTL Schmitt 1.1 -- 2.4 V Negative Trigger Voltage VT1- LVTTL Schmitt 0.6 -- 1.8 V Hysteresis Voltage VH1 LVTTL Schmitt 0.1 -- -- V Pulldown Resistance RPD VI = VDD 20 50 120 k Operating Supply Current Iopr fOSC =10 MHz Nonloaded 256 x 200dot -- TBD TBD mA Quiescent Supply Current (between LVDD and VSS) IQH Sleep mode XCG1, CS#, RD# = VDD -- -- 35 uA S1D13700 Technical Manual EPSON 85 5: SPECIFICATIONS 5.4 5.4.1 Timing Characteristics System Bus (Generic Bus/80-series MPU) TCLK MCLK t1 t7 AB [16:0] t2 t8 CS# t14 t3 t9 t t10 WR#, RD# t4 t11 WAIT# t6 t12 valid DB [15:0] (write) t5 t13 valid DB [15:0] (read) * MCLK denotes CLKI or the internally generated system clock. 86 EPSON S1D13700 Technical Manual 5: SPECIFICATIONS Gemeric Bus Interface Timing [VSS = 0V, VDD = 4.5 - 5.5V, Ta = -40 - 85C] Symbol Spec Parameter fCLK BUS clock frequency TCLK BUS clock period Unit Min. Max. -- 64 MHz 1/fCLK -- ns t1 AB [16 : 0] setrup to first CLK rising edge where CS# = 0 and either RD# = 0 or WR# = 0 11 -- ns t2 CS# setup to CLK rising edge 9 -- ns t3 RD#, WR# setup to CLK rising edge 9 -- ns t4 RD#, WR# state change to WAIT# driven low 1 5 ns t5 RD# falling edge to DB [15 : 0] driven (ead cycle) 3Tc+9ns -- Tclk t6 DB [15 : 0] setup to 4th rising CLK edge after CS# = 0 and WR# = 0 1 -- T CLK t7 AB [16 : 0], CS# hold from RD#, WR# rising edge 8 -- ns t8 CS# deasserted to reasserted - When read - when Write (next cycle = write cycle) - when Write (next cycle = read cycle) t9 WAIT# rising edge to RD#, WR# rising edge t10 WR#, RD# deasserted to reasserted - When read - when Write (next cycle = write cycle) - when Write (next cycle = read cycle) t11 Rising edge of either RD# or WR# to WAIT# high impedance 0.5 TCLK -- 0.5 TCLK t12 D [15 : 0] hold from WR# rising edge (write cycle) 1 -- ns t13 D [15 : 0] hold from RD# rising edge (read cycle) 1 -- ns Cycle Length 6 7 10 -- TCLK t14 S1D13700 Technical Manual 1Tclk 2Tclk+8ns 5Tclk+8ns 0 1Tclk 2Tclk+8ns 5Tclk+8ns Read Write (next write cycle) Write (next read cycle) EPSON -- -- -- ns ns ns ns ns ns ns 87 5: SPECIFICATIONS Gemeric Bus Interface Timing [VSS = 0V, VDD = 3.0 - 3.6V, Ta = -40 - 85C] Symbol fCLK BUS clock frequency TCLK BUS clock period Unit Min. Max. -- 64 MHz 1/fCLK -- ns t1 AB [16 : 0] setrup to first CLK rising edge where CS# = 0 and either RD# = 0 or WR# = 0 12 -- ns t2 CS# setup to CLK rising edge 11 -- ns t3 RD#, WR# setup to CLK rising edge 11 -- ns t4 RD#, WR# state change to WAIT# driven low 1 7 ns t5 RD# falling edge to DB [15 : 0] driven (ead cycle) 3Tc+11ns -- Tclk t6 DB [15 : 0] setup to 4th rising CLK edge after CS# = 0 and WR# = 0 1 -- T CLK t7 AB [16 : 0], CS# hold from RD#, WR# rising edge 10 -- ns t8 CS# deasserted to reasserted - When read - when Write (next cycle = write cycle) - when Write (next cycle = read cycle) t9 WAIT# rising edge to RD#, WR# rising edge t10 WR#, RD# deasserted to reasserted - When read - when Write (next cycle = write cycle) - when Write (next cycle = read cycle) t11 Rising edge of either RD# or WR# to WAIT# high impedance 0.5 TCLK -- 0.5 TCLK t12 D [15 : 0] hold from WR# rising edge (write cycle) 1 -- ns t13 D [15 : 0] hold from RD# rising edge (read cycle) 1 -- ns Cycle Length 6 7 10 -- TCLK t14 88 Spec Parameter 1Tclk 2Tclk+10ns 5Tclk+10ns 0 1Tclk 2Tclk+10ns 5Tclk+10ns Read Write (next write cycle) Write (next read cycle) EPSON -- -- -- ns ns ns ns ns ns ns S1D13700 Technical Manual 5: SPECIFICATIONS 5.4.2 System Bus Read/write characteristics II (MC68K-series MPU) TCLK MCLK t1 t4 AB[16:0], WR t13 t1 t4 CS# t1 AS# t1 t5 t6 (RD# m6800) RD# t7 (UDS, LDS) t2 t8 WAIT# (DTACK#) t9 DB[15:0](write) t10 valid t3 t12 DB[15:0](read) t11 valid * MCLK denotes CLKI or the internally generated system clock. S1D13700 Technical Manual EPSON 89 5: SPECIFICATIONS Motorola M68K#1 Interface Timing [VSS = 0V, VDD = 4.5 - 5.5V, Ta = -40 - 85C] Symbol fCLK BUS clock frequency TCLK BUS clock period Unit Min. Max. -- 64 MHz 1/fCLK -- ns t1 AB [16 : 0], WR# (R/W#) and CS# and AS# and RD# (UDS#, LDS#) setup to first CLK rising edge 9 -- ns t2 CS# and AS# asserted to WAIT# (DTACK#) driven 1 7 ns t3 RD# = 0 (UDS# = 0 or LDS# = 0) to DB [15 : 0] driven (read cycle) 3Tclk+9ns -- ns t4 AB [16 : 0], WR# (R/W#) and CS# hold from AS# rising edge 0 -- ns t5 WAIT# (DTACK#) falling edge to RD# (UDS#, LDS#) rising edge 1 -- T CLK t6 RD# (USD#, LDS#) deasserted high to reasserted low - When read - when Write (next cycle = write cycle) - when Write (next cycle = read cycle) t7 CLK rising edge to WAIT# (DTACK#) high impedance -- 1T CLK-2 ns t8 AS# rising edge to WAIT# (DTACK#) rising edge 3 12 ns t9 DB [15 : 0] valid to 4th CLK rising edge where CS# = 0, AS# = 0 and either RD# = 0 (UDS# = 0 or LDS# = 0) (wirte cycle) 1 -- TCLK t10 DB [15 : 0] hold from RD# (UDS#, LDS#) falling edge (wirte cycle) 4 -- ns t11 RD# (UDS#, LDS#) rising edge to DB [15 : 0] high impedance (read cycle) 6 -- ns t12 DB [15 : 0] valid setup time to 2nd CLK falling edge after WAIT# (DTACK#) goes low (read cycle) 6 -- ns 7 8 11 -- TCLK t13 Cycle Length t13 90 Spec Parameter Read Write (next write cycle) Write (next read cycle) EPSON 1Tclk 2Tclk+8ns 5Tclk+8ns -- ns ns ns S1D13700 Technical Manual 5: SPECIFICATIONS Motorola M68K#1 Interface Timing [VSS = 0V, VDD = 3.0 - 3.6V, Ta = -40 - 85C] Symbol Spec Parameter fCLK BUS clock frequency TCLK BUS clock period Unit Min. Max. -- 64 MHz 1/fCLK -- ns t1 AB [16 : 0], WR# (R/W#) and CS# and AS# and RD# (UDS#, LDS#) setup to first CLK rising edge 9 -- ns t2 CS# and AS# asserted to WAIT# (DTACK#) driven 1 10 ns t3 RD# = 0 (UDS# = 0 or LDS# = 0) to DB [15 : 0] driven (read cycle) 3Tclk+9ns -- ns t4 AB [16 : 0], WR# (R/W#) and CS# hold from AS# rising edge 0 -- ns t5 WAIT# (DTACK#) falling edge to RD# (UDS#, LDS#) rising edge 1 -- T CLK t6 RD# (UDS#, LDS#) deasserted high to reasserted low - When read - when Write (next cycle = write cycle) - when Write (next cycle = read cycle) t7 CLK rising edge to WAIT# (DTACK#) high impedance -- 1T CLK-2 ns t8 AS# rising edge to WAIT# (DTACK#) rising edge 3 15 ns t9 DB [15 : 0] valid to 4th CLK rising edge where CS# = 0, AS# = 0 and either RD# = 0 (UDS# = 0 or LDS# = 0) (wirte cycle) 1 -- TCLK t10 DB [15 : 0] hold from RD# (UDS#, LDS#) falling edge (wirte cycle) 4 -- ns t11 RD# (UDS#, LDS#) rising edge to DB [15 : 0] high impedance (read cycle) 8 -- ns t12 DB [15 : 0] valid setup time to 2nd CLK falling edge after WAIT# (DTACK#) goes low (read cycle) 8 -- ns 7 8 11 -- TCLK Cycle Length t13 S1D13700 Technical Manual Read Write (next write cycle) Write (next read cycle) EPSON 1Tclk 2Tclk+8ns 5Tclk+8ns -- ns ns ns 91 5: SPECIFICATIONS 5.4.3 External Clock Input Characteristics tRCL CLKI tFCL tWL tW tCL [VSS = 0V, VDD = 4.5 - 5.5V, Ta = -40 - 85C] Symbol 92 Parameter Min. Max. 2 Unit tRCL External input clock rise time -- tFCL External input clock fall time -- 2 ns tWH High-level pulse width of external input clock 7 -- ns tWL Low-level pulse width of external input clock 7 -- ns tCL External input clock period 16.4 -- ns EPSON ns S1D13700 Technical Manual 5: SPECIFICATIONS 5.4.4 LCD Control Signal Timing Characteristics (When driven at 1/64 duty cycle) ROW NO 63 64 1 2 3 4 5 61 62 63 64 1 FPLINE (LP) 1 Frame tim e FPFRAME (YD) MOD (WF) YSCL MOD (WF) 1 Line time YSCL ROW 2 ROW 1 ROW 3 FPLINE (LP) FPSHIFT (XSCL) FPDAT0 - FPDAT3 XECL tr t WX tf t CX t DH FPSHIFT (XSCL) tDS t LS FPDAT0 - FPDAT3 t WL tLD FPLINE (LP) tL1 tS2 tL2 tS1 XECL tWXE tDF MOD (WF(B)) t LD FPFRAME (YD) t DHY YSCL t WY S1D13700 Technical Manual EPSON 93 5: SPECIFICATIONS Symbol FPSHIFT (XSCL) tCX Shift Clock cycle time tWX XSCL Clock Pulse tDH XD [3 : 0] hold from XSCL falling edge 2tC tDS XD [3 : 0] setup to XSCL falling edge 2tC FPDAT0 - FPDAT3 FPLINE AiLPAj Parameter Spec Signal Min. Max. *1 ns tCX/2-6 tLS Latch data setup time 2tC tWL Latch pulse setup time 4tC Unit ns ns tLD XSCL rising edge to LP falling edge delay time MOD (WF) 0 tDF WF delay time FPFRAME (YD) tDHY YSCL falling edge to YD falling edge 2tC ns YSCL tWY YSCL clock pulse width 4tC ns 6 ns *1 94 CNF [3 : 2] XSCL Cycle Time 00 4Tc ( = MCLK) 01 8Tc 10 16Tc 11 No Support EPSON S1D13700 Technical Manual 6: MPU INTERFACE 6 MPU INTERFACE 6.1 Connection to the System Bus The S1D13700 uses a combination of CNF2/3/4, AB15-0, RD#, WR#, and CS# to discriminate information supplied to it via the system data bus as described in Section 2.2 "Pin Functions" on page 9. In indirect interface mode, AB0 generally is connected to the least significant bit of the system address bus. CNF2 and CNF3 are provided for changing the functions of S1D13700 pins 58 and 59 to enable the chip to be connected directly to the 80 or 68-series MPU bus, and are pulled high or low through a resistor when in use. For the 80-series MPU, the S1D13700 should normally be mapped in I/O space. 6.1.1 80-series MPU CNF4 AB15 AB0 - AB1 RD# WR# Function 0 0or1 0or1 0 1 Read from command/parameter registers 0 0or1 0or1 1 1 Write to command/parameter registers CNF4 6.1.2 AB15 AB0 - AB1 RD# WR# Function -- 1 -- 0 0 1 1 -- 1 0 1 Data (display data and cursor address) read 1 -- 0 1 0 Data (display data and parameter) write 1 -- 1 1 0 Command write (code only) 68-series MPU CNF4 AB15 AB0 - AB1 WR# RD# (R/W#) (E) Function 0 0or1 0or1 1 1 Read from command/parameter registers 0 0or1 0or1 0 1 Write to command/parameter registers CNF4 AB15 AB0 - AB1 WR# RD# (R/W#) (E) Function 1 -- 0 1 1 1 -- 1 1 1 Data (display data and cursor address) read 1 -- 0 0 1 Data (display data and parameter) write 1 -- 1 0 1 Command write (code only) S1D13700 Technical Manual -- EPSON 95 6: MPU INTERFACE 6.2 Interfaces with the MPU (Reference) Z80 System Block Diagram (Indirect) MREQ# M1# CNF4 AS# Decoder IOREQ# CS# Z80 S1D13700 A15 - A1 AB15 - AB1 A0 AB0 (Command or parameter) D7 - D0 DB7 - DB0 RD# RD# WR# WR# WAIT# WAIT# RESET# CNF3 CNF2 RESET# RESET Z80 System Block Diagram (direct) NOT SUPPORT 96 EPSON S1D13700 Technical Manual 6: MPU INTERFACE MC6802 System Block Diagram (Indirect) CNF4 AS# Decoder VMA CS# MC6802 S1D13700 A15 - A1 AB15 - AB1 AB0 (Command or parameter) A0 D7 - D0 DB7 - DB0 E RD# R/W# WR# WAIT# RESET# CNF3 CNF2 RESET# RESET MC6802 System Block Diagram (direct) NOT SUPPORT S1D13700 Technical Manual EPSON 97 6: MPU INTERFACE MC68000 System Block Diagram (Indirect) 6800 I/F (Synchronous) A23 - A20 FC1 - FC0 CNF4 AS# Decoder VMA# MC68000 CS# S1D13700 AS# A16 - A1 AB15 - AB1 A0 D15 - D8 D7 - D0 AB0 (Command or parameter) DB7 - DB0 E RD# R/W# WR# DTACK# WAIT# RESET# RESET# CNF3 CNF2 RESET MC68000 System Block Diagram (direct) 6800 I/F (Synchronous) NOT SUPPORT 98 EPSON S1D13700 Technical Manual 6: MPU INTERFACE MC68000 System Block Diagram (Indirect) 6800 I/F (Asynchronous) CNF4 AS# AS# FC1 - FC0 A23 - A1 Decoder CS# MC68000 S1D13700 AB15 - AB1 AB0 (Command or parameter) A0 D15 - D8 D7 - D0 DB7 - DB0 UDS# LDS# RD# R/W# WR# DTACK# WAIT# RESET# RESET# CNF3 CNF2 RESET MC68000 System Block Diagram (direct) 6800 I/F (Asynchronous) CNF4 AS# MC68000 AS# FC1 - FC0 A23 - A16 Decoder CS# S1D13700 A15 - A0 AB15 - AB0 D15 - D8 D7 - D0 DB7 - DB0 UDS# LDS# RD# R/W# WR# DTACK# WAIT# RESET# RESET# CNF3 CNF2 RESET S1D13700 Technical Manual EPSON 99 6: MPU INTERFACE Generic Bus System Block Diagram (Indirect) CNF4 AS# CSN A16 - A1 Decoder CS# Generic Bus S1D13700 AB15 - AB1 A0 D15 - D8 D7 - D0 A0 (Command or parameter) DB7 - DB0 RD# RD0# RD1# WR0# WR1# WAIT# CNF3 WR# WAIT# RESET# CNF2 RESET# RESET Generic Bus System Block Diagram (direct) CNF4 AS# Generic Bus CSN A16 A15 - A0 CS# AB15 - AB0 D15 - D8 D7 - D0 S1D13700 DB7 - DB0 RD# RD0# RD1# WR0# WR1# WAIT# CNF3 WR# WAIT# RESET# CNF2 RESET# RESET 100 EPSON S1D13700 Technical Manual International Sales Operations AMERICA ASIA EPSON ELECTRONICS AMERICA, INC. EPSON (CHINA) CO., LTD. - HEADQUARTERS 150 River Oaks Parkway San Jose, CA 95134, U.S.A. Phone: +1-408-922-0200 23F, Beijing Silver Tower 2# North RD DongSanHuan ChaoYang District, Beijing, CHINA Phone: 64106655 Fax: 64107319 Fax: +1-408-922-0238 SHANGHAI BRANCH - SALES OFFICES West 1960 E. Grand Avenue EI Segundo, CA 90245, U.S.A. Phone: +1-310-955-5300 Fax: +1-310-955-5400 Central 101 Virginia Street, Suite 290 Crystal Lake, IL 60014, U.S.A. Phone: +1-815-455-7630 Fax: +1-815-455-7633 Northeast 301 Edgewater Place, Suite 120 Wakefield, MA 01880, U.S.A. Phone: +1-781-246-3600 Fax: +1-781-246-5443 Southeast 3010 Royal Blvd. South, Suite 170 Alpharetta, GA 30005, U.S.A. Phone: +1-877-EEA-0020 Fax: +1-770-777-2637 7F, High-Tech Bldg., 900, Yishan Road, Shanghai 200233, CHINA Phone: 86-21-5423-5577 Fax: 86-21-5423-4677 EPSON HONG KONG LTD. 20/F., Harbour Centre, 25 Harbour Road Wanchai, Hong Kong Phone: +852-2585-4600 Fax: +852-2827-4346 Telex: 65542 EPSCO HX EPSON TAIWAN TECHNOLOGY & TRADING LTD. 10F, No. 287, Nanking East Road, Sec. 3 Taipei Phone: 02-2717-7360 Fax: 02-2712-9164 Telex: 24444 EPSONTB HSINCHU OFFICE 13F-3, No. 295, Kuang-Fu Road, Sec. 2 HsinChu 300 Phone: 03-573-9900 Fax: 03-573-9169 EUROPE EPSON EUROPE ELECTRONICS GmbH - HEADQUARTERS Riesstrasse 15 80992 Munich, GERMANY Phone: +49-(0)89-14005-0 EPSON SINGAPORE PTE., LTD. Fax: +49-(0)89-14005-110 DUSSELDORF BRANCH OFFICE Altstadtstrasse 176 51379 Leverkusen, GERMANY Phone: +49-(0)2171-5045-0 Fax: +49-(0)2171-5045-10 No. 1 Temasek Avenue, #36-00 Millenia Tower, SINGAPORE 039192 Phone: +65-337-7911 Fax: +65-334-2716 SEIKO EPSON CORPORATION KOREA OFFICE 50F, KLI 63 Bldg., 60 Yoido-dong Youngdeungpo-Ku, Seoul, 150-763, KOREA Phone: 02-784-6027 Fax: 02-767-3677 UK & IRELAND BRANCH OFFICE Unit 2.4, Doncastle House, Doncastle Road Bracknell, Berkshire RG12 8PE, ENGLAND Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701 FRENCH BRANCH OFFICE GUMI OFFICE 6F, Good Morning Securities Bldg. 56 Songjeong-Dong, Gumi-City, 730-090, KOREA Phone: 054-454-6027 Fax: 054-454-6093 1 Avenue de l' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355 SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION BARCELONA BRANCH OFFICE Barcelona Design Center IC Marketing Department IC Marketing & Engineering Group Edificio Testa, Avda. Alcalde Barrils num. 64-68 E-08190 Sant Cugat del Valles, SPAIN Phon:+34-93-544-2490 Fax:+34-93-544-2491 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624 Scotland Design Center ED International Marketing Department Integration House, The Alba Campus Livingston West Lothian, EH54 7EG, SCOTLAND Phone: +44-1506-605040 Fax: +44-1506-605041 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5117 S1D13700 Technical Manual ELECTRONIC DEVICES MARKETING DIVISION EPSON Electronic Devices Website http://www.epsondevice.com This manual was made with recycle papaer, and printed using soy-based inks. First issue Februany, 2003 C A