© 2007-2012 Freescale Semiconductor, Inc. All rights reserved.
Freescale Semiconductor
Technical Data
Freescale reserves the right to change the detail specifications as may be required
to permit improvements in the design of its products.
This hardware specification contains detailed information on
power considerations, DC/AC electrical characteristics, and
AC timing specifications for the MPC860 family.
To locate published errata or updates for this document, see
the MPC860 product summary page on the website listed on
the back cover of this document or contact your local
Free scale sale s office.
MPC860EC
Rev. 9, 02/2012
Contents
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. Maximum Tolerated Ratings . . . . . . . . . . . . . . . . . . . 7
4. Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . 8
5. Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7. Thermal Calculation and Measurement . . . . . . . . . . 12
8. Layout Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
9. Bus Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 15
10. IEEE 1149.1 Electrical Specifications . . . . . . . . . . . 41
11. CPM Electrical Characteristics . . . . . . . . . . . . . . . . . 43
12. UTOPIA AC Electrical Specifications . . . . . . . . . . . 65
13. FEC Electrical Characteristics . . . . . . . . . . . . . . . . . 67
14. Mechanical Data and Ordering Info rmation . . . . . . . 70
15. Document Revision History . . . . . . . . . . . . . . . . . . . 76
MPC860 PowerQUICC Family
Hardware Specifications
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
2Freescale Semiconductor
Overview
1Overview
The MPC860 power quad integrated communications controller (PowerQUICC™) is a versatile one-chip
integrated micropr ocessor and p eripheral combination de signed for a variety of cont roller applications. It
particularly excels in communications and networking systems. The PowerQUICC unit is referred to as
the MPC860 in this hardware specification.
The MPC860 implements Power Architecture™ technology and contains a superset of Freescale’s
MC68360 quad integrated communications controller (QUICC), referred to here as the QUICC, RISC
communications proccessor module (CPM). The CPU on the MPC860 is a 32-bit core built on Power
Architecture technology that incorporates memory management units (MMUs) and instruction and data
caches.. The CPM from the MC68360 QUICC has been enhanced by the addition of the inter-integrated
controller (I2C) channel. The memory controller has been enhanced, enabling the M PC860 to support any
type of memory, including high-perfor mance memories and new types of DRAMs. A PCMCIA socket
controller supports up to two sockets. A real-time clock has also been integrated.
Table 1 shows the functionality supported by the MPC860 family.
Table 1. MPC860 Family Functionality
Part
Cache (Kbytes) Ethernet
ATM SCC Reference1
1Supporting documentation for these devices refers to the following:
1. MPC860 PowerQUICC Family User’s Manual (MPC860UM, Rev. 3)
2. MPC855T User’s Manual (MPC855TUM, Rev. 1)
Instruction
Cache Data Cache 10T 10/100
MPC860DE 4 4 Up to 2 2 1
MPC860DT 4 4 Up to 2 1 Yes 2 1
MPC860DP 16 8 Up to 2 1 Yes 2 1
MPC860EN 4 4 Up to 4 4 1
MPC860SR 4 4 Up to 4 Yes 4 1
MPC860T 4 4 Up to 4 1 Yes 4 1
MPC860P 16 8 Up to 4 1 Yes 4 1
MPC855T 4411Yes1 2
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 3
Features
2Features
The following list summarizes the key MPC860 features:
Embedded single-issue, 32-bit core (implementing the Power Architecture technology) with
thirty-two 32-bit general-purpose registers (GPRs)
The core pe rforms branch prediction with conditional prefetch without conditional execution.
4- or 8-Kbyte data cache and 4- or 16-Kbyte instruction cache (see Table 1)
16-Kbyte instruction caches are four-way , set-associative with 256 sets; 4-Kbyte instruction
caches are two-way, set-associative with 128 sets.
8-Kbyte data caches a re two-way, set-associative with 256 sets; 4-Kbyte data caches are
two-way, set-associative with 128 sets.
Cache coherency for both instruction and data caches is maintained on 128-bit (4-word)
cache blocks.
Caches are physically addressed, implement a least recently used (LRU) replacement
algorithm, and are lockable on a cache block basis.
MMUs with 32-entry TLB, fully-associative instruction, and data TLBs
MMUs support multiple page sizes of 4-, 16-, and 512-Kbytes, and 8-Mbytes; 16 virtual
address spaces and 16 protection groups
Advanced on-chip-emulation debug mode
Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)
32 address lines
Operates at up to 80 MHz
Memory controller (eight banks)
Contains complete dynamic RAM (DRAM) c ontroller
Each bank can be a chip select or RAS to support a DRAM bank.
Up to 15 wait states programmable per memory bank
Gluel ess interf ace t o DRAM, SIMMS, SRAM, EPROM, Fla sh EPROM, and other memory
devices
DRAM controller programmable to support most size and speed memory inte rfaces
Four CAS lines, four W E lines, and one OE li ne
Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)
Variable block sizes (32 Kbytes to 256 Mbytes)
Selectable write protection
On-chip bus arbitration logic
Gene ral-pur pose time rs
Four 16-bit timers or two 32-bit timers
Gate mode can enable/disable counting
Interrupt can be masked on reference match and event capture.
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
4Freescale Semiconductor
Features
System inte gration unit (SIU)
Bus monitor
Software watchdog
Periodic interrupt timer (PIT)
Low-power stop mode
Clock synthesizer
Decrementer, time base, and real-time clock (RTC)
Reset controller
IEEE 1149.1™ Std. test access port (JTAG)
Interrupts
Seven external interrupt request (IRQ) lines
12 port pins with interrupt capability
23 internal interrupt sources
Programmable priority between SCCs
Programmable highest prior ity request
10/100 Mbps Ethernet support, fully compliant with the IEEE 802.3u® Standard (not available
when using ATM over UTOPIA interface)
ATM support compliant with ATM forum UNI 4.0 specification
Cell processing up to 50–70 Mbps at 50-MHz syst em clock
Cell multiplexing/demultiplexing
Support of AAL5 and AAL0 protocols on a per-VC basis. AAL0 support enables OAM and
software implementation of other protoc ols.
ATM pace control (APC) scheduler, providing direct support for constant bit rate (CBR) and
unspecified bit rate (UBR) and providing control mechanisms enabling software support of
available bit rate (ABR)
Physical interface support for UTOP IA (10/100-Mbps is not supported with this interface) and
byte-aligned serial (for example, T1/E 1/ADSL)
UTOPIA-mode ATM supports level-1 master with cell-level handshake, multi-PHY (up to four
physical layer devices), connection to 25-, 51-, or 155-Mbps framers, and UTOPIA/system
clock ratios of 1/2 or 1/3.
Serial-mode ATM connection supports transmission con ver gence (TC) function for
T1/E1/ADSL lines, cell delineation, cell payl oad scrambling/descrambling, automatic
idle/unassigned cell insertion/stripping, header error control (HEC) generati on, checking, and
statistics.
Communications processor module (CPM)
RISC com munications processor (CP)
Communication-specific commands (for example, GRACEFUL STOP TRANSMIT, ENTER HUNT
MODE, and RESTART TRANSMIT)
Supports continuous mode transmission and reception on all serial channels
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 5
Features
Up to 8 Kbytes of dual-port RAM
16 serial DMA (SDMA) channels
Three parallel I/O regis ters with open-drain capability
Four baud-rate generators (BRGs)
Independent (can be tied to any SCC or SMC)
Allows changes during operation
Autobaud support option
Four serial communications controllers (SCCs)
Ethernet/IEEE 802.3® standard optional on SCC1–4, supporting full 10-Mbps operation
(available only on specially programmed devices)
HDLC/SDLC (a ll channels supported at 2 Mbps)
HDLC bus (implements an HDLC-based local area network (LAN))
Asynchronous HDLC to support point-to-point protocol (PPP)
AppleTalk
Universal asynchronous receiver transmitter (UART )
Synchronous UART
Serial infrared (IrDA)
Binary synchronous communication (BISYNC)
Totally transparent (bit streams)
Totally transparent (frame-based with optional cyclic redundancy check (CRC))
Two SMCs (serial management channels)
UART
Transparent
General circuit i nte rface ( GCI ) controller
Can be connected to the time-division multiplexed (TDM) channels
One SPI (serial peripheral interface)
Supports master and slave modes
Supports multimaster operation on the same bus
One I2C (inter -integrated circuit) port
Supports master and slave modes
Multiple-master environment support
Time-slot assi gner (TSA)
Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation
Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user de fined
1- or 8-bit resolution
Allows independent transmit and receive routing, frame synchronization, and clocking
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
6Freescale Semiconductor
Features
Allows dynamic cha nges
Can be internall y connect ed to six seri al channels (four SCCs and two SMCs)
Par al lel interfa ce port (PI P)
Centronics interface support
Supports fast connection between compatible ports on the MPC860 or the MC68360
PCMCIA interface
Master (socket) interface, release 2.1 compliant
Supports two independent PCMCIA sockets
Supports eight memory or I/O windows
Low power support
Full on—all units fully powered
Doze—co re func tional units disabled e xc ept time ba se decre mente r, PLL, me mory controller,
RTC, and CPM in low-power standby
Sleep—all units disabled except RTC and PIT, PLL active for fast wake up
Deep sleep—all units disabled including PLL except RTC and PIT
Power down mode—all units powered down except PLL, RTC, PIT, time base, and
decrementer
Debug interface
Eight comparators: four operate on instruction address, two operate on data address, and two
operate on data
Supports conditions: = <>
Each watchpoint can generate a break-point internally.
3.3-V operation with 5-V TTL com patibility except EXTAL and EXTCLK
357-pin ball grid array (BGA) package
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 7
Maximum Tolerated Ratings
3 Maximum Tolerated Ratings
This section provides the maximum t olerated voltage and temperature ranges for the MPC860. Table 2
provides the maximum ratings.
This device contains circuitry protecting against damage due to high-static voltage or electrical fi elds;
however, it is advise d that normal precautions be taken to avoid application of any voltages higher than
maximum-rated voltages to this high-impedance circuit. Reliability of ope ration is enhanced if unused
inputs are tied to an appropriate logic voltage le vel (for example, either GND or VDD).
Table 2. Maximum Tolerated Ratings
(GND = 0 V)
Rating Symbol Value Unit
Supply voltage1
1The power supply of the device must start its ramp from 0.0 V.
VDDH –0.3 to 4.0 V
VDDL –0.3 to 4.0 V
KAPWR –0.3 to 4.0 V
VDDSYN –0.3 to 4.0 V
Input voltage2
2Functional operating conditions are provided with the DC electrical specifications in Table 6. Absolute maximum ratings are
stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device
reliability or cause permanent damage to the device.
Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than the supply voltage. This restriction applies to
power-up and normal operation (that is, if the MPC860 is unpowered, voltage greater than 2.5 V must not be applied to its
inputs).
Vin GND – 0.3 to VDDH V
Temperature3 (standard)
3Minimum temperatures are guaranteed as ambient temperature, TA. Maximum temperatures are guaranteed as junction
temperature, Tj.
TA(min) C
Tj(max) 95 °C
Temperature3 (extended) TA(min) –40 °C
Tj(max) 95 °C
Storage temperature range Tstg –55 to 150 °C
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
8Freescale Semiconductor
Thermal Characteristics
Figure 1 shows the undershoot and overshoot voltages at the interface of the MPC860.
Figure 1. Undershoot/Overshoot Voltage for VDDH and VDDL
4 Thermal Characteristics
Table 3. Package Description
Package Designator Package Code (Case No.) Package Description
ZP 5050 (1103-01) PBGA 357 25*25*0.9P1.27
ZQ/VR 5058 (1103D-02) PBGA 357 25*25*1.2P1.27
GND
GND – 0.3 V
GND – 0.7 V Not to Exceed 10%
VDDH/VDDL + 20%
VDDH/VDDL
VDDH/VDDL + 5%
of tinterface1
1. tinterface refers to the clock period associated with the bus clock interface.
VIH
VIL
Note:
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 9
Thermal Characteristics
Table 4 shows the thermal characteristics for the MPC860.
Table 4. MPC860 Thermal Resistance Data
Rating Environment Symbol ZP
MPC860P
ZQ / VR
MPC860P Unit
Mold Compound Thickness 0.85 1.15 mm
Junction-to-ambient 1
1Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal
resistance.
Natural convection Single-layer board (1s) RθJA2
2Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.
34 34 C/WC/W
Four-layer board (2s2p) RθJMA3
3Per JEDEC JESD51-6 with the board horizontal.
22 22
Airflow (200 ft/min) Single-layer board (1s) RθJMA327 27
Four-layer board (2s2p) RθJMA318 18
Junction-to-board 4
4Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured
on the top surface of the board near the package.
RθJB 14 13
Junction-to-case 5
5Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method
(MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed pad
packages where the pad would be expected to be soldered, junction-to-case thermal resistance is a simulated value from
the junction to the exposed pad without contact resistance.
RθJC 68
Junction-to-package top 6
6Thermal characterization parameter indicating the temperature difference between the package top and the junction
temperature per JEDEC JESD51-2.
Natural convection ΨJT 22
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
10 Freescale Semiconductor
Power Dissipation
5 Power Dissipation
Table 5 provides power dissipation information. The modes are 1:1, where CPU and bus speeds are equal,
and 2:1, where CPU frequency is twice the bus speed.
NOTE
Values in Table 5 represent VDDL-based power dissipation and do not
include I/O power dissipation over VDDH. I/O power dissipation varies
widely by appl ication due to buf fer current, depending on external circuitry.
6 DC Characteristics
Table 6 provides the DC electrical characteristics for the MPC860.
Table 5. Power Dissipation (PD)
Die Revision Frequency (MHz) Typical 1
1Typical power dissipation is measured at 3.3 V.
Maximum 2
2Maximum power dissipation is measured at 3.5 V.
Unit
D.4
(1:1 mode)
50 656 735 mW
66 TBD TBD mW
D.4
(2:1 mode)
66 722 762 mW
80 851 909 mW
Table 6. DC Electrical Specifications
Characteristic Symbol Min Max Unit
Operating voltage at 40 MHz or less VDDH, VDDL, VDDSYN 3.0 3.6 V
KAPWR
(power-down mode)
2.0 3.6 V
KAPWR
(all other operating modes)
VDDH – 0.4 VDDH V
Operating voltage greater than 40 MHz VDDH, VDDL, KAPWR,
VDDSYN
3.135 3.465 V
KAPWR
(power-down mode)
2.0 3.6 V
KAPWR
(all other operating modes)
VDDH – 0.4 VDDH V
Input high voltage (all inputs except EXTAL and
EXTCLK)
VIH 2.0 5.5 V
Input low voltage1VIL GND 0.8 V
EXTAL, EXTCLK input high voltage VIHC 0.7 × (VDDH)V
DDH + 0.3 V
Input leakage current, Vin = 5.5 V (except TMS, TRST,
DSCK, and DSDI pins)
Iin 100 µA
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 11
DC Characteristics
Input leakage current, Vin = 3.6 V (except TMS, TRST,
DSCK, and DSDI pins)
IIn —10µA
Input leakage current, Vin = 0 V (except TMS, TRST,
DSCK, and DSDI pins)
IIn —10µA
Input capacitance2Cin —20pF
Output high voltage, IOH = –2.0 mA, VDDH =3.0V
(except XTAL, XFC, and open-drain pins)
VOH 2.4 V
Output low voltage
IOL = 2.0 mA, CLKOUT
IOL = 3.2 mA 3
IOL = 5.3 mA 4
IOL = 7.0 mA, TXD1/PA14, TXD2/PA12
IOL = 8.9 mA, TS, TA, TEA, BI, BB, HRESET, SRESET
VOL —0.5V
1VIL(max) for the I2C interface is 0.8 V rather than the 1.5 V as specified in the I2C standard.
2Input capacitance is periodically sampled.
3A(0:31), TSIZ0/REG, TSIZ1, D(0:31), DP(0:3)/IRQ(3:6), RD/WR, BURST, RSV/IRQ2, IP_B(0:1)/IWP(0:1)/VFLS(0:1),
IP_B2/IOIS16_B/AT2, IP_B3/IWP2/VF2, IP_B4/LWP0/VF0, IP_B5/LWP1/VF1, IP_B6/DSDI/AT0, IP_B7/PTR/AT3,
RXD1/PA15, RXD2/PA13, L1TXDB/PA11, L1RXDB/PA10, L1TXDA/PA9, L1RXDA/PA8, TIN1/L1RCLKA/BRGO1/CLK1/PA7,
BRGCLK1/TOUT1/CLK2/PA6, TIN2/L1TCLKA/BRGO2/CLK3/PA5, TOUT2/CLK4/PA4, TIN3/BRGO3/CLK5/PA3, BRGCLK2/
L1RCLKB/TOUT3/CLK6/PA2, TIN4/BRGO4/CLK7/PA1, L1TCLKB/TOUT4/CLK8/PA0, REJCT1/SPISEL/PB31, SPICLK/
PB30,SPIMOSI/PB29, BRGO4/SPIMISO/PB28, BRGO1/I2CSDA/PB27, BRGO2/I2CSCL/PB26, SMTXD1/PB25, SMRXD1/
PB24, SMSYN1/SDACK1/PB23, SMSYN2/SDACK2/PB22, SMTXD2/L1CLKOB/PB21, SMRXD2/L1CLKOA/PB20, L1ST1/
RTS1/PB19, L1ST2/RTS2/PB18, L1ST3/L1RQB/PB17, L1ST4/L1RQA/PB16, BRGO3/PB15, RSTRT1/PB14, L1ST1/RTS1/
DREQ0/PC15, L1ST2/RTS2/DREQ1/PC14, L1ST3/L1RQB/PC13, L1ST4/L1RQA/PC12, CTS1/PC11, TGATE1/CD1/PC10,
CTS2/PC9, TGATE2/CD2/PC8, SDACK2/L1TSYNCB/PC7, L1RSYNCB/PC6, SDACK1/L1TSYNCA/PC5, L1RSYNCA/PC4,
PD15, PD14, PD13, PD12, PD11, PD10, PD9, PD8, PD5, PD6, PD7, PD4, PD3, MII_MDC, MII_TX_ER, MII_EN, MII_MDIO,
and MII_TXD[0:3]
4BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:5), CS(6)/CE(1)_B, CS(7)/CE(2)_B, WE0/BS_B0/IORD, WE1/BS_B1/IOWR,
WE2/BS_B2/PCOE, WE3/BS_B3/PCWE, BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1, GPL_A(2:3)/GPL_B(2:3)/
CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_A5, ALE_A, CE1_A, CE2_A, ALE_B/DSCK/AT1, OP(0:1),
OP2/MODCK1/STS, OP3/MODCK2/DSDO, and BADDR(28:30)
Table 6. DC Electrical Specifications (continued)
Characteristic Symbol Min Max Unit
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
12 Freescale Semiconductor
Thermal Calculation and Measurement
7 Thermal Calculation and Measurement
For the following discussions, PD = (V DD × IDD) + PI/O, where PI/O is the power dissipation of the I/O
drivers.
7.1 Estimation with Junction-to-Ambient Thermal Resistance
An estimation of the chip junction t emperat ure, TJ, in ºC can be obtained from the equation:
TJ = TA + (RθJA × PD)
where:
TA = ambient temperature (ºC)
RθJA = package junction-to-ambient thermal resistance (ºC/W)
PD = power dissipation in package
The junction-to-ambient thermal resistance is an industry standard value which provides a quick and easy
estimation of thermal perf ormance. However , the answer is only an estimate; test cases have demonstrated
that errors of a factor of two (in the quantity TJ TA) are possible.
7.2 Estimation with Junction-to-Case Thermal Resistance
Historically, the thermal resistance has frequently been expressed as the sum of a junction-to- case thermal
resistance and a case-to-ambient thermal resistance:
RθJA = RθJC + RθCA
where:
RθJA = junction-to-ambient thermal resista nce (ºC/W)
RθJC = junction-t o -ca se therma l resis tance (º C/W)
RθCA = case-to-ambient thermal resistance (ºC/W)
RθJC is device related and cannot be influenced by the user. The user adjusts the thermal environment to
af fect the case -to-ambi ent thermal resis tance, RθCA. For i nstance, the user can change the airflow around
the device, add a heat sink, change the mounting arrangement on the printed-circuit board, or change the
thermal dis sipation on the p rinted-circuit board s urrounding the device. T his thermal model is mos t useful
for ceramic packages with heat sinks where some 90% of t he heat flows throug h the case and the heat sink
to the ambient environment. For most pa ckages , a better mode l is required.
7.3 Estimation with Junction-to-Board Thermal Resistance
A simple package thermal model which has demonstrated reasonable accur acy (about 20%) is a
two-resistor model consisting of a junction-to-boa rd and a junction-to-c ase thermal resista nce. The
junction-to- cas e thermal res ist ance cover s the situat ion where a heat sink is used or where a substanti al
amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance
describes the thermal pe rfor ma nce when most of the heat is conducted to the printed-circuit board. It has
been observed that the thermal perform ance of most plastic packages , espec i all y PBGA packages, is
strongly dependent on the board temperature; see Figure 2.
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 13
Thermal Calculation and Measurement
Figure 2. Effect of Board Temperature Rise on Thermal Behavior
If the board temperature is known, an estimate of the junction temperature in the environment can be made
using the following equation:
TJ = TB + (RθJB × PD)
where:
RθJB = junction-to-board thermal resistance (ºC/W)
TB = board temperature (ºC)
PD = power dissipation in package
If the board temperature is known and the heat loss from the package case to the air can be ignored,
acceptable predictions of junction temperature can be made. For this method to work, the board and board
mounting must be similar to the te st board used to determine the junction-to-board thermal resistance,
namely a 2s2p (board with a power and a ground plane) and by attaching the thermal balls to the ground
plane.
7.4 Estimation Using Simulation
When the board temperature is not known, a thermal simulation of the application is needed. The simple
two-resis tor model c an be used with the thermal simulat ion of the a pplic ation [2], or a mor e accurate and
complex model of the package can be used in the thermal simulati on.
7.5 Experimental Determination
To determine the junction temperature of the device in the application after prototypes are available, the
therma l character izat ion para met er (ΨJT) can be used to determine the junction temperature with a
measurement of the temperatur e at the top center of the package case using the following equation:
TJ = TT + (ΨJT × PD)
Board Temperature Rise Above Ambient Divided by Package Power
Junction Temperature Rise Above
Ambient Divided by Package Power
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
14 Freescale Semiconductor
Layout Practices
where:
ΨJT = thermal char acter izati on paramete r
TT = thermocouple temperature on top of package
PD = power dissipation in package
The thermal characterization parameter is measured per JEDEC JESD51-2 specification using a 40 gauge
type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned
so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the
thermocouple junction and over 1 mm of wire extending from the junction. The thermocouple wire is
placed flat against the package case to avoid measurement errors caused by cooling effects of the
thermocoup le wire.
7.6 References
Semiconductor Equipment and Materials International (415) 964-5111
805 East Middlefield Rd.
Mountain View, CA 94043
MIL-SPEC and EIA/JESD (JEDEC) Specifications 800-854-7179 or
(Available fro m Global Engineering Documents) 303-397-7956
JED E C Specif icat ion s http: //w ww.j edec. o rg
1. C.E. T ri plett and B. Joiner, “An Experimental Characterization of a 272 PBGA W ithin an
Automotive Engi ne Controller Module,” P roceedings of SemiTherm, San Diego, 1998, pp. 4754.
2. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance
and Its Application in Thermal Modeling,” Proc eedings of SemiTherm, San Diego, 1999,
pp. 212220.
8 Layout Practices
Each VDD pin on the MPC860 should be provided with a low-impedance path to the board’s supply. Each
GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive
distinct groups of logic on the chip. The VDD power supply should be bypassed to ground using at least
four 0.1 µF-bypass capacitors located as close as possible to the four sides of the package. The capacitor
leads and associated printed circuit traces connecting to chip VDD and GND should be kept to l ess than half
an inch per capacitor lead. A four-layer board employing two inner layers as VCC and GND planes is
recommended.
All output pins on the MPC860 have fast rise and fall times. Printed circuit (PC) trace interconnection
length should be minimized in order to minimize undershoot and reflections cause d by these fast output
switching times. This recommendation particularly applies to the address and data buses. Maximum PC
trace lengths of 6 inches are recommended. Capacitance calculations should consider all device loa ds as
well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes
especi all y criti cal in sys tem s with higher capacitive loads because t hese l oads cr eat e higher tra nsi ent
curr e nts in the V CC and GND circuits. Pull up all unus ed inputs or signals that will be inputs during reset.
Special care should be taken to minimize the noise levels on the PLL supply pins.
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 15
Bus Signal Timing
9 Bus Signal Timing
Table 7 provides the bus operation timing for the MPC860 at 33, 40, 50, and 66 MHz.
The maximum bus speed supported by the MPC860 is 66 MHz. Higher- speed parts must be operated in
half-speed bus mode (for example, an MPC860 used at 80 MHz must be configured for a 40-MHz bus).
The timing for the MPC860 bus shown assumes a 50-pF load for maximum delays and a 0-pF load for
minimum delays.
Table 7. Bus Operation Timings
Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
B1 CLKOUT period 30.30 30.30 25.00 30.30 20.00 30.30 15.15 30.30 ns
B1a EXTCLK to CLKOUT phase skew
(EXTCLK > 15 MHz and MF <= 2)
–0.90 0.90 –0.90 0.90 –0.90 0.90 –0.90 0.90 ns
B1b EXTCLK to CLKOUT phase skew
(EXTCLK > 10 MHz and MF < 10)
–2.30 2.30 –2.30 2.30 –2.30 2.30 –2.30 2.30 ns
B1c CLKOUT phase jitter (EXTCLK > 15 MHz
and MF <= 2)1
–0.60 0.60 –0.60 0.60 –0.60 0.60 –0.60 0.60 ns
B1d CLKOUT phase jitter1–2.00 2.00 –2.00 2.00 –2.00 2.00 –2.00 2.00 ns
B1e CLKOUT frequency jitter (MF < 10)1 0.50 0.50 0.50 0.50 %
B1f CLKOUT frequency jitter (10 < MF < 500)1 2.00 2.00 2.00 2.00 %
B1g CLKOUT frequency jitter (MF > 500)1 3.00 3.00 3.00 3.00 %
B1h Frequency jitter on EXTCLK2 0.50 0.50 0.50 0.50 %
B2 CLKOUT pulse width low 12.12 10.00 8.00 6.06 ns
B3 CLKOUT width high 12.12 10.00 8.00 6.06 ns
B4 CLKOUT rise time3 4.00 4.00 4.00 4.00 ns
B533 CLKOUT fall time3 4.00 4.00 4.00 4.00 ns
B7 CLKOUT to A(0:31), BADDR(28:30),
RD/WR, BURST, D(0:31), DP(0:3) invalid
7.58 6.25 5.00 3.80 ns
B7a CLKOUT to TSIZ(0:1), REG, RSV, AT(0:3),
BDIP
, PTR invalid
7.58 6.25 5.00 3.80 ns
B7b CLKOUT to BR, BG, FRZ, VFLS(0:1),
VF(0:2) IWP(0:2), LWP(0:1), STS invalid 4
7.58 6.25 5.00 3.80 ns
B8 CLKOUT to A(0:31), BADDR(28:30)
RD/WR, BURST, D(0:31), DP(0:3) valid
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns
B8a CLKOUT to TSIZ(0:1), REG, RSV, AT(0:3)
BDIP
, PTR valid
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns
B8b CLKOUT to BR, BG, VFLS(0:1), VF(0:2),
IWP(0:2), FRZ, LWP(0:1), STS valid 4
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
16 Freescale Semiconductor
Bus Signal Timing
B9 CLKOUT to A(0:31), BADDR(28:30),
RD/WR, BURST, D(0:31), DP(0:3),
TSIZ(0:1), REG, RSV, AT(0:3), PTR High-Z
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns
B11 CLKOUT to TS, BB assertion 7.58 13.58 6.25 12.25 5.00 11.00 3.80 11.29 ns
B11a CLKOUT to TA, BI assertion (when driven by
the memory controller or PCMCIA interface)
2.50 9.25 2.50 9.25 2.50 9.25 2.50 9.75 ns
B12 CLKOUT to TS, BB negation 7.58 14.33 6.25 13.00 5.00 11.75 3.80 8.54 ns
B12a CLKOUT to TA, BI negation (when driven by
the memory controller or PCMCIA interface)
2.50 11.00 2.50 11.00 2.50 11.00 2.50 9.00 ns
B13 CLKOUT to TS, BB High-Z 7.58 21.58 6.25 20.25 5.00 19.00 3.80 14.04 ns
B13a CLKOUT to TA, BI High-Z (when driven by
the memory controller or PCMCIA interface)
2.50 15.00 2.50 15.00 2.50 15.00 2.50 15.00 ns
B14 CLKOUT to TEA assertion 2.50 10.00 2.50 10.00 2.50 10.00 2.50 9.00 ns
B15 CLKOUT to TEA High-Z 2.50 15.00 2.50 15.00 2.50 15.00 2.50 15.00 ns
B16 TA, BI valid to CLKOUT (setup time) 9.75 9.75 9.75 6.00 ns
B16a TEA, KR, RETRY, CR valid to CLKOUT
(setup time)
10.00 10.00 10.00 4.50 ns
B16b BB, BG, BR, valid to CLKOUT (setup time)58.50 8.50 8.50 4.00 ns
B17 CLKOUT to TA, TEA, BI, BB, BG, BR valid
(hold time)
1.00 1.00 1.00 2.00 ns
B17a CLKOUT to KR, RETRY, CR valid (hold
time)
2.00 2.00 2.00 2.00 ns
B18 D(0:31), DP(0:3) valid to CLKOUT rising
edge (setup time)6
6.00 6.00 6.00 6.00 ns
B19 CLKOUT rising edge to D(0:31), DP(0:3)
valid (hold time)6
1.00 1.00 1.00 2.00 ns
B20 D(0:31), DP(0:3) valid to CLKOUT falling
edge (setup time)7
4.00 4.00 4.00 4.00 ns
B21 CLKOUT falling edge to D(0:31), DP(0:3)
valid (hold time)7
2.00 2.00 2.00 2.00 ns
B22 CLKOUT rising edge to CS asserted GPCM
ACS = 00
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns
B22a CLKOUT falling edge to CS asserted GPCM
ACS = 10, TRLX = 0
8.00 8.00 8.00 8.00 ns
B22b CLKOUT falling edge to CS asserted GPCM
ACS = 11, TRLX = 0, EBDF = 0
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns
B22c CLKOUT falling edge to CS asserted GPCM
ACS = 11, TRLX = 0, EBDF = 1
10.86 17.99 8.88 16.00 7.00 14.13 5.18 12.31 ns
Table 7. Bus Operation Timings (continued)
Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 17
Bus Signal Timing
B23 CLKOUT rising edge to CS negated GPCM
read access, GPCM write access ACS = 00,
TRLX = 0, and CSNT = 0
2.00 8.00 2.00 8.00 2.00 8.00 2.00 8.00 ns
B24 A(0:31) and BADDR(28:30) to CS asserted
GPCM ACS = 10, TRLX = 0
5.58 4.25 3.00 1.79 ns
B24a A(0:31) and BADDR(28:30) to CS asserted
GPCM ACS = 11, TRLX = 0
13.15 10.50 8.00 5.58 ns
B25 CLKOUT rising edge to OE, WE(0:3)
asserted
9.00 9.00 9.00 9.00 ns
B26 CLKOUT rising edge to OE negated 2.00 9.00 2.00 9.00 2.00 9.00 2.00 9.00 ns
B27 A(0:31) and BADDR(28:30) to CS asserted
GPCM ACS = 10, TRLX = 1
35.88 29.25 23.00 16.94 ns
B27a A(0:31) and BADDR(28:30) to CS asserted
GPCM ACS = 11, TRLX = 1
43.45 35.50 28.00 20.73 ns
B28 CLKOUT rising edge to WE(0:3) negated
GPCM write access CSNT = 0
9.00 9.00 9.00 9.00 ns
B28a CLKOUT falling edge to WE(0:3) negated
GPCM write access TRLX = 0, 1, CSNT = 1,
EBDF = 0
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns
B28b CLKOUT falling edge to CS negated GPCM
write access TRLX = 0, 1, CSNT = 1,
ACS = 10, or ACS = 11, EBDF = 0
14.33 13.00 11.75 10.54 ns
B28c CLKOUT falling edge to WE(0:3) negated
GPCM write access TRLX = 0, 1, CSNT = 1
write access TRLX = 0, CSNT = 1,
EBDF = 1
10.86 17.99 8.88 16.00 7.00 14.13 5.18 12.31 ns
B28d CLKOUT falling edge to CS negated GPCM
write access TRLX = 0, 1, CSNT = 1,
ACS = 10, or ACS = 11, EBDF = 1
17.99 16.00 14.13 12.31 ns
B29 WE(0:3) negated to D(0:31), DP(0:3) High-Z
GPCM write access CSNT = 0, EBDF = 0
5.58 4.25 3.00 1.79 ns
B29a WE(0:3) negated to D(0:31), DP(0:3) High-Z
GPCM write access, TRLX = 0, CSNT = 1,
EBDF = 0
13.15 10.5 8.00 5.58 ns
B29b CS negated to D(0:31), DP(0:3), High-Z
GPCM write access, ACS = 00, TRLX = 0, 1,
and CSNT = 0
5.58 4.25 3.00 1.79 ns
B29c CS negated to D(0:31), DP(0:3) High-Z
GPCM write access, TRLX = 0, CSNT = 1,
ACS = 10, or ACS = 11, EBDF = 0
13.15 10.5 8.00 5.58 ns
Table 7. Bus Operation Timings (continued)
Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
18 Freescale Semiconductor
Bus Signal Timing
B29d WE(0:3) negated to D(0:31), DP(0:3) High-Z
GPCM write access, TRLX = 1, CSNT = 1,
EBDF = 0
43.45 35.5 28.00 20.73 ns
B29e CS negated to D(0:31), DP(0:3) High-Z
GPCM write access, TRLX = 1, CSNT = 1,
ACS = 10, or ACS = 11, EBDF = 0
43.45 35.5 28.00 29.73 ns
B29f WE(0:3) negated to D(0:31), DP(0:3) High-Z
GPCM write access, TRLX = 0, CSNT = 1,
EBDF = 1
8.86 6.88 5.00 3.18 ns
B29g CS negated to D(0:31), DP(0:3) High-Z
GPCM write access, TRLX = 0, CSNT = 1,
ACS = 10, or ACS = 11, EBDF = 1
8.86 6.88 5.00 3.18 ns
B29h WE(0:3) negated to D(0:31), DP(0:3) High-Z
GPCM write access, TRLX = 1, CSNT = 1,
EBDF = 1
38.67 31.38 24.50 17.83 ns
B29i CS negated to D(0:31), DP(0:3) High-Z
GPCM write access, TRLX = 1, CSNT = 1,
ACS = 10, or ACS = 11, EBDF = 1
38.67 31.38 24.50 17.83 ns
B30 CS, WE(0:3) negated to A(0:31),
BADDR(28:30) invalid GPCM write access 8
5.58 4.25 3.00 1.79 ns
B30a WE(0:3) negated to A(0:31), BADDR(28:30)
invalid GPCM, write access, TRLX = 0,
CSNT = 1, CS negated to A(0:31) invalid
GPCM write access, TRLX = 0, CSNT = 1
ACS = 10, or ACS = 11, EBDF = 0
13.15 10.50 8.00 5.58 ns
B30b WE(0:3) negated to A(0:31), invalid GPCM
BADDR(28:30) invalid GPCM write access,
TRLX = 1, CSNT = 1. CS negated to
A(0:31), Invalid GPCM, write access,
TRLX = 1, CSNT = 1, ACS = 10, or
ACS = 11, EBDF = 0
43.45 35.50 28.00 20.73 ns
B30c WE(0:3) negated to A(0:31), BADDR(28:30)
invalid GPCM write access, TRLX = 0,
CSNT = 1. CS negated to A(0:31) invalid
GPCM write access, TRLX = 0, CSNT = 1,
ACS = 10, ACS = 11, EBDF = 1
8.36 6.38 4.50 2.68 ns
B30d WE(0:3) negated to A(0:31), BADDR(28:30)
invalid GPCM write access, TRLX = 1,
CSNT =1. CS negated to A(0:31) invalid
GPCM write access TRLX = 1, CSNT = 1,
ACS = 10, or ACS = 11, EBDF = 1
38.67 31.38 24.50 17.83 ns
B31 CLKOUT falling edge to CS valid—as
requested by control bit CST4 in the
corresponding word in UPM
1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00 ns
Table 7. Bus Operation Timings (continued)
Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 19
Bus Signal Timing
B31a CLKOUT falling edge to CS valid—as
requested by control bit CST1 in the
corresponding word in UPM
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns
B31b CLKOUT rising edge to CS valid—as
requested by control bit CST2 in the
corresponding word in UPM
1.50 8.00 1.50 8.00 1.50 8.00 1.50 8.00 ns
B31c CLKOUT rising edge to CS valid—as
requested by control bit CST3 in the
corresponding word in UPM
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns
B31d CLKOUT falling edge to CS valid—as
requested by control bit CST1 in the
corresponding word in UPM, EBDF = 1
13.26 17.99 11.28 16.00 9.40 14.13 7.58 12.31 ns
B32 CLKOUT falling edge to BS valid—as
requested by control bit BST4 in the
corresponding word in UPM
1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00 ns
B32a CLKOUT falling edge to BS valid—as
requested by control bit BST1 in the
corresponding word in UPM, EBDF = 0
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns
B32b CLKOUT rising edge to BS valid—as
requested by control bit BST2 in the
corresponding word in UPM
1.50 8.00 1.50 8.00 1.50 8.00 1.50 8.00 ns
B32c CLKOUT rising edge to BS valid—as
requested by control bit BST3 in the
corresponding word in UPM
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns
B32d CLKOUT falling edge to BS valid—as
requested by control bit BST1 in the
corresponding word in UPM, EBDF = 1
13.26 17.99 11.28 16.00 9.40 14.13 7.58 12.31 ns
B33 CLKOUT falling edge to GPL valid—as
requested by control bit GxT4 in the
corresponding word in UPM
1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00 ns
B33a CLKOUT rising edge to GPL valid—as
requested by control bit GxT3 in the
corresponding word in UPM
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns
B34 A(0:31), BADDR(28:30), and D(0:31) to CS
valid—as requested by control bit CST4 in
the corresponding word in UPM
5.58 4.25 3.00 1.79 ns
B34a A(0:31), BADDR(28:30), and D(0:31) to CS
valid—as requested by control bit CST1 in
the corresponding word in UPM
13.15 10.50 8.00 5.58 ns
B34b A(0:31), BADDR(28:30), and D(0:31) to CS
valid—as requested by control bit CST2 in
the corresponding word in UPM
20.73 16.75 13.00 9.36 ns
Table 7. Bus Operation Timings (continued)
Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
20 Freescale Semiconductor
Bus Signal Timing
B35 A(0:31), BADDR(28:30) to CS validas
requested by control bit BST4 in the
corresponding word in UPM
5.58 4.25 3.00 1.79 ns
B35a A(0:31), BADDR(28:30), and D(0:31) to BS
valid—as requested by control bit BST1 in
the corresponding word in UPM
13.15 10.50 8.00 5.58 ns
B35b A(0:31), BADDR(28:30), and D(0:31) to BS
valid—as requested by control bit BST2 in
the corresponding word in UPM
20.73 16.75 13.00 9.36 ns
B36 A(0:31), BADDR(28:30), and D(0:31) to
GPL valid—as requested by control bit GxT4
in the corresponding word in UPM
5.58 4.25 3.00 1.79 ns
B37 UPWAIT valid to CLKOUT falling edge96.00 6.00 6.00 6.00 ns
B38 CLKOUT falling edge to UPWAIT valid91.00 1.00 1.00 1.00 ns
B39 AS valid to CLKOUT rising edge10 7.00 7.00 7.00 7.00 ns
B40 A(0:31), TSIZ(0:1), RD/WR, BURST, valid to
CLKOUT rising edge
7.00 7.00 7.00 7.00 ns
B41 TS valid to CLKOUT rising edge (setup time) 7.00 7.00 7.00 7.00 ns
B42 CLKOUT rising edge to TS valid (hold time) 2.00 2.00 2.00 2.00 ns
B43 AS negation to memory controller signals
negation
—TBD—TBD—TBD—TBDns
1Phase and frequency jitter performance results are only valid if the input jitter is less than the prescribed value.
2If the rate of change of the frequency of EXTAL is slow (that is, it does not jump between the minimum and maximum values
in one cycle) or the frequency of the jitter is fast (that is, it does not stay at an extreme value for a long time) then the maximum
allowed jitter on EXTAL can be up to 2%.
3The timings specified in B4 and B5 are based on full strength clock.
4The timing for BR output is relevant when the MPC860 is selected to work with external bus arbiter. The timing for BG output
is relevant when the MPC860 is selected to work with internal bus arbiter.
5The timing required for BR input is relevant when the MPC860 is selected to work with internal bus arbiter. The timing for BG
input is relevant when the MPC860 is selected to work with external bus arbiter.
6The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input signal is
asserted.
7The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only for read
accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats where DLT3 = 1 in the
UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)
8The timing B30 refers to CS when ACS = 00 and to WE(0:3) when CSNT = 0.
9The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified in B37 and
B38 are specified to enable the freeze of the UPM output signals as described in Figure 18.
10 The AS signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior specified
in Figure 21.
Table 7. Bus Operation Timings (continued)
Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 21
Bus Signal Timing
Figure 3 is the control timing diagram.
Figure 3. Control Timing
Figure 4 provide s the timing for the external clock.
Figure 4. External Clock Timing
CLKOUT
Outputs
A
B
Outputs
B
A
Inputs
D
C
Inputs
C
D
A Maximum output delay specification.
B Minimum output hold time.
C Minimum input setup time specification.
D Minimum input hold time specification.
CLKOUT
B1
B5
B3
B4
B1
B2
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
22 Freescale Semiconductor
Bus Signal Timing
Figure 5 provides the timing for the synchronous output signals.
Figure 5. Synchronous Output Signals Timing
Figure 6 provides the timing for the synchronous active pull-up and open-drain output signals.
Figure 6. Synchronous Active Pull-Up Resistor and Open-Drain Outputs Signals Timing
CLKOUT
Output
Signals
Output
Signals
Output
Signals
B8
B7 B9
B8a
B9B7a
B8b
B7b
CLKOUT
TS, BB
TA, BI
TEA
B13
B12B11
B11a B12a
B13a
B15
B14
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 23
Bus Signal Timing
Figure 7 provides the timing for the synchronous input signals.
Figure 7. Synchronous Input Signals Timing
Figure 8 provides normal case timing for input data. It also applies to normal read accesses under the
control of the UPM in the memory controller.
Figure 8. Input Data Timing in Normal Case
CLKOUT
TA , BI
TEA, KR,
RETRY
, CR
BB, BG, BR
B16
B17
B16a
B17a
B16b
B17
CLKOUT
TA
D[0:31],
DP[0:3]
B16
B17
B19
B18
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
24 Freescale Semiconductor
Bus Signal Timing
Figure 9 provides the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in
the UPM RA M words. (This is only the ca se where data is latched on the falling edge of CLKOUT.)
Figure 9. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1
Figure 10 through Figure 13 provide the timing for the external bus read controlled by various GPCM
factors.
Figure 10. External Bus Read Timing (GPCM Controlled—ACS = 00)
CLKOUT
TA
D[0:31],
DP[0:3]
B20
B21
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 25
Bus Signal Timing
Figure 11. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 10)
Figure 12. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11)
CLKOUT
A[0:31]
CSx
OE
TS
D[0:31],
DP[0:3]
B11 B12
B8
B22a B23
B26
B19B18
B25B24
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
26 Freescale Semiconductor
Bus Signal Timing
Figure 13. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 10, ACS = 11)
CLKOUT
A[0:31]
CSx
OE
TS
D[0:31],
DP[0:3]
B11 B12
B8
B22a
B27
B27a
B22bB22c B19B18
B26
B23
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 27
Bus Signal Timing
Figure 14 through Figure 16 provide the timing for the external bus write controlled by various GPCM
factors.
Figure 14. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 0)
CLKOUT
CSx
WE[0:3]
OE
TS
D[0:31],
DP[0:3]
B11
B8
B22 B23
B12
B30
B28B25
B26
B8 B9
B29
B29b
A[j0:31]
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
28 Freescale Semiconductor
Bus Signal Timing
Figure 15. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 1)
B23
B30aB30c
CLKOUT
A[0:31]
CSx
OE
WE[0:3]
TS
D[0:31],
DP[0:3]
B11
B8
B22
B12
B28b B28d
B25
B26
B8
B28a
B9
B28c
B29c B29g
B29a B29f
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 29
Bus Signal Timing
Figure 16. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 1)
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
30 Freescale Semiconductor
Bus Signal Timing
Figure 17 provide s the timing for the external bus controlled by the UPM.
Figure 17. External Bus Timing (UPM Controlled Signals)
CLKOUT
CSx
B31d
B8
B31
B34
B32b
GPL_A[0:5],
GPL_B[0:5]
BS_A[0:3],
BS_B[0:3]
A[0:31]
B31c
B31b
B34a
B32
B32a B32d
B34b
B36
B35b
B35a
B35
B33
B32c
B33a
B31a
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 31
Bus Signal Timing
Figure 18 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.
Figure 18. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles Timing
Figure 19 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.
Figure 19. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles Timing
CLKOUT
CSx
UPWAIT
GPL_A[0:5],
GPL_B[0:5]
BS_A[0:3],
BS_B[0:3]
B37
B38
CLKOUT
CSx
UPWAIT
GPL_A[0:5],
GPL_B[0:5]
BS_A[0:3],
BS_B[0:3]
B37
B38
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
32 Freescale Semiconductor
Bus Signal Timing
Figure 20 provides the timing for the synchronous external master access controlled by the GPCM.
Figure 20. Synchronous External Master Access Timing (GPCM Handled ACS = 00)
Figure 21 provides the timing for the asynchronous external master memory access controlled by the
GPCM.
Figure 21. Asynchronous External Master Memory Access Timing (GPCM Controlled—ACS = 00)
Figure 22 provides the timing for the asynchronous external master control signals negation.
Figure 22. Asynchronous External Master—Control Signals Negation Timing
CLKOUT
TS
A[0:31],
TSIZ[0:1],
R/W, BURST
CSx
B41 B42
B40
B22
CLKOUT
AS
A[0:31],
TSIZ[0:1],
R/W
CSx
B39
B40
B22
AS
CSx, WE[0:3],
OE, GPLx,
BS[0:3]
B43
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 33
Bus Signal Timing
Table 8 provides interrupt timing for the MPC860.
Figure 23 provide s the interrupt detection timing for the external level-sens itive lines.
Figure 23. Interrupt Detection Timing for External Level Sensitive Lines
Figure 24 provide s the interrupt detection timing for the external edge-sensi tive lines.
Figure 24. Interrupt Detection Timing for External Edge Sensitive Lines
Table 8. Interrupt Timing
Num Characteristic1
1The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as
level-sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the
CLKOUT.
The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry and have no direct
relation with the total system interrupt latency that the MPC860 is able to support.
All Frequencies
Unit
Min Max
I39 IRQx valid to CLKOUT rising edge (setup time) 6.00 ns
I40 IRQx hold time after CLKOUT 2.00 ns
I41 IRQx pulse width low 3.00 ns
I42 IRQx pulse width high 3.00 ns
I43 IRQx edge-to-edge time 4 × TCLOCKOUT ——
CLKOUT
IRQx
I39
I40
CLKOUT
IRQx
I41 I42
I43
I43
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
34 Freescale Semiconductor
Bus Signal Timing
Table 9 shows the PCMCIA timing for the MPC860.
Table 9. PCMCIA Timing
Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
P44 A(0:31), REG valid to PCMCIA Strobe
asserted1
1PSST = 1. Otherwise add PSST times cycle time.
PSHT = 0. Otherwise add PSHT times cycle time.
These synchrono us timings define when the WAITx signals are detected in order to freeze (or relieve) the
PCMC IA curre nt cycle. The WA I Tx assertion will be effective only if it is detected 2 cycles before the
PSL timer expiration. See Chapter 16, “PCMCIA Interface,” in the MPC860 PowerQUICC™ Family
Users Manual.
20.73 16.75 13.00 9.36 ns
P45 A(0:31), REG valid to ALE negation128.30 23.00 18.00 13.15 ns
P46 CLKOUT to REG valid 7.58 15.58 6.25 14.25 5.00 13.00 3.79 11.84 ns
P47 CLKOUT to REG invalid 8.58 7.25 6.00 4.84 ns
P48 CLKOUT to CE1, CE2 asserted 7.58 15.58 6.25 14.25 5.00 13.00 3.79 11.84 ns
P49 CLKOUT to CE1, CE2 negated 7.58 15.58 6.25 14.25 5.00 13.00 3.79 11.84 ns
P50 CLKOUT to PCOE, IORD, PCWE, IOWR
assert time
11.00 11.00 11.00 11.00 ns
P51 CLKOUT to PCOE, IORD, PCWE, IOWR
negate time
2.00 11.00 2.00 11.00 2.00 11.00 2.00 11.00 ns
P52 CLKOUT to ALE assert time 7.58 15.58 6.25 14.25 5.00 13.00 3.79 10.04 ns
P53 CLKOUT to ALE negate time 15.58 14.25 13.00 11.84 ns
P54 PCWE, IOWR negated to D(0:31) invalid15.58 4.25 3.00 1.79 ns
P55 WAITA and WAITB valid to CLKOUT rising
edge1
8.00 8.00 8.00 8.00 ns
P56 CLKOUT rising edge to WAITA and WAITB
invalid12.00 2.00 2.00 2.00 ns
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 35
Bus Signal Timing
Figure 25 provides the PCMCIA access cycle timing for the external bus read.
Figure 25. PCMCIA Access Cycle Timing External Bus Read
CLKOUT
A[0:31]
REG
CE1/CE2
PCOE, IORD
TS
D[0:31]
ALE
B19B18
P53P52 P52
P51P50
P48 P49
P46 P45
P44
P47
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
36 Freescale Semiconductor
Bus Signal Timing
Figure 26 provides the PCMCIA access cycle timing for the external bus write.
Figure 26. PCMCIA Access Cycle Timing External Bus Write
Figure 27 provides the PCMCIA WAIT signal detection timing.
Figure 27. PCMCIA WAIT Signal Detection Timing
CLKOUT
A[0:31]
REG
CE1/CE2
PCWE, IOWR
TS
D[0:31]
ALE
B9B8
P53P52 P52
P51P50
P48 P49
P46 P45
P44
P47
P54
CLKOUT
WAITx
P55
P56
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 37
Bus Signal Timing
Table 10 s hows the PCMCIA port timing for the MPC860.
Figure 28 provides the PCMCIA output port timing for the MPC860.
Figure 28. PCMCIA Output Port Timing
Figure 29 provides the PCMCIA output port timing for the MPC860.
Figure 29. PCMCIA Input Port Timing
Table 10. PCMCIA Port Timing
Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
P57 CLKOUT to OPx valid 19.00 19.00 19.00 19.00 ns
P58 HRESET negated to OPx drive1
1OP2 and OP3 only.
25.73 21.75 18.00 14.36 ns
P59 IP_Xx valid to CLKOUT rising edge 5.00 5.00 5.00 5.00 ns
P60 CLKOUT rising edge to IP_Xx invalid 1.00 1.00 1.00 1.00 ns
CLKOUT
Input
Signals
P59
P60
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
38 Freescale Semiconductor
Bus Signal Timing
Table 11 shows the debug port timing for the MPC860.
Figure 30 provides the input timing for the debug port clock.
Figure 30. Debug Port Clock Input Timing
Figure 31 provides the timing for the debug port.
Figure 31. Debug Port Timings
Table 11. Debug Port Timing
Num Characteristic
All Frequencies
Unit
Min Max
P61 DSCK cycle time 3 × TCLOCKOUT ——
P62 DSCK clock pulse width 1.25 × TCLOCKOUT ——
P63 DSCK rise and fall times 0.00 3.00 ns
P64 DSDI input data setup time 8.00 ns
P65 DSDI data hold time 5.00 ns
P66 DSCK low to DSDO data valid 0.00 15.00 ns
P67 DSCK low to DSDO invalid 0.00 2.00 ns
DSCK
D61
D61
D63
D62
D62
D63
DSCK
DSDI
DSDO
D64
D65
D66
D67
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 39
Bus Signal Timing
Table 12 s hows the reset timing for the MPC860.
Table 12. Reset Timing
Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
R69 CLKOUT to HRESET high impedance 20.00 20.00 20.00 20.00 ns
R70 CLKOUT to SRESET high impedance 20.00 20.00 20.00 20.00 ns
R71 RSTCONF pulse width 515.15 425.00 340.00 257.58 ns
R72 ————————
R73 Configuration data to HRESET rising edge
setup time
504.55 425.00 350.00 277.27 ns
R74 Configuration data to RSTCONF rising
edge setup time
350.00 350.00 350.00 350.00 ns
R75 Configuration data hold time after
RSTCONF negation
0.00 0.00 0.00 0.00 ns
R76 Configuration data hold time after
HRESET negation
0.00 0.00 0.00 0.00 ns
R77 HRESET and RSTCONF asserted to data
out drive
25.00 25.00 25.00 25.00 ns
R78 RSTCONF negated to data out high
impedance
25.00 25.00 25.00 25.00 ns
R79 CLKOUT of last rising edge before chip
three-state HRESET to data out high
impedance
25.00 25.00 25.00 25.00 ns
R80 DSDI, DSCK setup 90.91 75.00 60.00 45.45 ns
R81 DSDI, DSCK hold time 0.00 0.00 0.00 0.00 ns
R82 SRESET negated to CLKOUT rising edge
for DSDI and DSCK sample
242.42 200.00 160.00 121.21 ns
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
40 Freescale Semiconductor
Bus Signal Timing
Figure 32 shows the reset timing for the data bus configuration.
Figure 32. Reset Timing—Configuration from Data Bus
Figure 33 provide s the reset timing for the data bus weak drive during configuration.
Figure 33. Reset Timing—Data Bus Weak Drive During Configuration
HRESET
RSTCONF
D[0:31] (IN)
R71
R74
R73
R75
R76
CLKOUT
HRESET
D[0:31] (OUT)
(Weak)
RSTCONF
R69
R79
R77 R78
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 41
IEEE 1149.1 Electrical Specifications
Figure 34 provides the reset timing for the debug port configuration.
Figure 34. Reset Timing—Debug Port Configuration
10 IEEE 1149.1 Electrical Specifications
Table 13 provides the JTAG timings for the MPC860 shown in Figure 35 through Figure 38.
Table 13. JTAG Timing
Num Characteristic
All Frequencies
Unit
Min Max
J82 TCK cycle time 100.00 ns
J83 TCK clock pulse width measured at 1.5 V 40.00 ns
J84 TCK rise and fall times 0.00 10.00 ns
J85 TMS, TDI data setup time 5.00 ns
J86 TMS, TDI data hold time 25.00 ns
J87 TCK low to TDO data valid 27.00 ns
J88 TCK low to TDO data invalid 0.00 ns
J89 TCK low to TDO high impedance 20.00 ns
J90 TRST assert time 100.00 ns
J91 TRST setup time to TCK low 40.00 ns
J92 TCK falling edge to output valid 50.00 ns
J93 TCK falling edge to output valid out of high impedance 50.00 ns
J94 TCK falling edge to output high impedance 50.00 ns
J95 Boundary scan input valid to TCK rising edge 50.00 ns
J96 TCK rising edge to boundary scan input invalid 50.00 ns
CLKOUT
SRESET
DSCK, DSDI
R70
R82
R80R80
R81 R81
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
42 Freescale Semiconductor
IEEE 1149.1 Electrical Specifications
Figure 35. JTAG Test Clock Input Timing
Figure 36. JTAG Test Access Port Timing Diagram
Figure 37. JTAG TRST Timing Diagram
Figure 38. Boundary Scan (JTAG) Timing Diagram
TCK
J82 J83
J82 J83
J84 J84
TCK
TMS, TDI
TDO
J85
J86
J87
J88 J89
TCK
TRST
J91
J90
TCK
Output
Signals
Output
Signals
Output
Signals
J92 J94
J93
J95 J96
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 43
CPM Electrical Characteristics
11 CPM Electrical Characteristics
This section provides the AC and DC electrical specifications for the communications processor module
(CPM) of the MPC860.
11.1 PIP/PIO AC Electrical Specifications
Table 14 provides the PIP/PIO AC timings as shown in Figure 39 through Figure 43.
Figure 39. PIP Rx (Interlock Mode) Timing Diagram
Table 14. PIP/PIO Timing
Num Characteristic
All Frequencies
Unit
Min Max
21 Data-in setup time to STBI low 0 ns
22 Data-in hold time to STBI high 2.5 – t31
1t3 = Specification 23.
—CLK
23 STBI pulse width 1.5 CLK
24 STBO pulse width 1 CLK – 5 ns ns
25 Data-out setup time to STBO low 2 CLK
26 Data-out hold time from STBO high 5 CLK
27 STBI low to STBO low (Rx interlock) 2 CLK
28 STBI low to STBO high (Tx interlock) 2 CLK
29 Data-in setup time to clock high 15 ns
30 Data-in hold time from clock high 7.5 ns
31 Clock low to data-out valid (CPU writes data, control, or direction) 25 ns
DATA-IN
STBI
23
24
22
STBO
27
21
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
44 Freescale Semiconductor
CPM Electrical Characteristics
Figure 40. PIP Tx (Interlock Mode) Timing Diagram
Figure 41. PIP Rx (Pulse Mode) Timing Diagram
Figure 42. PIP TX (Pulse Mode) Timing Diagram
DATA-OUT
24
23
26
28
25
STBO
(Output)
STBI
(Input)
DATA-IN
23
2221
STBI
(Input)
STBO
(Output)
24
DATA-OUT
24
2625
STBO
(Output)
STBI
(Input)
23
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 45
CPM Electrical Characteristics
Figure 43. Parallel I/O Data-In/Data-Out Timing Diagram
11.2 Port C Interrupt AC Electrical Specifications
Table 15 provides the timings for port C interrupts.
Figure 44 shows the port C interrupt detection timing.
Figure 44. Port C Interrupt Detection Timing
11.3 IDMA Controller AC Electrical Specifications
Table 16 provid es the IDMA controller timings as shown in Figure 45 through Figure 48.
Table 15. Port C Interrupt Timing
Num Characteristic
33.34 MHz1
1External bus frequency of greater than or equal to 33.34 MHz.
Unit
Min Max
35 Port C interrupt pulse width low (edge-triggered mode) 55 ns
36 Port C interrupt minimum time between active edges 55 ns
Table 16. IDMA Controller Timing
Num Characteristic
All Frequencies
Unit
Min Max
40 DREQ setup time to clock high 7 ns
41 DREQ hold time from clock high 3 ns
CLKO
DATA-IN
29
31
30
DATA-OUT
Port C
35
36
(Input)
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
46 Freescale Semiconductor
CPM Electrical Characteristics
Figure 45. IDMA External Requests Timing Diagram
Figure 46. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA
42 SDACK assertion delay from clock high 12 ns
43 SDACK negation delay from clock low 12 ns
44 SDACK negation delay from TA low 20 ns
45 SDACK negation delay from clock high 15 ns
46 TA assertion to rising edge of the clock setup time (applies to external TA)7 ns
Table 16. IDMA Controller Timing (continued)
Num Characteristic
All Frequencies
Unit
Min Max
41
40
DREQ
(Input)
CLKO
(Output)
DATA
42
46
43
CLKO
(Output)
TS
(Output)
R/W
(Output)
SDACK
TA
(Input)
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 47
CPM Electrical Characteristics
Figure 47. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA
Figure 48. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA
DATA
42 44
CLKO
(Output)
TS
(Output)
R/W
(Output)
TA
(Output)
SDACK
DATA
42 45
CLKO
(Output)
TS
(Output)
R/W
(Output)
TA
(Output)
SDACK
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
48 Freescale Semiconductor
CPM Electrical Characteristics
11.4 Baud Rate Generator AC Electrical Specifications
Table 17 provides the baud rate generator timings as shown in Figure 49.
Figure 49. Baud Rate Generator Timing Diagram
11.5 Timer AC Electrical Specifications
Table 18 provid es the general-purpo se timer t imings as shown in Figure 50.
Table 17. Baud Rate Generator Timing
Num Characteristic
All Frequencies
Unit
Min Max
50 BRGO rise and fall time 10 ns
51 BRGO duty cycle 40 60 %
52 BRGO cycle 40 ns
Table 18. Timer Timing
Num Characteristic
All Frequencies
Unit
Min Max
61 TIN/TGATE rise and fall time 10 ns
62 TIN/TGATE low time 1 CLK
63 TIN/TGATE high time 2 CLK
64 TIN/TGATE cycle time 3 CLK
65 CLKO low to TOUT valid 3 25 ns
52
50
51
BRGOX
50
51
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 49
CPM Electrical Characteristics
Figure 50. CPM General-Purpose Timers Timing Diagram
11.6 Serial Interface AC Electrical Specifications
Table 19 provides the serial interface timings as shown in Figure 51 through Figure 55.
Table 19. SI Timing
Num Characteristic
All Frequencies
Unit
Min Max
70 L1RCLK, L1TCLK frequency (DSC = 0)1, 2 SYNCCLK/2.5 MHz
71 L1RCLK, L1TCLK width low (DSC = 0)2P + 10 ns
71a L1RCLK, L1TCLK width high (DSC = 0)3P + 10 ns
72 L1TXD, L1ST(1–4), L1RQ, L1CLKO rise/fall time 15.00 ns
73 L1RSYNC, L1TSYNC valid to L1CLK edge (SYNC setup time) 20.00 ns
74 L1CLK edge to L1RSYNC, L1TSYNC, invalid (SYNC hold time) 35.00 ns
75 L1RSYNC, L1TSYNC rise/fall time 15.00 ns
76 L1RXD valid to L1CLK edge (L1RXD setup time) 17.00 ns
77 L1CLK edge to L1RXD invalid (L1RXD hold time) 13.00 ns
78 L1CLK edge to L1ST(1–4) valid 410.00 45.00 ns
78A L1SYNC valid to L1ST(1–4) valid 10.00 45.00 ns
79 L1CLK edge to L1ST(1–4) invalid 10.00 45.00 ns
80 L1CLK edge to L1TXD valid 10.00 55.00 ns
80A L1TSYNC valid to L1TXD valid 410.00 55.00 ns
81 L1CLK edge to L1TXD high impedance 0.00 42.00 ns
82 L1RCLK, L1TCLK frequency (DSC =1 ) 16.00 or
SYNCCLK/2
MHz
83 L1RCLK, L1TCLK width low (DSC = 1) P + 10 ns
83a L1RCLK, L1TCLK width high (DSC = 1)3P + 10 ns
CLKO
TIN/TGATE
(Input)
TOUT
(Output)
64
65
61
626361
60
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
50 Freescale Semiconductor
CPM Electrical Characteristics
Figure 51. SI Receive Timing Diagram with Normal Clocking (DSC = 0)
84 L1CLK edge to L1CLKO valid (DSC = 1) 30.00 ns
85 L1RQ valid before falling edge of L1TSYNC41.00 L1TCL
K
86 L1GR setup time242.00 ns
87 L1GR hold time 42.00 ns
88 L1CLK edge to L1SYNC valid (FSD = 00) CNT = 0000, BYT = 0, DSC = 0) 0.00 ns
1The ratio SYNCCLK/L1RCLK must be greater than 2.5/1.
2These specs are valid for IDL mode only.
3Where P = 1/CLKOUT. Thus, for a 25-MHz CLKO1 rate, P = 40 ns.
4These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever comes later.
Table 19. SI Timing (continued)
Num Characteristic
All Frequencies
Unit
Min Max
L1RXD
(Input)
L1RCLK
(FE = 0, CE = 0)
(Input)
L1RCLK
(FE = 1, CE = 1)
(Input)
L1RSYNC
(Input)
L1ST(4–1)
(Output)
71
72
70 71a
RFSD=1
75
73
74 77
78
76
79
BIT0
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 51
CPM Electrical Characteristics
Figure 52. SI Receive Timing with Double-Speed Clocking (DSC = 1)
L1RXD
(Input)
L1RCLK
(FE = 1, CE = 1)
(Input)
L1RCLK
(FE = 0, CE = 0)
(Input)
L1RSYNC
(Input)
L1ST(4–1)
(Output)
72
RFSD=1
75
73
74 77
78
76
79
83a
82
L1CLKO
(Output)
84
BIT0
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
52 Freescale Semiconductor
CPM Electrical Characteristics
Figure 53. SI Transmit Timing Diagram (DSC = 0)
L1TXD
(Output)
L1TCLK
(FE = 0, CE = 0)
(Input)
L1TCLK
(FE = 1, CE = 1)
(Input)
L1TSYNC
(Input)
L1ST(4–1)
(Output)
71 70
72
73
75
74
80a
80
78
TFSD=0
81
79
BIT0
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 53
CPM Electrical Characteristics
Figure 54. SI Transmit Timing with Double Speed Clocking (DSC = 1)
L1TXD
(Output)
L1RCLK
(FE = 0, CE = 0)
(Input)
L1RCLK
(FE = 1, CE = 1)
(Input)
L1RSYNC
(Input)
L1ST(4–1)
(Output)
72
TFSD=0
75
73
74
78a
80
79
83a
82
L1CLKO
(Output)
84
BIT0
78
81
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
54 Freescale Semiconductor
CPM Electrical Characteristics
Figure 55. IDL Timing
B17 B16 B14 B13 B12 B11 B10 D1 A B27 B26 B25 B24 B23 B22 B21 B20 D2 MB15
L1RXD
(Input)
L1TXD
(Output)
L1ST(4–1)
(Output)
L1RQ
(Output)
73
77
12345678910 11 12 13 14 15 16 17 18 19 20
74
80
B17 B16 B15 B14 B13 B12 B11 B10 D1 A B27 B26 B25 B24 B23 B22 B21 B20 D2 M
71
71
L1GR
(Input)
78
85
72
76
87
86
L1RSYNC
(Input)
L1RCLK
(Input)
81
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 55
CPM Electrical Characteristics
11.7 SCC in NMSI Mode Electrical Specifications
Table 20 provid es the NMSI external clock timing.
Table 21 provides the NMSI internal clock timing.
Table 20. NMSI External Clock Timing
Num Characteristic
All Frequencies
Unit
Min Max
100 RCLK1 and TCLK1 width high1
1The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater than or equal to 2.25/1.
1/SYNCCLK ns
101 RCLK1 and TCLK1 width low 1/SYNCCLK + 5 ns
102 RCLK1 and TCLK1 rise/fall time 15.00 ns
103 TXD1 active delay (from TCLK1 falling edge) 0.00 50.00 ns
104 RTS1 active/inactive delay (from TCLK1 falling edge) 0.00 50.00 ns
105 CTS1 setup time to TCLK1 rising edge 5.00 ns
106 RXD1 setup time to RCLK1 rising edge 5.00 ns
107 RXD1 hold time from RCLK1 rising edge2
2Also applies to CD and CTS hold time when they are used as external sync signals.
5.00 ns
108 CD1 setup Time to RCLK1 rising edge 5.00 ns
Table 21. NMSI Internal Clock Timing
Num Characteristic
All Frequencies
Unit
Min Max
100 RCLK1 and TCLK1 frequency1
1The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater than or equal to 3/1.
0.00 SYNCCLK/3 MHz
102 RCLK1 and TCLK1 rise/fall time ns
103 TXD1 active delay (from TCLK1 falling edge) 0.00 30.00 ns
104 RTS1 active/inactive delay (from TCLK1 falling edge) 0.00 30.00 ns
105 CTS1 setup time to TCLK1 rising edge 40.00 ns
106 RXD1 setup time to RCLK1 rising edge 40.00 ns
107 RXD1 hold time from RCLK1 rising edge2
2Also applies to CD and CTS hold time when they are used as external sync signals.
0.00 ns
108 CD1 setup time to RCLK1 rising edge 40.00 ns
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
56 Freescale Semiconductor
CPM Electrical Characteristics
Figure 56 through Figure 58 show the NMSI timings.
Figure 56. SCC NMSI Receive Timing Diagram
Figure 57. SCC NMSI Transmit Timing Diagram
RCLK1
CD1
(Input)
102
100
107
108
107
RxD1
(Input)
CD1
(SYNC Input)
102 101
106
TCLK1
CTS1
(Input)
102
100
104
107
TxD1
(Output)
CTS1
(SYNC Input)
102 101
RTS1
(Output)
105
103
104
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 57
CPM Electrical Characteristics
Figure 58. HDLC Bus Timing Diagram
11.8 Ethernet Electrical Specifications
Table 22 provides the Ethernet timings as shown in Figure 59 through Figure 63.
Table 22. Ethernet Timing
Num Characteristic
All Frequencies
Unit
Min Max
120 CLSN width high 40 ns
121 RCLK1 rise/fall time 15 ns
122 RCLK1 width low 40 ns
123 RCLK1 clock period180 120 ns
124 RXD1 setup time 20 ns
125 RXD1 hold time 5 ns
126 RENA active delay (from RCLK1 rising edge of the last data bit) 10 ns
127 RENA width low 100 ns
128 TCLK1 rise/fall time 15 ns
129 TCLK1 width low 40 ns
130 TCLK1 clock period199 101 ns
131 TXD1 active delay (from TCLK1 rising edge) 10 50 ns
132 TXD1 inactive delay (from TCLK1 rising edge) 10 50 ns
133 TENA active delay (from TCLK1 rising edge) 10 50 ns
134 TENA inactive delay (from TCLK1 rising edge) 10 50 ns
TCLK1
CTS1
(Echo Input)
102
100
104
TxD1
(Output)
102 101
RTS1
(Output)
103
104107
105
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
58 Freescale Semiconductor
CPM Electrical Characteristics
Figure 59. Ethernet Collision Timing Diagram
Figure 60. Ethernet Receive Timing Diagram
135 RSTRT active delay (from TCLK1 falling edge) 10 50 ns
136 RSTRT inactive delay (from TCLK1 falling edge) 10 50 ns
137 REJECT width low 1 CLK
138 CLKO1 low to SDACK asserted2—20ns
139 CLKO1 low to SDACK negated2—20ns
1The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater than or equal to 2/1.
2SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.
Table 22. Ethernet Timing (continued)
Num Characteristic
All Frequencies
Unit
Min Max
CLSN(CTS1)
120
(Input)
RCLK1
121
RxD1
(Input)
121
RENA(CD1)
(Input)
125
124 123
127
126
Last Bit
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 59
CPM Electrical Characteristics
Figure 61. Ethernet Transmit Timing Diagram
Figure 62. CAM Interface Receive Start Timing Diagram
Figure 63. CAM Interface REJECT Timing Diagram
TCLK1
128
TxD1
(Output)
128
TENA(RTS1)
(Input)
Notes:
Transmit clock invert (TCI) bit in GSMR is set.
If RENA is deasserted before TENA, or RENA is not asserted at all during transmit, then the CSL bit is set in
the buffer descriptor at the end of the frame transmission.
1.
2.
RENA(CD1)
(Input)
133 134
132
131 121
129
(Note 2)
RCLK1
RxD1
(Input)
RSTRT
(Output)
0
136
125
1 1 BIT1 BIT2
Start Frame Delimiter
REJECT
137
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
60 Freescale Semiconductor
CPM Electrical Characteristics
11.9 SMC Transparent AC Electrical Specifications
Table 23 provid es the SMC transparent timings as shown in Figure 64.
Figure 64. SMC Transparent Timing Diagram
Table 23. SMC Transparent Timing
Num Characteristic
All Frequencies
Unit
Min Max
150 SMCLK clock period1
1 SYNCCLK must be at least twice as fast as SMCLK.
100 ns
151 SMCLK width low 50 ns
151A SMCLK width high 50 ns
152 SMCLK rise/fall time 15 ns
153 SMTXD active delay (from SMCLK falling edge) 10 50 ns
154 SMRXD/SMSYNC setup time 20 ns
155 RXD1/SMSYNC hold time 5 ns
SMCLK
SMRXD
(Input)
152
150
SMTXD
(Output)
152 151
SMSYNC
151A
154 153
155
154
155
Note 1
Note:
This delay is equal to an integer number of character-length clocks.1.
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 61
CPM Electrical Characteristics
11.10 SPI Master AC Electrical Specifications
Table 24 provid es the SPI master timings as shown in Figure 65 and Figure 66.
Figure 65. SPI Master (CP = 0) Timing Diagram
Table 24. SPI Master Timing
Num Characteristic
All Frequencies
Unit
Min Max
160 MASTER cycle time 4 1024 tcyc
161 MASTER clock (SCK) high or low time 2 512 tcyc
162 MASTER data setup time (inputs) 50 ns
163 Master data hold time (inputs) 0 ns
164 Master data valid (after SCK edge) 20 ns
165 Master data hold time (outputs) 0 ns
166 Rise time output 15 ns
167 Fall time output 15 ns
SPIMOSI
(Output)
SPICLK
(CI = 0)
(Output)
SPICLK
(CI = 1)
(Output)
SPIMISO
(Input)
162
Data
166167161
161 160
msb lsb msb
msb Data lsb msb
167 166
163
166
167
165 164
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
62 Freescale Semiconductor
CPM Electrical Characteristics
Figure 66. SPI Master (CP = 1) Timing Diagram
11.11 SPI Slave AC Electrical Specifications
Table 25 provides the SPI slave timings as shown in Figure 67 and Figure 68.
Table 25. SPI Slave Timing
Num Characteristic
All Frequencies
Unit
Min Max
170 Slave cycle time 2 tcyc
171 Slave enable lead time 15 ns
172 Slave enable lag time 15 ns
173 Slave clock (SPICLK) high or low time 1 tcyc
174 Slave sequential transfer delay (does not require deselect) 1 tcyc
175 Slave data setup time (inputs) 20 ns
176 Slave data hold time (inputs) 20 ns
177 Slave access time 50 ns
SPIMOSI
(Output)
SPICLK
(CI = 0)
(Output)
SPICLK
(CI = 1)
(Output)
SPIMISO
(Input)
Data
166167161
161 160
msb lsb msb
msb Data lsb msb
167 166
163
166
167
165 164
162
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 63
CPM Electrical Characteristics
Figure 67. SPI Slave (CP = 0) Timing Diagram
Figure 68. SPI Slave (CP = 1) Timing Diagram
SPIMOSI
(Input)
SPICLK
(CI = 0)
(Input)
SPICLK
(CI = 1)
(Input)
SPIMISO
(Output)
180
Data
181182173
173 170
msb lsb msb
181
177 182
175 179
SPISEL
(Input)
171172
174
Datamsb lsb msbUndef
181
178
176 182
SPIMOSI
(Input)
SPICLK
(CI = 0)
(Input)
SPICLK
(CI = 1)
(Input)
SPIMISO
(Output)
180
Data
181182
msb lsb
181
177 182
175 179
SPISEL
(Input)
174
Data
msb lsbUndef
178
176 182
msb
msb
172
173
173
171 170
181
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
64 Freescale Semiconductor
CPM Electrical Characteristics
11.12 I2C AC Electrical Specifications
Table 26 provid es the I2C (SCL < 100 kHz) timings.
Table 27 provid es the I2C (SCL > 100 kHz) timings.
Table 26. I2C Timing (SCL < 100 kHZ)
Num Characteristic
All Frequencies
Unit
Min Max
200 SCL clock frequency (slave) 0 100 kHz
200 SCL clock frequency (master)1
1SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3 × pre_scaler × 2).
The ratio SYNCCLK/(BRGCLK/pre_scaler) must be greater than or equal to 4/1.
1.5 100 kHz
202 Bus free time between transmissions 4.7 μs
203 Low period of SCL 4.7 μs
204 High period of SCL 4.0 μs
205 Start condition setup time 4.7 μs
206 Start condition hold time 4.0 μs
207 Data hold time 0 μs
208 Data setup time 250 ns
209 SDL/SCL rise time 1 μs
210 SDL/SCL fall time 300 ns
211 Stop condition setup time 4.7 μs
Table 27 . . I2C Timing (SCL > 100 kHZ)
Num Characteristic Expression
All Frequencies
Unit
Min Max
200 SCL clock frequency (slave) fSCL 0 BRGCLK/48 Hz
200 SCL clock frequency (master)1
1SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) × pre_scaler × 2).
The ratio SYNCCLK/(BRGCLK / pre_scaler) must be greater than or equal to 4/1.
fSCL BRGCLK/16512 BRGCLK/48 Hz
202 Bus free time between transmissions 1/(2.2 * fSCL) s
203 Low period of SCL 1/(2.2 * fSCL) s
204 High period of SCL 1/(2.2 * fSCL) s
205 Start condition setup time 1/(2.2 * fSCL) s
206 Start condition hold time 1/(2.2 * fSCL) s
207 Data hold time 0 s
208 Data setup time 1/(40 * fSCL) s
209 SDL/SCL rise time 1/(10 * fSCL) s
210 SDL/SCL fall time 1/(33 * fSCL) s
211 Stop condition setup time 1/2(2.2 * fSCL) s
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 65
UTOPIA AC Electrical Specifications
Figure 69 shows the I2C bus timing.
Figure 69. I2C Bus Timing Diagram
12 UTOPIA AC Electrical Specifications
Table 28 shows the AC electrical specifications for the UTOPIA interface.
Table 28. UTOPIA AC Electrical Specifications
Num Signal Characteristic Direction Min Max Unit
U1 UtpClk rise/fall time (Internal clock option) Output 3.5 ns
Duty cycle 50 50 %
Frequency —50MHz
U1a UtpClk rise/fall time (external clock option) Input 3.5 ns
Duty cycle 40 60 %
Frequency —50MHz
U2 RxEnb and TxEnb active delay Output 2 16 ns
U3 UTPB, SOC, Rxclav and Txclav setup time Input 8 ns
U4 UTPB, SOC, Rxclav and Txclav hold time Input 1 ns
U5 UTPB, SOC active delay (and PHREQ and PHSEL active delay in
MPHY mode)
Output 2 16 ns
SCL
202
205
203
207
204
208
206 209 211210
SDA
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
66 Freescale Semiconductor
UTOPIA AC Electrical Specifications
Figure 70 shows signal timings during UTOPIA receive opera tions.
Figure 70. UTOPIA Receive Timing
Figure 71 shows signal timings during UTOPIA transmit operations.
Figure 71. UTOPIA Transmit Timing
UtpClk
UTPB
RxEnb
U1
3
2
SOC
RxClav
PHREQn
34
U1
U5
U3 U4
U4
U3
U2
UtpClk
UTPB
TxEnb
1
2
SOC
5
TxClav
PHSELn
34
5
U1 U1
U5
U5
U2
U4
U3
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 67
FEC Electrical Characteristics
13 FEC Electrical Characteristics
This section provides the AC electrical specifications for the Fast Ethernet controller (FEC). Note that the
timing specifications for the MII signals are independent of system clock frequency (part speed
designation). Also, MII signals use TTL signa l levels compa tible with devices operating at either 5.0 V or
3.3 V.
13.1 MII Receive Signal Timing (MII_RXD[3:0], MII_RX_DV, MII_RX_ER,
MII_RX_CLK)
The r eceiver functions correctly up t o a MII_RX_CLK maximu m frequency of 25 MHz + 1%. There is no
minimum frequency requirement. In addition, the processor clock frequency must exceed the
MII_RX_CLK frequency – 1%.
Table 29 provides information on the MII receive signal timing.
Figure 72 shows MII receive signal timing.
Figure 72. MII Receive Signal Timing Diagram
Table 29. MII Receive Signal Timing
Num Characteristic Min Max Unit
M1 MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup 5 ns
M2 MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold 5 ns
M3 MII_RX_CLK pulse width high 35% 65% MII_RX_CLK
period
M4 MII_RX_CLK pulse width low 35% 65% MII_RX_CLK
period
M1 M2
MII_RX_CLK (Input)
MII_RXD[3:0] (Inputs)
MII_RX_DV
MII_RX_ER
M3
M4
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
68 Freescale Semiconductor
FEC Electrical Characteristics
13.2 MII Transmit Signal Timing (MII_TXD[3:0], MII_TX_EN,
MII_TX_ER, MII_TX_CLK)
The tran smitter functions correctl y up to a MII_TX_CLK maximum fr equency of 25 MHz +1%. There is
no minimum frequency requirement. In addition, the processor clock frequency must exceed the
MII_TX_CLK frequency – 1%.
Table 30 provides information on the MII transmit signal timing.
Figure 73 shows the MII transmit signal timing diagram.
Figure 73. MII Transmit Signal Timing Diagram
Table 30. MII Transmit Signal Timing
Num Characteristic Min Max Unit
M5 MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER invalid 5 ns
M6 MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER valid 25
M7 MII_TX_CLK pulse width high 35 65% MII_TX_CLK
period
M8 MII_TX_CLK pulse width low 35% 65% MII_TX_CLK
period
M6
MII_TX_CLK (Input)
MII_TXD[3:0] (Outputs)
MII_TX_EN
MII_TX_ER
M5
M7
M8
RMII_REFCLK
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 69
FEC Electrical Characteristics
13.3 MII Async Inputs Signal Timing (MII_CRS, MII_COL)
Table 31 provides information on the MII async in puts signal timing.
Figure 74 shows the MII asynchronous inputs signal timing diagram.
Figure 74. MII Async Inputs Timing Diagram
13.4 MII Serial Management Channel Timing (MII_MDIO, MII_MDC)
Table 32 provid es information on the MII serial manageme nt channel signal timing. The FEC functions
correctly with a maximum MDC frequency in excess of 2.5 MHz. The exact upper bound is under
investigation.
Table 31. MII Async Inputs Signal Timing
Num Characteristic Min Max Unit
M9 MII_CRS, MII_COL minimum pulse width 1.5 MII_TX_CLK
period
Table 32. MII Serial Management Channel Timing
Num Characteristic Min Max Unit
M10 MII_MDC falling edge to MII_MDIO output invalid (minimum propagation
delay)
0— ns
M11 MII_MDC falling edge to MII_MDIO output valid (max prop delay) 25 ns
M12 MII_MDIO (input) to MII_MDC rising edge setup 10 ns
M13 MII_MDIO (input) to MII_MDC rising edge hold 0 ns
M14 MII_MDC pulse width high 40% 60% MII_MDC
period
M15 MII_MDC pulse width low 40% 60% MII_MDC
period
MII_CRS, MII_COL
M9
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
70 Freescale Semiconductor
Mechanical Data and Ordering Information
Figure 75 shows the MII serial mana gement channel timing diagram.
Figure 75. MII Serial Management Channel Timing Diagram
14 Mechanical Data and Ordering Information
14.1 Ordering Information
Table 33 provid es information on the MPC860 Revision D.4 derivative devices.
Table 33. MPC860 Family Revision D.4 Derivatives
Device Number of
SCCs1
1Serial communications controller (SCC)
Ethernet Support2
(Mbps)
2Up to 4 channels at 40 MHz or 2 channels at 25 MHz
Multichannel
HDLC Support
ATM
Support
MPC855T 1 10/100 Yes Yes
MPC860DE 2 10 N/A N/A
MPC860DT 10/100 Yes Yes
MPC860DP 10/100 Yes Yes
MPC860EN 4 10 N/A N/A
MPC860SR 10 Yes Yes
MPC860T 10/100 Yes Yes
MPC860P 10/100 Yes Yes
M11
MII_MDC (Output)
MII_MDIO (Output)
M12 M13
MII_MDIO (Input)
M10
M14
MM15
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 71
Mechanical Data and Ordering Information
Table 34 identif ies the packages and operating frequencies available for the MPC860.
Table 34. MPC860 Family Package/Frequency Availability
Package Type Freq. (MHz) /
Temp. (Tj) Package Order Number
Ball grid array
ZP suffix—leaded
ZQ suffix—leaded
VR suffix—lead-free
50
0° to 95°C
ZP/ZQ1MPC855TZQ50D4
MPC860DEZQ50D4
MPC860DTZQ50D4
MPC860ENZQ50D4
MPC860SRZQ50D4
MPC860TZQ50D4
MPC860DPZQ50D4
MPC860PZQ50D4
Tape and Reel MPC855TZQ50D4R2
MPC860DEZQ50D4R2
MPC860ENZQ50D4R2
MPC860SRZQ50D4R2
MPC860TZQ50D4R2
MPC860DPZQ50D4R2
MC860ENCVR50D4R2
MPC855TVR50D4R2
MPC860ENVR50D4R2
MPC860SRVR50D4R2
MPC860TVR50D4R2
VR MPC855TCVR50D4
MPC855TVR50D4
MPC860DEVR50D4
MPC860DPVR50D4
MPC860DTVR50D4
MPC860ENVR50D4
MPC860PVR50D4
MPC860SRVR50D4
MPC860TVR50D4
66
0° to 95°C
ZP/ZQ1MPC855TZQ66D4
MPC860DEZQ66D4
MPC860DTZQ66D4
MPC860ENZQ66D4
MPC860SRZQ66D4
MPC860TZQ66D4
MPC860DPZQ66D4
MPC860PZQ66D4
Tape and Reel MPC860SRZQ66D4R2
MPC860PZQ66D4R2
VR MPC855TCVR66D4
MPC855TVR66D4
MPC860DEVR66D4
MPC860DPVR66D4
MPC860DTVR66D4
MPC860ENVR66D4
MPC860PVR66D4
MPC860SRVR66D4
MPC860TVR66D4
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
72 Freescale Semiconductor
Mechanical Data and Ordering Information
Ball grid array (continued)
ZP suffix—leaded
ZQ suffix—leaded
VR suffix—lead-free
80
0° to 95°C
ZP/ZQ1MPC855TZQ80D4
MPC860DEZQ80D4
MPC860DTZQ80D4
MPC860ENZQ80D4
MPC860SRZQ80D4
MPC860TZQ80D4
MPC860DPZQ80D4
MPC860PZQ80D4
Tape and Reel MPC860PZQ80D4R2
MPC860PVR80D4R2
VR MPC855TVR80D4
MPC860DEVR80D4
MPC860DPVR80D4
MPC860ENVR80D4
MPC860PVR80D4
MPC860SRVR80D4
MPC860TVR80D4
Ball grid array (CZP suffix)
CZP suffix—leaded
CZQ suffix—leaded
CVR suffix—lead-free
50
–40° to 95°C
ZP/ZQ1MPC855TCZQ50D4
MPC860DECZQ50D4
MPC860DTCZQ50D4
MPC860ENCZQ50D4
MPC860SRCZQ50D4
MPC860TCZQ50D4
MPC860DPCZQ50D4
MPC860PCZQ50D4
Tape and Reel MPC855TCZQ50D4R2
MC860ENCVR50D4R2
CVR MPC860DECVR50D4
MPC860DTCVR50D4
MPC860ENCVR50D4
MPC860PCVR50D4
MPC860SRCVR50D4
MPC860TCVR50D4
66
–40° to 95°C
ZP/ZQ1MPC855TCZQ66D4
MPC860ENCZQ66D4
MPC860SRCZQ66D4
MPC860TCZQ66D4
MPC860DPCZQ66D4
MPC860PCZQ66D4
CVR MPC860DTCVR66D4
MPC860ENCVR66D4
MPC860PCVR66D4
MPC860SRCVR66D4
MPC860TCVR66D4
1The ZP package is no longer recommended for use. The ZQ package replaces the ZP package.
Table 34. MPC860 Family Package/Frequency Availability (continued)
Package Type Freq. (MHz) /
Temp. (Tj) Package Order Number
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 73
Mechanical Data and Ordering Information
14.2 Pin Assignments
Figure 76 s hows the top view pinout of the PBGA package. For additional information, see the MPC860
PowerQUICC Users Manual, or th e MPC855T Users Manual.
NOTE: This is the top view of the device.
Figure 76. Pinout of the PBGA Package
PD3 IRQ7 D0 D4 D1 D2 D3 D5 VDDL D6 D7 D29 CLKOUT IPA3DP2
A2 A7 A14 A27 A29 A30 A28 A31 VDDL BSA2 WE1 WE3 CE2A CS1CS4A5 A11
18 16 14 13 12 11 10 9 8 7 6 5 3 2417 15 119
A1 A6 A13 A17 A21 A23 A22 TSIZ0 BSA3 M_CRS WE2 GPLA2 CE1A WRCS5A4 A10 GPLB4A0
PA15 A3 A12 A16 A20 A24 A26 TSIZ1 BSA1 WE0 GPLA1 GPLA3 CS0 TACS7PB31 A9 GPLA4PB30
PC14 PC15 N/C N/C A15 A19 A25 A18 BSA0 GPLA0 N/C CS6 GPLA5 BDIPCS2PA 1 4 A 8 TEAPB28
PC13 PB29
VDDH VDDH
BI BGCS3PA 1 3 BBPB27
PC12 VDDL
GND GND
TS IRQ3VDDLPA1 2 BURSTPB26
TMS PA11 IRQ6 IPB4BRTDO IPB3TRST
M_MDIO
TCK IRQ2 IPB0M_COLTDI IPB7VDDL
PB24 PB25 IPB1 IPB2IPB5PA1 0 ALEBPC11
PA9 PB21 GND IPB6 ALEABADDR30PB23 IRQ4PC10
PC9 PB20 AS OP1OP0PA8 MODCK1PB22
PC8 PC7
BADDR28
BADDR29
MODCK2
PA6 VDDL
PA7
PA 5 P B1 6
TEXP
EXTCLK
HRESET
PB18 EXTALPB19
PB17 VDDL GND
RSTCONF
SRESET
VDDLPA 3 G N D XTALPA4
PA2 P D 1 2 VDDH
WAIT_A
PORESET
WAIT_B
PB15 VDDH KAPWRPC6
PC5 PD11 VDDH D12 D17 D9 D15 D22 D25 D31 IPA6 IPA0 IPA7 XFCIPA1PC4 PD7 VDDSYNPA1
PB14 PD4 IRQ1 D8 D23 D11 D16 D19 D21 D26 D30 IPA5 IPA2 N/CIPA4PD15 PD5 VSSSYNPA 0
PD13 PD6 IRQ0 D13 D27 D10 D14 D18 D20 D24 D28 DP1 DP0 N/CDP3PD9 M_Tx_EN VSSSYN1
PD14
B
A
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
PD10 PD8
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
74 Freescale Semiconductor
Mechanical Data and Ordering Information
14.3 Mechanical Dimensions of the PBGA Package
Figure 77 shows the mechanical dimensions of the ZP PBGA package.
Figure 77. Mechanical Dimensions and Bottom Surface Nomenclature of the ZP PBGA Package
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
12345678910
11
12
13
14
15
16
17
18
19
SIDE VIEW
BOTTOM VIEW
18X
4X
357X b
TOP VIEW
A2
A3
e
0.3 MC
D
A
A1
D2
0.15 MC
EE2
0.2 C
A
B
0.2
D1
E1
AB
0.25 C
0.35 C
C
NOTE
1. Dimensions and tolerance per ASME Y14.5M, 1994.
2. Dimensions in millimeters.
3. Dimension b is the maximum solder ball diameter
measured parallel to data C.
DIM MIN MAX
MILLIMETERS
A--- 2.05
0.50 0.70
A2 0.95 1.35
A3 0.70 0.90
b0.60 0.90
D25.00 BSC
D1 22.86 BSC
D2 22.40 22.60
e1.27 BSC
E25.00 BSC
E1 22.86 BSC
E2 22.40 22.60
A1
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 75
Mechanical Data and Ordering Information
Figure 78 shows the mechanical dimensions of the ZQ PBGA package.
Figure 78. Mechanical Dimensions and Bottom Surface Nomenclature of the ZQ PBGA Package
NOTE
1. All Dimensions in millimeters.
2. Dimensions and tolerance per ASME Y14.5M, 1994.
3. Maximum Solder Ball Diameter measured parallel to Datum A.
4. Datum A, the seating plane, is defined by the spherical crowns of the solder balls.
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
76 Freescale Semiconductor
Document Revision History
15 Document Revision History
Table 35 lis ts significant changes between revisions of this hardware specification.
Table 35. Document Revision History
Revision Date Changes
9 10/2011 Updated orderable part numbers in Ta ble 3 4, “MPC860 Family Package/Frequency
Availability.
8 08/2007 Updated template.
On page 1, added a second paragraph.
After Table 2, inserted a new figure showing the undershoot/overshoot voltage
(Figure 1) and renumbered the rest of the figures.
•In Figure 3, changed all reference voltage measurement points from 0.2 and 0.8 V to
50% level.
•In Ta b l e 1 6 , changed num 46 description to read, “TA assertion to rising edge ...
•In Figure 46, changed TA to reflect the rising edge of the clock.
7.0 9/2004 Added a tablefootnote to Ta b l e 6 DC Electrical Specifications about meeting the VIL
Max of the I2C Standard
Replaced the thermal characteristics in Ta bl e 4 by the ZQ package
Add the new parts to the Ordering and Availablity Chart in Ta b l e 34
Added the mechanical spec of the ZQ package in Figure 78
Removed all of the old revisions from Ta b l e 5
6.3 9/2003 •Added Section 11.2 on the Port C interrupt pins
•Nontechnical reformatting
6.2 8/2003 Changed B28a through B28d and B29d to show that TRLX can be 0 or 1
Changed reference documentation to reflect the Rev 2 MPC860 PowerQUICC Family
Users Manual
Nontechnical reformatting
6.1 11/2002 Corrected UTOPIA RXenb* and TXenb* timing values
Changed incorrect usage of Vcc to Vdd
Corrected dual port RAM to 8 Kbytes
6 10/2002 Added the MPC855T. Corrected Figure 26 on page -36.
5.1 11/2001 Revised template format, removed references to MAC functionality, changed Table 7
B23 max value @ 66 MHz from 2ns to 8ns, added this revision history table
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9
Freescale Semiconductor 77
Document Revision History
Document Number: MPC860EC
Rev. 9
02/2012
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com
Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC,
QorIQ, StarCore, and Symphony are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. CoreNet, QorIQ Qonverge,
QUICC Engine, and VortiQa are trademarks of Freescale Semiconductor,
Inc. All other product or service names are the property of their respective
owners. The Power Architecture and Power.org word marks and the Power
and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.
© 2007-2012 Freescale Semiconductor, Inc.