© 2008 Microchip Technology Inc. DS21428E-page 1
TC500/A/510/514
Features:
Precision (up to 17 bits) A/D Converter “Front
End”
3-Pin Control Interface to Microprocessor
Flexible: User Can Trade-off Conversion Speed
for Resolution
Single-Supply Operation (TC510/TC514)
4 Input, Differential Analog MUX (TC514)
Automatic Input Voltage Polarity Detection
Low Power Dissipation:
- (TC500/TC500A): 10 mW
- (TC510/TC514): 18 mW
Wide Analog Input Range:
- ±4.2V (TC500A/TC510)
Directly Accepts Bipolar and Differential
Input Signals
Applications:
Precision Analog Signal Processor
Precision Sensor Interface
High Accuracy DC Measurements
General Description:
TheTC500/A/510/514 family are precision analog front
ends that implement dual slope A/D converters having
a maximum resolution of 17 bits plus sign. As a
minimum, each device contains the integrator, zero
crossing comparator and processor interface logic. The
TC500 is the base (16-bit max) device and requires
both positive and negative power supplies. The
TC500A is identical to the TC500 with the exception
that it has improved linearity, allowing it to operate to a
maximum resolution of 17 bits. The TC510 adds an on-
board negative power supply converter for single-
supply operation. The TC514 adds both a negative
power supply converter and a 4-input differential
analog multiplexer.
Each device has the same processor control interface
consisting of 3 wires: control inputs (A and B) and zero-
crossing comparator output (CMPTR). The processor
manipulates A, B to sequence the TC5XX through four
phases of conversion: auto-zero, integrate, de-
integrate and integrator zero. During the auto-zero
phase, offset voltages in the TC5XX are corrected by a
closed loop feedback mechanism. The input voltage is
applied to the integrator during the integrate phase.
This causes an integrator output dv/dt directly
proportional to the magnitude of the input voltage. The
higher the input voltage, the greater the magnitude of
the voltage stored on the integrator during this phase.
At the start of the de-integrate phase, an external
voltage reference is applied to the integrator and, at the
same time, the external host processor starts its on-
board timer. The processor maintains this state until a
transition occurs on the CMPTR output, at which time
the processor halts its timer. The resulting timer count
is the converted analog data. Integrator zero (the final
phase of conversion) removes any residue remaining
in the integrator in preparation for the next conversion.
The TC500/A/510/514 offer high resolution (up to
17 bits), superior 50/60 Hz noise rejection, low-power
operation, minimum I/O connections, low input bias
currents and lower cost compared to other converter
technologies having similar conversion speeds.
Precision Analog Front Ends with Dual Slope ADC
TC500/A/510/514
DS21428E-page 2 © 2008 Microchip Technology Inc.
Package Types
Typical Application
1
2
3
4
16
15
14
13
5
6
7
12
11
10
98
CMPTR OUT
A
DGND
B
VDD
VIN+
VIN
VREF+
BUF
VSS
CINT
ACOM
VREF
CREF+
CREF
CAZ
TC500/
TC500A
16-Pin PDIP/SOIC/CERDIP
VOUT 1
2
3
4
20
19
18
CAP–
5
6
7
8
17
23
22
21
9
10
11
12
24
25
26
27
28
DGND
A
B
CREF
CINT
CAZ
BUF
ACOM
CH4–
CH3–
CH2–
TC514
CREF+
VREF
VREF+
VDD
OSC
CMPTR OUT
CAP+
16
15
13
14
CH1–
N/C
CH1+
CH2+
CH3+
CH4+
A0
A1
28-Pin PDIP/SOIC
24-Pin PDIP/SOIC
1
2
3
4
16
15
14
5
6
7
8
13
19
18
17
9
10
11
12
20
21
22
23
24
TC510
CAP–
DGND
A
B
VDD
OSC
CMPTR OUT
VIN+
VIN
N/C
N/C
CAP+
CREF
CINT
CAZ
BUF
ACOM
N/C
N/C
N/C
VOUT
CREF+
VREF
VREF+
Level
Shift
Control Logic
Analog
Switch
Control
Signals
ACOM
VREF+
BUF
CAZ
Buffer Integrator
SWR
SWIZ
CMPTR 1
CMPTR 2
CMPTR
Output
DGND
Control Logic
SW1
TC500
TC500A
TC510
TC514
CREF
CREF+
SWR
CREF-CAZ
RINT CINT
CINT
SWRI-SWRI-
SWRI+SWRI-
SWZ
SWI
SWZ
VSS
OSC
+
+
+
Phase
Decoding
Logic
Polarity
Detection
DC-TO-DC
Converter
(TC510 & TC514)
-
+
A B
0 0 Zero Integrator Output
0 1 Auto-Zero
1 0 Signal Integrate
1 1 De-integrate
VREF-
VOUT-
COUT-
1.0 μF
1.0 μF
VSS
SWI
BA
A0 A1
DIF.
MUX
(TC514)
CH1+
CH2+
CH3+
CH4+
CH1-
CH2-
CH3-
CH4-
CAP- CAP+
(TC500
TC500A)
Converter Sate
© 2008 Microchip Technology Inc. DS21428E-page 3
TC500/A/510/514
1.0 ELECTRICAL
CHARACTERISTICS
Absolute Maximum Ratings†
TC510/TC514 Positive Supply Voltage
(VDD to GND) .........................................+10.5V
TC500/TC500A Supply Voltage
(VDD to VSS) ..............................................+18V
TC500/TC500A Positive Supply Voltage
(VDD to GND) ............................................+12V
TC500/TC500A Negative Supply Voltage
(VSS to GND)................................................-8V
Analog Input Voltage (VIN+ or VIN-) ............VDD to VSS
Logic Input Voltage...............VDD +0.3V to GND - 0.3V
Voltage on OSC:
........................... -0.3V to (VDD +0.3V) for VDD < 5.5V
Ambient Operating Temperature Range:
................................................................ 0°C to +70°C
Storage Temperature Range:.............-65°C to +150°C
† Notice: Stresses above those listed under “Absolute
Maximum Ratings” may cause permanent damage to
the device. These are stress ratings only and functional
operation of the device at these or any other conditions
above those indicated in the operation sections of the
specifications is not implied. Exposure to Absolute
Maximum Rating conditions for extended periods may
affect device reliability.
DC CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, TC510/TC514: VDD = +5V, TC500/TC500A: VSS = ±5V.
CAZ = CREF = 0.47 μF.
Parameters Sym TA = +25°C TA = 0°C to 70°C Units Conditions
Min. Typ. Max. Min. Typ. Max.
Analog
Resolution 60 μVNote 1
Zero-scale Error with
Auto-zero Phase
ZSE 0.005 0.005 0.012 % F.S. TC500/TC510/TC514
0.003 0.003 0.009 TC500A
End Point Linearity ENL 0.005 0.015 0.015 0.060 % F.S. TC500/TC510/TC514
0.010 0.010 0.045 % F.S. Note 1, Note 2,
TC500A
Best-Case Straight
Line Linearity
NL 0.003 0.008 % F.S. TC500/TC510/TC514,
Note 1, Note 2
0.005 % F.S. TC500A
Zero-scale Temp.
Coefficient
ZSTC ——— 1 2μV/°C Over Operating
Temperature Range
Full-scale Symmetry
Error (Rollover Error)
SYE 0.01 0.03 % F.S. Note 1
Full-scale
Temperature
Coefficient
FSTC 10 ppm/°C Over Operating
Temperature Range;
External Reference
TC = 0 ppm/°C
Input Current IIN —6— pAV
IN = 0V
Common Mode
Voltage Range
VCMR VSS + 1.5 VDD – 1.5 VSS + 1.5 VDD – 1.5 V
Integrator Output
Swing
VSS + 0.9 VDD – 0.9 VSS + 0.9 VSS + 0.9 V
Analog Input Signal
Range
VSS + 1.5 VDD – 1.5 VSS + 1.5 VSS + 1.5 V ACOM = GND = 0V
Note 1: Integrate time 66 ms, auto-zero time 66 ms, VINT (peak) 4V.
2: End point linearity at ±1/4, ±1/2, ±3/4 F.S. after full-scale adjustment.
3: Rollover error is related to CINT
, CREF
, CAZ characteristics.
TC500/A/510/514
DS21428E-page 4 © 2008 Microchip Technology Inc.
Voltage Reference
Range
VREF VSS +1 VDD – 1 VSS +1 VDD – 1 V VREF- VREF+
Digital
Comparator Logic 1,
Output High
VOH 4— 4 VI
SOURCE = 400 μA
Comparator Logic 0,
Output Low
VOL 0.4 0.4 V ISINK = 2.1 mA
Logic 1, Input High
Voltage
VIH 3.5 3.5 V
Logic 0, Input Low
Voltage
VIL —— 1 1 V
Logic Input Current IL—— — 0.3 μA Logic ‘1’ or ‘0
Comparator Delay tD—2 3 μs
Multiplexer (TC514 Only)
Maximum Input
Voltage
-2.5 2.5 -2.5 2.5 V VDD = 5V
Drain/Source ON
Resistance
RDSON —610 kVDD = 5V
Power (TC510/TC514 Only)
Supply Current IS 1.8 2.4 3.5 mA VDD = 5V, A = 1, B = 1
Power Dissipation PD—18— — —mWV
DD = 5V
Positive Supply
Operating Voltage
Range
VDD 4.5 5.5 4.5 — 5.5 V
Operating Source
Resistance
ROUT 60 85 100 IOUT = 10 mA
Oscillator Frequency 100 kHz Note 1
Maximum Current
Out
IOUT ——-10 — —-10mAV
DD = 5V
Power (TC500/TC500A Only)
Supply Current IS 1 1.5 2.5 mA VS = ±5V, A = B = 1
Power Dissipation PD—10— — —mWV
DD = 5V, VSS = -5V
Positive Supply
Operating Range
VDD 4.5 7.5 4.5 — 7.5 V
Negative Supply
Operating Range
VSS -4.5 -7.5 - 4.5 -7.5 V
DC CHARACTERISTICS (CONTINUED)
Electrical Specifications: Unless otherwise specified, TC510/TC514: VDD = +5V, TC500/TC500A: VSS = ±5V.
CAZ = CREF = 0.47 μF.
Parameters Sym TA = +25°C TA = 0°C to 70°C Units Conditions
Min. Typ. Max. Min. Typ. Max.
Note 1: Integrate time 66 ms, auto-zero time 66 ms, VINT (peak) 4V.
2: End point linearity at ±1/4, ±1/2, ±3/4 F.S. after full-scale adjustment.
3: Rollover error is related to CINT
, CREF
, CAZ characteristics.
© 2008 Microchip Technology Inc. DS21428E-page 5
TC500/A/510/514
2.0 TYPICAL PERFORMANCE CURVES
FIGURE 2-1: Output Voltage vs. Lo ad
Current.
FIGURE 2-2: Output Ripple vs. Load
Current.
FIGURE 2-3: Oscillator Frequency vs.
Capacitance.
FIGURE 2-4: Output Voltage vs. Output
Current.
FIGURE 2-5: Output Source Resistance
vs. Temperature.
FIGURE 2-6: Oscillator Frequency vs.
Temperature.
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Load Current (mA)
-5
-4
-3
-2
-1
0
1
2
3
4
5
01020304050 60 70 80
Output Voltage (V)
T
A
= +25°C
V+ = 5V
Slope 60Ω
Load Current (mA)
0 3 45612 78 910
0
25
50
75
100
125
150
175
200
Output Ripple (mV PK-PK)
V+ = 5V, TA = +25°C
Osc. Freq. = 100 kHz
CAP = 1 µF
CAP = 10 µF
Oscillator Capacitance (pF)
100
10
1
110 100 1000
Oscillator Frequency (kHz)
TA = +25°C
V+ = 5V
Output Current (mA)
068104214161812 20
-0
-1
-3
-2
-4
-5
-7
-6
-8
Output Voltage (V)
TA = +25°C
Temperature (°C)
70
80
90
100
60
50
40
-50 025
-25 50 75 100
Output Source Resistance (Ω)
V+ = 5V
I
OUT
= 10 mA
Temperature (°C)
125
150
100
75
50
-50 025-25 50 75 125100
Oscillator Frequency (kHz)
V+ = 5V
TC500/A/510/514
DS21428E-page 6 © 2008 Microchip Technology Inc.
NOTES:
© 2008 Microchip Technology Inc. DS21428E-page 7
TC500/A/510/514
3.0 PIN DESCRIPTIONS
The descriptions of the pins are listed in Table 3-1.
TABLE 3-1: PIN FUNCTION TABLE
TC500,
TC500A TC510 TC514 Symbol Function
CERDIP,
PDIP, SOIC PDIP, SOIC PDIP, SOIC
12 2C
INT Integrator output. Integrator capacitor connection.
2 Not Used Not Used VSS Negative power supply input (TC500/TC500A only).
33 3C
AZ Auto-zero input. The auto-zero capacitor connection.
4 4 4 BUF Buffer output. The Integrator capacitor connection.
5 5 5 ACOM This pin is grounded in most applications. It is recommended that
ACOM and the input common pin (Ven- or CHn-) be within the analog
Common Mode Range (CMR).
66 6C
REF- Input. Negative reference capacitor connection.
77 7C
REF+ Input. Positive reference capacitor connection.
88 8V
REF- Input. External voltage reference (-) connection.
99 9V
REF+ Input. External voltage reference (+) connection.
10 15 Not Used VIN- Negative analog input.
11 16 Not Used VIN+ Positive analog input.
12 18 22 A Input. Converter phase control MSB. (See input B.)
13 17 21 B Input. Converter phase control LSB. The states of A, B place the
TC5XX in one of four required phases. A conversion is complete
when all four phases have been executed:
Phase control input pins: AB = 00: Integrator zero
01: Auto-zero
10: Integrate
11: De-integrate
14 19 23 CMPTR OUT Zero crossing comparator output. CMPTR is high during the
integration phase when a positive input voltage is being integrated
and is low when a negative input voltage is being integrated. A high-
to-low transition on CMPTR signals the processor that the De-
integrate phase is completed. CMPTR is undefined during the auto-
zero phase. It should be monitored to time the integrator zero phase.
15 23 27 DGND Input. Digital ground.
16 21 25 VDD Input. Power supply positive connection.
22 26 CAP+ Input. Negative power supply converter capacitor (+) connection.
24 28 CAP- Input. Negative power supply converter capacitor (-) connection.
—1 1V
OUT- Output. Negative power supply converter output and reservoir
capacitor connection. This output can be used to power other
devices in the circuit requiring a negative bias voltage.
20 24 OSC Oscillator control input. The negative power supply converter
normally runs at a frequency of 100 kHz. The converter oscillator
frequency can be slowed down (to reduce quiescent current) by
connecting an external capacitor between this pin and VDD (see
Section 2.0 “Typical Performance Curves”).
18 CH1+ Positive analog input pin. MUX channel 1.
13 CH1- Negative analog input pin. MUX channel 1.
17 CH2+ Positive analog input pin. MUX channel 2.
12 CH2- Negative analog input pin. MUX channel 2.
16 CH3+ Positive analog input pin. MUX channel 3.
11 CH3- Negative analog input pin. MUX channel 3.
15 CH4+ Positive analog input pin. MUX channel 4.
10 CH4- Negative analog input pin. MUX channel 4
20 A0 Multiplexer input channel select input LSB (see A1).
TC500/A/510/514
DS21428E-page 8 © 2008 Microchip Technology Inc.
19 A1 Multiplexer input channel select input MSB.
Phase control input pins: A1, A0 = 00 = Channel 1
01 = Channel 2
10 = Channel 3
11 = Channel 4
TABLE 3-1: PIN FUNCTION TABLE (CONTINUED)
TC500,
TC500A TC510 TC514 Symbol Function
CERDIP,
PDIP, SOIC PDIP, SOIC PDIP, SOIC
© 2008 Microchip Technology Inc. DS21428E-page 9
TC500/A/510/514
4.0 DETAILED DESCRIPTION
4.1 Dual Slope Conversion Principles
Actual data conversion is accomplished in two
phases: input signal integration and reference voltage
de-integration.
The integrator output is initialized to 0V prior to the start
of integration. During integration, analog switch S1
connects VIN to the integrator input where it is
maintained for a fixed time period (TINT). The
application of VIN causes the integrator output to depart
0V at a rate determined by the magnitude of VIN and a
direction determined by the polarity of VIN. The de-
integration phase is initiated immediately at the
expiration of TINT
.
During de-integration, S1 connects a reference voltage
(having a polarity opposite that of VIN) to the integrator
input. At the same time, an external precision timer is
started. The de-integration phase is maintained until
the comparator output changes state, indicating the
integrator has returned to its starting point of 0V. When
this occurs, the precision timer is stopped. The de-
integration time period (TDEINT), as measured by the
precision timer, is directly proportional to the magnitude
of the applied input voltage (see Figure 4-3).
A simple mathematical equation relates the input
signal, reference voltage and integration time:
EQUATION 4-1:
For a constant VIN:
EQUATION 4-2:
The dual slope converter accuracy is unrelated to the
integrating resistor and capacitor values as long as
they are stable during a measurement cycle.
An inherent benefit is noise immunity. Input noise
spikes are integrated (averaged to zero) during the
integration periods. Integrating ADCs are immune to
the large conversion errors that plague successive
approximation converters in high noise environments.
Integrating converters provide inherent noise rejection
with at least a 20dB/decade attenuation rate.
Interference signals with frequencies at integral
multiples of the integration period are, theoretically,
completely removed, since the average value of a sine
wave of frequency (1/T) averaged over a period (T) is
zero.
Integrating converters often establish the integration
period to reject 50/60 Hz line frequency interference
signals. The ability to reject such signals is shown by a
normal mode rejection plot (Figure 4-1). Normal mode
rejection is limited in practice to 50 to 65 dB, since the
line frequency can deviate by a few tenths of a percent
(Figure 4-2).
FIGURE 4-1: Integrating Converter
Normal Mode Rejection.
FIGURE 4-2: Line Frequency Deviation.
Where:
VREF = Reference Voltage
TINT = Signal Integration time (fixed)
tDEINT = Reference Voltage Integration time
(variable)
1
RINTCINT
------------------------VIN T()DT
0
TINT
VREFCDEINT
RINTCINT
--------------------------------=
VIN VREFTDEINT
TINT
------------------
=
30
20
10
0
0.1/T 1/T 10/T
Input Frequency
Normal Mode Rejection (dB)
T = Measurment
Period
0.01 0.1 1.0
Normal Mode Rejeciton (dB)
80
70
60
50
40
30
20
t = 0.1 sec
Line Frequency Deviation from 60 Hz (%)
Normal Mode = 20 LOG
Rejection
DEV = Deviation from 60 Hz
t = Integration Period
SIN 60 t (1 – )
p
p
DEV
100
DEV
100
60 t (1 – )
TC500/A/510/514
DS21428E-page 10 © 2008 Microchip Technology Inc.
FIGURE 4-3: Basic Dual Slope Converter.
Phase
Control
Comparator
Integrator
Output
Integrator
CINT
Analog
Input (VIN)
Switch Driver
Ref
Voltage
Control
Logic
Polarity Control
S1
I/O
Timer
Counter
ROM
RAM
Microcomputer
AB
CMPTR Out
VSUPPLY
±
TINT
TC510
VINT
VIN VREF
VIN 1/2 VREF
TDEINT
+
RINT
VINT
+
© 2008 Microchip Technology Inc. DS21428E-page 11
TC500/A/510/514
5.0 TC500/A/510/514 CONVERTER
OPERATION
The TC500/A/510/514 incorporates an auto-zero and
Integrator phase in addition to the input signal Integrate
and reference De-integrate phases. The addition of
these phases reduce system errors, calibration steps
and shorten overrange recovery time. A typical
measurement cycle uses all four phases in the
following order:
1. Auto-zero.
2. Input signal integration.
3. Reference de-integration.
4. Integrator output zero.
The internal analog switch status for each of these
phases is summarized in Ta b l e 5 - 1 . This table
references the Typical Application.
TABLE 5-1: INTERNAL ANALOG GATE STATUS
5.1 Auto-zero Phase (AZ)
During this phase, errors due to buffer, integrator and
comparator offset voltages are nulled out by charging
CAZ (auto-zero capacitor) with a compensating error
voltage.
The external input signal is disconnected from the
internal circuitry by opening the two SWI switches. The
internal input points connect to analog common. The
reference capacitor is charged to the reference voltage
potential through SWR. A feedback loop, closed around
the integrator and comparator, charges the capacitor
(CAZ) with a voltage to compensate for buffer amplifier,
integrator and comparator offset voltages.
5.2 Analog Input Signal Integration
Phase (INT)
The TC5XX integrates the differential voltage between
the VIN+ and VIN– inputs. The differential voltage must
be within the device’s Common mode range VCMR. The
input signal polarity is normally checked via software at
the end of this phase: CMPTR = 1 for positive polarity;
CMPTR = 0 for negative polarity.
5.3 Reference Voltage De-integration
Phase (DINT)
The previously charged reference capacitor is
connected with the proper polarity to ramp the
integrator output back to zero. An externally-provided,
precision timer is used to measure the duration of this
phase. The resulting time measurement is proportional
to the magnitude of the applied input voltage.
5.4 Integrator Output Zero Phase (IZ)
This phase ensures the integrator output is at 0V when
the auto-zero phase is entered, and that only system
offset voltages are compensated. This phase is used at
the end of the reference voltage de-integration phase
and MUST be used for ALL TC5XX applications having
resolutions of 12-bits or more. If this phase is not used,
the value of the auto-zero capacitor (CAZ) must be
about 2 to 3 times the value of the integration capacitor
(CINT) to reduce the effects of charge sharing. The
integrator output zero phase should be programmed to
operate until the output of the comparator returns high.
The overall timing system is shown in Figure 5-1.
Conversion Phase SWISWR+SW
R-SW
ZSWRSW1SWIZ
Auto-zero (A = 0, B = 1) Closed Closed Closed
Input Signal Integration (A = 1, B = 0) Closed
Reference Voltage De-integration
(A =1, B = 1)
*
Closed Closed
Integrator Output Zero (A = 0, B = 0) Closed Closed Closed
* Assumes a positive polarity input signal. SWRI would be closed for a negative input signal.
TC500/A/510/514
DS21428E-page 12 © 2008 Microchip Technology Inc.
FIGURE 5-1: Typical Dual Slope A/D Converter System Timing.
Auto-zero Integrate
Full-scale Input
Reference
De-integrate
Overshoot Integrator
Output
Zero
Converter Status
TTIME
Integrator
Voltage VINT
Comparator
Output
AB Inputs
Controller
Operation
Notes:
Comparator Delay
Begin Conversion with
Auto-Zero Phase
(Positive Input Shown)
Sample Input Polarity
The length of this phase is chosen almost arbitrarily
but needs to be long enough to null out worst case errors
(see text).
Minimizing
Overshoot
will Minimize
I.O.Z. Time
Ready for Next
Conversion
(Auto-Zero is
Idle State)
Time Input
Integration
Phase
Capture
De-integration
Time
Integrator
Output
Zero Phase
Complete
Undefined
A = 0
B = 1
A = 1
0 For Negative Input
1 For Positive Input
B = 0 B = 1B = 0
A = 1A = 0
Typically = TINT TINT
0
A
B
Comparator Delay +
Processor Latency
© 2008 Microchip Technology Inc. DS21428E-page 13
TC500/A/510/514
6.0 ANALOG SECTION
6.1 Differential Inputs (VIN+, VIN–)
The TC5XX operates with differential voltages within
the input amplifier Common mode range. The amplifier
Common mode range extends from 1.5V below
positive supply to 1.5V above negative supply. Within
this Common mode voltage range, Common mode
rejection is typically 80 dB. Full accuracy is maintained,
however, when the inputs are no less than 1.5V from
either supply.
The integrator output also follows the Common mode
voltage. The integrator output must not be allowed to
saturate. A worst-case condition exists, for example,
when a large, positive Common mode voltage, with a
near full-scale negative differential input voltage, is
applied. The negative input signal drives the integrator
positive when most of its swing has been used up by
the positive Common mode voltage. For these critical
applications, the integrator swing can be reduced. The
integrator output can swing within 0.9V of either supply
without loss of linearity.
6.2 Analog Common
Analog common is used as VIN return during system
zero and reference de-integrate. If VIN– is different from
analog common, a Common mode voltage exists in the
system. This signal is rejected by the excellent CMR of
the converter. In most applications, VIN– will be set at a
fixed known voltage (i.e., power supply common). A
Common mode voltage will exist when VIN– is not
connected to analog common.
6.3 Differential Reference
(VREF+, VREF–)
The reference voltage can be anywhere within 1V of
the power supply voltage of the converter. Rollover
error is caused by the reference capacitor losing or
gaining charge due to stray capacitance on its nodes.
The difference in reference for (+) or (-) input voltages
will cause a rollover error. This error can be minimized
by using a large reference capacitor in comparison to
the stray capacitance.
6.4 Phase Control Inputs (A, B)
The A, B unlatched logic inputs select the TC5XX
operating phase. The A, B inputs are normally driven
by a microprocessor I/O port or external logic.
6.5 Comp arator Output
By monitoring the comparator output during the fixed
signal integrate time, the input signal polarity can be
determined by the microprocessor controlling the
conversion. The comparator output is high for positive
signals and low for negative signals during the signal
integrate phase (see Figure 6-1).
During the reference de-integrate phase, the
comparator output will make a high-to-low transition as
the integrator output ramp crosses zero. The transition
is used to signal the processor that the conversion is
complete.
The internal comparator delay is 2 μs, typically.
Figure 6-1 shows the comparator output for large
positive and negative signal inputs. For signal inputs at
or near zero volts, however, the integrator swing is very
small. If Common mode noise is present, the
comparator can switch several times during the
beginning of the signal integrate period. To ensure that
the polarity reading is correct, the comparator output
should be read and stored at the end of the signal
integrate phase.
The comparator output is undefined during the auto-
zero phase and is used to time the integrator output
zero phase. (See Section 8.6 “Integrator Output Zero
Phase”).
FIGURE 6-1: Comparator Output.
Integrator
Output Zero
Crossing
Comparator
Output
Reference
Signal
Integrate
Integrator
Output
Zero
Crossing
Comparator
Output
Reference
Deintegrate
Signal
Integrate
B. Negative Input SignalA. Positive Input Signal
De-integrate
TC500/A/510/514
DS21428E-page 14 © 2008 Microchip Technology Inc.
NOTES:
© 2008 Microchip Technology Inc. DS21428E-page 15
TC500/A/510/514
7.0 TYPICAL APPLICATIONS
7.1 Component Value Selection
The procedure outlined below allows the user to arrive
at values for the following TC5XX design variables:
1. Integration Phase Timing.
2. Integrator Timing Components (RINT
, CINT).
3. Auto-zero and Reference Capacitors.
4. Voltage Reference.
7.2 Select Integration Time
Integration time must be picked as a multiple of the
period of the line frequency. For example, TINT times of
33 ms, 66 ms and 132 ms maximize 60 Hz line
rejection.
7.3 DINT and IZ Phase Timing
The duration of the DINT phase is a function of the
amount of voltage stored on the integrator during TINT
and the value of VREF
. The DINT phase must be initiated
immediately following INT and terminated when an
integrator output zero-crossing is detected. In general,
the maximum number of counts chosen for DINT is twice
that of INT (with VREF chosen at VIN(MAX) /2).
7.4 Calculate Integrating Resistor
(RINT)
The desired full-scale input voltage and amplifier output
current capability determine the value of RINT
. The
buffer and integrator amplifiers each have a full-scale
current of 20 μA.
The value of RINT is, therefore, directly calculated in the
following equation:
EQUATION 7-1:
7.5 Select Reference (CREF) and Auto-
zero (CAZ) Capacitors
CREF and CAZ must be low leakage capacitors (such as
polypropylene). The slower the conversion rate, the
larger the value CREF must be. Recommended
capacitors for CREF and CAZ are shown in Tab le 7 -1 .
Larger values for CAZ and CREF may also be used to
limit rollover errors.
TABLE 7-1: CREF AND CAZ SELECTION
7.6 Calculate Integrating Capacitor
(CINT)
The integrating capacitor must be selected to maximize
integrator output voltage swing. The integrator output
voltage swing is defined as the absolute value of VDD
(or VSS) less 0.9V (i.e., IVDD - 0.9VI or IVSS + 0.9VI).
Using the 20 μA buffer maximum output current, the
value of the integrating capacitor is calculated using the
following equation.
EQUATION 7-2:
It is critical that the integrating capacitor has a very low
dielectric absorption. Polypropylene capacitors are an
example of one such dialectic. Polyester and poly-
bicarbonate capacitors may also be used in less critical
applications. Table 7- 2 summarizes recommended
capacitors for CINT
.
TABLE 7-2: RECOMMENDED CAPACITOR
FOR CINT
7.7 Calculate VREF
The reference de-integration voltage is calculated
using the following equation:
EQUATION 7-3:
Where:
VIN(MAX) = Maximum input voltage (full count
voltage)
RINT = Integrating Resistor (in M)
For loop stability, RINT should be 50 k
RINT in M
Ω
()
VIN MAX()
20
-----------------------=
Conversions
Per Second Typical Value of
CREF, CAZ (μF) Suggested* Part
Number
>7 0.1 SMR5 104K50J01L4
2 to 7 0.22 SMR5 224K50J02L4
2 or less 0.47 SMR5 474K50J04L4
* Manufactured by Evox Rifa, Inc.
Value Suggested
Part Number*
0.1 SMR5 104K50J01L4
0.22 SMR5 224K50J02L4
0.33 SMR5 334K50J03L4
0.47 SMR5 474K50J04L4
* Manufactured by Evox Rifa, Inc.
Where:
TINT = Integration Period
VS=IV
DDI or IVSSI, whichever is less
(TC500/A)
VS=IV
DDI (TC510, TC514)
CINT TINT
()20 10 6
×
()
VS0.9()
---------------------------------------------=
VREF VS0.9()CINT
()RINT
()
2T
INT
()
-----------------------------------------------------------V=
TC500/A/510/514
DS21428E-page 16 © 2008 Microchip Technology Inc.
NOTES:
© 2008 Microchip Technology Inc. DS21428E-page 17
TC500/A/510/514
8.0 DESIGN CONSIDERATIONS
8.1 Noise
The threshold noise (NTH) is the algebraic sum of the
integrator and comparator noise and is typically 30 μV.
Figure 8-1 illustrates how the value of the reference
voltage can affect the final count. Such errors can be
reduced by increased integration times, in the same
way that 50/60 Hz noise is rejected. The signal-to-
noise ratio is related to the integration time (TINT) and
the integration time constant (RINT
, CINT) as follows:
EQUATION 8-1:
8.2 System Timing
To obtain maximum performance from the TC5XX, the
overshoot at the end of the de-integration phase must
be minimized. Also, the integrator output zero phase
must be terminated as soon as the comparator output
returns high (see Figure 5-1).
Figure 5-1 shows the overall timing for a typical system
in which a TC5XX is interfaced to a microcontroller. The
microcontroller drives the A, B inputs with I/O lines and
monitors the comparator output (CMPTR) using an I/O
line or dedicated timer capture control pin. It may be
necessary to monitor the state of the CMPTR output in
addition to having it control a timer directly for the
Reference de-integration phase (this is further
explained below.)
The timing diagram in Figure 5-1 is not to scale, as the
timing in a real system depends on many system
parameters and component value selections. There
are four critical timing events (as shown in Figure 5-1):
sampling the input polarity, capturing the de-integration
time, minimizing overshoot and properly executing the
integrator output zero phase.
8.3 Auto-zero Phase
The length of this phase is usually set to be equal to the
input signal integration time. This decision is virtually
arbitrary since the magnitudes of the various system
errors are not known. Setting the auto-zero time equal
to the Input Integrate time should be more than
adequate to null out system errors. The system may
remain in this phase indefinitely (i.e., auto-zero is the
appropriate Idle state for a TC5XX device).
8.4 Input Signal Integrate Phase
The length of this phase is constant from one
conversion to the next and depends on system
parameters and component value selections. The
calculation of TINT is shown elsewhere in this data
sheet. At some point near the end of this phase, the
microcontroller should sample CMPTR to determine
the input signal polarity. This value is, in effect, the Sign
Bit for the overall conversion result. Optimally, CMPTR
should be sampled just before this phase is terminated
by changing AB from 10 to 11. The consideration here
is that, during the initial stage of input integration when
the integrator voltage is low, the comparator may be
affected by noise and its output unreliable. Once
integration is well underway, the comparator will be in a
defined state.
8.5 Reference De-integration
The length of this phase must be precisely measured
from the transition of AB from 10 to 11 to the falling-
edge of CMPTR. The comparator delay contributes
some error in timing this phase. The typical delay is
specified to be 2 μs. This should be considered in the
context of the length of a single count when
determining overall system performance and possible
single count errors. Additionally, overshoot will result in
charge accumulating on the integrator once its output
crosses zero. This charge must be nulled during the
integrator output zero phase.
FIGURE 8-1: Noise Threshold.
Low VREF Normal VREF High VREF
S
NTH
S
NTH
30 µV
S
NTH
Slope (S) = NTH = Noise Threshold
VREF
RINT CINT
TC500/A/510/514
DS21428E-page 18 © 2008 Microchip Technology Inc.
8.6 Integrator Output Zero Phase
The comparator delay and the controllers response
latency may result in overshoot, causing charge
buildup on the integrator at the end of a conversion.
This charge must be removed or performance will
degrade. The integrator output zero phase should be
activated (AB = 00) until CMPTR goes high. It is
absolutely critical that this phase be terminated
immediately so that overshoot is not allowed to occur in
the opposite direction. At this point, it can be assured
that the integrator is near zero. Auto-zero should be
entered (AB = 01) and the TC5XX held in this state until
the next cycle is begun (see Figure 8-2).
FIGURE 8-2: Overshoot.
8.7 Using the TC510/TC514
8.7.1 NEGATIVE SUPPLY VOLTAGE
CONVERTER (TC510, TC514)
A capacitive charge pump is employed to invert the
voltage on VDD for negative bias within the TC510/
TC514. This voltage is also available on the VOUT– pin
to provide negative bias elsewhere in the system. Two
external capacitors are required to perform the
conversion.
Timing is generated by an internal state machine driven
from an on-board oscillator. During the first phase,
capacitor CF is switched across the power supply and
charged to VS+. This charge is transferred to capacitor
COUT– during the second phase. The oscillator
normally runs at 100 kHz to ensure minimum output
ripple. This frequency can be reduced by placing a
capacitor from OSC to VDD. The relationship between
the capacitor value is shown in Section 2.0 “Typical
Performance Curves”.
8.7.2 ANALOG INPUT MULTIPLEXER
(TC514)
The TC514 is equipped with a four-input differential
analog multiplexer. Input channels are selected using
select inputs (A1, A0). These are high-true control
signals (i.e., channel 0 is selected when (A1, A0 = 00).
Integrator
Output
Comparator
Output Comp
Integrate
Phase
De-integrate Phase
Integrator
Zero Phase
Zero
Crossing
Overshoot
© 2008 Microchip Technology Inc. DS21428E-page 19
TC500/A/510/514
9.0 DESIGN EXAMPLES
Refer to Figures 9-1 to 9-4.
EQUATION 9-1:
Given: Required Resolution: 16 bits (65,536
counts).
Maximum VIN: ±2V
Power Supply Voltage: +5V
60 Hz System
Step 1. Pick integration time (tINT) as a multiple
of the line frequency:
1/60 Hz = 16.6 ms. Use 4x line
frequency.
= 66 ms
Step 2. Calculate RINT
:
RINT = VIN(MAX) /20 μA 2 /20 μA
= 100 k
Step 3. Calculate CINT for maximum (4V)
integrator output swing.
CINT = (tINT) (20 x 10 –6) / (VS - 0.9)
= (.066) (20 x 10 –6) / (4.1)
= 0.32 μF (use closest value: 0.33 μF)
Note: Microchip recommended capacitor:
Evox Rifa p/n: 5MR5 334K50J03L4.
Step 4. Choose CREF and CAZ based on
conversion rate.
Conversions/sec:
= 1/(TAZ + TINT + 2 TINT + 2 ms)
= 1/(66 ms +66 ms +132 ms +2 ms)
= 3.7 conversions/sec
From which CAZ = CREF = 0.22 μF
(see Table 7-1)
Note: Microchip recommended capacitor:
Evox Rifa p/n: 5MR5 224K50J02L4
Step 5. Calculate VREF:
VREF VS0.9()CINT
()RINT
()
2T
INT
()
-----------------------------------------------------------
=
4.1()0.33 10 6
×
()100 103
×
()
266 10 3
×
()
--------------------------------------------------------------------------=
1.025 V()=
TC500/A/510/514
DS21428E-page 20 © 2008 Microchip Technology Inc.
FIGURE 9-1: TC510 Design Sample.
FIGURE 9-2: TC514 Design Example.
INPUT+
INPUT-
+5V
+5V
Pin 2
Pin 19
Pin 2
Pin 19
CINT
0.33 μF
VIN+
Typical Waveforms
1μF
1μF
CAZ
0.22 μF
CREF
VIN-
RINT
100 k
1
2
3
4
16
15
CAP-
5
6
7
9
19
18
17
8
21
22
23
24
DGND
VREF+
VOUT-
A
B
CREF-
CINT
CAZ
BUF
ACOM
TC510
VREF-VIN+
VIN-
CAP+
VDD
CMPTR
0.22 μF
C1
0.01 μF
R2
10 k
+5V
R3, 10 k
MCP1525
1μF
CREF+
PIC®MCU
+5V
+5V
PIN 2
PIN 23
PIN 2
PIN 23
VIN+
Typical Waveforms
1μF
VIN-
CAP-
23
22
21
25
26
27
28
DGND
A
B
TC514 CAP+
VDD
CMPTR
Analog
Mux Logic
INPUT 1+
INPUT 1-
INPUT 2+
INPUT 2-
INPUT 3+
INPUT 3-
INPUT4+
INPUT4-
18
13
A1
CH1+
17
12
CH2+
CH2-
16
11
CH3+
CH3-
15
10
CH4+
CH4-
22
19
A0
CH1-
CINT
0.33 μF
1μF
CAZ
0.22 μF
CREF
RINT
100 k
1
2
3
4
5
6
7
9
8
VREF+
VOUT-
CREF-
CINT
CAZ
BUF
ACOM
VREF-
0.22 μF
C1
0.01 μF
R2
10 k
+5V
R3, 10 k
MCP1525
1μF
CREF+
PIC®MCU
© 2008 Microchip Technology Inc. DS21428E-page 21
TC500/A/510/514
FIGURE 9-3: TC510 To IBM® Compatible Printer Port.
PC
Printer
Port
PORT
0378
Hex
Input
+
+5V
10 k
10 k
100 k
100 k
1μF
1μF
121
2
23
3
4
16
15
CAP-
5
6
7
8
19
10
18
17
9
22
23
24
DGND
VOUT-VDD
A
B CINT
CAZ
BUF
ACOM
TC510
CREF+
VIN+
CAP+
CMPTR
0.22 μF
0.22 μF
0.01 μF
0.01 μF
1μF
0.33 μF
MCP1525
CREF-
VREF+
VREF-
VIN-
TC500/A/510/514
DS21428E-page 22 © 2008 Microchip Technology Inc.
FIGURE 9-4: TC514 To IBM® Compatible Printer Port.
IBM®
Printer Port
Port
0378
Hex
+5V
10 k
100 k
1μF
1μF
1
25
2
23
3
4
CAP–
5
6
7
8
23
10
22
21
9
26
27
28
DGND
VOUT
VDD
A
B
CREF+
TC514
BUF
0.22 μF
10 k
10 k
0.22 μF
0.01 μF
0.33 μF
CH1+
Input 1
+18
13
Input 2
+17
12
Input 3
+16
11
Input 4
+15
10
CAP+
CREF-
VREF+
VREF-
CAZ
CINT
ACOM
CH1–
CH2+
CH2–
CH3+
CH3–
CH4+
CH4–
CMPTR
Analog
Mux Control Logic
A0
A1
20
19
MCP1525
© 2008 Microchip Technology Inc. DS21428E-page 23
TC500/A/510/514
10.0 PACKAGING INFORMATION
10.1 Package Marking Information
16-Lead PDIP (300 mil) (TC500/TC500A) Example:
16-Lead SOIC (300 mil) (TC500/TC500A) Example:
XXXXXXXXXXXXXX
XXXXXXXXXXXXXX
YYWWNNN
XXXXXXXXXXX
YYWWNNN
TC500CPE ^^
0818256
XXXXXXXXXXX
Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
*This package is Pb-free. The Pb-free JEDEC designator ( )
can be found on the outer packaging for this package.
Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
16-Lead CERDIP (300 mil) (TC500/TC500A) Example:
XXXXXXXXXXXXXX
XXXXXXXXXXXXXX
YYWWNNN
TC500AIJE
0818256
XXXXXXXXXXX 0818256
TC500ACOE ^^
3
e
3
e
3
e
3
e
TC500/A/510/514
DS21428E-page 24 © 2008 Microchip Technology Inc.
Package Marking Information (Continued)
28-Lead PDIP (300 mil) (TC514) Example:
28-Lead SOIC (300 mil) (TC514) Example:
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
YYWWNNN
TC514CPJ ^^
0818256
XXXXXXXXXXXXXXXXXXXX
YYWWNNN
XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX
0818256
TC514COI ^^
24-Lead PDIP (300 mil) (TC510) Example:
24-Lead SOIC (300 mil) (TC510) Example:
XXXXXXXXXXXXXXXXXX
YYWWNNN
XXXXXXXXXXXXXXXXXX 0818256
TC510COG ^^
YYWWNNN
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
0818256
TC510CPF
3
e
3
e
3
e
© 2008 Microchip Technology Inc. DS21428E-page 25
TC500/A/510/514
 !"#
$%&'
  !"#$%!&'(!%&! %(%")%%%"
 *$%+% %
, & "%-./
0+1 0 & %#%! ))%!%% 
$%' 2%& %!%3") '  %3$%%"%
%%144)))&&43
5% 6+7-
& 8&% 6 69 :
6!&($ 6 ;
% 0+
%% < < 
%"$$*  / < <
+&37%   < /
!"%!"="% -  < ,/
+&3="% - / >> ,
98%  ; >
%% 8 / < 
8"3 > < /
58"="% ( / < ;/
8)8"="% ( / < ,
9) - , < 
N
NOTE 1
12
D
E1
E
c
E2
e
L
A2
b1
b
A1
A
  ) +,0
TC500/A/510/514
DS21428E-page 26 © 2008 Microchip Technology Inc.
"&%" ""#
$%&'
  !"#$%!&'(!%&! %(%")%%%"
 *$%+% %
, &  "-"%!"&"$ %!  "$ %!   %#"? "
 & "%-./
0+1 0 & %#%! ))%!%% 
$%' 2%& %!%3") '  %3$%%"%
%%144)))&&43
5% 6+7-
& 8&% 6 69 :
6!&($ 6 ;
% 0+
%% < < 
""33  / , /
0 %%  / < <
!"%!"="% -  , ,/
""3="% -  / >
98% ,/ // /
%% 8 / , /
8"3 >  /
58"="% ( / ; 
8)8"="% (  > 
9)* 0 < < ,
N
E1
NOTE 1
D
12 3
A
A1 b1
be
L
A2
E
eB
c
  ) +0
© 2008 Microchip Technology Inc. DS21428E-page 27
TC500/A/510/514
"&%()%)*+,- ()#
$%&'
  !"#$%!&'(!%&! %(%")%%%"
 *$%+% %
, &  "-"%!"&"$ %!  "$ %!   %#"/&& "
 & "%-./
0+1 0 & %#%! ))%!%% 
-21 $& '! !)%!%%'$$&%!  
$%' 2%& %!%3") '  %3$%%"%
%%144)))&&43
5% 88--
& 8&% 6 69 :
6!&($ 6 ;
% 0+
97% < < ;/
""33  / < <
%"$$*   < ,
9="% - ,0+
""3="% - /0+
98% ,0+
+&$@%A / < /
2%8% 8  < 
2%% 8 -2
2% IB < >B
8"3  < ,,
8"="% ( , < /
"$% D/B < /B
"$%0%%& E/B < /B
D
N
E
E1
NOTE 1
123
b
e
A
A1
A2
L
L1
c
h
h
φ
β
α
  ) +0
TC500/A/510/514
DS21428E-page 28 © 2008 Microchip Technology Inc.
"&%()%)*+,- ()#"%%
$%' 2%& %!%3") '  %3$%%"%
%%144)))&&43
© 2008 Microchip Technology Inc. DS21428E-page 29
TC500/A/510/514
./(0"&%"1 (""#
$%&'
  !"#$%!&'(!%&! %(%")%%%"
 *$%+% %
, &  "-"%!"&"$ %!  "$ %!   %#"? "
 & "%-./
0+1 0 & %#%! ))%!%% 
$%' 2%& %!%3") '  %3$%%"%
%%144)))&&43
5% 6+7-
& 8&% 6 69 :
6!&($ 6 
% 0+
%% < < 
""33  / , /
0 %%  / < <
!"%!"="% - > , ,/
""3="% -  / >
98% // / >
%% 8 / , ;
8"3 >  /
58"="% ( / ; 
8)8"="% (  > ,
9)* 0 < < ,
N
E1
NOTE 1
D
123
E
eB
c
A2
L
e
b1
b
A
A1
  ) +,0
TC500/A/510/514
DS21428E-page 30 © 2008 Microchip Technology Inc.
./"&%()%OG*+,- ()#
$%&'
  !"#$%!&'(!%&! %(%")%%%"
 *$%+% %
, &  "-"%!"&"$ %!  "$ %!   %#"/&& "
 & "%-./
0+1 0 & %#%! ))%!%% 
-21 $& '! !)%!%%'$$&%!  
$%' 2%& %!%3") '  %3$%%"%
%%144)))&&43
5% 88--
& 8&% 6 69 :
6!&($ 6 
% 0+
97% < < ;/
""33  / < <
%"$$*   < ,
9="% - ,0+
""3="% - /0+
98% /0+
+&$@%A / < /
2%8% 8  < 
2%% 8 -2
2% IB < >B
8"3  < ,,
8"="% ( , < /
"$% D/B < /B
"$%0%%& E/B < /B
D
N
E
E1
NOTE 1
123
b
e
A
A1
A2
h
h
c
L
L1
α
β
φ
  ) +/0
© 2008 Microchip Technology Inc. DS21428E-page 31
TC500/A/510/514
.2(0"&%" (""#
$%&'
  !"#$%!&'(!%&! %(%")%%%"
 *$%+% %
, &  "-"%!"&"$ %!  "$ %!   %#"? "
 & "%-./
0+1 0 & %#%! ))%!%% 
$%' 2%& %!%3") '  %3$%%"%
%%144)))&&43
5% 6+7-
& 8&% 6 69 :
6!&($ 6 >
% 0+
%% < < 
""33   ,/ /
0 %%  / < <
!"%!"="% -  , ,,/
""3="% -  >/ /
98% ,/ ,;/ 
%% 8  , /
8"3 >  /
58"="% (  / 
8)8"="% (  > 
9)* 0 < < ,
NOTE 1
N
12
D
E1
eB
c
E
L
A2
eb
b1
A1
A
3
  ) +0
TC500/A/510/514
DS21428E-page 32 © 2008 Microchip Technology Inc.
.2"&%()%)*+,- ()#
$%&'
  !"#$%!&'(!%&! %(%")%%%"
 *$%+% %
, &  "-"%!"&"$ %!  "$ %!   %#"/&& "
 & "%-./
0+1 0 & %#%! ))%!%% 
-21 $& '! !)%!%%'$$&%!  
$%' 2%& %!%3") '  %3$%%"%
%%144)))&&43
5% 88--
& 8&% 6 69 :
6!&($ 6 >
% 0+
97% < < ;/
""33  / < <
%"$$*   < ,
9="% - ,0+
""3="% - /0+
98% 0+
+&$@%A / < /
2%8% 8  < 
2%% 8 -2
2% IB < >B
8"3 > < ,,
8"="% ( , < /
"$% D/B < /B
"$%0%%& E/B < /B
c
h
h
L
L1
A2
A1
A
NOTE 1
123
b
e
E
E1
D
φ
β
α
N
  ) +/0
© 2008 Microchip Technology Inc. DS21428E-page 33
TC500/A/510/514
APPENDIX A: REVISION HISTORY
Revision E (November 2008)
Updated Section 10.0 “Packaging Informa-
tion”.
Revision D (January 2006)
Undocumented changes.
Revision C (January 2004)
Undocumented changes.
Revision B (May 2002)
Undocumented changes.
Revision A (March 2001)
Initial release of this document.
TC500/A/510/514
DS21428E-page 34 © 2008 Microchip Technology Inc.
NOTES:
© 2008 Microchip Technology Inc. DS21428E-page 35
TC500/A/510/514
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
PART NO. X/XX
PackageTemperature
Range
Device
Device TC500 16 Bit Analog Processor
TC500A 16 Bit Analog Processor
TC510 Precision Analog Front End
TC514 Precision Analog Front End
Temperature Range C = 0°C to +70°C (Commercial)
I = 25°C to +85°C (Industrial)
Package JE = Ceramic Dual In-line, (300 mil Body), 16-lead
PE = Plastic DIP, (300 mil Body), 16-lead
OE = Plastic SOIC, (300 mil Body), 16-lead
OE713 = Plastic SOIC, (300 mil Body), 16-lead
(Tape and Reel)
PF = Plastic DIP, (300 mil Body), 24-lead
OG = Plastic SOIC, (300 mil Body), 24-lead
OG713 = Plastic SOIC, (300 mil Body), 24-lead
(Tape and Reel)
PJ = Plastic DIP, (300 mil Body), 28-lead
OI = Plastic SOIC, (300 mil Body), 28-lead
OI713 = Plastic SOIC, (300 mil Body), 28-lead
(Tape and Reel)
Examples:
a) TC500ACOE: Commercial Temp.,
16LD SOIC package.
b) TC500ACOE713: Commercial Temp.,
16LD SOIC package,
Tape and Reel.
c) TC500ACPE: Commercial Temp.,
16LD PDIP package.
d) TC500AIJE: Industrial Temp.,
16LD CERDIP package.
a) TC500COE: Commercial Temp.,
16LD SOIC package.
b) TC500COE713: Commercial Temp.,
16LD SOIC package,
Tape and Reel.
c) TC500CPE: Commercial Temp.,
16LD PDIP package.
d) TC500IJE: Industrial Temp.,
16LD CERDIP package.
a) TC510COG: Commercial Temp.,
24LD PDIP package.
b) TC510COG713: Commercial Temp.,
24LD PDIP package,
Tape and Reel.
c) TC510CPF: Commercial Temp.,
24LD PDIP package.
a) TC514COI: Commercial Temp.,
28LD PDIP package.
b) TC514COI713: Commercial Temp.,
28LD PDIP package,
Tape and Reel.
c) TC514CPJ: Commercial Temp.,
28LD PDIP package.
TC500/A/510/514
DS21428E-page 36 © 2008 Microchip Technology Inc.
NOTES:
© 2008 Microchip Technology Inc. DS21428E-page 37
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, rfPIC, SmartShunt and UNI/O are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
© 2008, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
Printed on recycled paper.
Note the following details of the code protection feature on Microchip devices:
Microchip products meet the specification contained in their particular Microchip Data Sheet.
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Microchip received ISO/TS-16949:200 2 certif ication for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperi pherals, nonvola tile memo ry and
analog product s. In addition, Microchip s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
DS21428E-page 38 © 2008 Microchip Technology Inc.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509
ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Ka ohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820
WORLDWIDE SALES AND SERVICE
01/02/08