Publication Date : August 2013 1
< IGBT MODULES >
CM50MXA-24S
HIGH POWER SWITCHING USE
I
NSULATED TYPE
Collector current IC .............….......................… 50A
Collector-emitter voltage VCES ......................… 1200V
Maximum junction temperature Tjmax .............. 175°C
Flat base Type
Copper base plate
Ti n plating pin terminals
RoHS Directive compliant
CIB (Converter+Inverter+Chopper Brake)
Recognized under UL1557, File E323585
APPLICATION
AC Motor Control, Motion/Servo Co ntrol, Power supply, etc.
OUTLINE DRAWING & INTERNAL CONNECTION Dimension in mm
TERMINAL
t=0.8
SECTION A
INTERNAL CONNECTION
Tolerance otherwise specified
Division of Dimension Tolerance
0.5 to 3 ±0.2
over 3 to 6 ±0.3
over 6 to 30 ±0.5
over 30 to 120 ±0.8
over 120 to 400 ±1.2
GWP(2 3)
W(24~25)
NTC
TH1 (28)
TH2 (29) GWN(3 1)
GVP(18 )
V(19~20)
GVP(33 )
GUP(13 )
U(14~15)
GUN(40)
P
1(48~49
)
N1(44~4
5
)
B(52~53)
GB(41 )
Es(32)
Es1(39)
P(54~56
)
N(59~61
R(1~2)
)
S(5~6
)
T(9~10
)
Caution: Each (two or three) pin terminal of P/N/P1/N1/U/V/W/B/R/S/T is connected in the module,
but should use all each three pins for the external wiring.
The tolerance of size between
terminals is assumed to be ±0.4.
< IGBT MODULES >
CM50MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Publication Date : August 2013 2
ABSOLUTE MAXIMUM RATINGS (Tj=25 °C, unless otherwise specified)
INVERTER PART IGBT/DIODE
Symbol Item Conditions Rating Unit
VCES Collector-emitter voltage G-E short-circuited 1200 V
VGES Gate-emitter voltage C-E short-circuited ± 20 V
IC DC, TC=125 °C (Note2, 4) 50
ICRM Collector current Pulse, Repetitive (Note3) 100
A
Ptot Total power dissipation TC=25 °C (Note2, 4) 425 W
IE (Note1) (Note2) 50
IERM (Note1) Emitter current Pulse, Repetitive (Note3) 100
A
Tjmax Maximum junction temperature Instantaneous event (overload) 175 °C
BRAKE PART IGBT/DIODE
Symbol Item Conditions Rating Unit
VCES Collector-emitter voltage G-E short-circuited 1200 V
VGES Gate-emitter voltage C-E short-circuited ± 20 V
IC DC, TC=125 °C (Note2, 4) 35
ICRM Collector current Pulse, Repetitive (Note3) 70
A
Ptot Total power dissipation TC=25 °C (Note2, 4) 355 W
VRRM Repetitive peak reverse voltage G-E short-circuited 1200 V
IF (Note2) 35
IFRM Forward current Pulse, Repetitive (Note3) 70
A
Tjmax Maximum junction temperature Instantaneous event (overload) 175 °C
CONVERTER PART DIODE
Symbol Item Conditions Rating Unit
VRRM Repetitive peak reverse voltage - 1600 V
Ea Recommended AC input voltage RMS 440 V
IO DC output current 3-phase full wave rectifying, TC=125 °C (Note4) 50 A
The sine half wave 1 cycle peak value,
IFSM Surge forward current f=60 Hz, non-repetitive 500 A
I2t Current square time Value for one cycle of surge current 1040 A2s
Tjmax Maximum junction temperature Instantaneous event (overload) 150 °C
MODULE
Symbol Item Conditions Rating Unit
Visol Isolation voltage Terminals to base plate, RMS, f=60 Hz, AC 1 min 2500 V
TCmax Maximum case temperature (Note4) 125 °C
Tjop Operating junction temperature Continuous operation (under switching) -40 ~ +150
Tstg Storage temperature - -40 ~ +125 °C
MECHANICAL CHARACTER IST ICS Limits
Symbol Item Conditions
Min. Typ. Max.
Unit
Ms Mounting torque Mounting to heat sink M 5 screw 2.5 3.0 3.5 N·m
Terminal to terminal 6.47 - -
ds Creepage distance Terminal to base plate 14.27 - - mm
Terminal to terminal 6.47 - -
da Clearance Terminal to base plate 12.33 - - mm
m mass - - 300 - g
ec Flatness of base plate On the centerline X, Y (Note5) ±0 - +100 μm
< IGBT MODULES >
CM50MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Publication Date : August 2013 3
ELECTRICAL CHARACTERISTICS (Tj=25 °C, unless otherwise sp ecified )
INVERTER PART IGBT/DIODE Limits
Symbol Item Conditions
Min. Typ. Max.
Unit
ICES Collector-emitter cut-off current VCE=VCES, G-E short-circuited - - 1.0 mA
IGES Gate-emitter leakage current VGE=VGES, C-E short-circuited - - 0.5 μA
VGE(th) Gate-emitter threshold voltage IC=5 mA, VCE=10 V 5.4 6.0 6.6 V
IC=50 A (Note6) , Tj=25 °C - 1.80 2.25
VGE=15 V, Tj=125 °C - 2.00 -
(Terminal) Tj=150 °C - 2.05 - V
IC=50 A (Note6) , Tj=25 °C - 1.70 2.15
VGE=15 V, Tj=125 °C - 1.90 -
VCEsat Collector-emitter saturation voltage
(Chip) Tj=150 °C - 1.95 - V
Cies Input capacitance - - 5.0
Coes Output capacitance - - 1.0
Cres Reverse transfer capacitance VCE=10 V, G-E short-circuited - - 0.08
nF
QG Gate charge VCC=600 V, IC=50 A, VGE=15 V - 117 - nC
td(on) Turn-on delay time - - 300
tr Rise time VCC=600 V, IC=50 A, VGE=±15 V, - - 200
td(off) Turn-off delay time - - 600
tf Fall time RG=13 , Inductive load - - 300
ns
IE=50 A (Note6) , Tj=25 °C - 1.80 2.25
G-E short-circuited, Tj=125 °C - 1.80 -
(Terminal) T j=150 °C - 1.80 - V
IE=50 A (Note6) , Tj=25 °C - 1.70 2.15
G-E short-circuited, Tj=125 °C - 1.70 -
VEC (Note1) Emitter-collector voltage
(Chip) Tj=150 °C - 1.70 - V
trr (Note1) Reverse recovery time VCC=600 V, IE=50 A, VGE=±15 V, - - 300 ns
Qrr (Note1) Reverse recovery charge RG=13 , Inductive load - 2.7 - μC
Eon Turn-on switching energy per pulse VCC=600 V, IC=IE=50 A, - 5.5 -
Eoff Turn-off switching energy per pulse VGE=±15 V, RG=13 , T j=150 °C, - 5.3 - mJ
Err (Note1) Reverse recovery energy per pulse Inductive load - 4.5 - mJ
Main terminals-chip, per switch,
RCC'+EE' Internal lead resistance TC=25 °C (Note4) - - 5.0 m
rg Internal gate resistance Per switch - 0 -
BRAKE PART IGBT/DIODE Limits
Symbol Item Conditions
Min. Typ. Max.
Unit
ICES Collector-emitter cut-off current VCE=VCES, G-E short-circuited - - 1.0 mA
IGES Gate-emitter leakage current VGE=VGES, C-E short-circuited - - 0.5 μA
VGE(th) Gate-emitter threshold voltage IC=3.5 mA, VCE=10 V 5.4 6.0 6.6 V
IC=35 A (Note6) , Tj=25 °C - 1.80 2.25
VGE=15 V, Tj=125 °C - 2.00 -
(Terminal) Tj=150 °C - 2.05 - V
IC=35 A (Note6) , Tj=25 °C - 1.70 2.15
VGE=15 V, Tj=125 °C - 1.90 -
VCEsat Collector-emitter saturation voltage
(Chip) Tj=150 °C - 1.95 - V
Cies Input capacitance - - 3.5
Coes Output capacitance - - 0.7
Cres Reverse transfer capacitance VCE=10 V, G-E short-circuited - - 0.06
nF
QG Gate charge VCC=600 V, IC=35 A, VGE=15 V - 82 - nC
< IGBT MODULES >
CM50MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Publication Date : August 2013 4
ELECTRICAL CHARACTERISTICS (cont.; Tj=25 °C, unless otherwise specified)
BRAKE PART IGBT/DIODE Limits
Symbol Item Conditions
Min. Typ. Max.
Unit
td(on) Turn-on delay time - - 300
tr Rise time VCC=600 V, IC=35 A, VGE=±15 V, - - 200
td(off) Turn-off delay time - - 600
tf Fall time RG=18 , Inductive load - - 300
ns
IRRM Reverse current VR=VRRM, G-E short-circuited - - 1.0 mA
IF=35 A (Note6) , T j=25 °C - 1.80 2.25
G-E short-circuited, Tj=125 °C - 1.80 -
(Terminal) T j=150 °C - 1.80 - V
IF=35 A (Note6) , T j=25 °C - 1.70 2.15
G-E short-circuited, Tj=125 °C - 1.70 -
VF Forward voltage
(Chip) Tj=150 °C - 1.70 - V
trr Reverse recovery time VCC=600 V, IF=35 A, VGE=±15 V, - - 300 ns
Qrr Reverse recovery charge RG=18 , Inductive load - 1.9 - μC
Eon Turn-on switching energy per pulse VCC=600 V, IC=IF=35 A, - 4.2 -
Eoff Turn-off switching energy per pulse VGE=±15 V, RG=18 , T j=150 °C, - 3.7 - mJ
Err Reverse recovery energy per pulse Inductive load - 3.5 - mJ
rg Internal gate resistance - - 0 -
CONVERTER PART DIODE Limits
Symbol Item Conditions
Min. Typ. Max.
Unit
IRRM Reverse current VR=VRRM, Tj=150 °C - - 6.0 mA
VF
(Terminal) Forward voltage IF=50 A (Note6) - 1.2 1.6 V
NTC THERMISTOR PART Limits
Symbol Item Conditions
Min. Typ. Max.
Unit
R25 Zero-power resistance TC=25 °C (Note4) 4.85 5.00 5.15 k
R/R Deviation of resistance R100=493 , TC=100 °C (Note4) -7.3 - +7.8 %
B(25/50) B-constant Approximate by equation
(Note7) - 3375 - K
P25 Power dissipation TC=25 °C (Note4) - - 10 mW
THERMAL RESISTANCE CHARACTERISTICS Limits
Symbol Item Conditions
Min. Typ. Max.
Unit
Rth(j-c)Q Junction to case, per Inverter IGBT - - 0.35
Rth(j-c)D Junction to case, per Inverter DIODE - - 0.63 K/W
Rth(j-c)Q Junction to case, per Brake IGBT - - 0.42
Rth(j-c)D Junction to case, per Brake DIODE - - 0.69 K/W
Rth(j-c)D
Thermal resistance (Note4)
Junction to case, per Converter DIODE - - 0.33 K/W
Case to heat sink, per 1 module,
Rth(c-s) Contact thermal resistance (Note4) Thermal grease applied (Note8) - 15 - K/kW
< IGBT MODULES >
CM50MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Publication Date : August 2013 5
Note1. Represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (FWDi).
2. Junction temperature (T j) should not increase beyond Tjmax rating.
3. Pulse width and repetition rate should be such that the device junction temperature (T j) dose not exceed Tjmax rating.
4. Case temperature (TC) and heat sink temperature (T s) are defined on the each surface (mounting side) of base plate and heat sink
just under the chips. Refer to the figure of chip location.
5. The base plate (mounting side) flatness measurement points (X, Y) are as follows of the following figure.
Y
X
+:Convex
-:Concave
+:Convex
-:Concave
mounting side
mounting s ide
mounting side
6. Pulse width and repetition rate should be such as to cause negligible temperature rise.
Refer to the figure of test circuit.
7. )
TT
/()
R
R
ln(B )/( 502550
25
5025 11 ,
R25: resistance at absolute temperature T25 [K]; T25=25 [°C]+273.15=298.15 [K]
R50: resistance at absolute temperature T50 [K]; T50=50 [°C]+273.15=323.15 [K]
8. Typical value is measured by using thermally conductive grease of λ=0.9 W/(m·K).
9. Use the following screws when mounting the printed circuit board (PCB) on the stand offs.
"φ2.6×10 or φ2.6×12 self tapping screw"
The length of the screw depends on the thickness (t1.6~t2.0) of the PCB.
RECOMMENDED OPERATIN G CONDITIONS Limits
Symbol Item Conditions
Min. Typ. Max.
Unit
VCC (DC) Supply voltage Applied across P-N/P1-N1 terminals - 600 850 V
VGEon Gate (-emitter drive) voltage Applied across GB-Es/
G*P-*/G*N-Es(*=U, V, W) terminals 13.5 15.0 16.5 V
Inverter IGBT 13 - 130
RG External gate resistance Per switch Brake IGBT 18 - 180
< IGBT MODULES >
CM50MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Publication Date : August 2013 6
CHIP LOCATION (Top view) Dimension in mm, tolerance: ±1 mm
Tr*P/Tr*N/TrBr: IGBT, Di*P/Di*N: DIODE (*=U/V/W), DiBr: BRAKE DIODE, CR*P/CR*N: CONVERTER DIODE (*=R/S/T), Th: NTC thermistor
TEST CIRCUIT AND WAVEFORMS
VCC
RG
-VGE
+VGE
-VGE
+
vCE
vGE 0 V
iE
iC
P1
N1
*
G*P
G*N
Es
*: U, V, W
Load
t
tf
tr
td(on)
iC
10%
90 %
90 %
vGE
0 V
0 A
0
td(off) t
Irr
Qrr=0.5×Irr×trr
0.5×Irr
t
trr
iE
0 A
IE
Switching characteristics te st circuit and waveforms trr, Qrr test waveform
0.1×I
CM
I
CM
V
CC
v
CE
i
C
t
0
t
i
0.1×V
CC
0.1×V
CC
V
CC
I
CM
v
CE
i
C
t0 0.02×I
CM
t
i
IEM vEC
iE
t0 V
ti
t
VCC
0 A
IGBT Turn-on switching energy IGBT Turn-off switching energy DIODE Reverse recovery energy
Turn-on / Turn-off switching energy and Reverse recovery energy test waveforms (In t egral time instruction drawing )
< IGBT MODULES >
CM50MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Publication Date : August 2013 7
TEST CIRCUIT
VGE=15V
V
Shor
t
-
circuited
48~49
14~15
44~45
IC
13
40
32
VGE=15V
V
Short-
circuited
48~49
19~20
44~45
IC18
33
32
VGE=15V
V
Short-
circuited
48~49
24~25
44~45
IC
23
31
32
V
Shor
t
-
circuited
48~49
52~53
44~45
IE
41
39
VGE=15V
V
Short-
circuited
P1
U
N1
IC
GUP
GUN
Es
VGE=15V
V
Short-
circuited
P1
V
N1
IC
GVP
GVN
Es
VGE=15V
V
Short-
circuited
P1
W
N1
IC
GWP
GWN
Es
VGE=15V
V
P1
B
N1
ICGB
Es
G-E
short-circuited GVP-V, GVN-Es,
GWP-W, GWN-Es,
GB-Es
G-E
short-circuited GUP-U, GUN-Es,
GWP-W, GWN-Es,
GB-Es
G-E
short-circuited GUP-U, GUN-Es,
GVP-V, GVN-Es,
GB-Es
G-E
short-circuited GUP-U, GUN-Es,
GVP-V, GVN-Es,
GWP-W, GWN-Es
UP / UN IGBT VP / VN IGBT WP / WN IGBT Brake IGBT / DIODE
VCEsat / BRAKE DIODE VF test circuit VCEsat / ClampDi VF test circuit
V
Shor
t
-
circuited
48~49
14~15
44~45
IE
13
40
32
Shor
t
-
circuited
V
Short-
circuited
48~49
19~20
44~45
IE
18
33
32
Short-
circuited
V
Short-
circuited
48~49
24~25
44~45
IE
23
31
32
Short-
circuited
V
54~56
1~2
59~61
IF
V
Short-
circuited
P1
U
N1
IE
GUP
GUN
Es
Short-
circuited
V
Short-
circuited
P1
V
N1
IE
GVP
GVN
Es
Short-
circuited
V
Short-
circuited
P1
W
N1
IE
GWP
GWN
Es
Short-
circuited
V
P
R
N
IF
G-E
short-circuited GVP-V, GVN-Es,
GWP-W, GWN-Es,
GB-Es
G-E
short-circuited GUP-U, GUN-Es,
GWP-W, GWN-Es,
GB-Es
G-E
short-circuited GUP-U, GUN-Es,
GVP-V, GVN-Es,
GB-Es
UP / UN DIODE VP / VN DIODE WP / WN DIODE CONVERTER DIODE (ex. phase-R)
VEC / CONVERTER DIODE VF test circuit
* In the above test circuit, should use all three main pin terminals (P1/N1/P/N/U/V/W) for connection with the terminals and the current source.
< IGBT MODULES >
CM50MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Publication Date : August 2013 8
PERFORMANCE CURVES
INVERTER PART
OUTPUT CHARACTERISTICS
(TYPICAL) COLLECTOR-EMITTER SATURATION VOLTAGE
CHARACTERISTICS
(TYPICAL)
Tj=25 °C (Chip) VGE=15 V (Chip)
COLLECTOR CURRENT IC (A)
0
20
40
60
80
100
0246810
COLLECTOR-EMITTER
SATURATION VOLTAGE VCEsat (V)
0
0.5
1
1.5
2
2.5
3
3.5
0 20406080
13.5 V
VGE=20 V
12 V
15 V
Tj=125 °C
Tj=150 °C
11 V
100
COLLECTOR-EMITTER VOLTAGE VCE (V) COLLECTOR CURRENT IC (A)
COLLECTOR-EMITTER SATURATION VOLTAGE
CHARACTERISTICS
(TYPICAL)
FREE WHEELING DIODE
FORWARD CHAR ACTERISTICS
(TYPICAL)
Tj=25 °C (Chip) G-E short-circuited (Chip)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCEsat (V)
0
2
4
6
8
10
6 8 10 12 14 16 18 20
EMITTER CURRENT IE (A)
1
10
100
00.511.522.5
Tj=25 °C
10 V
9 V
IC=100 A
Tj=150 °C
IC=20 A
IC=50 A
Tj=125 °C
Tj=25 °C
3
GATE-EMITTER VOLTAGE VGE (V) EMITTER-COLLECTOR VOLTAGE VEC (V)
< IGBT MODULES >
CM50MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Publication Date : August 2013 9
PERFORMANCE CURVES
INVERTER PART
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, VGE=±15 V, RG=13 , INDUCTIVE LOAD
---------------: T j=150 °C, - - - - -: Tj=125 °C
VCC=600 V, VGE=±15 V, IC=50 A, INDUCTIVE LOAD
---------------: T j=150 °C, - - - - -: Tj=125 °C
SWITCHING TIME (ns)
1
10
100
1000
1 10 100
SWITCHING TIME (ns)
10
100
1000
10 100 1000
COLLECTOR CURRENT IC (A) EXTERNAL GATE RESISTANCE RG ()
td(off)
tf
td(off)
tf
td(on)
td(on)
tr
tr
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, VGE=±15 V, RG=13 ,
INDUCTIVE LOAD, PER PULSE
---------------: T j=150 °C, - - - - -: Tj=125 °C
VCC=600 V, VGE=±15 V, IC=50 A,
INDUCTIVE LOAD, PER PULSE
---------------: T j=150 °C, - - - - -: Tj=125 °C
SWITCHING ENERGY (mJ)
0.1
1
10
100
1 10 1000.01
0.1
1
10
REVERSE RECOVERY ENERGY (mJ)
SWITCHING ENERGY (mJ)
REVERSE RECOVERY ENERGY (mJ)
1
10
100
10 100 1000
COLLECTOR CURRENT IC (A)
EMITTER CURRENT IE (A) EXTERNAL GATE RESISTANCE RG ()
Err Eon
Eoff Eoff
Eon Err
< IGBT MODULES >
CM50MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Publication Date : August 2013 10
PERFORMANCE CURVES
INVERTER PART
CAPACITANCE CHARACTERISTICS
(TYPICAL) FREE WHEELING DIODE
REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)
G-E short-circuited, Tj=25 °C
VCC=600 V, VGE=±15 V, RG=13 , INDUCTIVE LOAD
---------------: T j=150 °C, - - - - -: Tj=125 °C
CAPACITANCE (nF)
0.01
0.1
1
10
100
0.1 1 10 100
trr (ns), I rr (A)
10
100
1000
110
Cies
trr
Coes
Irr
Cres
100
COLLECTOR-EMITTER VOLTAGE VCE (V) EMITTER CURRENT IE (A)
GATE CHARGE CHARACTERISTICS
(TYPICAL) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS
(MAXIMUM)
VCC=600 V, IC=50 A, Tj=25 °C
Single pulse, TC=25 °C
Rth(j-c)Q=0.35 K/W, Rth(j-c)D=0.63 K/W
GATE-EMITTER VOLTAGE VGE (V)
0
5
10
15
20
0 50 100 150 200
NORMALIZED TRANSIENT THERMAL RESISTA NCE
Zth(j-c)
0.001
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1 10
GATE CHARGE QG (nC) TIME (S)
< IGBT MODULES >
CM50MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Publication Date : August 2013 11
PERFORMANCE CURVES
BRAKE PART
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
CLAMP DIODE
FORWARD CHAR ACTERISTICS
(TYPICAL)
VGE=15 V (Chip) G-E short-circuited (Chip)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCEsat (V)
0
0.5
1
1.5
2
2.5
3
3.5
0 10203040506070
FORWARD VOLTAGE VF (V)
1
10
100
00.511.522.5
Tj=125 °C
Tj=125 °C
Tj=150 °C
Tj=150 °C
Tj=25 °C
Tj=25 °C
3
COLLECTOR CURRENT IC (A) FORWARD CURRENT IF (A)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, VGE=±15 V, RG=18 , INDUCTIVE LOAD
---------------: T j=150 °C, - - - - -: Tj=125 °C
VCC=600 V, IC=35 A, VGE=±15 V, INDUCTIVE LOAD
---------------: T j=150 °C, - - - - -: Tj=125 °C
SWITCHING TIME (ns)
1
10
100
1000
1 10 100
SWITCHING TIME (ns)
10
100
1000
10 100 1000
COLLECTOR CURRENT IC (A) EXTERNAL GATE RESISTANCE RG ()
tf
td(off)
td(off) tf
td(on)
td(on)
tr
tr
< IGBT MODULES >
CM50MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Publication Date : August 2013 12
PERFORMANCE CURVES
BRAKE PART
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, VGE=±15 V, RG=18 ,
INDUCTIVE LOAD, PER PULSE
---------------: T j=150 °C, - - - - -: Tj=125 °C
VCC=600 V, IC/IF=35 A, VGE=±15 V,
INDUCTIVE LOAD, PER PULSE
---------------: T j=150 °C, - - - - -: Tj=125 °C
SWITCHING ENERGY (mJ)
0.1
1
10
100
1 10 1000.01
0.1
1
10
REVERSE RECOVERY ENERGY (mJ)
SWITCHING ENERGY (mJ)
REVERSE RECOVERY ENERGY (mJ)
1
10
100
10 100 1000
COLLECTOR CURRENT IC (A)
FORWARD CURRENT IF (A) EXTERNAL GATE RESISTANCE RG ()
Err
Eon
Eoff Eoff
Eon
Err
CLAMP DIODE
REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)
TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS
(MAXIMUM)
VCC=600 V, VGE=±15 V, RG=18 , INDUCTIVE LOAD
---------------: T j=150 °C, - - - - -: Tj=125 °C
Single pulse, TC=25 °C
Rth(j-c)Q=0.42 K/W, Rth(j-c)D=0.69 K/W
trr (ns), I rr (A)
10
100
1000
1 10 100
NORMALIZED TRANSIENT THERMAL RESISTA NCE
Zth(j-c)
0.001
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1 10
FORWARD CURRENT IF (A) TIME (S)
trr
Irr
< IGBT MODULES >
CM50MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Publication Date : August 2013 13
PERFORMANCE CURVES
CONVERTER PART
CONVERTER DIODE
FORWARD CHAR ACTERISTICS
(TYPICAL)
TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS
(MAXIMUM)
Single pulse, TC=25 °C
Rth(j-c)D=0.33 K/W
FORWARD CURRENT IF (A)
1
10
100
0.4 0.6 0.8 1.0 1.2 1.4 1.6
NORMALIZED TRANSIENT THERMAL RESISTA NCE
Zth(j-c)
0.001
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1 10
FORWARD VOLTAGE VF (V) TIME (S)
Tj=125 °C
Tj=25 °C
NTC thermistor part
TEMPERATURE CHARACTERISTICS
(TYPICAL)
RESISTANCE R (k)
0.1
1
10
100
-50 -25 0 25 50 75 100 125
TEMPERATURE T (°C)
< IGBT MODULES >
CM50MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Publication Date : August 2013 14
Keep safety first in your circuit designs!
Mitsubishi Electric Corporation puts th e maximum ef fort into making semiconductor products better and more
reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors
may lead to personal injury, fire or property damage. Remember to give due consideration to safety when
making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary
circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
•These materials are intended as a reference to assist our customers in the selection of the Mitsubishi
semiconductor product best suited to the customer's application; they do not convey any license under any
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
•Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.
•All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are subject
to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It
is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized
Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product
listed herein.
The information described here may contain technical inaccuracies or typographical errors. Mitsubishi
Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these
inaccuracies or errors.
Please also pay attention to information published by Mitsubishi Electric Corporation by various means,
including the Mitsubishi Semiconductor home page (www.MitsubishiElectric.com/semiconductors/).
•When using any or all of the information contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate all information as a total system before making
a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes
no responsibility for any damage, liability or other loss resulting from the information containedherein.
•Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or systems
for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
•The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in wh ole or
in part these materials.
•If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other than
the approved destination.
Any diversion or reexport contrary to t he export control laws and regulations of Japan and/or the country of
destination is prohibited.
•Please contact Mit subishi Ele ctric Corporation or an authorized Mitsubishi Semiconductor product distributor
for further details on these materials or the products contained therein.
© 2013 MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED