VISHAY
TSOP13..SB1
Document Number 82026
Rev. 6, 15-Oct-2002
Vishay Semiconductors
www.vishay.com
1
96 12581
IR Receiver Modules for Remote Control Systems
Description
The TSOP13..SB1- series are miniaturized receivers
for infrared remote control systems. PIN diode and
preamplifier are assembled on lead frame, the epoxy
package is designed as IR filter.
The demodulated output signal can directly be
decoded by a microprocessor. The main benefit is the
reliable function even in disturbed ambient and the
protection against uncontrolled output pulses.
Features
Photo detector and preamplifier in one package
Internal filter for PCM frequency
Improved shielding against electrical field distur-
bance
TTL and CMOS compatibility
Output active low
Low power consumption
No occurrence of disturbance pulses at the output
Special Features
Suitable burst length 6 cycles/burst
Enhanced immunity against all kinds of distur-
bance light
Improved immunity against EMI from TV picture
tube
Block Diagram
Parts Table
Application Circuit
25 k
2
3
1
V
S
OUT
Demo-
GND
Pass
AGCInput
PIN
Band dulator
Control Circuit
Part Carrier Frequency
TSOP1330SB1 30 kHz
TSOP1333SB1 33 kHz
TSOP1336SB1 36 kHz
TSOP1337SB1 36.7 kHz
TSOP1338SB1 38 kHz
TSOP1340SB1 40 kHz
TSOP1356SB1 56 kHz
C
1
=
4.7 µF
TSOPxxxx
OUT
GND
Circuit
µC
R
1
=100
+VS
GND
Transmitter
with
TSALxxxx VS
R
1
+C
1
recommended to suppress power supply
disturbances.
VO
The output voltage should not be hold continuously at
a voltage below V
O=
3.3 V by the external circuit.
Document Number 82026
Rev. 6, 15-Oct-2002
www.vishay.com
2
VISHAY
TSOP13..SB1
Vishay Semiconductors
Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
Electrical and Optical Characteristics
Tamb = 25 °C, unless otherwise specified
Typical Characteristics (Tamb = 25°C unless otherwise specified)
Parameter Test condition Symbol Value Unit
Supply Voltage (Pin 2) VS- 0.3 to +
6.0
V
Supply Current (Pin 2) IS5mA
Output Voltage (Pin 3) VO- 0.3 to +
6.0
V
Output Current (Pin 3) IO5mA
Junction Temperature Tj100 °C
Storage Temperature Range Tstg - 25 to + 85 °C
Operating Temperature Range Tamb - 25 to + 85 °C
Power Consumption (Tamb 85 °C) Ptot 50 mW
Soldering Temperature t 10 s, 1 mm from case Tsd 260 °C
Parameter Tes t co n d i t i on Symbol Min Typ. Max Unit
Supply Current (Pin 2) VS = 5 V, Ev = 0 ISD 0.8 1.2 1.5 mA
VS = 5 V, Ev = 40 klx, sunlight ISH 1.5 mA
Supply Voltage (Pin 2) VS4.5 5.5 V
Transmission Distance Ev = 0, test signal see fig.3, IR
diode TSAL6200, IF = 0.4 A
d35 m
Output Voltage Low (Pin 3) IOSL = 0.5 mA, Ee = 0.7 mW/m2, f
= fo, test signal see fig.1
VOSL 250 mV
Irradiance (30 - 40 kHz) Test signal see fig.1 Ee min 0.4 0.6 mW/m2
Test signal see fig.3 Ee min 0.35 0.5 mW/m2
Irradiance (56 kHz) Test signal see fig.1 Ee min 0.45 0.7 mW/m2
Test signal see fig.3 Ee min 0.40 0.6 mW/m2
Irradiance Test signal see fig.1 Ee max 30 W/m2
Directivity Angle of half transmission distance ϕ1/2 ± 45 deg
Figure 1. Output Function
E
e
T
t
pi
*) t
V
O
V
OH
V
OL
t
po2)
t
14337
Optical Test Signal
(IR diode TSAL6200, I
F
=0.4 A, N=6 pulses, f=f
0
, T=10 ms)
Output Signal
t
d1)
1)
3/f
0
< t
d
< 9/f
0
2)
t
pi
– 4/f
0
< t
po
< t
pi
+ 6/f
0
*) t
pi
w6/fo is recommended for optimal function
Figure 2. Pulse Length and Sensitivity in Dark Ambient
t – Output Pulse Width ( ms )
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.1 1.0 10.0 100.0 1000.010000.0
E
e
– Irradiance ( mW/m
2
)
16907
po
Input Burst Duration
l= 950 nm,
optical test signal, fig.1
Output Pulse
VISHAY
TSOP13..SB1
Document Number 82026
Rev. 6, 15-Oct-2002
Vishay Semiconductors
www.vishay.com
3
Figure 3. Output Function
Figure 4. Output Pulse Diagram
Figure 5. Frequency Dependence of Responsivity
E
e
t
V
O
V
OH
V
OL
t
600 ms 600 ms
T = 60 ms
T
on
T
off
94 8134
Optical Test Signal
Output Signal, ( see Fig.4 )
T ,T – Output Pulse Width ( ms )
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.1 1.0 10.0 100.0 1000.010000.0
E
e
– Irradiance ( mW/m
2
)
16910
To ff
l= 950 nm,
optical test signal, fig.3
To n
on off
0.0
0.2
0.4
0.6
0.8
1.0
1.2
0.7 0.9 1.1 1.3
f/f
0
– Relative Frequency
16925
f = f
0
"5%
Df ( 3dB ) = f
0
/10
E / E – Rel. Responsivity
e min e
Figure 6. Sensitivity in Bright Ambient
Figure 7. Sensitivity vs. Supply Voltage Disturbances
Figure 8. Sensitivity vs. Electric Field Disturbances
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
0.01 0.10 1.00 10.00 100.00
E – Ambient DC Irradiance (W/m
2
)
16911
Correlation with ambient light sources:
10W/m
2
^1.4klx (Std.illum.A,T=2855K)
10W/m
2
^8.2klx (Daylight,T=5900K)
Ambient, l = 950 nm
E – Threshold Irradiance ( mW/m )
e min
2
0.0
0.5
1.0
1.5
2.0
0.1 1.0 10.0 100.0 1000.0
DV
sRMS
– AC Voltage on DC Supply Voltage (mV)
16912
f = f
o
f = 10 kHz
E – Threshold Irradiance ( mW/m )
e min 2
f = 1 kHz
f = 100 Hz
E – Threshold Irradiance ( mW/m )
0.0 0.4 0.8 1.2 1.6
0.0
0.4
0.8
1.2
2.0
E – Field Strength of Disturbance ( kV/m )
2.0
94 8147
1.6
e min 2
f(E) = f
0
Document Number 82026
Rev. 6, 15-Oct-2002
www.vishay.com
4
VISHAY
TSOP13..SB1
Vishay Semiconductors
Suitable Data Format
The circuit of the TSOP13..SB1 is designed in that
way that unexpected output pulses due to noise or
disturbance signals are avoided. A bandpassfilter, an
integrator stage and an automatic gain control are
used to suppress such disturbances.
The distinguishing mark between data signal and dis-
turbance signal are carrier frequency, burst length
and duty cycle.
The data signal should fulfill the following conditions:
• Carrier frequency should be close to center fre-
quency of the bandpass (e.g. 38 kHz).
• Burst length should be 6 cycles/burst or longer.
• After each burst which is between 6 cycles and 40
cycles a gap time of at least 12 cycles is necessary.
• For each burst which is longer than 1.0 ms a corre-
sponding gap time is necessary at some time in the
Figure 9. Max. Envelope Duty Cycle vs. Burstlength
Figure 10. Sensitivity vs. Ambient Temperature
Figure 11. Relative Spectral Sensitivity vs. Wavelength
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0 20 40 60 80 100 120
Burst Length ( number of cycles / burst )
16916
f = 38 kHz, E
e
= 2 mW/m
2
Max. Envelope Duty Cycle
0.0
0.1
0.2
0.3
0.4
0.5
0.6
30150 153045607590
T
amb
– Ambient Temperature ( qC )
16918
Sensitivity in dark ambient
E – Threshold Irradiance ( mW/m )
e min
2
750 850 950 1050
0
0.2
0.4
0.6
0.8
1.2
S ( ) – Relative Spectral Sensitivity
rel
l– Wavelength ( nm )
1150
94 8408
1.0
l
Figure 12. Horizontal Directivity ϕx
Figure 13. Vertical Directivity ϕy
95 11340p2
0.4 0.2 0 0.2 0.4 0.6
0.6
0.9
0q
30q
10q20q
40q
50q
60q
70q
80q
1.0
0.8
0.7
d
rel
– Relative Transmission Distance
95 11339p2
0.4 0.2 0 0.2 0.4 0.6
0.6
0.9
0q
30q
10q20q
40q
50q
60q
70q
80q
1.0
0.8
0.7
d
rel
– Relative Transmission Distance
VISHAY
TSOP13..SB1
Document Number 82026
Rev. 6, 15-Oct-2002
Vishay Semiconductors
www.vishay.com
5
data stream. This gap time should be at least 6 times
longer than the burst.
• Up to 1000 short bursts per second can be received
continuously.
Some examples for suitable data format are: NEC
Code, Toshiba Micom Format, Sharp Code, RC5
Code, RC6 Code, R-2000 Code, RECS-80 Code.
When a disturbance signal is applied to the
TSOP13..SB1 it can still receive the data signal. How-
ever the sensitivity is reduced to that level that no
unexpected pulses will occure.
Some examples for such disturbance signals which
are suppressed by the TSOP13..SB1 are:
• DC light (e.g. from tungsten bulb or sunlight)
• Continuous signal at 38 kHz or at any other fre-
quency
• Signals from fluorescent lamps with electronic bal-
last with high or low modulation ( see Figure 14 or Fig-
ure 15 ).
Figure 14. IR Signal from Fluorescent Lamp with low Modulation
0 5 10 15 20
Time ( ms )
16920
IR Signal
IR Signal from fluorescent
lamp with low modulation
Figure 15. IR Signal from Fluorescent Lamp with high Modulation
0 5 10 15 20
Time ( ms )
16921
IR Signal
IR Signal from fluorescent
lamp with high modulation
Document Number 82026
Rev. 6, 15-Oct-2002
www.vishay.com
6
VISHAY
TSOP13..SB1
Vishay Semiconductors
Package Dimensions in mm
96 12225
VISHAY
TSOP13..SB1
Document Number 82026
Rev. 6, 15-Oct-2002
Vishay Semiconductors
www.vishay.com
7
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and
operatingsystems with respect to their impact on the health and safety of our employees and the public, as
well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the
use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further
notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423