File Number 1574 Standard Power MOSFETs IRF520, IRF521, IRF522, IRF523 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 7.0A and 8.0A, 60V-100V fos(on) = 0.30 O and 0.40 Features: m SOA is power-dissipation limited Nanosecond switching speeds @ Linear transfer characteristics @ High input impedance & Majority carrier device The JRF520, IRF521, IRF522 and !RF523 are n-channel enhancement-mode silicon-gate power field- effect transistors designed for applications such as switch- ing regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching tran- sistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. N-CHANNEL ENHANCEMENT MODE 92CS-33741 Ss TERMINAL DIAGRAM TERMINAL DESIGNATION DRAIN a (FLANGE) O [ SOURCE DRAIN ied i ; TOP VIEW GATE The iRF-types are supplied in the JEDEC TO-220AB plastic o2cs-305ze package. JEDEC TO-220AB Absolute Maximum Ratings Parameter IRF520 IRF521 tRF522 TRF523 Units Vos Drain - Source Voltage 100 60 100 60 v Yocr Drain - Gate Voltage (Ags = 20KQ) 100 60 100 60 Vv \p @Te = 26C Continuous Orain Current 8.0 3.0 7.0 7.0 A Ip @ Tc = 100C Continuous Drain Current 5.0 5.0 4.0 4.0 A 'om Pulsed Drain Current @ 32 32 28 28 A Yos Gate - Source Voltage 20 - Vv Pp @Tc = 25C Max. Power Dissipation 40 (See Fig. 14} w Linear Derating Factor 0.32 (See Fig. 14} wet lM inductive Current, Clamped {See Fig. 15 and 16}L = 100nH A 32 ij 28 { 28 Ty Operating Junction and ~55 to 150 C Tstg Storage Temperature Range Lead Temperature 300 (0.063 in. (1.6mm) from case for 10s} C 3-139Standard Power MOSFETs IRF520, IRF521, IRF522, [RF523 Electrical Characteristics @Tc = 25C (Unless Otherwise Specified) Parametec Type Min. Typ. | Max. Units Jest Conditions BVpss Drain - Source Sreakdown Voltage IRF520 _ oa warse2 | 100 - v Vag = OV IRF521 ~ _ Vv = 250, IRF523 60 Ip = 250. VGsith) Gate Threshold Voltage ALL 2.0 | 40 Vv Vos = Vos. p = 250nA less Gate-Source Leakage Forward ALL - - 500 nA Vos = 20V 'gs5 _ Gate-Source Leakage Reverse ALL = = {-500 nA = -20V ipss Zero Gate Voltage Drain Current ALL - = 250 pr Vos = Max. Rating, Vgg = OV = [1000 f 4A Vps = Max. Rating x 0.8, Vgg = OV. Tc = 125C \pton) _ On-State Drain Current @ IRF520 | 50 _ _ A IRF521 . , Vos ? 'pion) * Fpsion) max. Vs = 10V IRF522 | 79 _ _ A IRF523 . Rpsion! Static Drain-Source On-State IRES2O _. Resistance IRFS521 0.25] 0.30 | 8 Vag 10V.In = 4.08 \RFS22 | _ jas0}o40] 2 ose IRF523 9s Forward Transconductance ALL 156 729 [ 5B) Vos > !ovant * Rosiont max.: ip = 4.04 Ciss input Capacitance ALL ~ 450 pF Vgg = OV. Vpg = 25V,f = 1.0 Miz Cogs _ Output Capacitance ALL ~ 200 _ pF See Fig. 10 Css Reverse Transfer Capacitance ALL - 50 _ pF tgign) _ Tutn-On Delay Time ALL = | 20 | 40 ns Vob = 0-5BVpgg. 'p = 4.08. Zy = 500 t Rise Time ALL - 35 70 ns See Fig. 17 Tdfoff} _Turn-Oft Delay Time ALL ~ 50 100 ns {MOSFET switching times are essentially tf Fall Time ALL = 35 | 70 ns of ) Qg Total Gate Charge _ Ves = 15V, Ip = 10A, Vos = 0.8 Max. Rating. {Gate-Source Plus Gate-Drain) ALL 10 15 ne See Fig. 18 for test circuit. (Gate charge is essentially gs Gote-Source Charge ALL _ 6.0 90 nc independent of operating temperature.) Qa Gate-Drain {'Milier) Charge ALL ~ 4.0 6.0 ac Lp internal Drain Inductance _ 3.5 - nH Measured from the Modified MOSFET contact screw on tab symbol showing the to center of die. internal device Au - 45 - oH Measured from the drain lead, 6mm {0.25 oO in.) frorn package to. center of die. Lo lg Internal Source inductance ALL - 756 _ nH Measured from the source lead, 6mm G Ls (9.25 in.} from package to source bonding pad. s Thermal Resistance Rinyc Junction-to-Case ALL - - 3.12 cw Rincs _Case-to-Sink ALL = 1.0 = cw Mounting surface flat, smooth, and greased. Rinsa _Junction-to-Ambient ALL - = 80 cw Free Air Operation Source-Drain Diode Ratings and Characteristics ig Continvous Source Current IRF520 _ _ 8.0 A Modified MOSFET symbol (Body Diade} IRFS27 " showing the integral reverse P-N junction rectifier. o IRFS522 _ 7.0 A IRE523 ism Pulse Source Current IRF520 _ _ (Body Diode) @ IRES21 a2 | 4 6 IRF522 Ss ines23 | ~ | ~ | 78 A Vgp _ Diode Forward Voltage @ IRF520 | _ ~ | as v To = 25C, Ig = 8.08, Vgg = OV IRF521 IRFS22 . - - 2.3 v Te = 25C, Ig = 7.0A, Vag = OV IRFES23 c Ss Gs ter Reverse Recovery Time ALL - 280 - ns Ty = 150C, Ip = 8.0A, dip/dt = 100A/us Orn _ Reverse Recovered Charge ALL - 1.6 - fa Ty = 150C, Ip = 8.0A, dig/dt = 100A/us ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by ig + Lp. Dy = 25C to 160C. 3-140 Pulse Test: Pulse width 300us, Duty Cycie < 2%. Repetitive Rating: Pulse width limited by max, junction temperature. See Transient Thermal tmpedance Curve (Fig. 5).NORMALIZED EFFECTIVE TRANSIENT THEAMAL IMPEDANCE (PER UNIT) Zinsclt/ Re. Ig, ORAIN CURRENT (AMPERES) tp, DRAIN CURRENT (AMPERES) Standard Power MOSFETs IRF520, IRF521, IRF522, IRF523 Vos >loton) * 6 OS > 'O{on) g = & 2 2 = @ = 3 z 34 < = 5 s 4 0 10 a 30 50 0 2 4 6 8 10 Vps. ORAIN-TO-SOURCE VOLTAGE (VOLTS) Vgs, GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics Fig. 2 Typical Transfer Characteristics 100 OPERATION IN THIS 50 AREA IS LIMITED BY Rosion) 20 a 240 = Zz 5 z & a = = 2 3 z = 10 = 3 To = 25C = 05 TF 7,6 1509 MAX. Ringe = 3.12 02 3 0.1 0 1 2 3 4 5 10 2 5 1 20 so 100 200 = 500 Vps, DRAIN-TO-SOUACE VOLTAGE (VOLTS! Vpg, ORAIN-TO-SOURCE VOLTAGE {VOLTS} Fig. 3 Typical Saturation Characteristics Fig. 4 Maximum Safe Operating Area jet | oe 2 1. DUTY FACTOR, D= z . SINGLE PULSE THERMAL IMPEDANCE) 2. PER UNIT BASE = Ripe * 3.12 DEG. CW. 3. Ty - Te = Pom Zensctt. wh 2 5 ws 2 5 3 2 5 we 2 5 wl 2 5 10 2 5 10 ty, SQUARE WAVE PULSE DURATION (SECONDS} Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration 3-141Standard Power MOSFETs-- IRF520, IRF521, IRF522, IRF523 3-142 Fig. BVggs, DRAIN-TO-SOURCE BREAKDOWN VOLTAGE (NORMALIZED) C, CAPACITANCE (pF) ts, TRANSCONOUCTANCE (SIEMENS) TEST 0 4 a 12 16 tp. DRAIN CURRENT (AMPERES) 8G 0 40 80 120 Ty, JUNCTION TEMPERATURE (C) Fig. 8 Breakdown Voltage Vs. Temperature Ygs79 f= tMHz Cigg * Coy + Cog, Cos SHORTED Cog Cg Cons * Cag > : as Cay Q Ld a x 40 Vos. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 10 -- Typical Capacitance Vs. Drain-to-Source Voltage x Ros(on) max. . 6 Typical Transconductance Vs. Drain Current 160 RB on wn 3 n a (pg, REVERSE DRAIN CURRENT (AMPERES) ya 1 2 3 4 Vgg, SOUACE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7 Typical Source-Drain Diode Forward Voltage Rosion). GRAIN-TO-SOURCE ON RESISTANCE (NORMALIZED) 40 0 40 80 120 Ty, JUNCTION TEMPERATURE (C) Fig. 9 Normalized On-Resistance Vs. Temperature Vag. GATE-TO-SQURCE VOLTAGE (VOLTS) Vos = 20V Vos * 50V 4 Vos * 80V, IRF520, 522 Ip 108 FDR TEST CIRCUIT SEE FIGURE 18 4 a 2 a 20 a. TOTAL GATE CHARGE (aC) Fig. 11 Typical Gate Charge Vs. Gate-to-Source VoltageVes * 2ov Aps(on): ORAIN-TO-SOURCE ON RESISTANCE (OHMS! E OF us INITIAL Ty = 25C. (HEATING EFFECT OF 2.0 us Is 0 4G 10 20 30 Ip, DRAIN CURRENT (AMPERES) Fig. 12 Typical On-Resistance Vs. Drain Current 40 36 Pp, POWER DISSIPATION {WATTS} 0 20 ae $0 Standard Power MOSFETs IRF520, IRF521, IRF522, IRF523 IRF520, 521 IRFS22, $23 Ip. DRAIN CURRENT (AMPERES) Q 3 50 15 Tc. CASE TEMPERATURE (C} Fig. 13 Maximum Drain Current Vs. Case Temperature 125 150 60 100 120 140 Tc, CASE TEMPERATURE (C} Fig. VARY ty TO OBTAIN REQUIRED PEAK I, a TT out Ve *0.758Vo55 Veg *20V boty. Ye o0sn. b i = Fig. 15 Clamped Inductive Test Circuit v1 Ey = 0.5BVpgg ADJUST Ry, TO OBTAIN SPECIFIED Ip v GENERATOR ccc co TO SCOPE 0.010 HIGH FREQUENCY SHUNT Fig. 17 Switching Time Test Circuit 14 Power Vs. Temperature Derating Curve Fig. 16 Clamped Inductive Waveforms o Vos (ISOLATED SUPPLY) CURRENT REGULATOR SAME TYPE AS DUT WV T BATTERY | : \g CURRENT = CURRENT SHUNT SHUNT Fig. 18 -- Gate Charge Test Circuit 3-143