IKW15N120T2
TrenchStop® 2nd generation Series
IFAG IPC TD VLS
1
Rev. 2.2 12.06.2013
Low Loss DuoPack : IGBT in 2nd generation TrenchStop® technology
with soft, fast recovery anti-parallel Emitter Controlled Diode
Short circuit withstand time 10s
Designed for :
- Frequency Converters
- Uninterrupted Power Supply
TrenchStop® 2nd generation for 1200 V applications offers :
- very tight parameter distribution
- high ruggedness, temperature stable behavior
Easy paralleling capability due to positive temperature coefficient
in VCE(sat)
Low EMI
Low Gate Charge
Very soft, fast recovery anti-parallel Emitter Controlled HE Diode
Qualified according to JEDEC1 for target applications
Pb-free lead plating; RoHS compliant
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type
IC
VCE(sat),Tj=25°C
Tj,max
Marking Code
Package
IKW15N120T2
15A
1.75V
175C
K15T1202
PG-TO-247-3
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
VCE
1200
V
DC collector current (Tj = 150°C)
TC = 25C
TC = 110C
IC
30
15
A
Pulsed collector current, tp limited by Tjmax
ICpuls
60
Turn off safe operating area
VCE 1200V, Tj 175C
-
60
Diode forward current (Tj = 150°C)
TC = 25C
TC = 110C
IF
25
15
Diode pulsed current, tp limited by Tjmax
IFpuls
60
Gate-emitter voltage
VGE
20
V
Short circuit withstand time2)
VGE = 15V, VCC 600V, Tj, start 175C
tSC
10
s
Power dissipation
TC = 25C
Ptot
235
W
Operating junction temperature
Tj
-40...+175
C
Storage temperature
Tstg
-55...+150
Soldering temperature, 1.6mm (0.063 in.) from case for 10s
Wavesoldering only, temperature on leads only
-
260
1
J-STD-020 and JESD-022
2
) Allowed number of short circuits: <1000; time between short circuits: >1s.
PG-TO-247-3
G
C
E
IKW15N120T2
TrenchStop® 2nd generation Series
IFAG IPC TD VLS
2
Rev. 2.2 12.06.2013
Thermal Resistance
Parameter
Symbol
Conditions
Max. Value
Unit
Characteristic
IGBT thermal resistance,
junction case
RthJC
0.63
K/W
Diode thermal resistance,
junction case
RthJCD
1.12
Thermal resistance,
junction ambient
RthJA
40
Electrical Characteristic, at Tj = 25 C, unless otherwise specified
Parameter
Symbol
Conditions
Value
Unit
min.
typ.
max.
Static Characteristic
Collector-emitter breakdown voltage
V(BR)CES
VGE=0V, IC=500µA
1200
-
-
V
Collector-emitter saturation voltage
VCE(sat)
VGE = 15V, IC=15A
Tj=25C
Tj=150C
Tj=175C
-
-
-
1.7
2.1
2.2
2.2
-
-
Diode forward voltage
VF
VGE=0V, IF=15A
Tj=25C
Tj=150C
Tj=175C
-
-
-
1.75
1.8
1.75
2.2
-
-
Gate-emitter threshold voltage
VGE(th)
IC=0.6mA,VCE=VGE
5.2
5.8
6.4
Zero gate voltage collector current
ICES
VCE=1200V,
VGE=0V
Tj=25C
Tj=150C
Tj=175C
-
-
-
-
-
-
0.4
4.0
20
mA
Gate-emitter leakage current
IGES
VCE=0V,VGE=20V
-
-
600
nA
Transconductance
gfs
VCE=20V, IC=15A
-
8
-
S
IKW15N120T2
TrenchStop® 2nd generation Series
IFAG IPC TD VLS
3
Rev. 2.2 12.06.2013
Dynamic Characteristic
Input capacitance
Ciss
VCE=25V,
VGE=0V,
f=1MHz
-
1000
-
pF
Output capacitance
Coss
-
100
-
Reverse transfer capacitance
Crss
-
56
-
Gate charge
QGate
VCC=960V, IC=15A
VGE=15V
-
93
-
nC
Internal emitter inductance
measured 5mm (0.197 in.) from case
LE
-
13
-
nH
Short circuit collector current1)
IC(SC)
VGE=15V,tSC10s
VCC = 600V,
Tj,start = 25C
Tj,start = 175C
-
82
60
-
A
Switching Characteristic, Inductive Load, at Tj=25 C
Parameter
Symbol
Conditions
Value
Unit
min.
typ.
max.
IGBT Characteristic
Turn-on delay time
td(on)
Tj=25C,
VCC=600V,IC=15A,
VGE=0/15V,
RG=41.8,
L
2)=126nH,
C
2)=34pF
Energy losses include
“tail” and diode
reverse recovery.
-
32
-
ns
Rise time
tr
-
25
-
Turn-off delay time
td(off)
-
362
-
Fall time
tf
-
95
-
Turn-on energy
Eon
-
1.25
-
mJ
Turn-off energy
Eoff
-
0.8
-
Total switching energy
Ets
-
2.05
-
Anti-Parallel Diode Characteristic
Diode reverse recovery time
trr
Tj=25C,
VR=600V, IF=15A,
diF/dt=450A/s
-
300
-
ns
Diode reverse recovery charge
Qrr
-
1.3
µC
Diode peak reverse recovery current
Irrm
-
10
A
Diode peak rate of fall of reverse
recovery current during tb
dirr/dt
-
215
-
A/s
1
) Allowed number of short circuits: <1000; time between short circuits: >1s.
2) Leakage inductance L
and Stray capacity C due to dynamic test circuit in Figure E.
IKW15N120T2
TrenchStop® 2nd generation Series
IFAG IPC TD VLS
4
Rev. 2.2 12.06.2013
Switching Characteristic, Inductive Load, at Tj=175 C
Parameter
Symbol
Conditions
Value
Unit
min.
typ.
max.
IGBT Characteristic
Turn-on delay time
td(on)
Tj=175C
VCC=600V,IC=15A,
VGE=0/15V,
RG= 41.8,
L
1)=315nH,
C
1)=34pF
Energy losses include
“tail” and diode
reverse recovery.
-
31
-
ns
Rise time
tr
-
30
-
Turn-off delay time
td(off)
-
450
-
Fall time
tf
-
176
-
Turn-on energy
Eon
-
1.5
-
mJ
Turn-off energy
Eoff
-
1.3
-
Total switching energy
Ets
-
2.8
-
Anti-Parallel Diode Characteristic
Diode reverse recovery time
trr
Tj=175C
VR=600V, IF=15A,
diF/dt=460A/s
-
460
-
ns
Diode reverse recovery charge
Qrr
-
2.65
-
µC
Diode peak reverse recovery current
Irrm
-
13
-
A
Diode peak rate of fall of reverse
recovery current during tb
dirr/dt
-
123
A/s
1) Leakage inductance L
and Stray capacity C due to dynamic test circuit in Figure E.
IKW15N120T2
TrenchStop® 2nd generation Series
IFAG IPC TD VLS
5
Rev. 2.2 12.06.2013
IC, COLLECTOR CURRENT
10Hz 100Hz 1kHz 10kHz 100kHz
0A
20A
40A
60A
TC=110°C
TC=80°C
IC, COLLECTOR CURRENT
1V 10V 100V 1000V
0.1A
1A
10A
DC
10µs
tp=3µs
50µs
500µs
20ms
150µs
f, SWITCHING FREQUENCY
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 1. Collector current as a function of
switching frequency
(Tj 175C, D = 0.5, VCE = 600V,
VGE = 0/+15V, RG = 41.8)
Figure 2. Safe operating area
(D = 0, TC = 25C,
Tj 175C;VGE=15V)
Ptot, POWER DISSIPATION
25°C 50°C 75°C 100°C 125°C 150°C
0W
50W
100W
150W
200W
IC, COLLECTOR CURRENT
25°C 75°C 125°C
0A
10A
20A
30A
TC, CASE TEMPERATURE
TC, CASE TEMPERATURE
Figure 3. Maximum power dissipation as a
function of case temperature
(Tj 175C)
Figure 4. Maximum DC Collector current as
a function of case temperature
(VGE 15V, Tj 175C)
Ic
Ic
IKW15N120T2
TrenchStop® 2nd generation Series
IFAG IPC TD VLS
6
Rev. 2.2 12.06.2013
IC, COLLECTOR CURRENT
0V 1V 2V 3V 4V
0A
10A
20A
30A
40A
50A
60A
20V
15V
7V
9V
11V
13V
VGE=17V
IC, COLLECTOR CURRENT
0V 1V 2V 3V 4V
0A
10A
20A
30A
40A
50A
60A
20V
15V
7V
9V
11V
13V
VGE=17V
VCE, COLLECTOR-EMITTER VOLTAGE
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristic
(Tj = 25°C)
Figure 6. Typical output characteristic
(Tj = 175°C)
IC, COLLECTOR CURRENT
0V 2V 4V 6V 8V 10V 12V
0A
10A
20A
30A
40A
50A
60A
25°C
TJ=175°C
VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE
0°C 50°C 100°C 150°C
0.0V
0.5V
1.0V
1.5V
2.0V
2.5V
3.0V
IC=15A
IC=30A
IC=7.5A
IC=2A
VGE, GATE-EMITTER VOLTAGE
TJ, JUNCTION TEMPERATURE
Figure 7. Typical transfer characteristic
(VCE=20V)
Figure 8. Typical collector-emitter
saturation voltage as a function of
junction temperature
(VGE = 15V)
IKW15N120T2
TrenchStop® 2nd generation Series
IFAG IPC TD VLS
7
Rev. 2.2 12.06.2013
t, SWITCHING TIMES
7.5A 15.0A 22.5A
10ns
100ns
tr
td(on)
tf
td(off)
t, SWITCHING TIMES
     
10 ns
100 ns
1000 ns
tf
tr
td(off)
td(on)
IC, COLLECTOR CURRENT
RG, GATE RESISTOR
Figure 9. Typical switching times as a
function of collector current
(inductive load, TJ=175°C,
VCE=600V, VGE=0/15V, RG=41.8Ω,
Dynamic test circuit in Figure E)
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, TJ=175°C,
VCE=600V, VGE=0/15V, IC=15A,
Dynamic test circuit in Figure E)
t, SWITCHING TIMES
0°C 50°C 100°C 150°C
10ns
100ns
tr
tf
td(on)
td(off)
VGE(th), GATE-EMITT TRSHOLD VOLTAGE
0°C 50°C 100°C 150°C
3.5V
4.0V
4.5V
5.0V
5.5V
6.0V
6.5V
min.
typ.
max.
TJ, JUNCTION TEMPERATURE
TJ, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE=600V,
VGE=0/15V, IC=15A, RG=41.8Ω,
Dynamic test circuit in Figure E)
Figure 12. Gate-emitter threshold voltage as
a function of junction temperature
(IC = 600µA)
IKW15N120T2
TrenchStop® 2nd generation Series
IFAG IPC TD VLS
8
Rev. 2.2 12.06.2013
E, SWITCHING ENERGY LOSSES
7.5A 15.0A 22.5A
0.0mJ
2.5mJ
5.0mJ
7.5mJ
Ets*
Eoff
*) Eon and Etsinclude losses
due to diode recovery
Eon*
E, SWITCHING ENERGY LOSSES
     
0.00 mJ
1.25 mJ
2.50 mJ
3.75 mJ
5.00 mJ
Ets*
Eon*
*) Eon and Ets include losses
due to diode recovery
Eoff
IC, COLLECTOR CURRENT
RG, GATE RESISTOR
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, TJ=175°C,
VCE=600V, VGE=0/15V, RG=41.8Ω,
Dynamic test circuit in Figure E)
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, TJ=175°C,
VCE=600V, VGE=0/15V, IC=15A,
Dynamic test circuit in Figure E)
E, SWITCHING ENERGY LOSSES
0°C 50°C 100°C 150°C
0.0mJ
1.2mJ
2.4mJ
Ets*
Eon*
*) Eon and Ets include losses
due to diode recovery
Eoff
E, SWITCHING ENERGY LOSSES
400V 500V 600V 700V
0.00mJ
1.25mJ
2.50mJ
3.75mJ
5.00mJ Ets*
Eon*
*) Eon and Ets include losses
due to diode recovery
Eoff
TJ, JUNCTION TEMPERATURE
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 15. Typical switching energy losses
as a function of junction
temperature
(inductive load, VCE=600V,
VGE=0/15V, IC=15A, RG=41.8Ω,
Dynamic test circuit in Figure E)
Figure 16. Typical switching energy losses
as a function of collector emitter
voltage
(inductive load, TJ=175°C,
VGE=0/15V, IC=15A, RG=41.8Ω,
Dynamic test circuit in Figure E)
IKW15N120T2
TrenchStop® 2nd generation Series
IFAG IPC TD VLS
9
Rev. 2.2 12.06.2013
VGE, GATE-EMITTER VOLTAGE
0nC 25nC 50nC 75nC
0V
5V
10V
15V
960V
240V
c, CAPACITANCE
0V 10V 20V
10pF
100pF
1nF
Crss
Coss
Ciss
QGE, GATE CHARGE
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 17. Typical gate charge
(IC=15 A)
Figure 18. Typical capacitance as a function
of collector-emitter voltage
(VGE=0V, f = 1 MHz)
tSC, SHORT CIRCUIT WITHSTAND TIME
12V 14V 16V 18V
0µs
5µs
10µs
15µs
IC(sc), short circuit COLLECTOR CURRENT
12V 14V 16V 18V
0A
25A
50A
75A
100A
VGE, GATE-EMITTETR VOLTAGE
VGE, GATE-EMITTETR VOLTAGE
Figure 19. Short circuit withstand time as a
function of gate-emitter voltage
(VCE=600V, start at TJ175°C)
Figure 20. Typical short circuit collector
current as a function of gate-
emitter voltage
(VCE 600V, Tj,start =175C)
IKW15N120T2
TrenchStop® 2nd generation Series
IFAG IPC TD VLS
10
Rev. 2.2 12.06.2013
VCE, COLLECTOR-EMITTER VOLTAGE
0V
200V
400V
600V
0A
5A
10A
15A
20A
25A
1.2us0.8us0.4us
0us
IC
VCE
IC, COLLECTOR CURRENT
0V
200V
400V
600V
0A
5A
10A
15A
1.2us0.8us0.4us
0us
IC
VCE
t, TIME
t, TIME
Figure 21. Typical turn on behavior
(VGE=0/15V, RG=41.8Ω, Tj = 175C,
Dynamic test circuit in Figure E)
Figure 22. Typical turn off behavior
(VGE=15/0V, RG=41.8Ω, Tj = 175C,
Dynamic test circuit in Figure E)
ZthJC, TRANSIENT THERMAL RESISTANCE
10µs 100µs 1ms 10ms 100ms
10-2K/W
10-1K/W
100K/W
single pulse
0.01
0.02
0.05
0.1
0.2
D=0.5
ZthJC, TRANSIENT THERMAL RESISTANCE
10µs 100µs 1ms 10ms 100ms
10-2K/W
10-1K/W
100K/W
single pulse
0.01
0.02
0.05
0.1
0.2
D=0.5
tP, PULSE WIDTH
tP, PULSE WIDTH
Figure 23. IGBT transient thermal resistance
(D = tp / T)
Figure 24. Diode transient thermal
impedance as a function of pulse
width
(D=tP/T)
R,( K/W )
, (s)
0.143
3.06*10-4
0.217
3.47*10-3
0.258
1.71*10-2
0.017
2.63*10-1
C1=
1/R1
R1
R2
C2=
2/R2
R,( K/W )
, (s)
0.291
2.75*10-4
0.434
2.60*10-3
0.363
1.48*10-2
0.028
1.78*10-1
C1=
1/R1
R1
R2
C2=
2/R2
IKW15N120T2
TrenchStop® 2nd generation Series
IFAG IPC TD VLS
11
Rev. 2.2 12.06.2013
trr, REVERSE RECOVERY TIME
400A/µs 800A/µs 1200A/µs
0ns
100ns
200ns
300ns
400ns
500ns
600ns
TJ=25°C
TJ=175°C
Qrr, REVERSE RECOVERY CHARGE
400A/µs 800A/µs 1200A/µs
0µC
1µC
2µC
3µC
TJ=25°C
TJ=175°C
diF/dt, DIODE CURRENT SLOPE
diF/dt, DIODE CURRENT SLOPE
Figure 23. Typical reverse recovery time as
a function of diode current slope
(VR=600V, IF=15A,
Dynamic test circuit in Figure E)
Figure 24. Typical reverse recovery charge
as a function of diode current
slope
(VR=600V, IF=15A,
Dynamic test circuit in Figure E)
Irr, REVERSE RECOVERY CURRENT
400A/µs 800A/µs 1200A/µs
0A
5A
10A
15A
20A
TJ=25°C
TJ=175°C
dirr/dt, DIODE PEAK RATE OF FALL
OF REVERSE RECOVERY CURRENT
400A/µs 800A/µs 1200A/µs
-0A/µs
-100A/µs
-200A/µs
-300A/µs
-400A/µs
-500A/µs
-600A/µs TJ=25°C
TJ=175°C
diF/dt, DIODE CURRENT SLOPE
diF/dt, DIODE CURRENT SLOPE
Figure 25. Typical reverse recovery current
as a function of diode current
slope
(VR=600V, IF=15A,
Dynamic test circuit in Figure E)
Figure 26. Typical diode peak rate of fall of
reverse recovery current as a
function of diode current slope
(VR=600V, IF=15A,
Dynamic test circuit in Figure E)
IKW15N120T2
TrenchStop® 2nd generation Series
IFAG IPC TD VLS
12
Rev. 2.2 12.06.2013
IF, FORWARD CURRENT
0V 1V 2V
0A
10A
20A
30A
40A
50A
60A
175°C
TJ=25°C
VF, FORWARD VOLTAGE
0°C 50°C 100°C 150°C
0.0V
0.5V
1.0V
1.5V
2.0V
15A
7.5A
IF=30A
2A
VF, FORWARD VOLTAGE
TJ, JUNCTION TEMPERATURE
Figure 27. Typical diode forward current as
a function of forward voltage
Figure 28. Typical diode forward voltage as a
function of junction temperature
IKW15N120T2
TrenchStop® 2nd generation Series
IFAG IPC TD VLS
13
Rev. 2.2 12.06.2013
IKW15N120T2
TrenchStop® 2nd generation Series
IFAG IPC TD VLS
14
Rev. 2.2 12.06.2013
Ir r m
90% Ir r m
10% Ir r m
di /dt
F
tr r
IF
i,v
t
QSQF
tStF
VR
di /dt
r r
Q =Q Q
r r S F
+
t =t t
r r S F
+
Figure C. Definition of diodes
switching characteristics
p(t) 1 2 n
T (t)
j
1
1
2
2n
n
T
C
r r
r
r
rr
Figure D. Thermal equivalent
circuit
Figure E. Dynamic test circuit
Figure A. Definition of switching times
Figure B. Definition of switching losses
IKW15N120T2
TrenchStop® 2nd generation Series
IFAG IPC TD VLS
15
Rev. 2.2 12.06.2013
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2013 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or
any information regarding the application of the device, Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual
property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the
types in question, please contact the nearest Infineon Technologies Office.
The Infineon Technologies component described in this Data Sheet may be used in life-support devices or
systems and/or automotive, aviation and aerospace applications or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the
failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or
effectiveness of that device or system. Life support devices or systems are intended to be implanted in the
human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable
to assume that the health of the user or other persons may be endangered.