1/19
September 2013
VN920DSP
HIGH SIDE DRIVER
Table 1. General Features
CMOS COMPATIBLE INPUT
ON STA TE OP EN LOAD D ETE CT ION
OFF STATE OPEN LOAD DETECTION
SHOR TED L OAD PRO TECTIO N
UNDERVOLTAGE AND OVERVOLTAGE
SHUTDOWN
PR OT ECTIO N AGAINST LOSS OF GROUND
VERY LOW STAND-BY CURRENT
REVERSE BATTERY PROTECTION (*)
DESCRIPTION
The VN920DSP is a monolithic device made by
using STMicroelectronics VIPower M0-3
Technology, intended for driving any kind of load
with one side connect ed to ground.
Act ive V CC pin voltage clamp protects the device
against low energy spikes (see ISO7637 transient
compatibility table).
Figure 1. Package
Active current limitation combined with thermal
shutdown and automatic restart protect the device
against ov erload.
The device detect s open load condition both is on
and off st ate. Output shorted to VCC is detected in
the off state. Device automatically turns of f in case
of ground pin disc onnection.
Table 2. Order Codes
Note: (* ) S ee application schematic at page 9
Type RDS(on) Iout VCC
VN920DSP 16 m 25 A 36 V
1
10
PowerSO-10
Package Tube Tape and Reel
PowerSO-10VN920DSP VN920DSP13TR
DocID10683 Rev 3
VN920DSP
2/19
Figu re 2. Blo ck D ia gra m
Table 3. Absolute Maximum Ratings
Symbol Parameter Value Unit
VCC DC Supply Voltage 41 V
- VCC Reverse DC Supply Voltage - 0.3 V
- IGND DC Reverse Ground Pin Current - 200 mA
IOUT DC Output Current Internally Limited A
- IOUT Reverse DC Output Current - 25 A
IIN DC Input Current +/- 10 mA
ISTAT DC Status Current +/- 10 mA
VESD
Electros tatic Disch arge (Huma n Body Model: R=1.5 KΩ; C=100pF)
- INPUT
- CURRENT SENSE
- OUTPUT
- VCC
4000
4000
5000
5000
V
V
V
V
EMAX Maximum Switching Energy
(L=0.25mH; RL=0; Vbat=13.5V; Tjstart=150ºC; IL=45A) 362 mJ
Ptot Power Dissipation TC=25°C 96.1 W
TjJunction Operating Temperature Internally Limited °C
TcCase Operating Temperature - 40 to 150 °C
Tstg Storage Temperature - 55 to 150 °C
UNDERVOLTAGE
OVERTEMPERATURE
VCC
GND
INPUT OUTPUT
OVERVOLTAGE
CURRENT LIMITER
LOGIC
DRIVER
Power CLAMP
STATUS
VCC
CLAMP
ON STATE OPENLOAD
OFF STATE OPENLOAD
AND OUTPUT SHORTED TO VCC
DETECTION
DETECTION
DETECTION
DETECTION
DETECTION
3/19
VN920DSP
Figu re 3. Con f ig urat i on Diagram (Top View) & Su gg es te d Conne ct ions for U nu s ed an d N.C. Pins
Figure 4. Current and Vol tage Convention s
Table 4. Thermal Data
Note: (1) When m ounted on a stan dard sin gl e-sided F R-4 board wit h 0. 5cm 2 of Cu (at least 35µm thick).
Note: (2) W hen moun ted on a st andard si ngle- sided FR -4 board wi th 6 cm2 of Cu (at le ast 35µm thick).
Symbol Parameter Value Unit
Rthj-case Thermal Resistance Junction-case Max 1.3 °C/W
Rthj-amb Thermal Resistance Junction-ambient Max 51.3 (1) 37 (2) °C/W
1
2
3
4
5
6
7
8
9
10
11
OUTPUT
OUTPUT
N.C.
OUTPUT
OUTPUT
GROUND
INPUT
STATUS
N.C.
N.C.
V
CC
Connection / Pin St atus N.C. Output Input
Floating X X X X
T o Ground X Th rough 1 0Kresistor
IS
IGND
VCC VCC
VSENSE
OUTPUT IOUT
CURRENT SENSE ISENSE
INPUT
IIN
VIN
VOUT
GND
VF
VN920DSP
4/19
ELECTRICAL CHARACTERISTICS
(8V<VCC<36V; -40°C<Tj<150°C unless otherw ise specified)
Table 5. Po wer
Table 6. Swit ch ing (VCC=13V)
Table 7. Input Pin
Symbol Parameter Test Conditions Min Typ Max Unit
VCC Operating Supply Voltage 5.5 13 36 V
VUSD Undervoltage Shut-down 3 4 5.5 V
VUSDhyst Undervoltage Shut-down
hysteresis 0.5 V
VOV Overvoltage Shut-down 36 V
RON On State Resistance IOUT=10A; Tj=25°C
IOUT=10A
IOUT=3A; VCC=6V
16
30
50
m
m
m
ISSupply Current
Off State; VCC=13V; VIN=VOUT=0V
Off State; VCC= 13V; VIN=VOUT=0V;
Tj=25°C
On State; VCC=13V; VIN=5V; IOUT=0A
10
10
25
20
5
µA
µA
mA
IL(off1) Off State Output Current VIN=VOUT=0V 0 50 µA
IL(off2) Off State Output Current VIN=0V; VOUT=3.5V -75 0 µA
IL(off3) Off State Output Current VIN=VOUT=0V; VCC=13V; Tj =125°C 5 µA
IL(off4) Off State Output Current VIN=VOUT=0V; VCC=13V; Tj =25°C 3 µA
Symbol Parameter Test Conditions Min Typ Max Unit
td(on) Turn-on Delay Time RL=1.3 50 µs
td(off) Turn-off Delay Time RL=1.3 50 µs
dVOUT/
dt(on) Turn-on Voltage Slope RL=1.3 See
relative
diagram V/µs
dVOUT/
dt(off) Turn-off Voltage Slope RL=1.3 See
relative
diagram V/µs
Symbo l P aram eter Test Conditions M in Typ Max Unit
VIL Input Low Level 1.25 V
IIL Low Level Input Current VIN=1.25V 1 µA
VIH Input High Level 3.25 V
IIH High Level Input Current VIN=3.25V 10 µA
VI(hyst) Input Hysteresis Voltage 0.5 V
VICL Input Clamp Voltage IIN=1mA
IIN=-1mA 6 6.8
-0.7 8V
V
5/19
VN920DSP
ELECTRICAL CHARACTERISTICS (conti nued)
Table 8. VCC - Output Diode
Table 9. Status Pin
Table 10. Pro tecti ons (see note 1)
Note: 1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be
used together with a proper software strategy. If the device operates under abnormal conditions this software must limit the duration
and n um ber of ac tivation cycles .
Table 11. Open load Detection
Symbol Paramete r Test Conditions Min Typ Ma x Unit
VFForward on Voltage -IOUT=5A; Tj=150°C 0.6 V
Symbol Parameter Test Conditions Min Typ Max Unit
VSTAT Status Low Output Voltage ISTAT=1.6mA 0.5 V
ILSTAT Status Leakage Current Normal Operation VSTAT=5V 10 µA
CSTAT Status Pin Input
Capacitance Normal Operation VSTAT=5V 100 pF
VSCL Status Clamp Voltage ISTAT=1mA
ISTAT=-1mA 66.8
-0.7 8V
V
Symbol Parameter Test Conditions Min Typ Max Unit
TTSD Shut-down Temperature 150 175 200 °C
TRReset Temperature 135 °C
Thyst Thermal Hysteresis 7 15 °C
tSDL Status delay in overload
condition Tj>TTSD 20 µs
Ilim Current limitation 5.5V<VCC<36V 30 45 75
75 A
A
Vdemag Turn-off Output Clamp
Voltage IOUT=2A; VIN=0V; L=6mH VCC-41 VCC-48 VCC-55 V
Symbol Parameter Test Conditions Min Typ Max Unit
IOL Openload ON State
Detection Threshold VIN=5V 300 500 700 mA
tDOL(on) Openload ON State
Detection Delay IOUT=0A 200 µs
VOL
Openload OFF State
Voltage Detection
Threshold VIN=0V 1.5 2.5 3.5 V
tDOL(off) Openload Detection Delay
at Turn Off 1000 µs
VN920DSP
6/19
Figure 5.
Figure 6. Switching time Wavefor ms
V
IN
V
STAT
t
DOL(off)
OPEN LOAD STATUS TIMING
(with external pull-up) OVERTEMP STA TUS TIMING
I
OUT
< I
OL
V
OUT
> V
OL
t
DOL(on)
T
j
> T
TSD
V
IN
V
STAT
t
SDL
t
SDL
t
t
VOUT
VIN
80%
10%
dVOUT/dt(on)
td(off)
90%
dVOUT/dt(off)
td(on)
7/19
VN920DSP
Table 12. Truth Table
Table 13. Electrical Transient Requiremen ts On V CC Pin
CONDITIONS INPUT OUTPUT STATUS
Normal Opera tion L
HL
HH
H
Current Limita tion L
H
H
L
X
X
H
(Tj < TTSD) H
(Tj > TTSD) L
Overtemperature L
HL
LH
L
Undervoltage L
HL
LX
X
Overvoltage L
HL
LH
H
Output Voltage > VOL L
HH
HL
H
Output Current < IOL L
HL
HH
L
ISO T/R 7637/1
Test Pulse TEST LEVELS
I II III IV Delays and
Impedance
1 -25 V -50 V -75 V -100 V 2 ms 10
2 +25 V +50 V +75 V +100 V 0.2 ms 10
3a -25 V -50 V -100 V -150 V 0.1 µs 50
3b +25 V +50 V +75 V +100 V 0.1 µs 50
4 -4 V -5 V -6 V -7 V 100 ms, 0.01
5 +26.5 V +46.5 V +66.5 V +86.5 V 400 ms, 2
ISO T/R 7637/1
Test Pulse TEST LEVELS RESULTS
I II III IV
1CCCC
2CCCC
3aCCCC
3bCCCC
4CCCC
5C E E E
CLASS CONTENTS
C All functions of the device are performed as designed after exposure to disturbance.
E One or more functions of the device is not performed as designed after exposure to disturbance
and cannot be returned to proper operation without replacing the device.
VN920DSP
8/19
Figure 7. Waveforms
OPEN LOAD without external pull-up
STATUS
INPUT NOR MAL OPER ATI ON
UNDERVOLTAGE
VCC VUSD
VUSDhyst
INPUT
OVERVOLTAGE
VCC
VCC>VOV
STATUS
INPUT
STATUS
STATUS
INPUT
STATUS
INPUT
OPEN LOAD with external pull-up
undefined
LOAD VOLTAGE
VCC<VOV
LOAD VOLTA GE
LOAD VOLTAGE
LOAD VOLTAGE
LOAD VOLTAGE
OVERTEMPERATURE
INPUT
STATUS
TTSD
TR
Tj
LOAD CURRENT
VOUT>VOL
VOL
9/19
VN920DSP
Figure 8. Application Schematic
GND PROTECTION NETWORK AGAINST
REVERSE BATTERY
Solution 1 : Resistor in the gr ound line (RGND only). T his
can be used with any type of load.
The following is an indication on how to dimension the
RGND resistor.
1) RGND 600mV / (IS(on)max).
2) RGND ≥ (−VCC) / (-IGND)
where -IGND is the DC reverse ground pin current and can
be found in the absolute maximum rating section of the
device’s datasheet.
Power Dissipation in RGND (w hen VCC< 0: durin g rever se
battery situations) is:
PD= (-VCC)2/RGND
This resistor can be shared amongst several different
HSD. Please note that the value of this resistor should be
calculated with fo rmula (1) where IS(on)max becom es the
sum of the maximum on-state currents of the different
devices.
Please note that if the microprocessor ground is not
common with the device ground then the RGND will
produce a shif t (IS(on)max * RGND) in the input thr esholds
and the status output values. This shift will vary
depending on many devices are ON in the case of several
high side drivers sharing the same RGND.
If the calculated power dissipation leads to a large
resistor or several devices have to share the same
resistor then the ST suggests to utilize Solution 2 (see
below).
Solution 2: A diode (DGND) in the ground line.
A resistor (RGND=1kΩ) should be inserted in parallel to
DGND if the device will be driving an inductive load.
This small signal diode can be safely shared amongst
several diffe rent HSD. Also i n this case, the pr esence of
the ground network will produce a shift (
j
600mV) in the
input threshold and the status output values if the
microprocessor ground is not common with the device
ground. This shift will not vary if more than one HSD
shares the same diode/resistor network.
Series resistor in INPUT line is also required to prevent
that, during battery voltage transient, the current exceeds
the Absolute Maximum Rating.
Safest c onfiguration for unused INPUT pin is to leave it
unconnected, while unused SENSE pin has to be
connected to Ground pin.
LOAD DUMP PROTECTION
Dld is necessary (Voltage Transient Suppressor) if the
load dump peak voltage exceeds VCC max DC rating.
The same applies if the device will be subject to
transients on the V CC line that are greater than the ones
shown in the ISO T/R 7637/1 table.
µC I/Os PROTECTION:
If a ground protection network is used and negative
transient are present on the VCC line, the control pins will
be pulled negative. ST suggests to insert a resistor (Rprot)
in line to prevent the µC I/Os pins to latch-up.
The value of these resistors is a compromise between the
leakage current of µC and the current required by the
HSD I/Os (Input levels compatibility) with the latch-up
limit of µC I/Os.
-VCCpeak/Ilatchup Rprot (VOHµC-VIH-VGND) / IIHmax
Calculation example:
For VCCpeak= - 100V and Ilatchup 20mA; VOHµC 4.5V
5k Rprot 65k.
Recommen ded Rpr ot value is 10kΩ.
V
CC
GND
OUTPUT
D
GND
R
GND
D
ld
µ
C
+5V
R
prot
V
GND
STATUS
INPUT
+5V
R
prot
VN920DSP
10/19
Figure 9. Off State Output Current Figure 10. High Level Input Current
Figure 11. Input Low Level
Figure 12. Input Clamp Voltage
Figure 13. Input High Level
Figure 14. Input Hysteresis Voltage
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0
1
2
3
4
5
6
7
8
9
IL(off1) (uA)
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
Iih (uA)
Vin=3.25V
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
Vil (V)
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
6
6.2
6.4
6.6
6.8
7
7.2
7.4
7.6
7.8
8
Vicl (V)
Iin=1mA
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
Vih (V)
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
1.5
Vhyst (V)
11/19
VN920DSP
Figure 15. Overvoltage Shutdown
Figure 16. Turn-on Voltage Slope
Figure 17. On State Resistance Vs Tcase
Figure 18. I LIM Vs Tcase
Figure 19. Turn-off Voltage Slope
Figure 20. On State Resistance Vs VCC
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
30
32
34
36
38
40
42
44
46
48
50
Vov (V)
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC)
250
300
350
400
450
500
550
600
650
700
dVout/dt(on) (V/ms)
Vcc=13V
Rl=1.3Ohm
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC)
0
5
10
15
20
25
30
35
40
45
50
Ron (mOhm)
Iout=10A
Vcc= 8 V; 36 V
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0
10
20
30
40
50
60
70
80
90
100
Ilim (A)
Vcc=13V
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0
50
100
150
200
250
300
350
400
450
500
550
dVout/dt(off) (V/ms)
Vcc=13V
Rl=1.3Ohm
5 10152025303540
Vcc (V)
0
5
10
15
20
25
30
35
40
45
50
Ron (mOhm)
Tc= - 40ºC
Tc= 25ºC
Tc= 150ºC
VN920DSP
12/19
Figure 21. Status Leakage Current
Figure 22. Status Cl amp Voltage
Figu re 23. S t at us Low Outp ut V ol ta ge
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC)
0
0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04
0.045
0.05
Ilstat(µA)
Vstat=5V
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC)
6
6.2
6.4
6.6
6.8
7
7.2
7.4
7.6
7.8
8
Vscl (V)
Istat=1mA
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Vstat (V)
Istat=1.6mA
13/19
VN920DSP
Figure 24. Maxi m um turn off curren t versus load i nductance
A = Single Pulse at TJstart=150ºC
B= Repet iti ve puls e at TJstart=100ºC
C= Repetitive Pulse at TJstart=125ºC
Conditions:
VCC=13.5V
Values are generated with RL=0
In case of repetitive pulses , Tjstart (at beginning of
each demagnetization) of every pulse must not
exceed the temperature specified above for
curves B and C.
1
10
100
0.1 1 10 100
L(mH)
ILMA X (A )
A
B
C
VIN, IL
t
Demagnetization Demagnetization Demagnetization
VN920DSP
14/19
PowerS O-10™ Thermal Data
Figu re 25. P ow e rS O-1 0™ PC Boa rd
Figure 26. Rthj-amb Vs PCB copper area i n open box free air condition
Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: from minimum pad lay-out to 8cm2).
30
35
40
45
50
55
0246810
PCB Cu heatsink area (cm^2)
RTHj_amb (°C/W)
Tj-Tamb=50°C
15/19
VN920DSP
Figure 27. P ow erS O-10 Th ermal Imp edance Jun ction Am bient Singl e Pulse
Figu re 28 . Th erm al fittin g m od e l of a double
channel HSD in PowerSO -10 Pulse calculation formula
Table 14. Thermal Parameter
0.01
0.1
1
10
100
0.0001 0.001 0.01 0.1 1 10 100 1000
Tim e ( s)
ZTH ( ° C/ W )
Footprint
6 cm 2
T_amb
C1
R1 R2
C2
R3
C3
R4
C4
R5
C5
R6
C6
Pd
Tj
Area/island (cm2) Footprint 6
R1 (°C/W) 0.02
R2 (°C/W) 0.1
R3( °C/W) 0.2
R4 (°C/W) 0.8
R5 (°C/W) 12
R6 (°C/W) 37 22
C1 (W.s/°C) 0.0015
C2 (W.s/°C) 7.00E-03
C3 (W.s/°C) 0.015
C4 (W.s/°C) 0.3
C5 (W.s/°C) 0.75
C6 (W.s/°C) 3 5
ZTHδRTH δZTHtp 1δ()+=
where δtpT=
VN920DSP
16/19
PACKAGE MECHANICAL
Table 15. PowerSO-10™ Mechanical Data
No te : (* ) M uar only POA P0 13P
Figure 29. PowerSO-10™ Package Dimensions
Symbol millimeters
Min Typ Max
A 3.35 3.65
A (*) 3.4 3.6
A1 0.00 0.10
B 0.40 0.60
B (*) 0.3 7 0.53
C 0.35 0.55
C (*) 0.23 0.32
D 9.40 9.60
D1 7.40 7.60
E 9.30 9.50
E2 7.20 7.60
E2 (*) 7.30 7.50
E4 5.90 6.10
E4 (*) 5.90 6.30
e 1.27
F 1.25 1.35
F (*) 1.20 1.40
H 13.80 14.40
H (*) 13.85 14.35
h 0.50
L 1.20 1.80
L (*) 0.8 0 1.10
a
α (*) 2º
DETAIL "A"
PLANE
SEATING
α
L
A1
F
A1
h
A
D
D1
= =
= =
E4
0.10 A
C
A
B
B
DET AIL "A"
SEATING
PL A NE
E2
10
1
eB
HE
0.25
P095A
17/19
VN920DSP
Figure 30. PowerSO-10 Suggested Pad Layout And Tube Shipment (no suffix)
Figure 31. Tape And Reel Shipment (suffix “13TR”)
6.30
10.8 - 11
14 .6 - 14 .9
9.5
1
2
3
4
51.27
0.67 - 0.73
0.54 - 0.6
10
9
8
7
6
B
A
C
C
A
B
MUARCASABLANCA
All d imensions are in mm.
Base Q. ty Bulk Q.t y Tube length (± 0.5) A B C (± 0.1)
Casablanca 50 1000 532 10.4 16.4 0.8
Muar 50 1000 532 4.9 17.2 0.8
REEL DIMENSIONS
All dimensions are in mm.
Base Q.ty 600
Bulk Q.ty 600
A (max) 330
B (min) 1.5
C (± 0.2) 13
F20.2
G (+ 2 / -0) 24.4
N (min) 60
T (max) 30.4
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb. 1986
All dimensions are in mm.
Tape width W 24
Tape Hole Spacing P0 (± 0.1) 4
Component Spacing P 24
Hole Diameter D (± 0.1/-0) 1.5
Hole Diameter D1 (min) 1.5
Hole Position F (± 0.05) 11.5
Compartment Depth K (max) 6.5
Hole Spacing P1 (± 0.1) 2
Top
cover
tape
End
Start
No componentsNo co m ponents Components
500m m min
500mm min
Em pt y com ponents pockets
saled with cover tape.
User direction of feed
VN920DSP
18/19
RE VISION HISTORY
Date Revision Description of Changes
Sep. 2004 1 - First Issue.
Oct. 20042- Minor text change.
24-Sep-2013 3- Updated Disclaimer
19/19
VN920DSP
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2013 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
DocID10683 Rev 3