CHIP MONOLITHIC
CERAMIC CAPACITORS
AS ALTERNATIVES FOR
CHIP TANTALUM
CAPACITORS
C-24-C
Please visit our website
www.murata.com
2
Comparative Capacitance Table
Comparative Capacitance Table
L W T 1nF 10nF 100nF 1uF 10uF 100uF
0201 0.6 0.3 0.3
0402 1.0 0.5 0.5
0603 1.6 0.8 0.8
0805 2.0 1.25 1.25
1206 3.2 1.6 1.6
1210 3.2 2.5 2.5
1812 4.5 3.2 2.5
2220 5.7 5.0 3.2
P2.0 1.25 1.1
A2 3.2 1.6 1.1
A3.2 1.6 1.6
B2 3.5 2.8 1.9
C6.0 3.2 2.5
V7.3 4.3 1.9
D7.3 4.3 2.8
CD(thin type) 7.3 4.3 1.5
CD Series 7.3 4.3 1.8
UD Series 7.3 4.3 3.1
UE Series 7.3 4.3 4.2
A7.3 4.6 4.6
B7.3 5.6 5.6
C9.0 7.0 7.0
D12.0 7.0 7.0
E13.0 8.8 8.8
Siz e (mm)
Capacitor EI A Capacitance
Murata
MLCC
TA (X)
TA (Y)
Organic
Semi-
Conductive
Table of Contents
Table of Contents
Page Topic
2. Comparative Capacitance Table (see below)
3. Basic Function and Applications
4. Recommended P/N’s
5. Case Size and Part Numbering Description
6. (Cap-vs-Freq.) and (Impedance/ESR-vs-Freq.) - 10uF
7. (Cap-vs-Freq.) and (Impedance/ESR-vs-Freq.) - 47uF
8. Noise Absorption Comparison - 10uF (10kHz - 1MHz)
9. Noise Absorption Comparison - 10uF (Low-pass filter characteristic)
10. Noise Absorption/Smoothing Comparison - 47uF
11. Noise Absorption Comparison - 100uF (Low-pass filter characteristic)
12. Breakdown Voltage Characteristics
13. Capacitance-vs-Temperature
14. DC/A C Voltage Characteristics
15. Self-Heating-vs-Ripple Current
3
Basic Function and Applications for High
Basic Function and Applications for High
Capacitance Components
Capacitance Components
Bypassing
Bypassing
When high capacitance is used in
a filtering circuit, unwanted signals
can be routed away from certain
equipment, e.g., bypassing high
frequency noise.
Coupling
Coupling
Coupling between neighbor
circuits to stop DC and pass AC
Smoothing
Smoothing
DC signals are cleaned by
using high capacitance to
absorb ripple voltage.
Basic Function
Basic Function
Electrical signals contain various
noise components such as EMI or
equipment-generated noise.
High Capacitance can be used to
reduce these noise signals and
provide a more stable operating
system.
The most prominent functions for
high capacitance are shown below:
Advantages of MLCC in comparison to TA/AL capacitors.
Advantages of MLCC in comparison to TA/AL capacitors.
•Noise Absorption of MLCC is excellent compared to Ta/AL Capacitors.
•Self Heating of MLCC is small compared to TA/AL Capacitors.
•Capacitance of MLCC does not change over a wide frequency range.
•Break down Voltage of MLCC is higher compared to TA/AL Capacitors.
Recommended
Recommended
Murata MLCC
Murata MLCC P/N
P/N
s For
s For
Replacement of TA/AL Chips
Replacement of TA/AL Chips
Contact Mura ta Electronics
for developme nt plans of
items not listed.
Contact Mura ta Electronics
for developme nt plans of
items not listed.
All part numbers shown are for commercial, non-critical applications only.
All part numbers shown are for commercial, non-critical applications only.
TA /AL MLCC 6.3V 10V 16V 25V 35V / 50V
-- > GRM36X7R473K010A_ -- > G RM39X7R473K025A_ G RM40X7R473K050A_
-- > GRP155R71A473KA01_ -- > G RM188R71E473KA01_ G RM21BR71H473KA01_
-- > GRM36X5R104K010A_ -- > G RM39X7R104K025A_ G RM40X7R104K050A_
-- > GRP155R61A104KA01_ -- > G RM188R71E104KA01_ G RM21BR71H104KA01_
-- > GRM39X7R224K010A_ -- > G RM40X7R224K025A_ G RM40X7R224K050A_
-- > GRM188R71A224KA01_ -- > G RM219R71E224KC01_ G RM21BR71H22 4KA01_
GRM39X5R474K6.3A_ GRM40X7R474K016A_ G RM40X7R474K016A_ G RM40X7R474K025A_ G RM42-6X7R474K050A_
GRM188R60J474KA01_ GRM219R71C474KA01_ GRM219R71C474K C01_ G RM21BR71E474KC01_ G RM31MR71H474KA01_
GRM39X5R105K6.3A_ -- > G RM40X7R105K016A_ GR M42-6X7R105K025A_ G RM42-2X7R105K050A_
GRM188R60J105KA01_ -- > GRM21BR71C105KA01_ GR M31MR71E105KC01_ G RM32RR71H105KA01_
GRM40X5R225K6.3A_ GRM42-6X5R225K010A_ GRM42-6X7R225K016A_ GRM42-2X7R225K025A_
GRM21BR60J225KC01_ GRM31MR61A225KA01_ GR M31MR71C225KC11_ G RM32RR71E225KC01_
GRM40-034X5R475K6.3A_ GRM42-6X5R475K010A_ GRM42-6X5R475K016A_ GRM42-2X5R475K025A_ G RM44-1X7R475K050A_
GRM21BR60J475KA11_ GRM31CR61A475KA01_ GRM31CR61C475K A45_ G RM32RR61E475KC31_ G RM55ER71H475KA01_
GRM42-6X5R106K6.3A_ GRM42-2X5R106K010A_ GRM42-2X5R106K016A_ GR M43-2X5R106K025A_
GRM31CR60J106KC01_ GRM32ER61A106KC01_ GR M32ER61C106KC31_ G RM43DR61E106KA01_
GRM42-2X5R226K6.3A_
GRM32DR60J226KA01_
Under Developm ent
GRM44-1X5R107K6.3A_
GRM55XR60J107KA01_
TA /AL MLCC 6.3V 10V 16V 25V 50V
-- > GRM36X5R104K010A_ -- > G RM39X7R104K025A_ G RM40X7R104K050A_
-- > GRP155R61A104KA01_ -- > G RM188R71E104KA01_ G RM21BR71H104KA01_
-- > GRM39X7R224K010A_ -- > G RM40X7R224K025A_ G RM40X7R224K050A_
-- > GRM188R71A224KA01_ -- > G RM219R71E224KC01_ G RM21BR71H22 4KA01_
GRM39X5R474K6.3A_ - -> G RM40X7R474K016A_ G RM40X7R474K025A_ G RM42-6X7R474K050A_
GRM188R60J474KA01_ --> GRM219R71C474KC01_ G RM21BR71E474KC01_ G RM31MR71H474KA01_
GRM39X5R105K6.3A_ -- > G RM40X7R105K016A_ GRM42-6X7R105K 025A_ G RM42-2X7R105K050A_
GRM188R60J105KA01_ -- > GRM21BR71C105KA01_ GR M31MR71E105KC01_ G RM32RR71H105KA01_
GRM40X5R225K6.3A_ GRM42-6X5R225K010A_ GRM42-6X7R225K016A_ GRM42-2X7R225K025A_
GRM21BR60J225KC01_ GRM31MR61A225KA01_ GR M31MR71C225KC11_ G RM32RR71E225 KC01_
GRM40-034X5R475K6.3A_ GRM42-6X5R475K010A_ GRM42-6X5R475K016A_ GRM42-2X5R475K025A_ G RM44-1X7R475K050A_
GRM21BR60J475KA11_ GRM31CR61A475KA01_ GRM31CR61C475K A45_ G RM32RR61E475KC31_ G RM55ER71H475KA01_
GRM42-6X5R106K6.3A_ GRM42-2X5R106K010A_ GRM42-2X5R106K016A_ GR M43-2X5R106K025A_
GRM31CR60J106KC01_ GRM32ER61A106KC01_ GR M32ER61C106KC31_ G RM43DR61E106KA01_
GRM42-2X5R226K6.3A_
GRM32DR60J226KA01_
Under Developm ent
GRM44-1X5R107K6.3A_
GRM55XR60J107KA01_
Global P/ N - Effective 6/01
22uF
47uF
47uF
100uF
100uF220uF
0.1uF 0.1uF
0.22uF
0.047uF
0.1uF
0.22uF
0.47uF
1.0uF
2.2uF
4.7uF
10uF
0.1uF
4.7uF
10uF
22uF
0.22uF
0.47uF
1.0uF
2.2uF
0.47uF
1.0uF
2.2uF
47uF
4.7uF
10uF
22uF
47uF
Legend
100uF 100uF
0.22uF
0.47uF
1.0uF
2.2uF
4.7uF
10uF
22uF
Due to the lower Z and ESR of
MLCCs, capacitance v alues less
than half that of the TA can be
used in many by-passing or
decoupling applications.
Due to the lower Z and ESR of
MLCCs, capacitance v alues less
than half that of the TA can be
used in many by-passing or
decoupling applications.
Coupling: 100kHz
Smoothing / By-passing: 100kHz
4
Smoothing / By-passing: 100kHz
Coupling: 100kHz
North America P/N Contact Murata or an Authorized Representative for
complete P/N including packaging "_" sufix.
Case Size and Part Numbering
Case Size and Part Numbering
Description
Description
TA DIMENSION (mm)
(mm) (in.) LWH
P201208052.0±0.2 1.25±0.2 1.2 max.
A (S*) 3216 1206 3.2±0.2 1.6±0.2 1.6±0.2
B (T*) 3528 1411 3.5±0.2 2.8±0.2 1.9±0.2
C (U*) 6032 2412 6.0±0.3 3.2±0.3 2.5±0.3
D (V*/X*) 7343 2917 7.3±0.3 4.3±0.3 2.8±0.3
E726029177.3±0.3 6.0±0.3 3.6±0.3
(*Low or High profile case sizes)
MLCC DIMENSION (mm)
(mm) (in.) LWH
GRM36 1005 0402 1.0±0.05 0.5±0.05 0.5±0.05
GRM39 1608 0603 1.6±0.1 0.8±0.1 0.8±0.1
GRM40 2012 0805 2.0±0.15 1.25±0.15 1.4 max.
GRM42-6 3216 1206 3.2±0.2 1.6±0.2 1.8 max.
GRM42-2 3225 1210 3.2±0.3 2.5±0.2 2.7 max.
GRM43-2 4532 1812 4.5±0.4 3.2±0.3 2.7 max.
GRM44-1 5750 2220 5.7±0.43 5.0±0.4 3.4 max.
Case
Code
Murata
Type
Size
Size
(1)
(1) TA Chip Dimension
TA Chip Dimension
(2)
(2) MLC Chip Dimension
MLC Chip Dimension
North America -vs- Global Part Numbering Comparison
North America -vs- Global Part Numbering Comparison
The above example is for explanatory purposes only. Please consult Murata’s
The above example is for explanatory purposes only. Please consult Murata’s
catalog or Authorized Sales Representative to determine Murata part numbers.
catalog or Authorized Sales Representative to determine Murata part numbers.
Packaging
Marking Digit (A = no marking)
Rated Voltage
Capacitance Tolerance
Capacitance
Temperature Characteristic
Case Size
Product Series ID
North America P/N GRM 40 X7R 105 K 016 A L
Global P/N (Effective 6/01) GR M 21 B R7 1C 105 K A01 L
Product ID
Series/Terminal
Dimension (L x W)
Dimension (T)
Temperature Characteristic
Rated Voltage
Capacitance
Capacitance Tolerance
Individual Specification
Packaging
5
6
Capacitance -vs- Frequency
Capacitance -vs- Frequency
10uF
10uF
Murata MLCC 1206/10uF/6.3V
-100
0
100
0.1 1 10 100 1000 10000
Frequency (kHz)
Cap. Change (%)
Measuring Condition :0Vdc, 25°C
Equipment :HP4294A
TA (X) 1206/10uF/6.3V
-100
0
100
0.1 1 10 100 1000 10000
Frequency (kHz)
Cap. Change (%)
Measuring Condition : 0Vdc, 25°C
Equipment :HP4294A
TA (Y) 2917/10uF/12.5V
-100
0
100
0.1 1 10 100 1000 10000
Frequency (kHz)
Cap. Change(%)
Measuring Condition :0Vdc, 25°C
Equipment :HP4294A
Organic 2918/10uF/10V
-100
0
100
0.1 1 10 100 1000 10000
Frequency (kHz)
Cap. Change (%)
Measuring Condition : 0Vdc, 25°C
Equipment :HP4294A
Equipment: 4294A
0.001
0.01
0.1
1
10
100
1000
0.1 1 10 100 1000 10000
Frequency (kHz)
Impedance/ESR (ohm)
Murata 1206/10uF/6.3V (ESR)
TA (X) 1206/10uF/6.3V (ESR)
TA (Y) 2917/10uF/12.5V (ESR)
Organic 2918/10uF/10V (ESR)
Murata 1206/10uF/6.3V (Impedance)
TA (X) 1206/10uF/6.3V (Impedance)
TA (Y) 2917/10uF/12.5V (Impedance)
Organic 2918/10uF/10V (Impedance)
10
10uF
uF
Impedance/ESR -vs- Frequency
Impedance/ESR -vs- Frequency
7
Capacitance -vs- Frequency
Capacitance -vs- Frequency
47uF
47uF
Murata MLCC 2220/47uF/16V
-100
0
100
0.1 1 10 100 1000
Frequency (kHz)
Cap. Change (%)
Measuring Condition : 0Vdc, 25°C
Equipment :HP4294A
TA (Y) 2917/47uF/6.3V
-100
0
100
0.1 1 10 100 1000
Frequency (kHz)
Cap. Change (%)
Measuring Condition : 0Vdc, 25°C
Equipment :HP4294A
TA (X) 1411/47uF/6.3V
-100
0
100
0.1 1 10 100 1000
Frequency (kHz)
Cap. Change (%)
Measuring Condition : 0Vdc, 25°C
Equipment :HP4294A
Organic 3628/47uF/10V
-100
0
100
0.1 1 10 100 1000
Frequency (kHz)
Cap. Change(%)
Measuring Condition : 0Vdc, 25°C
Equipment :HP4294A
Frequency (kHz)
Equipment : 4294AEquipment: 4294A
0.1 1 10 100 1000 10000 100000
Murata 2220/47uF/16V (ESR)
TA (X) 1411/47uF/6.3V (ESR)
TA (Y) 2917/47uF/6.3V (ESR)
Organic 3628/47uF/10V (ESR)
Murata 2220/47uF/16V (Impedance)
TA (X) 1411/47uF/6.3V (Impedance)
TA (Y) 2917/47uF/6.3V (Impedance)
Organic 3628/47uF/10V (Impedance)
47
47uF
uF
0.001
0.01
0.1
1
10
100
Impedance/ESR (ohm)
Impedance/ESR -vs- Frequency
Impedance/ESR -vs- Frequency
8
Noise Absorption Comparison
Noise Absorption Comparison
10uF (10kHz to 1MHz)
10uF (10kHz to 1MHz)
Input pulse C
50 ohm
50 ohm Output wave form
(see below)
PULSE GENERATOR: HP 8112A
HP 54111D
<
<Measurement Method>
Measurement Method>
V = 2V
DUTY = 50%
5uS/div
100mV/div
366mv
5uS/div
100mV/div
64mv
100mV/div
5uS/div
16mv
50uS/div
300mV/div
534mv
50uS/div
300mV/div
204mv
300mV/div
50uS/div
196mv
500nS/div
100mV/div
332mv
500nS/div
100mV/div
30mv
50mV/div
500nS/div
3mv
10uF AL 10uF TA 10uF MLCC
10KHz
Output
wave
100KHz
Output
wave
1MHz
Output
wave
Capacitor
frequency
DIGITIZING OSCILLOSCOPE:
9
Noise Absorption Comparison
Noise Absorption Comparison
10uF (Low-pass filter characteristic)
10uF (Low-pass filter characteristic)
Input pulse C
50 ohm
50 ohm Output wave form
(see below)
PULSE GENERATOR: HP 8112A
HP 54111D
<
<Measurement Method>
Measurement Method>
V = 2V
DUTY = 50%
Frequency =
500kHz
10mV / DIV
Position : 1V
Murata MLCC
1206(LxW)
10uF/6.3V
10mV / DIV
Position : 1V
TA (X)
1206(LxW)
10uF/6.3V
10mV / DIV
Position : 1V
TA (Y)
2917(LxW)
10uF/12.5V
10mV / DIV
Position : 1V
Organic
2918(LxW)
10uF/10V
DIGITIZING OSCILLOSCOPE:
Noise Absorption / Smoothing
Noise Absorption / Smoothing
Comparison
Comparison
47uF
47uF
Non-resonance type
Non-resonance type
forward method DC-DC
forward method DC-DC
converter
converter
<Circuit Diagram>
<spec>
Input : 12 Vdc
Output : 5V x 4A (20W)
Switching freq.: 400kHz
Murata MLCC
2220(LxW)
47uF/16V
Output wave form
50mV / DIV
Position : 0V
Output wave form
50mV / DIV
Position : 0V
TA (X)
1411(LxW)
47uF/6.3V
Output wave form
50mV / DIV
Position : 0V
TA (Y)
2917(LxW)
47uF/6.3V
Output wave form
Position : 0V
Organic
3628(LxW)
47uF/10V
50mV / DIV
10
11
Noise Absorption Comparison
Noise Absorption Comparison
100uF (Low-pass filter characteristic)
100uF (Low-pass filter characteristic)
9.4mV
59.4mV
62.5mV
75.0mV
Input pulse C
50 ohm
50 ohm Output wave form
(see below)
PULSE GENERATOR: HP 8112A
HP 54111D
<
<Measurement Method>
Measurement Method>
V = 5V
DUTY = 50%
Frequency =
350kHz
Organic 100uF
MLCC 2220 X5R
100uF 6.3V
Al 1000uF
TA (Y) 82uF
DIGITIZING OSCILLOSCOPE:
12
Break Down Voltage
Break Down Voltage
0
50
100
150
200
250
300
3628/
47uF/10V
2917/
47uF/6.3V
1411/
47uF/6.3V
2220/
47uF/16V
Voltage (Vdc)
Organic TA (Y) TA (X) Murata (MLCC)
47
47uF
uF
0
50
100
150
200
250
300
2918/
10uF/10V
2917/
10uF/12.5V
1206/
10uF/6.3V
1206/
10uF/6.3V
Voltage (Vdc)
Organic TA (Y) TA (X) Murata (MLCC)
Equipment : GP0160-1
10
10uF
uF
13
Capacitance -vs- Temperature
Capacitance -vs- Temperature
-20
-10
0
10
20
30
40
50
-60 -40 -20 0 20 40 60 80 100 120
Temperature (°C)
Cap. Change (%)
Murata 2220/47uF/16V
TA (X) 1411/47uF/6.3
TA (Y) 2917/47uF/6.3V
Organic 3628/47uF/10V
X7R
47
47uF
uF
Measuring Condition: 120Hz, 0.5Vrms
Equipment: 4284A
-20
-10
0
10
20
30
40
50
-60 -40 -20 0 20 40 60 80 100 120
Temperature (°C)
Cap. Change (%)
Murata 1206/10uF/6.3V
TA (X) 1206/10uF/6.3V
TA (Y) 2917/10uF/12.5V
Organic 2918/10uF/10V
X5R
10
10uF
uF
14
Voltage Characteristics
Voltage Characteristics
Measuring Condition : 120Hz,120sec
Equipment : HP4284A
-30
-20
-10
0
10
20
0 2.5 5 7.5 10 12.5
DC Vo ltage (Vdc)
Cap. Ch ange (%)
-30
-20
-10
0
10
20
0 2.5 5 7.5 10
DC Vo ltage (Vdc)
Cap. Ch ange (%)
-5
-4
-3
-2
-1
0
1
2
3
4
5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Vo ltage (Vrms)
Cap. Ch ange (%)
Murata 1206/10uF/6.3V
TA (X) 1206/10uF/6.3V
TA (Y) 2917/10uF/12.5V
Organic 2918/10uF/10V
Measuring Condition : 120Hz, 30sec
Equipment : HP4284A
-5
-4
-3
-2
-1
0
1
2
3
4
5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Vo ltage (Vrms)
Cap. Ch ange (%)
Murata 2220/47uF/16V
TA (X) 1411/47uF/6.3V
TA (Y) 2917/47uF/6.3V
Organic 3628/47uF/10V
-5
-4
-3
-2
-1
0
1
2
3
4
5
0 0.2 0.4 0.6 0.8 1
Vo ltage Vrms)
Cap. Ch ange (%)
Murata 2220/100uF/6.3V
TA (X) 2917/100uF/10V
TA (Y) 3121/82uF/4V
Organic 4828/100uF/10V
-30
-20
-10
0
10
20
0 2.5 5 7.5 10
DC Vo ltage (Vdc)
Cap. Ch ange (%)
DCV
DCV ACVrms
ACVrms
10
10uF
uF
47
47uF
uF
100
100uF
uF
15
2200 Lake Park Drive
Smyrna, Georgia 30080
Telephone: 770-436 -1300
Fax: 770-436-3030
www.Murata.com
©2001 Murata Electronics North America, Inc.
C-24-C