AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
AM3715, AM3703
Sitara ARM Microprocessors
Check for Samples: AM3715,AM3703
1 AM3715, AM3703 Sitara ARM Microprocessors
1.1 Features
123456 Pseudo-SRAM
AM3715/03 Sitara ARM Microprocessors: Flexible Asynchronous Protocol
Compatible with OMAP3 Architecture Control for Interface to Custom Logic
SitaraARM®Microprocessor (MPU) (FPGA, CPLD, ASICs, etc.)
Subsystem Nonmultiplexed Address/Data Mode
Up to 1-GHz SitaraARM®Cortex-A8 (Limited 2K-Byte Address Space)
Core 1.8-V I/O and 3.0-V (MMC1 only),
Also supports 300, 600, and 800-MHz 0.9-V to 1.2-V Adaptive Processor Core
operation Voltage
NEONSIMD Coprocessor 0.9-V to 1.1-V Adaptive Core Logic Voltage
POWERVR SGXGraphics Accelerator Note: These are default Operating
(AM3715 only) Performance Point (OPP) voltages and could
Tile Based Architecture Delivering up to be optimized to lower values using
20 MPoly/sec SmartReflex AVS.
Universal Scalable Shader Engine: Commercial, Industrial, and Extended
Multi-threaded Engine Incorporating Pixel Temperature Grades
and Vertex Shader Functionality Serial Communication
Industry Standard API Support: 5 Multichannel Buffered Serial Ports
OpenGLES 1.1 and 2.0, OpenVG1.0 (McBSPs)
Fine Grained Task Switching, Load 512 Byte Transmit/Receive Buffer
Balancing, and Power Management (McBSP1/3/4/5)
Programmable High Quality Image 5K-Byte Transmit/Receive Buffer
Anti-Aliasing (McBSP2)
External Memory Interfaces: SIDETONE Core Support (McBSP2 and
SDRAM Controller (SDRC) 3 Only) For Filter, Gain, and Mix
16, 32-bit Memory Controller With Operations
1G-Byte Total Address Space Direct Interface to I2S and PCM Device
Interfaces to Low-Power SDRAM and T Buses
SDRAM Memory Scheduler (SMS) and 128 Channel Transmit/Receive Mode
Rotation Engine Four Master/Slave Multichannel Serial
General Purpose Memory Controller Port Interface (McSPI) Ports
(GPMC) High-Speed/Full-Speed/Low-Speed USB
16-bit Wide Multiplexed Address/Data OTG Subsystem (12-/8-Pin ULPI Interface)
Bus High-Speed/Full-Speed/Low-Speed
Up to 8 Chip Select Pins With Multiport USB Host Subsystem
128M-Byte Address Space per Chip 12-/8-Pin ULPI Interface or 6-/4-/3-Pin
Select Pin Serial Interface
Glueless Interface to NOR Flash, One HDQ/1-Wire Interface
NAND Flash (With ECC Hamming Four UARTs (One with Infrared Data
Code Calculation), SRAM and Association [IrDA] and Consumer Infrared
1Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
2POWERVR SGX is a trademark of Imagination Technologies Ltd.
3OMAP, Sitara are trademarks of Texas Instruments.
4Cortex, NEON are trademarks of ARM Limited.
5ARM is a registered trademark of ARM Ltd.
6All other trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date. Copyright ©20102011, Texas Instruments Incorporated
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
[CIR] Modes) Support for Non-Invasive Debug
Three Master/Slave High-Speed ARM Cortex-A8 Memory Architecture:
Inter-Integrated Circuit (I2C) Controllers 32K-Byte Instruction Cache (4-Way
Camera Image Signal Processing (ISP) Set-Associative)
CCD and CMOS Imager Interface 32K-Byte Data Cache (4-Way
Set-Associative)
Memory Data Input 256K-Byte L2 Cache
BT.601/BT.656 Digital YCbCr 4:2:2
(8-/10-Bit) Interface 32K-Byte ROM
Glueless Interface to Common Video 64K-Byte Shared SRAM
Decoders Endianess:
Resize Engine ARM Instructions - Little Endian
Resize Images From 1/4x to 4x ARM Data Configurable
Separate Horizontal/Vertical Control Removable Media Interfaces:
System Direct Memory Access (SDMA) Three Multimedia Card (MMC)/ Secure Digital
Controller (32 Logical Channels With (SD) With Secure Data I/O (SDIO)
Configurable Priority) Test Interfaces
Comprehensive Power, Reset, and Clock IEEE-1149.1 (JTAG) Boundary-Scan
Management Compatible
SmartReflexTM Technology Embedded Trace Macro Interface (ETM)
Dynamic Voltage and Frequency Scaling Serial Data Transport Interface (SDTI)
(DVFS) 12 32-bit General Purpose Timers
SitaraARM®Cortex-A8 Core 2 32-bit Watchdog Timers
ARMv7 Architecture 1 32-bit Secure Watchdog Timer
TrustZone®1 32-bit 32-kHz Sync Timer
Thumb®-2 Up to 188 General-Purpose I/O (GPIO) Pins
MMU Enhancements (Multiplexed With Other Device Functions)
In-Order, Dual-Issue, Superscalar 45-nm CMOS Technology
Microprocessor Core Package-On-Package (POP) Implementation for
NEON Multimedia Architecture Memory Stacking (Not Available in CUS
Over 2x Performance of ARMv6 SIMD Package)
Supports Both Integer and Floating Point Packages:
SIMD 515-pin s-PBGA package (CBP Suffix), .5mm
Jazelle®RCT Execution Environment Ball Pitch (Top), .4mm Ball Pitch (Bottom)
Architecture 515-pin s-PBGA package (CBC
Dynamic Branch Prediction with Branch Suffix), .65mm Ball Pitch (Top), .5mm Ball
Target Address Cache, Global History Pitch (Bottom)
Buffer, and 8-Entry Return Stack 423-pin s-PBGA package (CUS
Embedded Trace Macrocell (ETM) Suffix), .65mm Ball Pitch
2AM3715, AM3703 Sitara ARM Microprocessors Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
1.2 Applications
This balance of performance and power allow the device to support the following example
applications:
Portable Data Terminals
Navigation
Auto Infotainment
Gaming
Medical Imaging
Home Automation
Human Machine Interface
Industrial Control
Test and Measurement
Single-board Computer
Copyright ©20102011, Texas Instruments Incorporated AM3715, AM3703 Sitara ARM Microprocessors 3
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
1.3 Description
The AM37x generation (AM3715/AM3703) of Sitarahigh-performance microprocessors is based on the
enhanced Cortex-A8 device architecture and is integrated on TI's advanced 45-nm process technology.
This architecture is designed to provide best in class ARM and graphics performance while delivering low
power consumption.
The device can support numerous high-level operating systems and real-time operating system solutions
including Linux, Android and Windows Embedded CE which are available free of charge directly from TI.
Additionally, the device is fully backward compatible with previous Cortex-A8 Sitara microprocessors and
OMAPprocessors.
The AM3715/AM3703 microprocessor data manual presents the electrical and mechanical specifications
for the AM3715/AM3703 microprocessor.
The information contained in this data manual applies to both the commercial and extended temperature
versions of the AM3715/03 Microprocessor unless otherwise indicated. It consists of the following
sections:
A description of the AM3715/03 terminals: assignment, electrical characteristics, multiplexing, and
functional description;
A presentation of the electrical characteristics requirements: power domains, operating conditions,
power consumption, and dc characteristics;
The clock specifications: input and output clocks, DPLL and DLL;
A description of thermal characteristics, device nomenclature, and mechanical data about the available
packaging.
4AM3715, AM3703 Sitara ARM Microprocessors Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
64 64
Async
64 64
L2$
256K
MPU
Subsystem
Sitara™ ARM
Cortex™- A8 Core
®
TrustZone
32K/32K L1$
POWERVR
SGX
Graphics
Accelerator
TM
32
32
32
Channel
System
DMA
3232
Parallel TV
Amp
LCD Panel
CVBS
or
S-Video
Dual Output 3-Layer
Display Processor
(1xGraphics, 2xVideo)
Temporal Dithering
SDTV QCIF Support®
32
Camera
ISP
Image
Capture
Hardware
Image
Pipeline
Camera
(Parallel)
64
HS USB
Host
HS
USB
OTG
32
L3 Interconnect Network-Hierarchial, Performance, and Power Driven
64KB
On-Chip
RAM
32
32KB
On-Chip
ROM
32
SMS:
SDRAM
Memory
Scheduler/
Rotation
64
SDRC:
SDRAM
Memory
Controller
L4 Interconnect
32
System
Controls
PRCM
2xSmartReflexTM
Control
Module
External
Peripherals
Interfaces
Peripherals: 4xUART,
3xHigh-Speed I2C, 5xMcBSP
(2x with Sidetone/Audio Buffer)
4xMcSPI, 6xGPIO
3xHigh-Speed MMC/SDIO
HDQ/1 Wire, 6xMailboxes
12xGPTimers, 2xWDT,
32K Sync Timer
GPMC:
General
Purpose
Memory
Controller
NAND/
NOR
Flash,
SRAM
32
Emulation
Debug: SDTI, ETM, JTAG
External and
Stacked Memories
32
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
1.4 Functional Block Diagram
The functional block diagram of the AM3715/03 Microprocessor is shown below.
Figure 1-1. AM3715/03 Functional Block Diagram
Copyright ©20102011, Texas Instruments Incorporated AM3715, AM3703 Sitara ARM Microprocessors 5
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
This data sheet revision history highlights the technical changes made from the previous to the current
revision.
Revision History
SECTION ADDITIONS/CHANGES/DELETIONS
Changed:
Table 2-1. Ball Characteristics (CBP Pkg.). Removed restriction note from GPIO_16.
Terminal Description Table 2-2. Ball Characteristics (CBC Pkg.). Removed restriction note from GPIO_16.
Table 2-3. Ball Characteristics (CUS Pkg.). Removed restriction note from GPIO_16.
Changed:
Table 3-1. Absolute Maximum Rating over Junction Temperature Range. Added JTAG to
Electrical Characteristics VESD.
Table 3-5. DC Electrical Characteristics. Removed USIM ball R27.
Added note on rise and fall times for these tables:
Input Clock Requirements
sys_xtalin Squarer Input Clock Timing Requirements - Bypass Mode
sys_32k Input Clock Timing Requirements
sys_altclk Input Clock Timing Requirements
Clock Specifications sys_clkout1 Output Clock Switching Characteristics
sys_clkout2 Output Clock Switching Characteristics
Added:
Table 4-2, Crystal Electrical Characteristics. Added entry for DL - Crystal drive level
6AM3715, AM3703 Sitara ARM Microprocessors Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
2345678910 11 12 13 14 15 16 17 18 19 20 21 22 23
A
B
C
D
E
F
G
H
J
K
L
M
N
P
T
R
U
V
W
Y
AA
AB
AC
24 25 26 27 28
AD
AE
AF
AG
AH
1
030-001
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
2 TERMINAL DESCRIPTION
2.1 Terminal Assignment
Figure 2-1 through Figure 2-5 show the ball locations for the 515- and 423- ball plastic ball grid array
(s-PBGA) packages. Table 2-1 through Table 2-25 indicate the signal names and ball grid numbers for
both packages.
Note: There are no balls present on the top of the 423-ball s-PBGA package.
Figure 2-1. AM3715/03 Microprocessor CBP s-PBGA-N515 Package (Bottom View)
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 7
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
A
C
D
E
G
K
L
M
N
P
T
R
U
V
W
Y
AB
B
F
H
J
AA
AC
22 21 20 18
17
16
15 13
12 10
9
8
7
6
5
4
3
2
111
14
19
23
030-002
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Figure 2-2. AM3715/03 Microprocessor CBP s-PBGA-N515 Package (Top View)
8TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1 2 3 4 5 678910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Figure 2-3. AM3715/03 Microprocessor CBC s-PBGA-515 Package (Bottom View)
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 9
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Figure 2-4. AM3715/03 Microprocessor CBC s-PBGA-515 Package (Top View)
10 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1 2 345 6 78 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Figure 2-5. AM3715/03 Microprocessor CUS s-PBGA-N423 Package (Bottom View)
2.2 Pin Assignments
2.2.1 Pin Map (Top View)
The following pin maps show the top views of the 515-pin sPBGA package [CBP], the 515-pin sPBGA
package [CBC], and the 423-pin sPBGA package [CUS] pin assignments in four quadrants (A, B, C, and
D).
Note: A pin with an "NC" designator indicates No Connection. For proper device operation, these pins
must be left unconnected.
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 11
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
A
98
vdds_mem
765432
NC
1
Bvdds_mem
vss
C
D
E
F
G
H
J
K
vdds_mem
NC
vdds_mem
NC
vss
vss
vdd_corevdd_core
vssvss
gpmc_nwe
gpmc_nadv
_ale
vdds_memvdds_mem
NC
gpmc_nbe0
_cle
gpmc_noe
NC
gpmc_wait3
vdd_core
gpmc_ncs1gpmc_d8
gpmc_nwp
vss
vdd_core
vss
vdds_memvdds_mem
vdd_mpu
_iva
gpmc_wait1
gpmc_a10gpmc_d9gpmc_d0 gpmc_a4 gpmc_wait2
vdd_mpu
_iva
gpmc_ncs0
vss
L
M
N
P
vdd_mpu
_iva
gpmc_wait0
gpmc_a9gpmc_d2
gpmc_d1
gpmc_ncs7
gpmc_a2
gpmc_a8
pop_k2
_m2
vss
gpmc_a1
gpmc_a7
pop_l2
_n2
pop_u1
_n1
vss
gpmc_d3gpmc_d10 vss gpmc_ncs6
vss
gpmc_a3
14
NC
13
NC
121110
NC
vdds_mem
NC
vdds_mem
vssvss
vssvss
NCNC
NCNC
vssvss
vdd_mpu
_iva
vdd_mpu
_iva
vdd_mpu
_iva
vss
vdd_mpu
_iva
vdd_mpu
_iva
vss
vdd_mpu
_iva
NC
vdd_mpu
_iva
vdd_mpu
_iva
vdd_mpu
_iva
vss
pop_y23
_m1
NC NC
NC
NC
NC
NC
NC
NC
NC
NCNC
NCNCNC NCNCNC
NC
NC
NC NC
NC
NC NC
NC
NC
NC
NC NC
NC
NCNCNC
NC NC
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
A. Top Views are provided to assist in hardware debugging efforts.
Figure 2-6. CBP Pin Map [Quadrant A - Top View]
12 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
A
20 21 22 23 24 25
cam_d5
26 27
pop_a22
_a27
28
B
cam_d2 cam_d10 vss
C
D
dss_hsync
E
F
G
H
J
K
vdds_mem cam_vs cam_hs pop_a23
_a28
vdds_mem cam_wen cam_xclkb pop_b23
_b28
vss cam_fld cam_d3
vss
cam_xclka cam_d11 cam_pclk vdds_mem
vss vdd_core cam_d4 dss_vsync dss_pclk
vdd_core dss_data6 dss_acbias dss_data20
vdds dss_data8 dss_data7
uart3_rx
_irrx
dss_data9 vss vdds_mem
dss_data19 dss_data18 dss_data17 vdds
vdd_core
hdq_sio dss_data21 pop_k1
_j28
vss
mcbsp1_fsx cam_d8 cam_d6
vdds_
mmc1
vdd_core
dss_data16
cam_strobevdd_core
L
M
N
P
vss
vss cam_d9 cam_d7
vdd_core mmc1
_cmd vss
vdd_core
mmc1
_dat2
mmc1
_dat1
mmc1
_dat0
mmc1
_clk
gpio_127 gpio_126 mmc1
_dat3
vdds_x
vdd_core
vdd_core
15
pop_a12
_a15
16
NC
17 18 19
NC
NC vdds_mem
NC NC vdds_mem
vdds_mem NC vss
vdd_core vdds_mem NC vss
NC NC uart3_cts
_rctx
uart3_rts
_sd
vss vss vdd_core
vdda_dplls
_dll vdd_core vss
vss
vss vss
vdd_mpu
_iva
NC
NC
vdd_core
vdd_core
vdd_core
vss
i2c1_sda
cap_vdd
_sram_core
i2c1_scl
mcbsp2_dx
mcbsp2
_clkx
mcbsp2_fsx
uart3_tx
_irtx
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
pop_b12
_b15
vdds
pop_h22
_j27
pop_k22
_m26
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Figure 2-7. CBP Pin Map [Quadrant B - Top View]
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 13
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Figure 2-8. CBP Pin Map [Quadrant C - Top View]
14 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AH
20
cap_vddu
_array
21
vss
22 23 24 25
sys
_nrespwron
26 27
pop_ac22
_ah27
28
AG
dss_data4 sys_clkout1 vdds
AF
vss
AE
i2c4_sda
AD
AC
AB
AA
Y
W
dss_data1 dss_data3 dss_data5
vdds dss_data0 dss_data2 sys_boot1 pop_ab23
_ag28
sys_boot6 sys_off
_mode
sys
_nreswarm
sys_boot0
sys_clkreq sys_nirq
vss sys_boot5 vdds vdd_core
uart2_rx i2c4_scl dss_data11 dss_data10
vss vss dss_
data22
dss_
data23
uart2_cts dss_data13 dss_data12
uart2_tx dss_
data15
dss_
data14
vss vssa_dac cvideo1
_out
cvideo1
_rset
cvideo2
_vfb
cvideo2
_out
vss
uart2_rts
sys_32ksys_clkout2
V
U
T
R
hsusb0
_data7
hsusb0
_data6
hsusb0
_data5
hsusb0
_data4
hsusb0
_data3
hsusb0
_data2
hsusb0
_data1
hsusb0_stp hsusb0_nxt hsusb0
_data0
hsusb0_clk
vss gpio_128 hsusb0_dir
gpio_129
vdda_dac
15 16
pop_ac14
_ah16
17 18 19
i2c2_scl
cam_d1 gpio_115
pop_ab13
_ag15 cam_d0
vdds sys_xtalout sys_boot3 sys_boot4
i2c2_sda vdd_core vdd_core
sys_xtalin
jtag_tdi
mcbsp1
_clkr
vdd_core
vdd_core mcbsp1_dx
mcbsp1
_clkx
vdd_core
vdd_core mcbsp1_dr
mcbsp_clks
vss mcbsp2_dr
vss
cap_vddu
_wkup
_logic
vdda_dpll
_per
jtag_tms
_tmsc
jtag_tdo
vdd_core sys_
xtalgnd vdd_core
vdd_mpu
_iva vdd_core vss
vss
vdds_sram vss
vdd_mpu
_iva
jtag_ntrst
vdd_core
vdd_core
vdd_core
vss
mcbsp1_fsr NC
NC
cvideo1
_vfb
pop_aa23
_ae28
vdds
pop_h23
_af28
pop_aa22
_af27
vdds
pop_l1
_ah15 gpio_113 pop_ac23
_ah28
vss gpio_114 gpio_112 vdds
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Figure 2-9. CBP Pin Map [Quadrant D - Top View]
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 15
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
A
98765432
NC
1
Bvss
C
D
E
F
G
H
J
K
gpmc
_a11
pop_a1
_a1
NC
gpmc_
ncs2
vdds
uart1
_rx
vdd_mpu
_iva
mmc2
_dat7
vss
L
M
N
gpmc
_d14
pop_j1
_l1
mcbsp3
_dr
cap_vdd
_sram
_mpu_iva
vdds
13121110
vdd_mpu
_iva
vss
vdd_mpu
_iva
vdda_
dplls_
dll
vdd_mpu
_iva
gpmc_
ncs4
gpmc_
wait2
NC vss
cap_
vdd_bb
_mpu_iva
NC
sys_
boot6
i2c2_scl vss
vss
NC vss NC NC NC NC vss
NC
vdd_
core
gpmc_
ncs6
gpmc_
ncs3 NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
vdds
NC
NC
NC
NC
gpmc_
wait3
gpmc_
ncs7
gpmc_
ncs5
sys_
boot2
sys_
boot1
I2C2_SDA
gpmc
_a9
gpmc
_a10
gpmc
_a7
gpmc
_a8
sys_
boot3
sys_
boot4
gpmc
_a5
gpmc
_a6
sys_
boot0 NC
vss gpmc
_a4
sys_
boot5 vdds
gpmc
_a2
gpmc
_a3 vss
gpmc
_nbe1
gpmc
_a1 NC NC
vss
gpmc
_nbe0
_cle
NC
mmc2
_dat6
gpmc
_nwe
gpmc
_d15
mmc2
_dat5
uart1
_tx
gpmc
_clk
gpmc
_noe vss
NC
vdd_mpu
_iva
vss
vdd_mpu
_iva
NC vss
vdd_mpu
_iva NC NC NC NC NC
NC
NC
NC
NC
vssNC
vdd_
core
vdds
NC
NCNCNC
NC
NC
NC
vdd_mpu
_iva
vdd_mpu
_iva
NC
NC
vss
vdd_mpu
_iva
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
A. Top Views are provided to assist in hardware debugging efforts.
Figure 2-10. CBC Pin Map [Quadrant A - Top View]
16 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
A
18 19 20 21 22 23
cam_wen
24 25 26
B
NC
cam_d2
C
D
E
F
G
H
J
K
pop_b16
_a20 NC NC
NC NC pop_
b21_b26
NC NC NC cam_
xclka
NC NC NC
NC
uart3_
rts_sd
dss_
data20
dss_
acbias
dss_
data7
hdq_sio
vdd_
core
L
M
N
vdds_
mmc1 cam_d9
14
NC
15 16 17
NC NC
NC NC NC
NC NC NC
vss NC
vss
cap_vddu_
wkup_
logic
vss
vdd_
core
i2c1_scl
NC
NC
NC vdds NC
NC
NCNC
NC
vss
vss
NC NC
NC vss
cam_d3
cam_d5
cam_d4
vdds
cam_fld
cam_hs
cam_vs
vss
pop_
a20_a25
pop_
a21_a26
cam_
pclk
cam_d10 cam_
strobe
cam_d11
dss_
pclk
cam_
xclkb
dss_
data6
uart3_
cts_
rctx
uart3_
tx_
irtx
vss
NC
uart3_
rx_
irrx
dss_
data8
dss_
data9
i2c1_sda
pop_
h21_k26
vss
dss_
hsync
NC
vss vdds dss_
data16
dss_
data17
dss_
data19
dss_
vsync
dss_
data18
NC
cam_d8
dss_
data21
NC NC
gpio_126
vdd_
core NC vss
vdd_
core
NCNCNCNCNCNC
NCNC
vdds
NCNC
vdds
NC
NC NC mmc1_
dat2 NC
cap_vdd
_sram_
core
vdds
vss
mmc1_
cmd
mmc1_
dat0
mmc1_
dat1
mmc1_
dat3
mmc1_
clk
NCvss
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Figure 2-11. CBC Pin Map [Quadrant B - Top View]
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 17
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AF
9
etk_d14
87654321
AE
AD
AC
AB
AA
Y
W
V
U
etk_d13
sys_
nres
warm
pop_t2
_y2
NC
etk_d9
gpmc
_d8
vdd_mpu
_iva
T
R
P
pop_n2
_t2
gpmc
_d10
mcbsp4
_dx
uart1
_rts
mcspi1
_clk
NC
mcbsp3
_dx
gpmc
_d13
mcspi1
_simo
13121110
gpmc_
nadv_ale
jtag_
rtck
NC
vdd_mpu
_iva
sys_
nresp
wron
sys_off
_mode
vdd_mpu
_iva
vdd_mpu
_iva
vdds_
sram
vss
i2c3_scl
pop_aa11
_af13
pop_y9_
_af10
NC
uart1
_cts
vdd_
core
mcspi1
_cs0
mcspi1
_somi
jtag_
tdo
vdd_
core
vss
NC
vss vss mcspi1
_cs1
mcspi1
_cs2
mmc2
_cmd
mmc2
_dat0
mmc2
_dat1
mcspi1
_cs3
vdds
mcbsp4
_fsx
gpmc
_d12
gpmc
_d11
mcbsp3
_clkx
mcbsp4
_dr
vdd_
core
mcspi2
_somi
mmc2
_dat3
mmc2
_dat2
vdd_mpu
_iva
mmc2
_dat4
mcspi2
_cs1
mcspi2
_cs0
vdd_mpu
_iva
mcbsp4
_clkx
mcbsp3
_fsx vss mcspi2
_clk
mcspi2
_simo
vdd_mpu
_iva
mmc2
_clk
sys_
clkout2
vdd_mpu
_iva
vdd_mpu
_iva
vdd_
core
vss
vdds
etk_d4
gpmc
_d9
gpmc
_d1
gpmc
_d0 etk_d3 etk_d8
etk_d5 etk_clk etk_ctl vss
gpmc
_d3
gpmc
_d2 etk_d0 i2c3_sda gpmc
_d7
gpmc
_nwp vdds gpmc
_wait1 NC vss gpmc
_wait0 NC NC
NCNCNCNC
gpmc
_ncs0
gpmc
_d5
etk_d1etk_d2
etk_d7
gpmc
_ncs1
gpmc
_d6
NC pop_w2
_ae2 etk_d6 etk_d10 gpmc
_d4 etk_d12 vss NC etk_d15 vdds NC NC NC
pop_aa10
_af12
NC
pop_y7_
_af8
etk_d11
pop_aa6
_af5
pop_y2
_af4
NCNC
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Figure 2-12. CBC Pin Map [Quadrant C - Top View]
18 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AF
18 19
sys_
xtalin
20 21 22 23
sys
_xtalgnd
24 25 26
AE
dss_
data1
AD
AC
AB
AA
Y
W
V
U
pop_y21
_ae26
vdd_
core
uart2
_cts
dss_
data13
dss_
data12
cvideo1
_rset
vssa_
dac
cvideo2
_out
cvideo2
_vfb
pop_
p21_u26
T
R
P
vdds
vdds_x NC cam_d7
14
pop_aa12
_af14
15 16 17
cam_d1 cam_d0
gpio_113
mcbsp1
_clkr
hsusb0
_data2
mcbsp2
_dx
gpio_129
gpio_128
vdda_
wkup_
bg_bb
i2c4_sda
jtag_tms
_tmsc
jtag_tdi
vss
vdda_
dpll_per
jtag_
ntrst
sys_nirq
gpio_127
vss
pop_aa21
_af26
sys_
clkout1
cap
_vddu
_array
mcbsp1
_dr
hsusb0
_stp
mcbsp2
_clkx
mcbsp1
_fsx
jtag_
emu1
cam_d6
NC NCNCNC
vdd_
core
mcbsp1
_clkx
mcbsp2
_dr
mcbsp
_clks vss NC NC
vssNC
mcbsp2
_fsx
mcbsp1
_dx
jtag_tck mcbsp1
_fsr
hsusb0
_dir
hsusb0
_data0
vdda_
dac
cvideo1
_out
cvideo1
_vfb
vdds
vss
hsusb0
_data3
hsusb0
_clk
hsusb0
_nxt
hsusb0
_data4
sys_
clkreq
jtag_
emu0 vss hsusb0
_data7
hsusb0
_data5
hsusb0
_data6
hsusb0
_data1 NC vss
dss_
data14
uart2
_rts
NC
NC vdds dss_
data23
dss_
data15
dss_
data10
dss_
data22
vdds
NCNC
sys_32k
vss
vdds
NC
vss
NC vdds NC
vss i2c4_scl gpio_112 vdds vdds vdds
uart2
_rts
uart2
_rx
uart2
_tx
dss_
data4
dss_
data5 vss dss_
data11
pop_y20
_ae25
pop_aa20
_af25
pop_y19
_af24
pop_
aa19_af22
pop_y17
_af21
dss_
data3
dss_
data2
dss_
data0
gpio_114gpio_115
pop_aa13
_af15
pop_aa14
_af16
pop_y14
_af17
pop_aa17
_af18
sys_
xtalout
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Figure 2-13. CBC Pin Map [Quadrant D - Top View]
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 19
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
A
987654321
B
C
D
E
F
G
H
J
K
sdrc_a0
NC
NC
L
M
gpmc
_d0
mcspi2
_cs1
121110
sdrc
_dqs0
sdrc
_dm2
vdds_x
gpmc
_ncs3
gpmc
_nwp
gpmc
_nadv
_ale
gpmc
_noe
gpmc
_a10
gpmc
_a8
gpmc
_a9
gpmc
_a6
gpmc
_d2
vdd_mpu
_iva
vss
vss
vdd_mpu
_iva
gpmc_
nbe0_cle
vdd_mpu
_iva
vdd_mpu
_iva
NC sdrc
_dqs2
sdrc
_clk
sdrc
_nclk
sdrc_a4 sdrc_a3 sdrc_a1 sdrc_d3 sdrc
_dm0 sdrc_d7 sdrc_d18 sdrc_d19 sdrc_d21 sdrc_d8 sdrc_d10
sdrc_d9sdrc_d20sdrc_d16sdrc_d6sdrc_d2sdrc_d1sdrc_a5
gpmc
_wait3
gpmc
_wait0
sdrc_a2 sdrc_d0 sdrc_d4 sdrc_d5 sdrc_d22
sdrc_d17sdrc_a8sdrc_a9sdrc_a10
sdrc_a6
gpmc
_ncs0
gpmc
_ncs6
gpmc
_ncs4 sdrc_a7 sdrc_a13 sdrc_a14 vdd_
core
vdd_mpu
_iva
sdrc_a12sdrc_a11
gpmc
_ncs5
gpmc
_ncs7
gpmc
_nwe
vdd_mpu
_iva
vdd_mpu
_iva
vdd_
core
vdd_
core
vssvss
vdd_mpu
_iva
vdd_mpu
_iva
vdds
_mem
vdds
_mem
vdds
_mem
gpmc
_a4
gpmc
_a5
gpmc
_a7
gpmc
_a3
gpmc
_a2
gpmc
_a1
vdds
_mem
vdds
_mem
vdds
_mem
vss
vss
vdd_mpu
_iva
vssvss
gpmc_
nbe1
gpmc
_d1
gpmc
_d4
mcspi2
_cs0
vdd_mpu
_iva
vdd_mpu
_iva
vdd_mpu
_iva vss vss
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
A. Top Views are provided to assist in hardware debugging efforts.
Figure 2-14. CUS Pin Map [Quadrant A - Top View]
20 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
A
16 17 18 19 20 21 22 23 24
B
cam_hs
C
D
E
F
G
H
J
K
dss_
data9
dss_
data19
dss_
acbias
L
M
13 14 15
sdrc_
dqs1
vdd_
core
cam_
xclka
uart3_
_cts_
rctx
hdq_si0
dss_
data6
dss_
data18
i2c1_sda
mmc1_
cmd
vdda
_dplls
_dll
cap_vdd
_sram
_core
vdds_
mem cam_vs
vdd_
core
vss
cam_
strobe
cam_
pclk
vss
sdrc_
d14
sdrc_
dm3
sdrc_
dqs3
sdrc_
ncs0
sdrc_
nwe
uart3_
_rx_
irrx
uart3_
_rts_
sd
cam_d5
sdrc_
cke0
sdrc_
ncs1
sdrc_
d31
sdrc_
d30
sdrc_
d27
sdrc_
d15
sdrc_
d13
sdrc_
dm1
sdrc_
d12
sdrc_
d26
sdrc_
d28
sdrc_
ba0
sdrc_
ncas
sdrc_
cke1
cam_
xclkb
uart3_
_tx_
irtx
dss_
data20
sdrc_
nras
sdrc_
ba1
sdrc_
d29
sdrc_
d25
sdrc_
d11
sdrc_
d23
sdrc_
d24
vdds
dss_
hsync
dss_
data7
dss_
data8
dss_
vsync
cam_d10
cam_d3cam_wen
vdds_
mem
vdds_
mem
vdd_
core
vdds_
mem
vdds_
mem cam_d2 cam_d4 cam_d11 dss_
pclk
dss_
data17
cam_fld
vdds_
mem
vss
vdd_
core
vss vss vss vss vdd_
core
vdd_
core
dss_
data16 cam_d8
cam_d7cam_d9
dss_
data21
i2c1_scl
vdd_
core
vdd_
core
vdd_
core
vssvss
vss vdd_
core
vdd_
core vss cam_d6
mmc1_
clk
mmc1_
dat0
mmc1_
dat1
mmc1_
dat2
vdds
vdds
vss
vdd_
core
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Figure 2-15. CUS Pin Map [Quadrant B - Top View]
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 21
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AD
9
etk_d14
87654321
AC
AB
AA
Y
W
V
U
T
R
sys_
nres
warm
vdd_mpu
_iva
P
Ngpmc
_d3
uart1
_rx
121110
vdd_mpu
_iva
vss
NC
uart1
_rts
vss
mcspi2
_clk
mmc2
_dat3
gpmc
_d7
gpmc
_d8
mcspi2
_simo
mcspi1
_cs0
vdd_mpu
_iva
sys_
clkout1
etk_d4
gpmc
_d14
gpmc
_clk
etk_clk
sys_
clkout2
vdds
jtag_tms
_tmsc
vdds_
sram
sys_
boot0
uart1_
cts etk_d10 etk_d8 etk_d1 etk_d12 i2c3_sda
etk_d0
mcbsp3
_dx
mcspi1
_simo
mcbsp1
_cs3
cap_vddu_
wkup_logic
vdd_mpu
_iva
vdd_mpu
_iva
mcspi2
_somi
vdd_mpu
_iva vss
vss
vss
vss
vdd_mpu
_iva
vss
vss
vss
vss
vss
gpmc
_d11
gpmc
_d5
gpmc
_d6
vdd_mpu
_iva
vdd_mpu
_iva
mcspi1
_clk
gpmc
_d9
gpmc
_d12
mcspi1
_somi vssvssvss
vssvss
cap_vdd
_sram_
mpu_iva
gpmc
_d13
gpmc
_d10
vdd_mpu
_iva
vddsvdds
mcbsp3
_fsx
gpmc
_d15
mcbsp3
_dr
vdd_mpu
_iva
vddsvdds
uart1
_tx
mcbsp3
_clkx
mmc2
_dat2
vdds
mmc2
_dat1
mmc2
_dat6
mmc2
_clk
mmc2
_dat7
mmc2
_dat5
jtag_
rtck
sys_
nres
pwron
jtag_
tdi
jtag_
tdo
jtag_
ntrst
jtag_
tck
mmc2
_cmd
mmc2
_dat0
mmc2
_dat4
etk_d2 etk_d11etk_d6
etk_d5 etk_ctl etk_d9 etk_d3 etk_d7 etk_d13 etk_d15
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Figure 2-16. CUS Pin Map [Quadrant C - Top View]
22 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AD
16 17
sys_
xtalin
18 19 20 21 22 23 24
AC
dss_
data3
AB
AA
Y
W
V
U
T
R
dss_
data15
dss_
data14
cvideo1
_rset
P
N
13 14 15
mcbsp1
_clkx
vdds
vss
hsusb0
_stp
mmc1_
dat3
gpio_126
cap_vdd
_bb_mpu
_iva
vdd_
core
hsusb0
_dir
hsusb0
_data0
cvideo2
_out
cvideo1
_vfb
sys_
clkreq
dss_
data23
sys_32k
sys_
boot6
vdda_
wkup
_bg_bb
i2c3_scl
vssa_dac cam_d0 dss_
data12
sys_off
_mode
dss_
data10
dss_
data5
dss_
data0
cap_vddu
_array
sys_
xtalgnd
jtag_
emu0
i2c4_scl
vss
vss
vss
vss
vss
vss
vss
vss
vss
vss
vss
vss
vss
vss
vss
vss
vss
vdds vdds vdds_
mmc1
gpio_129
vss
hsusb0
_clk
mcbsp2
_dx
vdd_
core
vdd_
core
hsusb0
_nxt
hsusb0
_data1
hsusb0
_data7
mcbsp2
_clkx
vdd_
core
vdd_
core
vdd_
core
vdd_
core
hsusb0
_data2
hsusb0
_data3
vdda_
dpll
_per
vdd_mpu
_iva
vdd_mpu
_iva
mcbsp2
_dr
mcbsp2
_fsx
dss_
data22
hsusb0
_data5
hsusb0
_data6
hsusb0
_data4
mcbsp1
_clkr
sys_
nirq
mcbsp1
_dx
vdd_mpu
_iva
cvideo2
_vfb
dss_
data13
mcbsp1
_dr
i2c4_sda
mcbsp
_clks
mcbsp1
_fsx
cvideo1
_out
mcbsp1
_fsr
dss_
data1
sys_
boot5
vdda_
dac
i2c2_sda i2c2_scl sys_
boot1
sys_
boot4 cam_d1 dss_
data11
jtag_
emu1
dss_
data4
dss_
data2
sys_
boot3
sys_
boot2
sys_
xtaout
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Figure 2-17. CUS Pin Map [Quadrant D - Top View]
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 23
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
2.3 Ball Characteristics
Table 2-1 through Table 2-3 describe the terminal characteristics and the signals multiplexed on each pin
for the CBP, CBC, and CUS packages, respectively. The following list describes the table column
headers.
1. BALL BOTTOM: Ball number(s) on the bottom side associated with each signal(s) on the bottom.
2. PIN NAME: Names of signals multiplexed on each ball (also notice that the name of the pin is the
signal name in mode 0).
Note:Table 2-3 does not take into account subsystem pin multiplexing options. Subsystem pin
multiplexing options are described in Section 2.5,Signal Descriptions.
3. MODE: Multiplexing mode number.
(a) Mode 0 is the primary mode; this means that when mode 0 is set, the function mapped on the pin
corresponds to the name of the pin. There is always a function mapped on the primary mode.
Notice that primary mode is not necessarily the default mode.
Note: The default mode is the mode at the release of the reset; also see the RESET REL. MODE
column.
(b) Modes 1 to 7 are possible modes for alternate functions. On each pin, some modes are effectively
used for alternate functions, while some modes are not used and do not correspond to a functional
configuration.
4. TYPE: Signal direction
I = Input
O = Output
I/O = Input/Output
D = Open drain
DS = Differential
A = Analog
PWR = Power
GND = Ground
Note: In the safe_mode, the buffer is configured in high-impedance.
5. BALL RESET STATE: The state of the terminal at the power-on reset.
0: The buffer drives VOL (pulldown/pullup resistor not activated)
0(PD): The buffer drives VOL with an active pulldown resistor.
1: The buffer drives VOH (pulldown/pullup resistor not activated)
1(PU): The buffer drives VOH with an active pullup resistor.
Z: High-impedance
L: High-impedance with an active pulldown resistor
H : High-impedance with an active pullup resistor
6. BALL RESET REL. STATE: The state of the terminal at the release of the System Control Module
reset (PRCM CORE_RSTPWRON_RET reset signal).
0: The buffer drives VOL (pulldown/pullup resistor not activated)
0(PD): The buffer drives VOL with an active pulldown resistor.
1: The buffer drives VOH (pulldown/pullup resistor not activated)
1(PU): The buffer drives VOH with an active pullup resistor.
Z: High-impedance
L: High-impedance with an active pulldown resistor
H : High-impedance with an active pullup resistor
7. RESET REL. MODE: The mode is automatically configured at the release of the System Control
Module reset (PRCM CORE_RSTPWRON_RET reset signal).
8. POWER: The voltage supply that powers the terminals I/O buffers.
9. HYS: Indicates if the input buffer is with hysteresis.
10. BUFFER STRENGTH: Drive strength of the associated output buffer.
24 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
11. PULL U/D - TYPE: Denotes the presence of an internal pullup or pulldown resistor. Pullup and
pulldown resistors can be enabled or disabled via software.
Note: The pullup/pulldown drive strength is equal to minimum = 50μA, typical = 100 μA, maximum =
250 μA (unless otherwise specified), except for CBP balls P27, P26, R27, and R25, and CUS balls
N22 and P24, where the pulldown drive strength is equal to 1.8 k.
12. IO CELL: IO cell information.
Note: Configuring two pins to the same input signal is not supported as it can yield unexpected results.
This can be easily prevented with the proper software configuration.
NOTE
In the AM3715/03 device, new Far End load Settings registers are added for some IOs. This
new feature configures the IO according to the transmission line and the
application/peripheral load. For a full description on these registers, see the System Control
Module / SCM Functional Description / Functional Register Description / Signal Integrity
Parameter Control Registers with Pad Group Assignment section of the AM/DM37x
Multimedia Device Technical Reference Manual (literature number SPRUGN4).
Table 2-1. Ball Characteristics (CBP Pkg.)(3)
BALL
BALL BALL RESET BUFFER PULLUP
BALL TOP RESET IO CELL
BOTTOM PIN NAME [2] MODE [3] TYPE [4] RESET REL. MODE POWER [8] HYS [9] STRENGTH /DOWN
[1] REL. [12]
[1] STATE [5] [7] (mA) [10] TYPE [11]
STATE [6]
NA J2 sdrc_d0 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA J1 sdrc_d1 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA G2 sdrc_d2 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA G1 sdrc_d3 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA F2 sdrc_d4 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA F1 sdrc_d5 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA D2 sdrc_d6 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA D1 sdrc_d7 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA B13 sdrc_d8 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA A13 sdrc_d9 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA B14 sdrc_d10 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA A14 sdrc_d11 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA B16 sdrc_d12 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA A16 sdrc_d13 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA B19 sdrc_d14 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA A19 sdrc_d15 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA B3 sdrc_d16 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA A3 sdrc_d17 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA B5 sdrc_d18 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA A5 sdrc_d19 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA B8 sdrc_d20 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA A8 sdrc_d21 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA B9 sdrc_d22 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA A9 sdrc_d23 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA B21 sdrc_d24 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA A21 sdrc_d25 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA D22 sdrc_d26 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA D23 sdrc_d27 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA E22 sdrc_d28 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA E23 sdrc_d29 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA G22 sdrc_d30 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA G23 sdrc_d31 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA AB21 sdrc_ba0 0 O 0 0 0 vdds_mem No 4 (12) NA LVCMOS
NA AC21 sdrc_ba1 0 O 0 0 0 vdds_mem No 4 (12) NA LVCMOS
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 25
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-1. Ball Characteristics (CBP Pkg.)(3) (continued)
BALL
BALL BALL RESET BUFFER PULLUP
BALL TOP RESET IO CELL
BOTTOM PIN NAME [2] MODE [3] TYPE [4] RESET REL. MODE POWER [8] HYS [9] STRENGTH /DOWN
[1] REL. [12]
[1] STATE [5] [7] (mA) [10] TYPE [11]
STATE [6]
NA N22 sdrc_a0 0 O 0 0 0 vdds_mem No 4 (12) NA LVCMOS
NA N23 sdrc_a1 0 O 0 0 0 vdds_mem No 4 (12) NA LVCMOS
NA P22 sdrc_a2 0 O 0 0 0 vdds_mem No 4 (12) NA LVCMOS
NA P23 sdrc_a3 0 O 0 0 0 vdds_mem No 4 (12) NA LVCMOS
NA R22 sdrc_a4 0 O 0 0 0 vdds_mem No 4 (12) NA LVCMOS
NA R23 sdrc_a5 0 O 0 0 0 vdds_mem No 4 (12) NA LVCMOS
NA T22 sdrc_a6 0 O 0 0 0 vdds_mem No 4 (12) NA LVCMOS
NA T23 sdrc_a7 0 O 0 0 0 vdds_mem No 4 (12) NA LVCMOS
NA U22 sdrc_a8 0 O 0 0 0 vdds_mem No 4 (12) NA LVCMOS
NA U23 sdrc_a9 0 O 0 0 0 vdds_mem No 4 (12) NA LVCMOS
NA V22 sdrc_a10 0 O 0 0 0 vdds_mem No 4 (12) NA LVCMOS
NA V23 sdrc_a11 0 O 0 0 0 vdds_mem No 4 (12) NA LVCMOS
NA W22 sdrc_a12 0 O 0 0 0 vdds_mem No 4 (12) NA LVCMOS
NA W23 sdrc_a13 0 O 0 0 0 vdds_mem No 4 (12) NA LVCMOS
NA Y22 sdrc_a14 0 O 0 0 0 vdds_mem No 4 (12) NA LVCMOS
NA M22 sdrc_ncs0 0 O 1 1 0 vdds_mem No 4 (12) NA LVCMOS
NA M23 sdrc_ncs1 0 O 1 1 0 vdds_mem No 4 (12) NA LVCMOS
NA A11 sdrc_clk 0 IO L 0 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA B11 sdrc_nclk 0 O 1 1 0 vdds_mem No 4 (12) NA LVCMOS
NA J22 sdrc_cke0 0 O H 1 7 vdds_mem Yes 4 (12) PU/ PD LVCMOS
safe_mode_out1(13) 7
NA J23 sdrc_cke1 0 O H 1 7 vdds_mem NA 4 (12) PU/ PD LVCMOS
safe_mode_out1(13) 7
NA L23 sdrc_nras 0 O 1 1 0 vdds_mem No 4 (12) NA LVCMOS
NA L22 sdrc_ncas 0 O 1 1 0 vdds_mem No 4 (12) NA LVCMOS
NA K23 sdrc_nwe 0 O 1 1 0 vdds_mem No 4 (12) NA LVCMOS
NA C1 sdrc_dm0 0 O 0 0 0 vdds_mem No 4 (12) NA LVCMOS
NA A17 sdrc_dm1 0 O 0 0 0 vdds_mem No 4 (12) NA LVCMOS
NA A6 sdrc_dm2 0 O 0 0 0 vdds_mem No 4 (12) NA LVCMOS
NA A20 sdrc_dm3 0 O 0 0 0 vdds_mem No 4 (12) NA LVCMOS
NA C2 sdrc_dqs0 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA B17 sdrc_dqs1 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA B6 sdrc_dqs2 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
NA B20 sdrc_dqs3 0 IO L Z 0 vdds_mem Yes 4 (12) PU/ PD LVCMOS
N4 AC15 gpmc_a1 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_34 4 IO
safe_mode 7
M4 AB15 gpmc_a2 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_35 4 IO
safe_mode 7
L4 AC16 gpmc_a3 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_36 4 IO
safe_mode 7
K4 AB16 gpmc_a4 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_37 4 IO
safe_mode 7
T3 AC17 gpmc_a5 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_38 4 IO
safe_mode 7
R3 AB17 gpmc_a6 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_39 4 IO
safe_mode 7
26 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-1. Ball Characteristics (CBP Pkg.)(3) (continued)
BALL
BALL BALL RESET BUFFER PULLUP
BALL TOP RESET IO CELL
BOTTOM PIN NAME [2] MODE [3] TYPE [4] RESET REL. MODE POWER [8] HYS [9] STRENGTH /DOWN
[1] REL. [12]
[1] STATE [5] [7] (mA) [10] TYPE [11]
STATE [6]
N3 AC18 gpmc_a7 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_40 4 IO
safe_mode 7
M3 AB18 gpmc_a8 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_41 4 IO
safe_mode 7
L3 AC19 gpmc_a9 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS
sys_ndmareq2 1 I
gpio_42 4 IO
safe_mode 7
K3 AB19 gpmc_a10 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS
sys_ndmareq3 1 I
gpio_43 4 IO
safe_mode 7
NA AC20 gpmc_a11 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS
safe_mode 7
K1 M2 gpmc_d0 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
L1 M1 gpmc_d1 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
L2 N2 gpmc_d2 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
P2 N1 gpmc_d3 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
T1 R2 gpmc_d4 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
V1 R1 gpmc_d5 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
V2 T2 gpmc_d6 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
W2 T1 gpmc_d7 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
H2 AB3 gpmc_d8 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_44 4 IO
safe_mode 7
K2 AC3 gpmc_d9 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_45 4 IO
safe_mode 7
P1 AB4 gpmc_d10 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_46 4 IO
safe_mode 7
R1 AC4 gpmc_d11 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_47 4 IO
safe_mode 7
R2 AB6 gpmc_d12 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_48 4 IO
safe_mode 7
T2 AC6 gpmc_d13 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_49 4 IO
safe_mode 7
W1 AB7 gpmc_d14 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_50 4 IO
safe_mode 7
Y1 AC7 gpmc_d15 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_51 4 IO
safe_mode 7
G4 Y2 gpmc_ncs0 0 O 1 1 0 vdds_mem NA 8 NA LVCMOS
H3 Y1 gpmc_ncs1 0 O H 1 0 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_52 4 IO
safe_mode 7
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 27
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-1. Ball Characteristics (CBP Pkg.)(3) (continued)
BALL
BALL BALL RESET BUFFER PULLUP
BALL TOP RESET IO CELL
BOTTOM PIN NAME [2] MODE [3] TYPE [4] RESET REL. MODE POWER [8] HYS [9] STRENGTH /DOWN
[1] REL. [12]
[1] STATE [5] [7] (mA) [10] TYPE [11]
STATE [6]
V8 NA gpmc_ncs2 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_53 4 IO
safe_mode 7
U8 NA gpmc_ncs3 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS
sys_ndmareq0 1 I
gpio_54 4 IO
safe_mode 7
T8 NA gpmc_ncs4 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS
sys_ndmareq1 1 I
mcbsp4_clkx 2 IO
gpt_9_pwm_evt 3 IO
gpio_55 4 IO
safe_mode 7
R8 NA gpmc_ncs5 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS
sys_ndmareq2 1 I
mcbsp4_dr 2 I
gpt_10_pwm_evt 3 IO
gpio_56 4 IO
safe_mode 7
P8 NA gpmc_ncs6 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS
sys_ndmareq3 1 I
mcbsp4_dx 2 IO
gpt_11_pwm_evt 3 IO
gpio_57 4 IO
safe_mode 7
N8 NA gpmc_ncs7 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS
gpmc_io_dir 1 O
mcbsp4_fsx 2 IO
gpt_8_pwm_evt 3 IO
gpio_58 4 IO
safe_mode 7
T4 W2 gpmc_clk 0 O L 0 0 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_59 4 IO
safe_mode 7
F3 W1 gpmc_nadv_ale 0 O 0 0 0 vdds_mem NA 8 PU/ PD LVCMOS
G2 V2 gpmc_noe 0 O 1 1 0 vdds_mem NA 8 PU/ PD LVCMOS
F4 V1 gpmc_nwe 0 O 1 1 0 vdds_mem NA 8 PU/ PD LVCMOS
G3 AC12 gpmc_nbe0_cle 0 O L 0 0 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_60 4 IO
safe_mode 7
U3 NA gpmc_nbe1 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_61 4 IO
safe_mode 7
H1 AB10 gpmc_nwp 0 O L 0 0 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_62 4 IO
safe_mode 7
M8 AB12 gpmc_wait0 0 I H H 0 vdds_mem Yes NA PU/ PD LVCMOS
L8 AC10 gpmc_wait1 0 I H H 7 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_63 4 IO
safe_mode 7
K8 NA gpmc_wait2 0 I H H 7 vdds_mem Yes 8 PU/ PD LVCMOS
uart4_tx 2 O
gpio_64 4 IO
safe_mode 7
28 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-1. Ball Characteristics (CBP Pkg.)(3) (continued)
BALL
BALL BALL RESET BUFFER PULLUP
BALL TOP RESET IO CELL
BOTTOM PIN NAME [2] MODE [3] TYPE [4] RESET REL. MODE POWER [8] HYS [9] STRENGTH /DOWN
[1] REL. [12]
[1] STATE [5] [7] (mA) [10] TYPE [11]
STATE [6]
J8 NA gpmc_wait3 0 I H H 7 vdds_mem Yes 8 PU/ PD LVCMOS
sys_ndmareq1 1 I
uart4_rx 2 I
gpio_65 4 IO
safe_mode 7
D28 NA dss_pclk 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS
gpio_66 4 IO
hw_dbg12 5 O
safe_mode 7
D26 NA dss_hsync 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS
gpio_67 4 IO
hw_dbg13 5 O
safe_mode 7
D27 NA dss_vsync 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS
gpio_68 4 IO
safe_mode 7
E27 NA dss_acbias 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_69 4 IO
safe_mode 7
AG22 NA dss_data0 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart1_cts 2 I NA
gpio_70 4 IO 8
safe_mode 7 8
AH22 NA dss_data1 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart1_rts 2 O 8
gpio_71 4 IO 8
safe_mode 7 8
AG23 NA dss_data2 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_72 4 IO 8
safe_mode 7 8
AH23 NA dss_data3 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_73 4 IO 8
safe_mode 7 8
AG24 NA dss_data4 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart3_rx_irrx 2 I NA
gpio_74 4 IO 8
safe_mode 7 8
AH24 NA dss_data5 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart3_tx_irtx 2 O 8
gpio_75 4 IO 8
safe_mode 7 8
E26 NA dss_data6 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart1_tx 2 O
gpio_76 4 IO
hw_dbg14 5 O
safe_mode 7
F28 NA dss_data7 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart1_rx 2 I
gpio_77 4 IO
hw_dbg15 5 O
safe_mode 7
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 29
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-1. Ball Characteristics (CBP Pkg.)(3) (continued)
BALL
BALL BALL RESET BUFFER PULLUP
BALL TOP RESET IO CELL
BOTTOM PIN NAME [2] MODE [3] TYPE [4] RESET REL. MODE POWER [8] HYS [9] STRENGTH /DOWN
[1] REL. [12]
[1] STATE [5] [7] (mA) [10] TYPE [11]
STATE [6]
F27 NA dss_data8 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart3_rx_irrx 2 I
gpio_78 4 IO
hw_dbg16 5 O
safe_mode 7
G26 NA dss_data9 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart3_tx_irtx 2 O
gpio_79 4 IO
hw_dbg17 5 O
safe_mode 7
AD28 NA dss_data10 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_80 4 IO
safe_mode 7
AD27 NA dss_data11 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_81 4 IO
safe_mode 7
AB28 NA dss_data12 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_82 4 IO
safe_mode 7
AB27 NA dss_data13 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_83 4 IO
safe_mode 7
AA28 NA dss_data14 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_84 4 IO
safe_mode 7
AA27 NA dss_data15 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_85 4 IO
safe_mode 7
G25 NA dss_data16 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_86 4 IO
safe_mode 7
H27 NA dss_data17 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_87 4 IO
safe_mode 7
H26 NA dss_data18 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
mcspi3_clk 2 IO
dss_data0 3 IO
gpio_88 4 IO
safe_mode 7
H25 NA dss_data19 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
mcspi3_simo 2 IO
dss_data1 3 IO
gpio_89 4 IO
safe_mode 7
E28 NA dss_data20 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS
mcspi3_somi 2 IO
dss_data2 3 IO
gpio_90 4 IO
safe_mode 7
J26 NA dss_data21 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS
mcspi3_cs0 2 IO
dss_data3 3 IO
gpio_91 4 IO
safe_mode 7
30 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-1. Ball Characteristics (CBP Pkg.)(3) (continued)
BALL
BALL BALL RESET BUFFER PULLUP
BALL TOP RESET IO CELL
BOTTOM PIN NAME [2] MODE [3] TYPE [4] RESET REL. MODE POWER [8] HYS [9] STRENGTH /DOWN
[1] REL. [12]
[1] STATE [5] [7] (mA) [10] TYPE [11]
STATE [6]
AC27 NA dss_data22 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS
mcspi3_cs1 2 O
dss_data4 3 IO
gpio_92 4 IO
safe_mode 7
AC28 NA dss_data23 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS
dss_data5 3 IO
gpio_93 4 IO
safe_mode 7
W28 NA cvideo2_out 0 AO 0 0 0 vdda_dac NA NA(4) NA 10-bit DAC
Y28 NA cvideo1_out 0 AO 0 0 0 vdda_dac NA NA(4) NA 10-bit DAC
Y27 NA cvideo1_vfb 0 AO 0 NA 0 vdda_dac NA NA(10) NA 10-bit DAC
W27 NA cvideo2_vfb 0 AO 0 NA 0 vdda_dac NA NA(10) NA 10-bit DAC
W26 NA cvideo1_rset 0 AIO 0 NA 0 vdda_dac No NA NA 10-bit DAC
A24 NA cam_hs 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_94 4 IO
hw_dbg0 5 O
safe_mode 7
A23 NA cam_vs 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_95 4 IO
hw_dbg1 5 O
safe_mode 7
C25 NA cam_xclka 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_96 4 IO
safe_mode 7
C27 NA cam_pclk 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_97 4 IO
hw_dbg2 5 O
safe_mode 7
C23 NA cam_fld 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
cam_global_reset 2 IO
gpio_98 4 IO
hw_dbg3 5 O
safe_mode 7
AG17 NA cam_d0 0 I L L 7 vdds Yes NA PU/PD LVCMOS
gpio_99 4 I
safe_mode 7
AH17 NA cam_d1 0 I L L 7 vdds Yes NA PU/PD LVCMOS
gpio_100 4 I
safe_mode 7
B24 NA cam_d2 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_101 4 IO
hw_dbg4 5 O
safe_mode 7
C24 NA cam_d3 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_102 4 IO
hw_dbg5 5 O
safe_mode 7
D24 NA cam_d4 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_103 4 IO
hw_dbg6 5 O
safe_mode 7
A25 NA cam_d5 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_104 4 IO
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 31
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-1. Ball Characteristics (CBP Pkg.)(3) (continued)
BALL
BALL BALL RESET BUFFER PULLUP
BALL TOP RESET IO CELL
BOTTOM PIN NAME [2] MODE [3] TYPE [4] RESET REL. MODE POWER [8] HYS [9] STRENGTH /DOWN
[1] REL. [12]
[1] STATE [5] [7] (mA) [10] TYPE [11]
STATE [6]
hw_dbg7 5 O
safe_mode 7
K28 NA cam_d6 0 I L L 7 vdds Yes NA PU/ PD LVCMOS
gpio_105 4 I
safe_mode 7
L28 NA cam_d7 0 I L L 7 vdds Yes NA PU/ PD LVCMOS
gpio_106 4 I
safe_mode 7
K27 NA cam_d8 0 I L L 7 vdds Yes NA PU/ PD LVCMOS
gpio_107 4 I
safe_mode 7
L27 NA cam_d9 0 I L L 7 vdds Yes NA PU/ PD LVCMOS
gpio_108 4 I
safe_mode 7
B25 NA cam_d10 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_109 4 IO
hw_dbg8 5 O
safe_mode 7
C26 NA cam_d11 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_110 4 IO
hw_dbg9 5 O
safe_mode 7
B26 NA cam_xclkb 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_111 4 IO
safe_mode 7
B23 NA cam_wen 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
cam_shutter 2 O
gpio_167 4 IO
hw_dbg10 5 O
safe_mode 7
D25 NA cam_strobe 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_126 4 IO
hw_dbg11 5 O
safe_mode 7
AG19 NA gpio_112 4 I L L 7 vdds Yes NA PU/PD LVCMOS
safe_mode 7
AH19 NA gpio_113 4 I L L 7 vdds Yes NA PU/PD LVCMOS
safe_mode 7
AG18 NA gpio_114 4 I L L 7 vdds Yes NA PU/PD LVCMOS
safe_mode 7 -
AH18 NA gpio_115 4 I L L 7 vdds Yes NA PU/PD LVCMOS
safe_mode 7 -
P21 NA mcbsp2_fsx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_116 4 IO
safe_mode 7
N21 NA mcbsp2_clkx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_117 4 IO
safe_mode 7
R21 NA mcbsp2_dr 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_118 4 IO
safe_mode 7
M21 NA mcbsp2_dx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_119 4 IO
safe_mode 7
32 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-1. Ball Characteristics (CBP Pkg.)(3) (continued)
BALL
BALL BALL RESET BUFFER PULLUP
BALL TOP RESET IO CELL
BOTTOM PIN NAME [2] MODE [3] TYPE [4] RESET REL. MODE POWER [8] HYS [9] STRENGTH /DOWN
[1] REL. [12]
[1] STATE [5] [7] (mA) [10] TYPE [11]
STATE [6]
N28 NA mmc1_clk 0 O L L 7 vdds_mmc1(Yes 1 PU/ PD(5) LVCMOS
15)
gpio_120 (1) 4 IO
safe_mode 7
M27 NA mmc1_cmd 0 IO L L 7 vdds_mmc1(Yes 1 PU/ PD(5) LVCMOS
15)
gpio_121 (1) 4 IO
safe_mode 7
N27 NA mmc1_dat0 0 IO L L 7 vdds_mmc1(Yes 1 PU/ PD (5) LVCMOS
15)
gpio_122 (1) 4 IO
safe_mode 7
N26 NA mmc1_dat1 0 IO L L 7 vdds_mmc1(Yes 1 PU/ PD(5) LVCMOS
15)
gpio_123(1) 4 IO
safe_mode 7
N25 NA mmc1_dat2 0 IO L L 7 vdds_mmc1(Yes 1 PU/ PD (5) LVCMOS
15)
gpio_124(1) 4 IO
safe_mode 7
P28 NA mmc1_dat3 0 IO L L 7 vdds_mmc1(Yes 1 PU/ PD (5) LVCMOS
15)
gpio_125(1) 4 IO
safe_mode 7
P27 NA gpio_126(1) 4 IO L L 7 vdds_x Yes 1 PU/ PD (5) LVCMOS
safe_mode 7
P26 NA gpio_127(1) 4 IO L L 7 vdds_x Yes 1 PU/ PD(5) LVCMOS
safe_mode 7
R27 NA gpio_128 4 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
safe_mode 7
R25 NA gpio_129(1) 4 IO L L 7 vdds_x Yes 1 PU/ PD(5) LVCMOS
safe_mode 7
AE2 NA mmc2_clk 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_clk 1 IO
gpio_130 4 IO
safe_mode 7
AG5 NA mmc2_cmd 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_simo 1 IO
gpio_131 4 IO
safe_mode 7
AH5 NA mmc2_dat0 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_somi 1 IO
gpio_132 4 IO
safe_mode 7
AH4 NA mmc2_dat1 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_133 4 IO
safe_mode 7
AG4 NA mmc2_dat2 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_cs1 1 O
gpio_134 4 IO
safe_mode 7
AF4 NA mmc2_dat3 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_cs0 1 IO
gpio_135 4 IO
safe_mode 7
AE4 NA mmc2_dat4 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 33
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-1. Ball Characteristics (CBP Pkg.)(3) (continued)
BALL
BALL BALL RESET BUFFER PULLUP
BALL TOP RESET IO CELL
BOTTOM PIN NAME [2] MODE [3] TYPE [4] RESET REL. MODE POWER [8] HYS [9] STRENGTH /DOWN
[1] REL. [12]
[1] STATE [5] [7] (mA) [10] TYPE [11]
STATE [6]
mmc2_dir_dat0 1 O
mmc3_dat0 3 IO
gpio_136 4 IO
safe_mode 7
AH3 NA mmc2_dat5 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_dir_dat1 1 O
cam_global_reset 2 IO
mmc3_dat1 3 IO
gpio_137 4 IO
mm3_rxdp 6 IO
safe_mode 7
AF3 NA mmc2_dat6 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_dir_cmd 1 O
cam_shutter 2 O
mmc3_dat2 3 IO
gpio_138 4 IO
safe_mode 7
AE3 NA mmc2_dat7 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_clkin 1 I
mmc3_dat3 3 IO
gpio_139 4 IO
mm3_rxdm 6 IO
safe_mode 7
AF6 NA mcbsp3_dx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart2_cts 1 I
gpio_140 4 IO
safe_mode 7
AE6 NA mcbsp3_dr 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
uart2_rts 1 O
gpio_141 4 IO
safe_mode 7
AF5 NA mcbsp3_clkx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart2_tx 1 O
gpio_142 4 IO
safe_mode 7
AE5 NA mcbsp3_fsx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart2_rx 1 I
gpio_143 4 IO
safe_mode 7
AB26 NA uart2_cts 0 I H H 7 vdds Yes 4 PU/ PD LVCMOS
mcbsp3_dx 1 IO
gpt_9_pwm_evt 2 IO
gpio_144 4 IO
safe_mode 7
AB25 NA uart2_rts 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
mcbsp3_dr 1 I
gpt_10_pwm_evt 2 IO
gpio_145 4 IO
safe_mode 7
AA25 NA uart2_tx 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
mcbsp3_clkx 1 IO
gpt_11_pwm_evt 2 IO
gpio_146 4 IO
safe_mode 7
34 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-1. Ball Characteristics (CBP Pkg.)(3) (continued)
BALL
BALL BALL RESET BUFFER PULLUP
BALL TOP RESET IO CELL
BOTTOM PIN NAME [2] MODE [3] TYPE [4] RESET REL. MODE POWER [8] HYS [9] STRENGTH /DOWN
[1] REL. [12]
[1] STATE [5] [7] (mA) [10] TYPE [11]
STATE [6]
AD25 NA uart2_rx 0 I H H 7 vdds Yes 4 PU/ PD LVCMOS
mcbsp3_fsx 1 IO
gpt_8_pwm_evt 2 IO
gpio_147 4 IO
safe_mode 7
AA8 NA uart1_tx 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_148 4 IO
safe_mode 7
AA9 NA uart1_rts 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_149 4 IO
safe_mode 7
W8 NA uart1_cts 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_150 4 IO
safe_mode 7
Y8 NA uart1_rx 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
mcbsp1_clkr 2 IO
mcspi4_clk 3 IO
gpio_151 4 IO
safe_mode 7
AE1 NA mcbsp4_clkx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_152 4 IO
mm3_txse0 6 IO
safe_mode 7
AD1 NA mcbsp4_dr 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_153 4 IO
mm3_rxrcv 6 IO
safe_mode 7
AD2 NA mcbsp4_dx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_154 4 IO
mm3_txdat 6 IO
safe_mode 7
AC1 NA mcbsp4_fsx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_155 4 IO
mm3_txen_n 6 IO
safe_mode 7
Y21 NA mcbsp1_clkr 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mcspi4_clk 1 IO
gpio_156 4 IO
safe_mode 7
AA21 NA mcbsp1_fsr 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
cam_global_reset 2 IO
gpio_157 4 IO
safe_mode 7
V21 NA mcbsp1_dx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mcspi4_simo 1 IO
mcbsp3_dx 2 IO
gpio_158 4 IO
safe_mode 7
U21 NA mcbsp1_dr 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
mcspi4_somi 1 IO
mcbsp3_dr 2 I
gpio_159 4 IO
safe_mode 7
T21 NA mcbsp_clks 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 35
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-1. Ball Characteristics (CBP Pkg.)(3) (continued)
BALL
BALL BALL RESET BUFFER PULLUP
BALL TOP RESET IO CELL
BOTTOM PIN NAME [2] MODE [3] TYPE [4] RESET REL. MODE POWER [8] HYS [9] STRENGTH /DOWN
[1] REL. [12]
[1] STATE [5] [7] (mA) [10] TYPE [11]
STATE [6]
cam_shutter 2 O
gpio_160 4 IO
uart1_cts 5 I
safe_mode 7
K26 NA mcbsp1_fsx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mcspi4_cs0 1 IO
mcbsp3_fsx 2 IO
gpio_161 4 IO
safe_mode 7
W21 NA mcbsp1_clkx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mcbsp3_clkx 2 IO
gpio_162 4 IO
safe_mode 7
H18 NA uart3_cts_rctx 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_163 4 IO
safe_mode 7
H19 NA uart3_rts_sd 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_164 4 IO
safe_mode 7
H20 NA uart3_rx_irrx 0 I H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_165 4 IO
safe_mode 7
H21 NA uart3_tx_irtx 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_166 4 IO
safe_mode 7
T28 NA hsusb0_clk 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_120 4 IO
safe_mode 7
T25 NA hsusb0_stp 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_121 4 IO
safe_mode 7
R28 NA hsusb0_dir 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_122 4 IO
safe_mode 7
T26 NA hsusb0_nxt 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_124 4 IO
safe_mode 7
T27 NA hsusb0_data0 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart3_tx_irtx 2 O
gpio_125 4 IO
uart2_tx 5 O
safe_mode 7
U28 NA hsusb0_data1 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart3_rx_irrx 2 I
gpio_130 4 IO
uart2_rx 5 I
safe_mode 7
U27 NA hsusb0_data2 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart3_rts_sd 2 O
gpio_131 4 IO
uart2_rts 5 O
safe_mode 7
U26 NA hsusb0_data3 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart3_cts_rctx 2 IO
36 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-1. Ball Characteristics (CBP Pkg.)(3) (continued)
BALL
BALL BALL RESET BUFFER PULLUP
BALL TOP RESET IO CELL
BOTTOM PIN NAME [2] MODE [3] TYPE [4] RESET REL. MODE POWER [8] HYS [9] STRENGTH /DOWN
[1] REL. [12]
[1] STATE [5] [7] (mA) [10] TYPE [11]
STATE [6]
gpio_169 4 IO
uart2_cts 5 I
safe_mode 7
U25 NA hsusb0_data4 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_188 4 IO
safe_mode 7
V28 NA hsusb0_data5 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_189 4 IO
safe_mode 7
V27 NA hsusb0_data6 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_190 4 IO
safe_mode 7
V26 NA hsusb0_data7 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_191 4 IO
safe_mode 7
K21 NA i2c1_scl 0 OD H H 0 vdds NA 3 PU/ PD(6)(7) Open Drain
J21 NA i2c1_sda 0 IOD H H 0 vdds Yes 3 PU/ PD(6)(7) Open Drain
AF15 NA i2c2_scl 0 OD H H 7 vdds Yes 3 PU/ PD(6) (8) Open Drain
gpio_168 4 IO 4
safe_mode 7
AE15 NA i2c2_sda 0 IOD H H 7 vdds Yes 3 PU/ PD(6) (8) Open Drain
gpio_183 4 IO 4
safe_mode 7
AF14 NA i2c3_scl 0 OD H H 7 vdds Yes 3 PU/ PD(6) (8) Open Drain
gpio_184 4 IO 4
safe_mode 7
AG14 NA i2c3_sda 0 IOD H H 7 vdds Yes 3 PU/ PD(6) (8) Open Drain
gpio_185 4 IO 4
safe_mode 7
AD26 NA i2c4_scl 0 OD H H 0 vdds Yes 3 PU/ PD(6)(7) Open Drain
sys_ nvmode1 1 O 4
safe_mode 7
AE26 NA i2c4_sda 0 IOD H H 0 vdds Yes 3 PU/ PD(6)(7) Open Drain
sys_ nvmode2 1 O 4
safe_mode 7
J25 NA hdq_sio 0 IOD H H 7 vdds Yes 4 PU/ PD LVCMOS
sys_altclk 1 I
i2c2_sccbe 2 OD
i2c3_sccbe 3 OD
gpio_170 4 IO
safe_mode 7
AB3 NA mcspi1_clk 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_dat4 1 IO
gpio_171 4 IO
safe_mode 7
AB4 NA mcspi1_ simo 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_dat5 1 IO
gpio_172 4 IO
safe_mode 7
AA4 NA mcspi1_ somi 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_dat6 1 IO
gpio_173 4 IO
safe_mode 7
AC2 NA mcspi1_cs0 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 37
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-1. Ball Characteristics (CBP Pkg.)(3) (continued)
BALL
BALL BALL RESET BUFFER PULLUP
BALL TOP RESET IO CELL
BOTTOM PIN NAME [2] MODE [3] TYPE [4] RESET REL. MODE POWER [8] HYS [9] STRENGTH /DOWN
[1] REL. [12]
[1] STATE [5] [7] (mA) [10] TYPE [11]
STATE [6]
mmc2_dat7 1 IO
gpio_174 4 IO
safe_mode 7
AC3 NA mcspi1_cs1 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
mmc3_cmd 3 IO
gpio_175 4 IO
safe_mode 7
AB1 NA mcspi1_cs2 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
mmc3_clk 3 O
gpio_176 4 IO
safe_mode 7
AB2 NA mcspi1_cs3 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
hsusb2_ data2 3 IO
gpio_177 4 IO
mm2_txdat 5 IO
safe_mode 7
AA3 NA mcspi2_clk 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
hsusb2_ data7 3 IO
gpio_178 4 IO
safe_mode 7
Y2 NA mcspi2_ simo 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpt_9_pwm_evt 1 IO
hsusb2_ data4 3 IO
gpio_179 4 IO
safe_mode 7
Y3 NA mcspi2_ somi 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpt_10_pwm_evt 1 IO
hsusb2_ data5 3 IO
gpio_180 4 IO
safe_mode 7
Y4 NA mcspi2_cs0 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
gpt_11_pwm_evt 1 IO
hsusb2_ data6 3 IO
gpio_181 4 IO
safe_mode 7
V3 NA mcspi2_cs1 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpt_8_pwm_evt 1 IO
hsusb2_ data3 3 IO
gpio_182 4 IO
mm2_txen_n 5 IO
safe_mode 7
AE25 NA sys_32k 0 I Z Z 0 vdds Yes NA PU/ PD LVCMOS
AE17 NA sys_xtalin 0 AI Z Z 0 vdds Yes NA No LVCMOS
Analog
AF17 NA sys_xtalout 0 AO Z 0 0 vdds NA NA NA LVCMOS
Analog
AF25 NA sys_clkreq 0 IO 0 See (11) 0 vdds Yes 4 PU/ PD LVCMOS
gpio_1 4 IO
safe_mode 7
AF26 NA sys_nirq 0 I H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_0 4 IO
safe_mode 7
AH25 NA sys_nrespwron 0 I Z Z 0 vdds Yes NA No LVCMOS
AF24 NA sys_nreswarm 0 IOD 0 H 0 vdds Yes 4 PU/ PD LVCMOS
gpio_30 4 IO Open Drain
38 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-1. Ball Characteristics (CBP Pkg.)(3) (continued)
BALL
BALL BALL RESET BUFFER PULLUP
BALL TOP RESET IO CELL
BOTTOM PIN NAME [2] MODE [3] TYPE [4] RESET REL. MODE POWER [8] HYS [9] STRENGTH /DOWN
[1] REL. [12]
[1] STATE [5] [7] (mA) [10] TYPE [11]
STATE [6]
safe_mode 7
AH26 NA sys_boot0 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS
dss_data18 3 IO
gpio_2 4 IO
safe_mode 7
AG26 NA sys_boot1 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS
dss_data19 3 IO
gpio_3 4 IO
safe_mode 7
AE14 NA sys_boot2 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS
gpio_4 4 IO
safe_mode 7
AF18 NA sys_boot3 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS
dss_data20 3 O
gpio_5 4 IO
safe_mode 7
AF19 NA sys_boot4 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS
mmc2_dir_dat2 1 O
dss_data21 3 O
gpio_6 4 IO
safe_mode 7
AE21 NA sys_boot5 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS
mmc2_dir_dat3 1 O
dss_data22 3 O
gpio_7 4 IO
safe_mode 7
AF21 NA sys_boot6 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS
dss_data23 3 O
gpio_8 4 IO
safe_mode 7
AF22 NA sys_off_mode 0 O 0 L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_9 4 IO
safe_mode 7
AG25 NA sys_clkout1 0 O L L 7(14) vdds Yes 4 PU/ PD LVCMOS
gpio_10 4 IO
safe_mode 7
AE22 NA sys_clkout2 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_186 4 IO
safe_mode 7
AA17 NA jtag_ntrst 0 I L L 0 vdds Yes NA PU/ PD LVCMOS
AA13 NA jtag_tck 0 I L L 0 vdds Yes NA PU/ PD LVCMOS
AA12 NA jtag_rtck 0 O L 0 0 vdds NA 4 PU/ PD LVCMOS
AA18 NA jtag_tms_tmsc 0 IO H H 0 vdds Yes 4 PU/ PD LVCMOS
AA20 NA jtag_tdi 0 I H H 0 vdds Yes NA PU/ PD LVCMOS
AA19 NA jtag_tdo 0 O L Z 0 vdds NA 4 PU/ PD LVCMOS
AA11 NA jtag_emu0 0 IO H H 0 vdds Yes 4 PU/ PD LVCMOS
gpio_11 4 IO
safe_mode 7
AA10 NA jtag_emu1 0 IO H H 0 vdds Yes 4 PU/ PD LVCMOS
gpio_31 4 IO
safe_mode 7
AF10 NA etk_clk 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mcbsp5_ clkx 1 IO
mmc3_clk 2 O
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 39
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-1. Ball Characteristics (CBP Pkg.)(3) (continued)
BALL
BALL BALL RESET BUFFER PULLUP
BALL TOP RESET IO CELL
BOTTOM PIN NAME [2] MODE [3] TYPE [4] RESET REL. MODE POWER [8] HYS [9] STRENGTH /DOWN
[1] REL. [12]
[1] STATE [5] [7] (mA) [10] TYPE [11]
STATE [6]
hsusb1_stp 3 O
gpio_12 4 IO
mm1_rxdp 5 IO
hw_dbg0 7 O
AE10 NA etk_ctl 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mmc3_cmd 2 IO
hsusb1_clk 3 O
gpio_13 4 IO
hw_dbg1 7 O
AF11 NA etk_d0 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mcspi3_ simo 1 IO
mmc3_dat4 2 IO
hsusb1_ data0 3 IO
gpio_14 4 IO
mm1_rxrcv 5 IO
hw_dbg2 7 O
AG12 NA etk_d1 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mcspi3_ somi 1 IO
hsusb1_ data1 3 IO
gpio_15 4 IO
mm1_txse0 5 IO
hw_dbg3 7 O
AH12 NA etk_d2 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mcspi3_cs0 1 IO
hsusb1_ data2 3 IO
gpio_16 4 IO
mm1_txdat 5 IO
hw_dbg4 7 O
AE13 NA etk_d3 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mcspi3_clk 1 IO
mmc3_dat3 2 IO
hsusb1_ data7 3 IO
gpio_17 4 IO
hw_dbg5 7 O
AE11 NA etk_d4 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
mcbsp5_dr 1 I
mmc3_dat0 2 IO
hsusb1_ data4 3 IO
gpio_18 4 IO
hw_dbg6 7 O
AH9 NA etk_d5 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
mcbsp5_fsx 1 IO
mmc3_dat1 2 IO
hsusb1_ data5 3 IO
gpio_19 4 IO
hw_dbg7 7 O
AF13 NA etk_d6 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
mcbsp5_dx 1 O
mmc3_dat2 2 IO
hsusb1_ data6 3 IO
gpio_20 4 IO
hw_dbg8 7 O
AH14 NA etk_d7 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
mcspi3_cs1 1 O
40 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-1. Ball Characteristics (CBP Pkg.)(3) (continued)
BALL
BALL BALL RESET BUFFER PULLUP
BALL TOP RESET IO CELL
BOTTOM PIN NAME [2] MODE [3] TYPE [4] RESET REL. MODE POWER [8] HYS [9] STRENGTH /DOWN
[1] REL. [12]
[1] STATE [5] [7] (mA) [10] TYPE [11]
STATE [6]
mmc3_dat7 2 IO
hsusb1_ data3 3 IO
gpio_21 4 IO
mm1_txen_n 5 IO
hw_dbg9 7 O
AF9 NA etk_d8 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
mmc3_dat6 2 IO
hsusb1_dir 3 I
gpio_22 4 IO
hw_dbg10 7 O
AG9 NA etk_d9 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
mmc3_dat5 2 IO
hsusb1_nxt 3 I
gpio_23 4 IO
mm1_rxdm 5 IO
hw_dbg11 7 O
AE7 NA etk_d10 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
uart1_rx 2 I
hsusb2_clk 3 O
gpio_24 4 IO
hw_dbg12 7 O
AF7 NA etk_d11 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
hsusb2_stp 3 O
gpio_25 4 IO
mm2_rxdp 5 IO
hw_dbg13 7 O
AG7 NA etk_d12 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
hsusb2_dir 3 I
gpio_26 4 IO
hw_dbg14 7 O
AH7 NA etk_d13 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
hsusb2_nxt 3 I
gpio_27 4 IO
mm2_rxdm 5 IO
hw_dbg15 7 O
AG8 NA etk_d14 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
hsusb2_ data0 3 IO
gpio_28 4 IO
mm2_rxrcv 5 IO
hw_dbg16 7 O
AH8 NA etk_d15 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
hsusb2_ data1 3 IO
gpio_29 4 IO
mm2_txse0 5 IO
hw_dbg17 7 O
AH21 NA vss 0 GND - - - - - - - -
AG16 NA vss 0 GND - - - - - - - -
M28 NA vss 0 GND - - - - - - - -
AH20 NA cap_vddu_array 0 PWR - - - - - - - -
AG20 NA vdds 0 PWR - - - - - - - -
AG21 NA vdds 0 PWR - - - - - - - -
H28 NA vdds 0 PWR - - - - - - - -
P25 NA vdds_x 0 PWR - - - - - - - -
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 41
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-1. Ball Characteristics (CBP Pkg.)(3) (continued)
BALL
BALL BALL RESET BUFFER PULLUP
BALL TOP RESET IO CELL
BOTTOM PIN NAME [2] MODE [3] TYPE [4] RESET REL. MODE POWER [8] HYS [9] STRENGTH /DOWN
[1] REL. [12]
[1] STATE [5] [7] (mA) [10] TYPE [11]
STATE [6]
AE9, AE18, NA vdd_core 0 PWR - - - - - - - -
AE19, AE24,
AC4, Y16,
Y18, Y19,
Y20, W18,
W20, V20,
U19, U20,
T19, P20,
N19, N20,
M19, M25,
L25, K18,
K20, J4,
J18, J19,
J20, H4,
E25, D8, D9,
D15, D22,
D23
Y9, Y10, NA vdd_mpu_iva 0 PWR - - - - - - - -
Y11, Y14,
Y15, W9,
W11, W12,
W15, U10,
T9, T10, R9,
R10, N10,
M9, M10,
L9, L10,
K11, K14,
K13, J9,
J10, J11,
J14, J15
AH6, U1, AC5, P1, vdds_mem 0 PWR - - - - - - - -
R4, J1, J2, H1, F23, E1,
G28, F1, F2, C23, A4, A7,
D16, C16, A10, A15,
C28, B5, B8, A18
B12, B18,
B22, A5, A8,
A12, A18,
A22
AG27, AF8, NA vdds 0 PWR - - - - - - - -
AF16, AF23,
AE8, AE16,
AE23, AD3,
AD4, W4,
F25, F26
W16 NA vdds_sram 0 PWR
K15 NA vdda_dplls_dll 0 PWR - - - - - - - -
AA16 NA vdda_dpll_per 0 PWR - - - - - - - -
AA14 NA vdda_wkup_ 0 PWR - - - - - - - -
bg_bb
K25 NA vdds_mmc1 0 PWR - - - - - - - -
V25 NA vdda_dac 0 PWR - - - - - - - -
Y26 NA vssa_dac 0 GND - - - - - - - -
42 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-1. Ball Characteristics (CBP Pkg.)(3) (continued)
BALL
BALL BALL RESET BUFFER PULLUP
BALL TOP RESET IO CELL
BOTTOM PIN NAME [2] MODE [3] TYPE [4] RESET REL. MODE POWER [8] HYS [9] STRENGTH /DOWN
[1] REL. [12]
[1] STATE [5] [7] (mA) [10] TYPE [11]
STATE [6]
AG2, AG3, B4, B7, B10, vss 0 GND - - - - - - - -
AG6, AF12, B15, B18,
AF20, AE12, C22, E2,
AE20, F22, H2, P2,
AC25, AB5, AB14,
AC26, Y12, AB20
Y13, Y25,
W3, W10,
W13, W14,
W17, W19,
W25, V9,
V10, V19,
U2, U9, T20,
R19, R20,
R26, P3, P4,
P9, P10,
P19, N9,
M20, L19,
L20, L26,
K9, K10,
K12, K16,
K17, K19,
J3, J12, J13,
J16, J17,
G27, E3,E4,
D7, D10,
D13, D19,
D21, C7,
C10, C13,
C19, C22,
B2, B27, A3,
A26
AA15 NA cap_vddu_wkup_ 0 PWR - - - - - - - -
logic
AH10, A12, AA1, Feed-Through - - - - - - - - - -
AH11, AA23, AB11, Pins(9)
AH13, AB9, AC11,
AH15, AC13,
AH16, AC14, AC8,
AG11, AC9, H23,
AG13, AF1, K1, L1, U1,
AF28, AE28, Y23, A1, A2,
AA1, N1, A22, A23,
M1, J28, AB1, AB23,
A15, M2, AC1, AC2,
N2, A1, A2, AC22,
A27, A28, AC23, B1,
AG1, AG28, B23, AA2,
AH1, AH2, U2, AA22,
AH27, AB8, AB13,
AH28, B1, B12, H22,
B28, AA2, K2, K22, L2
AF2, AF27,
AG10,
AG15, B15,
J27, M26
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 43
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-1. Ball Characteristics (CBP Pkg.)(3) (continued)
BALL
BALL BALL RESET BUFFER PULLUP
BALL TOP RESET IO CELL
BOTTOM PIN NAME [2] MODE [3] TYPE [4] RESET REL. MODE POWER [8] HYS [9] STRENGTH /DOWN
[1] REL. [12]
[1] STATE [5] [7] (mA) [10] TYPE [11]
STATE [6]
G1, A13, AB2, AB22, No Connect(2) - -
A14,A16, B2, B22
A17, B14,
B16, B17,
C14, C15,
C17, D17,
D18, H9,
H10, H11,
H12, H13,
H14, H15,
H16, H17,
A4, A6, A7,
A9, A10,
A11, A19,
A20, A21,
B3, B4, B6,
B7, B9, B10,
B11, B13,
B19, B20,
B21, C1,C2,
C3, C4,C5,
C6, C8,C9,
C11, C12,
C18, C20,
C21, D1,
D2, D3, D4,
D5,D6, D11,
D12,D14,
D20, E1,E2,
AA26, AE27
Y17 NA sys_xtalgnd 0 GND
U4 NA cap_vdd_bb_ 0 PWR
mpu_iva
V4 NA cap_vdd_sram 0 PWR
_mpu_iva
L21 NA cap_vdd_sram_core 0 PWR
(1) The usage of this GPIO is strongly restricted. For more information, see the GPIO chapter of the AM/DM37x Multimedia Device
Technical Reference Manual (literature number SPRUGN4).
(2) Pins labeled as "No connect" must be left unconnected. Any connections to these pins may result in unpredictable behavior.
(3) NA in this table stands for "Not Applicable".
(4) The drive strength is fixed regardless of the load. The driver is designed to drive 75-ohm for video applications.
(5) PU = [50 to 100 kΩ] per default or [10 to 50 kΩ] according to the selected mode.
For a full description of the pull-up drive strength programming, see the PRG_SDMMC_PUSTRENGTH configuration register bit field in
the System Control Module chapter of the AM/DM37x Multimedia Device Technical Reference Manual (literature number SPRUGN4).
PD: 30 to 150 kΩ.
(6) The pullup and pulldown can be either the standard LVCMOS 100-μA drive strength or the I2C pullup and pulldown described below:
Nominal resistance = 1.66 kΩin high-speed mode with a load range of 5 pF to 12 pF, 4.5 kΩin standard / fast mode with a load range
of 5 pF to 15 pF.
(7) The default buffer configuration is High-Speed I2C point-to-point mode using internal pullup. For a full description of the pull drive
strength programming, see prg_i2c1_pullupresx, prg_i2c1_lb1lb0, and prg_sr_pullupresx, prg_sr_lb bits of the CONTROL_PROG_IO1,
CONTROL_PROG_IO_WKUP1 control modules in the System Control Module / SCM Programming Model / Feature Settings section
and the System Control Module chapter of the AM/DM37x Multimedia Device Technical Reference Manual (literature number
SPRUGN4) to modify the IO settings if required by the targeted interface application.
(8) The default buffer configuration is standard LVCMOS mode (non-I2C). For a full description of the pull drive strength programming, see
PADCONFS bits of CONTROL_PADCONF_X control modules (standard LVCMOS mode), or prg_i2c2_pullupresx, prg_i2c2_lb1lb0, and
prg_i2c3_pullupresx, prg_i2c3_lb1lb0 bits of the CONTROL_PROG_IO2, CONTROL_PROG_IO3 control modules (I2C mode) in the
System Control Module chapter of the AM/DM37x Multimedia Device Technical Reference Manual (literature number SPRUGN4) to
modify the IO settings if required by the targeted interface application.
(9) These signals are feed-through balls. For more information, see Table 2-28.
(10) In buffer mode, the drive strength is fixed regardless of the load. The driver is designed to drive 75Ωfor video applications. In bypass
mode, the drive strength is 0.47 mA.
(11) Depending on the sys_clkreq direction the corresponding reset released state value can be:
Z if sys_clkreq is used as input
1 if sys_clkreq is used as output
For a full description of the sys_clkreq control, see Power, Reset, and Clock Management chapter of the AM/DM37x Multimedia Device
Technical Reference Manual (literature number SPRUGN4).
(12) The drive strength of these IOs is set according to the programmable load range: 2 pF to 4 pF per default or 4 pF to 12 pF. For a full
description of the drive strength programming, see the System Control Module chapter of the AM/DM37x Multimedia Device Technical
44 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Reference Manual (literature number SPRUGN4).
(13) In the safe_mode_out1, the buffer is configured to drive 1.
(14) Mux0 if sys_boot6 is pulled down (clock master).
(15) If MMC1 functional signals are enabled, vdds_mmc1 for MMC1 must be supplied by a dedicated power source.
If MMC1 functional signals are disabled, other multiplexed CMOS signals of the interface can be enabled. The interface can be supplied
by the same power source as vdds. The vdds power source supplies the vdds_mmc1 ball.
If neither MMC1 functional balls or CMOS signals are enabled, the interface balls are left unconnected with its associated power supply
(vdda/vssa) grounded.
For the corresponding setting of the PBIASLITEPWRDNZ0 bit, see the System Control Module / SCM Programming Model /
Extended-Drain I/Os and PBIAS Cells Programming Guide section of the AM/DM37x Multimedia Device Technical Reference Manual
(literature number SPRUGN4).
Table 2-2. Ball Characteristics (CBC Pkg.)(5)
BALL BALL TOP PIN NAME [2] MODE [3] TYPE [4] BALL BALL RESET RESET POWER [8] HYS [9] BUFFER PULLUP IO CELL
BOTTOM [1] RESET REL. STATE REL. MODE STRENGTH /DOWN [12]
[1] STATE [5] [6] [7] (mA) [10] TYPE [11]
AE16 NA cam_d0 0 I L L 7 vdda Yes NA PU/ PD LVCMOS
gpio_99 4 I
safe_mode 7 -
AE15 NA cam_d1 0 I L L 7 vdda Yes NA PU/ PD LVCMOS
gpio_100 4 I
safe_mode 7 -
AD17 NA gpio_112 4 I L L 7 vdda Yes NA PU/ PD LVCMOS
safe_mode 7 -
AE18 NA gpio_114 4 I L L 7 vdda Yes NA PU/ PD LVCMOS
safe_mode 7 -
AD16 NA gpio_113 4 I L L 7 vdda Yes NA PU/ PD LVCMOS
safe_mode 7 -
gpio_115 4 I
AE17 NA safe_mode 7 - L L 7 vdda Yes NA PU/ PD LVCMOS
NA G20 sdrc_a0 0 O 0 0 0 vdds NA 4 (1) PU/ PD LVCMOS
NA K20 sdrc_a1 0 O 0 0 0 vdds NA 4(1) PU/ PD LVCMOS
NA J20 sdrc_a2 0 O 0 0 0 vdds NA 4 (1) PU/ PD LVCMOS
NA J21 sdrc_a3 0 O 0 0 0 vdds NA 4 (1) PU/ PD LVCMOS
NA U21 sdrc_a4 0 O 0 0 0 vdds NA 4 (1) PU/ PD LVCMOS
NA R20 sdrc_a5 0 O 0 0 0 vdds NA 4 (1) PU/ PD LVCMOS
NA M21 sdrc_a6 0 O 0 0 0 vdds NA 4 (1) PU/ PD LVCMOS
NA M20 sdrc_a7 0 O 0 0 0 vdds NA 4 (1) PU/ PD LVCMOS
NA N20 sdrc_a8 0 O 0 0 0 vdds NA 4 (1) PU/ PD LVCMOS
NA K21 sdrc_a9 0 O 0 0 0 vdds NA 4 (1) PU/ PD LVCMOS
NA Y16 sdrc_a10 0 O 0 0 0 vdds NA 4 (1) PU/ PD LVCMOS
NA N21 sdrc_a11 0 O 0 0 0 vdds NA 4(1) PU/ PD LVCMOS
NA R21 sdrc_a12 0 O 0 0 0 vdds NA 4 (1) PU/ PD LVCMOS
NA AA15 sdrc_a13 0 O 0 0 0 vdds NA 4 (1) PU/ PD LVCMOS
NA Y12 sdrc_a14 0 O 0 0 0 vdds NA 4 (1) PU/ PD LVCMOS
NA AA18 sdrc_ba0 0 O 0 0 0 vdds NA 4 (1) PU/ PD LVCMOS
NA V20 sdrc_ba1 0 O 0 0 0 vdds NA 4(1) PU/ PD LVCMOS
NA Y15 sdrc_cke0 0 O H 1 7 vdds NA 4 (1) PU/ PD LVCMOS
safe_mode_out1(6) 7
NA Y13 sdrc_cke1 0 O H 1 7 vdds NA 4 (1) PU/ PD LVCMOS
safe_mode_out1(6) 7
NA A12 sdrc_clk 0 IO L 0 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA D1 sdrc_d0 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA G1 sdrc_d1 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA G2 sdrc_d2 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA E1 sdrc_d3 0 IO L Z 0 vdds Yes 4(1) PU/ PD LVCMOS
NA D2 sdrc_d4 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA E2 sdrc_d5 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA B3 sdrc_d6 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 45
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.)(5) (continued)
BALL BALL TOP PIN NAME [2] MODE [3] TYPE [4] BALL BALL RESET RESET POWER [8] HYS [9] BUFFER PULLUP IO CELL
BOTTOM [1] RESET REL. STATE REL. MODE STRENGTH /DOWN [12]
[1] STATE [5] [6] [7] (mA) [10] TYPE [11]
NA B4 sdrc_d7 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA A10 sdrc_d8 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA B11 sdrc_d9 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA A11 sdrc_d10 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA B12 sdrc_d11 0 IO L Z 0 vdds Yes 4(1) PU/ PD LVCMOS
NA A16 sdrc_d12 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA A17 sdrc_d13 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA B17 sdrc_d14 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA B18 sdrc_d15 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA B7 sdrc_d16 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA A5 sdrc_d17 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA B6 sdrc_d18 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA A6 sdrc_d19 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA A8 sdrc_d20 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA B9 sdrc_d21 0 IO L Z 0 vdds Yes 4(1) PU/ PD LVCMOS
NA A9 sdrc_d22 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA B10 sdrc_d23 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA C21 sdrc_d24 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA D20 sdrc_d25 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA B19 sdrc_d26 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA C20 sdrc_d27 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA D21 sdrc_d28 0 IO L Z 0 vdds Yes 4(1) PU/ PD LVCMOS
NA E20 sdrc_d29 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA E21 sdrc_d30 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA G21 sdrc_d31 0 IO L Z 0 vdds Yes 4(1) PU/ PD LVCMOS
NA H1 sdrc_dm0 0 O 0 0 0 vdds NA 4 (1) PU/ PD LVCMOS
NA A14 sdrc_dm1 0 O 0 0 0 vdds NA 4 (1) PU/ PD LVCMOS
NA A4 sdrc_dm2 0 O 0 0 0 vdds NA 4(1) PU/ PD LVCMOS
NA A18 sdrc_dm3 0 O 0 0 0 vdds NA 4 (1) PU/ PD LVCMOS
NA C2 sdrc_dqs0 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA B15 sdrc_dqs1 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA B8 sdrc_dqs2 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA A19 sdrc_dqs3 0 IO L Z 0 vdds Yes 4 (1) PU/ PD LVCMOS
NA U20 sdrc_ncas 0 O 1 1 0 vdds NA 4 (1) PU/ PD LVCMOS
NA B13 sdrc_nclk 0 O 1 1 0 vdds NA 4 (1) PU/ PD LVCMOS
NA T21 sdrc_ncs0 0 O 1 1 0 vdds NA 4 (1) PU/ PD LVCMOS
NA T20 sdrc_ncs1 0 O 1 1 0 vdds NA 4 (1) PU/ PD LVCMOS
NA V21 sdrc_nras 0 O 1 1 0 vdds NA 4 (1) PU/ PD LVCMOS
NA Y18 sdrc_nwe 0 O 1 1 0 vdds NA 4 (1) PU/ PD LVCMOS
AE21 NA dss_data0 0 IO L L 7 vdda Yes 8 PU/ PD LVCMOS
uart1_cts 2 I NA
gpio_70 4 IO 8
safe_mode 7 - 8
AE22 NA dss_data1 0 IO L L 7 vdda Yes 8 PU/ PD LVCMOS
uart1_rts 2 O 8
gpio_71 4 IO 8
safe_mode 7 - 8
AE23 NA dss_data2 0 IO L L 7 vdda Yes 8 PU/ PD LVCMOS
gpio_72 4 IO 8
safe_mode 7 - 8
AE24 NA dss_data3 0 IO L L 7 vdda Yes 8 PU/ PD LVCMOS
gpio_73 4 IO 8
safe_mode 7 - 8
AD23 NA dss_data4 0 IO L L 7 vdda Yes 8 PU/ PD LVCMOS
uart3_rx_irrx 2 I NA
46 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-2. Ball Characteristics (CBC Pkg.)(5) (continued)
BALL BALL TOP PIN NAME [2] MODE [3] TYPE [4] BALL BALL RESET RESET POWER [8] HYS [9] BUFFER PULLUP IO CELL
BOTTOM [1] RESET REL. STATE REL. MODE STRENGTH /DOWN [12]
[1] STATE [5] [6] [7] (mA) [10] TYPE [11]
gpio_74 4 IO 8
safe_mode 7 - 8
AD24 NA dss_data5 0 IO L L 7 vdda Yes 8 PU/ PD LVCMOS
uart3_tx_irtx 2 O 8
gpio_75 4 IO 8
safe_mode 7 - 8
AC26 NA dss_data10 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_80 4 IO
safe_mode 7 -
AD26 NA dss_data11 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_81 4 IO
safe_mode 7 -
AA25 NA dss_data12 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_82 4 IO
safe_mode 7 -
Y25 NA dss_data13 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_83 4 IO
safe_mode 7 -
AA26 NA dss_data14 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_84 4 IO
safe_mode 7 -
AB26 NA dss_data15 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_85 4 IO
safe_mode 7 -
F25 NA dss_data20 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS
mcspi3_somi 2 IO
dss_data2 3 IO
gpio_90 4 IO
safe_mode 7 -
AC25 NA dss_data22 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS
mcspi3_cs1 2 O
dss_data4 3 IO
gpio_92 4 IO
safe_mode 7 -
AB25 NA dss_data23 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS
dss_data5 3 IO
gpio_93 4 IO
safe_mode 7 -
G25 NA dss_pclk 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS
gpio_66 4 IO
hw_dbg12 5 O
safe_mode 7 -
J2 NA gpmc_a1 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_34 4 IO
safe_mode 7 -
H1 NA gpmc_a2 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_35 4 IO
safe_mode 7 -
H2 NA gpmc_a3 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_36 4 IO
safe_mode 7 -
G2 NA gpmc_a4 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_37 4 IO
safe_mode 7 -
F1 NA gpmc_a5 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 47
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.)(5) (continued)
BALL BALL TOP PIN NAME [2] MODE [3] TYPE [4] BALL BALL RESET RESET POWER [8] HYS [9] BUFFER PULLUP IO CELL
BOTTOM [1] RESET REL. STATE REL. MODE STRENGTH /DOWN [12]
[1] STATE [5] [6] [7] (mA) [10] TYPE [11]
gpio_38 4 IO
safe_mode 7 -
F2 NA gpmc_a6 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS
gpio_39 4 IO
safe_mode 7 -
E1 NA gpmc_a7 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS
gpio_40 4 IO
safe_mode 7 -
E2 NA gpmc_a8 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS
gpio_41 4 IO
safe_mode 7 -
D1 NA gpmc_a9 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS
sys_ndmareq2 1 I
gpio_42 4 IO
safe_mode 7 -
D2 NA gpmc_a10 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS
sys_ndmareq3 1 I
gpio_43 4 IO
safe_mode 7 -
N1 L1 gpmc_clk 0 O L 0 0 vdds Yes 8 PU/ PD LVCMOS
gpio_59 4 IO
safe_mode 7 -
AA2 U2 gpmc_d0 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS
AA1 U1 gpmc_d1 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS
AC2 V2 gpmc_d2 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS
AC1 V1 gpmc_d3 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS
AE5 AA3 gpmc_d4 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS
AD6 AA4 gpmc_d5 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS
AD5 Y3 gpmc_d6 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS
AC5 Y4 gpmc_d7 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS
V1 R1 gpmc_d8 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS
gpio_44 4 IO
safe_mode 7 -
Y1 T1 gpmc_d9 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS
gpio_45 4 IO
safe_mode 7 -
T1 N1 gpmc_d10 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS
gpio_46 4 IO
safe_mode 7 -
U2 P2 gpmc_d11 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS
gpio_47 4 IO
safe_mode 7 -
U1 P1 gpmc_d12 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS
gpio_48 4 IO
safe_mode 7 -
P1 M1 gpmc_d13 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS
gpio_49 4 IO
safe_mode 7 -
L2 J2 gpmc_d14 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS
gpio_50 4 IO
safe_mode 7 -
M2 K2 gpmc_d15 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS
gpio_51 4 IO
safe_mode 7 -
AD10 AA9 gpmc_nadv_ale 0 O 0 0 0 vdds NA 8 NA LVCMOS
48 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-2. Ball Characteristics (CBC Pkg.)(5) (continued)
BALL BALL TOP PIN NAME [2] MODE [3] TYPE [4] BALL BALL RESET RESET POWER [8] HYS [9] BUFFER PULLUP IO CELL
BOTTOM [1] RESET REL. STATE REL. MODE STRENGTH /DOWN [12]
[1] STATE [5] [6] [7] (mA) [10] TYPE [11]
K2 NA gpmc_nbe0_cle 0 O L 0 0 vdds Yes 8 PU/ PD LVCMOS
gpio_60 4 IO
safe_mode 7 -
J1 NA gpmc_nbe1 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_61 4 IO
safe_mode 7 -
AD8 AA8 gpmc_ncs0 0 O 1 1 0 vdds NA 8 NA LVCMOS
AD1 W1 gpmc_ncs1 0 O H 1 0 vdds Yes 8 PU/ PD LVCMOS
gpio_52 4 IO
safe_mode 7 -
A3 NA gpmc_ncs2 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS
gpio_53 4 IO
safe_mode 7 -
B6 NA gpmc_ncs3 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS
sys_ndmareq0 1 I
gpio_54 4 IO
safe_mode 7 -
B4 NA gpmc_ncs4 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS
sys_ndmareq1 1 I
mcbsp4_clkx 2 IO
gpt_9_pwm_evt 3 IO
gpio_55 4 IO
safe_mode 7 -
C4 NA gpmc_ncs5 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS
sys_ndmareq2 1 I
mcbsp4_dr 2 I
gpt_10_pwm_evt 3 IO
gpio_56 4 IO
safe_mode 7 -
B5 NA gpmc_ncs6 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS
sys_ndmareq3 1 I
mcbsp4_dx 2 IO
gpt_11_pwm_evt 3 IO
gpio_57 4 IO
safe_mode 7 -
C5 NA gpmc_ncs7 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS
gpmc_io_dir 1 O
mcbsp4_fsx 2 IO
gpt_8_pwm_evt 3 IO
gpio_58 4 IO
safe_mode 7 -
N2 L2 gpmc_noe 0 O 1 1 0 vdds NA 8 NA LVCMOS
M1 K1 gpmc_nwe 0 O 1 1 0 vdds NA 8 NA LVCMOS
AC6 Y5 gpmc_nwp 0 O L 0 0 vdds Yes 8 PU/ PD LVCMOS
gpio_62 4 IO
safe_mode 7 -
AC11 Y10 gpmc_wait0 0 I H H 0 vdds Yes NA PU/ PD LVCMOS
AC8 Y8 gpmc_wait1 0 I H H 7 vdds Yes 8 PU/ PD LVCMOS
gpio_63 4 IO
safe_mode 7 -
B3 NA gpmc_wait2 0 I H H 7 vdds Yes 8 PU/ PD LVCMOS
uart4_tx 2 O
gpio_64 4 IO
safe_mode 7 -
C6 NA gpmc_wait3 0 I H H 7 vdds Yes 8 PU/ PD LVCMOS
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 49
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.)(5) (continued)
BALL BALL TOP PIN NAME [2] MODE [3] TYPE [4] BALL BALL RESET RESET POWER [8] HYS [9] BUFFER PULLUP IO CELL
BOTTOM [1] RESET REL. STATE REL. MODE STRENGTH /DOWN [12]
[1] STATE [5] [6] [7] (mA) [10] TYPE [11]
sys_ndmareq1 1 I
uart4_rx 2 I
gpio_65 4 IO
safe_mode 7 -
W19 NA hsusb0_clk 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_120 4 IO
safe_mode 7 -
V20 NA hsusb0_data0 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart3_tx_irtx 2 O
gpio_125 4 IO
uart2_tx 5 O
safe_mode 7 -
Y20 NA hsusb0_data1 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart3_rx_irrx 2 I
gpio_130 4 IO
uart2_rx 5 I
safe_mode 7 -
V18 NA hsusb0_data2 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart3_rts_sd 2 O
gpio_131 4 IO
uart2_rts 5 O
safe_mode 7 -
W20 NA hsusb0_data3 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart3_cts_rctx 2 IO
gpio_169 4 IO
uart2_cts 5 I
safe_mode 7 -
W17 NA hsusb0_data4 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_188 4 IO
safe_mode 7 -
Y18 NA hsusb0_data5 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_189 4 IO
safe_mode 7 -
Y19 NA hsusb0_data6 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_190 4 IO
safe_mode 7 -
Y17 NA hsusb0_data7 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_191 4 IO
safe_mode 7 -
V19 NA hsusb0_dir 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_122 4 IO
safe_mode 7 -
W18 NA hsusb0_nxt 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_124 4 IO
safe_mode 7 -
U20 NA hsusb0_stp 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_121 4 IO
safe_mode 7 -
U15 NA jtag_ntrst 0 I L L 0 vdds Yes NA PU/ PD LVCMOS
W13 NA jtag_rtck 0 O L 0 0 vdds NA 4 PU/ PD LVCMOS
V14 NA jtag_tck 0 I L L 0 vdds Yes NA PU/ PD LVCMOS
U16 NA jtag_tdi 0 I H H 0 vdds Yes NA PU/ PD LVCMOS
Y13 NA jtag_tdo 0 O L Z 0 vdds NA 4 PU/ PD LVCMOS
V15 NA jtag_tms_tmsc 0 IO H H 0 vdds Yes 4 PU/ PD LVCMOS
50 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-2. Ball Characteristics (CBC Pkg.)(5) (continued)
BALL BALL TOP PIN NAME [2] MODE [3] TYPE [4] BALL BALL RESET RESET POWER [8] HYS [9] BUFFER PULLUP IO CELL
BOTTOM [1] RESET REL. STATE REL. MODE STRENGTH /DOWN [12]
[1] STATE [5] [6] [7] (mA) [10] TYPE [11]
N19 NA mmc1_clk 0 O L L 7 vdds_mmc1(Yes 1 PU/ PD(3) LVCMOS
13)
gpio_120(8) 4 IO
safe_mode 7 -
L18 NA mmc1_cmd 0 IO L L 7 vdds_mmc1(Yes 1 PU/ PD(3) LVCMOS
13)
gpio_121(8) 4 IO
safe_mode 7 -
M19 NA mmc1_dat0 0 IO L L 7 vdds_mmc1(Yes 1 PU/ PD(3) LVCMOS
13)
gpio_122(8) 4 IO
safe_mode 7 -
M18 NA mmc1_dat1 0 IO L L 7 vdds_mmc1(Yes 1 PU/ PD(3) LVCMOS
13)
gpio_123(8) 4 IO
safe_mode 7 -
K18 NA mmc1_dat2 0 IO L L 7 vdds_mmc1(Yes 1 PU/ PD(3) LVCMOS
13)
gpio_124(8) 4 IO
safe_mode 7 -
N20 NA mmc1_dat3 0 IO L L 7 vdds_mmc1(Yes 1 PU/ PD(3) LVCMOS
13)
gpio_125(8) 4 IO
safe_mode 7 -
M20 NA gpio_126(8) 4 IO L L 7 vdds_x Yes 1 PU/PD(3) LVCMOS
safe_mode 7 -
P17 NA gpio_127(8) 4 IO L L 7 vdds_x Yes 1 PU/PD(3) LVCMOS
safe_mode 7 -
P18 NA gpio_128 4 IO L L 7 vdds Yes 4 PU/PD LVCMOS
safe_mode 7 -
P19 NA gpio_129(8) 4 IO L L 7 vdds_x Yes 1 PU/PD (3) LVCMOS
safe_mode 7 -
J25 NA i2c1_scl 0 OD H H 0 vdds NA 3 PU/ PD(9) (10) Open Drain
J24 NA i2c1_sda 0 IOD H H 0 vdds Yes 3 PU/ PD(9) (10) LVCMOS
Open Drain
C2 NA i2c2_scl 0 OD H H 7 vdds Yes 3 PU/ PD(9)(11) LVCMOS
Open Drain
gpio_168 4 IO 4
safe_mode 7 - 4
C1 NA i2c2_sda 0 IOD H H 7 vdds Yes 3 PU/ PD(9)(11) LVCMOS
Open Drain
gpio_183 4 IO 4
safe_mode 7 - 4
AB4 NA i2c3_scl 0 OD H H 7 vdds Yes 3 PU/ PD(9)(11) LVCMOS
Open Drain
gpio_184 4 IO 4
safe_mode 7 - 4
AC4 NA i2c3_sda 0 IOD H H 7 vdds Yes 3 PU/ PD(9)(11) LVCMOS
Open Drain
gpio_185 4 IO 4
safe_mode 7 - 4
U19 NA mcbsp1_clkr 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mcspi4_clk 1 IO
gpio_156 4 IO
safe_mode 7 -
T17 NA mcbsp1_clkx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mcbsp3_clkx 2 IO
gpio_162 4 IO
safe_mode 7 -
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 51
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.)(5) (continued)
BALL BALL TOP PIN NAME [2] MODE [3] TYPE [4] BALL BALL RESET RESET POWER [8] HYS [9] BUFFER PULLUP IO CELL
BOTTOM [1] RESET REL. STATE REL. MODE STRENGTH /DOWN [12]
[1] STATE [5] [6] [7] (mA) [10] TYPE [11]
T20 NA mcbsp1_dr 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
mcspi4_somi 1 IO
mcbsp3_dr 2 I
gpio_159 4 IO
safe_mode 7 -
U17 NA mcbsp1_dx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mcspi4_simo 1 IO
mcbsp3_dx 2 IO
gpio_158 4 IO
safe_mode 7 -
V17 NA mcbsp1_fsr 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
cam_global_reset 2 IO
gpio_157 4 IO
safe_mode 7 -
P20 NA mcbsp1_fsx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mcspi4_cs0 1 IO
mcbsp3_fsx 2 IO
gpio_161 4 IO
safe_mode 7 -
R18 NA mcbsp2_clkx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_117 4 IO
safe_mode 7 -
T18 NA mcbsp2_dr 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_118 4 IO
safe_mode 7 -
R19 NA mcbsp2_dx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_119 4 IO
safe_mode 7 -
U18 NA mcbsp2_fsx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_116 4 IO
safe_mode 7 -
P9 NA mcspi1_clk 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_dat4 1 IO
gpio_171 4 IO
safe_mode 7 -
R7 NA mcspi1_cs0 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_dat7 1 IO
gpio_174 4 IO
safe_mode 7 -
R9 NA mcspi1_cs2 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
mmc3_clk 3 O
gpio_176 4 IO
safe_mode 7 -
P8 NA mcspi1_simo 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_dat5 1 IO
gpio_172 4 IO
safe_mode 7 -
P7 NA mcspi1_somi 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_dat6 1 IO
gpio_173 4 IO
safe_mode 7 -
W7 NA mcspi2_clk 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
hsusb2_data7 3 IO
gpio_178 4 IO
safe_mode 7 -
52 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-2. Ball Characteristics (CBC Pkg.)(5) (continued)
BALL BALL TOP PIN NAME [2] MODE [3] TYPE [4] BALL BALL RESET RESET POWER [8] HYS [9] BUFFER PULLUP IO CELL
BOTTOM [1] RESET REL. STATE REL. MODE STRENGTH /DOWN [12]
[1] STATE [5] [6] [7] (mA) [10] TYPE [11]
V8 NA mcspi2_cs0 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
gpt_11_pwm_evt 1 IO
hsusb2_data6 3 IO
gpio_181 4 IO
safe_mode 7 -
W8 NA mcspi2_simo 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpt_9_pwm_evt 1 IO
hsusb2_data4 3 IO
gpio_179 4 IO
safe_mode 7 -
U8 NA mcspi2_somi 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpt_10_pwm_evt 1 IO
hsusb2_data5 3 IO
gpio_180 4 IO
safe_mode 7 -
W10 NA mmc2_clk 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_clk 1 IO
gpio_130 4 IO
safe_mode 7 -
R10 NA mmc2_cmd 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_simo 1 IO
gpio_131 4 IO
safe_mode 7 -
T10 NA mmc2_dat0 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_somi 1 IO
gpio_132 4 IO
safe_mode 7 -
T9 NA mmc2_dat1 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_133 4 IO
safe_mode 7 -
U10 NA mmc2_dat2 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_cs1 1 O
gpio_134 4 IO
safe_mode 7 -
U9 NA mmc2_dat3 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_cs0 1 IO
gpio_135 4 IO
safe_mode 7 -
V10 NA mmc2_dat4 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_dir_dat0 1 O
mmc3_dat0 3 IO
gpio_136 4 IO
safe_mode 7 -
R2 NA uart1_rts 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_149 4 IO
safe_mode 7 -
H3 NA uart1_rx 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
mcbsp1_clkr 2 IO
mcspi4_clk 3 IO
gpio_151 4 IO
safe_mode 7 -
L4 NA uart1_tx 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_148 4 IO
safe_mode 7 -
Y24 NA uart2_cts 0 I H H 7 vdds Yes 4 PU/ PD LVCMOS
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 53
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.)(5) (continued)
BALL BALL TOP PIN NAME [2] MODE [3] TYPE [4] BALL BALL RESET RESET POWER [8] HYS [9] BUFFER PULLUP IO CELL
BOTTOM [1] RESET REL. STATE REL. MODE STRENGTH /DOWN [12]
[1] STATE [5] [6] [7] (mA) [10] TYPE [11]
mcbsp3_dx 1 IO
gpt_9_pwm_evt 2 IO
gpio_144 4 IO
safe_mode 7 -
AA24 NA uart2_rts 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
mcbsp3_dr 1 I
gpt_10_pwm_evt 2 IO
gpio_145 4 IO
safe_mode 7 -
AD21 NA uart2_rx 0 I H H 7 vdds Yes 4 PU/ PD LVCMOS
mcbsp3_fsx 1 IO
gpt_8_pwm_evt 2 IO
gpio_147 4 IO
safe_mode 7 -
AD22 NA uart2_tx 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
mcbsp3_clkx 1 IO
gpt_11_pwm_evt 2 IO
gpio_146 4 IO
safe_mode 7 -
F23 NA uart3_cts_rctx 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_163 4 IO
safe_mode 7 -
F24 NA uart3_rts_sd 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_164 4 IO
safe_mode 7 -
H24 NA uart3_rx_irrx 0 I H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_165 4 IO
safe_mode 7 -
G24 NA uart3_tx_irtx 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_166 4 IO
safe_mode 7 -
J23 NA hdq_sio 0 IOD H H 7 vdds Yes 4 PU/ PD LVCMOS
Open Drain
sys_altclk 1 I
i2c2_sccbe 2 OD
i2c3_sccbe 3 OD
gpio_170 4 IO
safe_mode 7 -
AD15 NA i2c4_scl 0 OD H H 0 vdds Yes 3 PU/ PD(9) (10) LVCMOS
Open Drain
sys_nvmode1 1 O 4
safe_mode 7 - 4
W16 NA i2c4_sda 0 IOD H H 0 vdds Yes 3 PU/ PD(9) (10) LVCMOS
Open Drain
sys_nvmode2 1 O 4
safe_mode 7 - 4
F3 NA sys_boot0 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS
dss_data18 3 IO
gpio_2 4 IO
safe_mode 7 -
D3 NA sys_boot1 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS
dss_data19 3 IO
gpio_3 4 IO
safe_mode 7 -
C3 NA sys_boot2 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS
gpio_4 4 IO
54 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-2. Ball Characteristics (CBC Pkg.)(5) (continued)
BALL BALL TOP PIN NAME [2] MODE [3] TYPE [4] BALL BALL RESET RESET POWER [8] HYS [9] BUFFER PULLUP IO CELL
BOTTOM [1] RESET REL. STATE REL. MODE STRENGTH /DOWN [12]
[1] STATE [5] [6] [7] (mA) [10] TYPE [11]
safe_mode 7 -
E3 NA sys_boot3 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS
dss_data20 3 O
gpio_5 4 IO
safe_mode 7 -
E4 NA sys_boot4 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS
mmc2_dir_dat2 1 O
dss_data21 3 O
gpio_6 4 IO
safe_mode 7 -
G3 NA sys_boot5 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS
mmc2_dir_dat3 1 O
dss_data22 3 O
gpio_7 4 IO
safe_mode 7 -
D4 NA sys_boot6 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS
dss_data23 3 O
gpio_8 4 IO
safe_mode 7 -
AE14 NA sys_clkout1 0 O L L 7(12) vdds Yes 4 PU/ PD LVCMOS
gpio_10 4 IO
safe_mode 7 -
W11 NA sys_clkout2 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_186 4 IO
safe_mode 7 -
W15 NA sys_clkreq 0 IO 0 see (7) 0 vdds Yes 4 PU/ PD LVCMOS
gpio_1 4 IO
safe_mode 7 -
V16 NA sys_nirq 0 I H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_0 4 IO
safe_mode 7 -
V13 NA sys_nrespwron 0 I Z Z 0 vdds Yes NA No LVCMOS
AD7 AA5 sys_nreswarm 0 IOD 0 H 0 vdds Yes 4 PU/ PD LVCMOS
gpio_30 4 IO Open Drain
safe_mode 7 -
V12 NA sys_off_mode 0 O 0 L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_9 4 IO
safe_mode 7 -
AF19 NA sys_xtalin 0 AI Z Z 0 vdds Yes NA NA LVCMOS
Analog
AF20 NA sys_xtalout 0 AO Z 0 0 vdds NA NA NA Analog
W26 NA cvideo1_out 0 AO 0 0 0 vdda_dac NA NA NA 10-bit DAC
V26 NA cvideo2_out 0 AO 0 0 0 vdda_dac NA NA NA 10-bit DAC
W25 NA cvideo1_vfb 0 AO 0 NA 0 vdda_dac NA NA NA 10-bit DAC
U24 NA cvideo2_vfb 0 AO 0 NA 0 vdda_dac NA NA NA 10-bit DAC
V23 NA cvideo1_rset 0 AIO Z NA 0 vdda_dac No NA NA 10-bit DAC
AE20 NA sys_32k 0 I Z Z 0 vdds Yes NA PU/ PD LVCMOS
A24 NA cam_d2 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_101 4 IO
hw_dbg4 5 O
safe_mode 7 -
B24 NA cam_d3 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_102 4 IO
hw_dbg5 5 O
safe_mode 7 -
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 55
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.)(5) (continued)
BALL BALL TOP PIN NAME [2] MODE [3] TYPE [4] BALL BALL RESET RESET POWER [8] HYS [9] BUFFER PULLUP IO CELL
BOTTOM [1] RESET REL. STATE REL. MODE STRENGTH /DOWN [12]
[1] STATE [5] [6] [7] (mA) [10] TYPE [11]
D24 NA cam_d4 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_103 4 IO
hw_dbg6 5 O
safe_mode 7 -
C24 NA cam_d5 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_104 4 IO
hw_dbg7 5 O
safe_mode 7 -
D25 NA cam_d10 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_109 4 IO
hw_dbg8 5 O
safe_mode 7 -
E26 NA cam_d11 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_110 4 IO
hw_dbg9 5 O
safe_mode 7 -
B23 NA cam_fld 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
cam_global_reset 2 IO
gpio_98 4 IO
hw_dbg3 5 O
safe_mode 7 -
C23 NA cam_hs 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_94 4 IO
hw_dbg0 5 O
safe_mode 7 -
C26 NA cam_pclk 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_97 4 IO
hw_dbg2 5 O
safe_mode 7 -
D26 NA cam_strobe 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_126 4 IO
hw_dbg11 5 O
safe_mode 7 -
C25 NA cam_xclka 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_96 4 IO
safe_mode 7 -
E25 NA cam_xclkb 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_111 4 IO
safe_mode 7 -
P25 NA cam_d6 0 I L L 7 vdds Yes NA PU/ PD SubLVDS
gpio_105 4 I
safe_mode 7 -
P26 NA cam_d7 0 I L L 7 vdds Yes NA PU/ PD SubLVDS
gpio_106 4 I
safe_mode 7 -
N25 NA cam_d8 0 I L L 7 vdds NA NA PU/ PD SubLVDS
gpio_107 4 I
safe_mode 7 -
N26 NA cam_d9 0 I L L 7 vdds NA NA PU/ PD SubLVDS
gpio_108 4 I
safe_mode 7 -
D23 NA cam_vs 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_95 4 IO
hw_dbg1 5 O
safe_mode 7 -
56 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-2. Ball Characteristics (CBC Pkg.)(5) (continued)
BALL BALL TOP PIN NAME [2] MODE [3] TYPE [4] BALL BALL RESET RESET POWER [8] HYS [9] BUFFER PULLUP IO CELL
BOTTOM [1] RESET REL. STATE REL. MODE STRENGTH /DOWN [12]
[1] STATE [5] [6] [7] (mA) [10] TYPE [11]
A23 NA cam_wen 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
cam_shutter 2 O
gpio_167 4 IO
hw_dbg10 5 O
safe_mode 7 -
F26 NA dss_acbias 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_69 4 IO
safe_mode 7 -
G26 NA dss_data6 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart1_tx 2 O
gpio_76 4 IO
hw_dbg14 5 O
safe_mode 7 -
H25 NA dss_data7 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart1_rx 2 I
gpio_77 4 IO
hw_dbg15 5 O
safe_mode 7 -
H26 NA dss_data8 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart3_rx_irrx 2 I
gpio_78 4 IO
hw_dbg16 5 O
safe_mode 7 -
J26 NA dss_data9 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart3_tx_irtx 2 O
gpio_79 4 IO
hw_dbg17 5 O
safe_mode 7 -
L25 NA dss_data16 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_86 4 IO
safe_mode 7 -
L26 NA dss_data17 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_87 4 IO
safe_mode 7 -
M24 NA dss_data18 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
mcspi3_clk 2 IO
dss_data0 3 IO
gpio_88 4 IO
safe_mode 7 -
M26 NA dss_data19 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
mcspi3_simo 2 IO
dss_data1 3 IO
gpio_89 4 IO
safe_mode 7 -
N24 NA dss_data21 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS
mcspi3_cs0 2 IO
dss_data3 3 IO
gpio_91 4 IO
safe_mode 7 -
K24 NA dss_hsync 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_67 4 IO
hw_dbg13 5 O
safe_mode 7 -
M25 NA dss_vsync 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_68 4 IO
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 57
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.)(5) (continued)
BALL BALL TOP PIN NAME [2] MODE [3] TYPE [4] BALL BALL RESET RESET POWER [8] HYS [9] BUFFER PULLUP IO CELL
BOTTOM [1] RESET REL. STATE REL. MODE STRENGTH /DOWN [12]
[1] STATE [5] [6] [7] (mA) [10] TYPE [11]
safe_mode 7 -
R8 NA mcspi1_cs1 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
mmc3_cmd 3 IO
gpio_175 4 IO
safe_mode 7 -
T8 NA mcspi1_cs3 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
hsusb2_data2 3 IO
gpio_177 4 IO
mm2_txdat 5 IO
safe_mode 7 -
V9 NA mcspi2_cs1 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpt_8_pwm_evt 1 IO
hsusb2_data3 3 IO
gpio_182 4 IO
mm2_txen_n 5 IO
safe_mode 7 -
T19 NA mcbsp_clks 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
cam_shutter 2 O
gpio_160 4 IO
uart1_cts 5 I
safe_mode 7 -
AB2 NA etk_clk 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mcbsp5_clkx 1 IO
mmc3_clk 2 O
hsusb1_stp 3 O
gpio_12 4 IO
mm1_rxdp 5 IO
hw_dbg0 7 O
AB3 NA etk_ctl 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mmc3_cmd 2 IO
hsusb1_clk 3 O
gpio_13 4 IO
hw_dbg1 7 O
AC3 NA etk_d0 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mcspi3_simo 1 IO
mmc3_dat4 2 IO
hsusb1_data0 3 IO
gpio_14 4 IO
mm1_rxrcv 5 IO
hw_dbg2 7 O
AD4 NA etk_d1 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mcspi3_somi 1 IO
hsusb1_data1 3 IO
gpio_15 4 IO
mm1_txse0 5 IO
hw_dbg3 7 O
AD3 NA etk_d2 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mcspi3_cs0 1 IO
hsusb1_data2 3 IO
gpio_16 4 IO
mm1_txdat 5 IO
hw_dbg4 7 O
AA3 NA etk_d3 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mcspi3_clk 1 IO
mmc3_dat3 2 IO
58 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-2. Ball Characteristics (CBC Pkg.)(5) (continued)
BALL BALL TOP PIN NAME [2] MODE [3] TYPE [4] BALL BALL RESET RESET POWER [8] HYS [9] BUFFER PULLUP IO CELL
BOTTOM [1] RESET REL. STATE REL. MODE STRENGTH /DOWN [12]
[1] STATE [5] [6] [7] (mA) [10] TYPE [11]
hsusb1_data7 3 IO
gpio_17 4 IO
hw_dbg5 7 O
Y3 NA etk_d4 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
mcbsp5_dr 1 I
mmc3_dat0 2 IO
hsusb1_data4 3 IO
gpio_18 4 IO
hw_dbg6 7 O
AB1 NA etk_d5 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
mcbsp5_fsx 1 IO
mmc3_dat1 2 IO
hsusb1_data5 3 IO
gpio_19 4 IO
hw_dbg7 7 O
AE3 NA etk_d6 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
mcbsp5_dx 1 O
mmc3_dat2 2 IO
hsusb1_data6 3 IO
gpio_20 4 IO
hw_dbg8 7 O
AD2 NA etk_d7 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
mcspi3_cs1 1 O
mmc3_dat7 2 IO
hsusb1_data3 3 IO
gpio_21 4 IO
mm1_txen_n 5 IO
hw_dbg9 7 O
AA4 NA etk_d8 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
mmc3_dat6 2 IO
hsusb1_dir 3 I
gpio_22 4 IO
hw_dbg10 7 O
V2 NA etk_d9 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
mmc3_dat5 2 IO
hsusb1_nxt 3 I
gpio_23 4 IO
mm1_rxdm 5 IO
hw_dbg11 7 O
AE4 NA etk_d10 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
uart1_rx 2 I
hsusb2_clk 3 O
gpio_24 4 IO
hw_dbg12 7 O
AF6 NA etk_d11 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
hsusb2_stp 3 O
gpio_25 4 IO
mm2_rxdp 5 IO
hw_dbg13 7 O
AE6 NA etk_d12 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
hsusb2_dir 3 I
gpio_26 4 IO
hw_dbg14 7 O
AF7 NA etk_d13 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
hsusb2_nxt 3 I
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 59
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.)(5) (continued)
BALL BALL TOP PIN NAME [2] MODE [3] TYPE [4] BALL BALL RESET RESET POWER [8] HYS [9] BUFFER PULLUP IO CELL
BOTTOM [1] RESET REL. STATE REL. MODE STRENGTH /DOWN [12]
[1] STATE [5] [6] [7] (mA) [10] TYPE [11]
gpio_27 4 IO
mm2_rxdm 5 IO
hw_dbg15 7 O
AF9 NA etk_d14 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
hsusb2_data0 3 IO
gpio_28 4 IO
mm2_rxrcv 5 IO
hw_dbg16 7 O
AE9 NA etk_d15 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
hsusb2_data1 3 IO
gpio_29 4 IO
mm2_txse0 5 IO
hw_dbg17 7 O
Y15 NA jtag_emu0 0 IO H H 0 vdds Yes 4 PU/ PD LVCMOS
gpio_11 4 IO
safe_mode 7 -
Y14 NA jtag_emu1 0 IO H H 0 vdds Yes 4 PU/ PD LVCMOS
gpio_31 4 IO
safe_mode 7 -
U3 NA mcbsp3_clkx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart2_tx 1 O
gpio_142 4 IO
safe_mode 7 -
N3 NA mcbsp3_dr 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
uart2_rts 1 O
gpio_141 4 IO
safe_mode 7 -
P3 NA mcbsp3_dx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart2_cts 1 I
gpio_140 4 IO
safe_mode 7 -
W3 NA mcbsp3_fsx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart2_rx 1 I
gpio_143 4 IO
safe_mode 7 -
V3 NA mcbsp4_clkx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_152 4 IO
mm3_txse0 6 IO
safe_mode 7 -
U4 NA mcbsp4_dr 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_153 4 IO
mm3_rxrcv 6 IO
safe_mode 7 -
R3 NA mcbsp4_dx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_154 4 IO
mm3_txdat 6 IO
safe_mode 7 -
T3 NA mcbsp4_fsx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_155 4 IO
mm3_txen_n 6 IO
safe_mode 7 -
M3 NA mmc2_dat5 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_dir_dat1 1 O
cam_global_reset 2 IO
mmc3_dat1 3 IO
60 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-2. Ball Characteristics (CBC Pkg.)(5) (continued)
BALL BALL TOP PIN NAME [2] MODE [3] TYPE [4] BALL BALL RESET RESET POWER [8] HYS [9] BUFFER PULLUP IO CELL
BOTTOM [1] RESET REL. STATE REL. MODE STRENGTH /DOWN [12]
[1] STATE [5] [6] [7] (mA) [10] TYPE [11]
gpio_137 4 IO
mm3_rxdp 6 IO
safe_mode 7 -
L3 NA mmc2_dat6 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_dir_cmd 1 O
cam_shutter 2 O
mmc3_dat2 3 IO
gpio_138 4 IO
safe_mode 7 -
K3 NA mmc2_dat7 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_clkin 1 I
mmc3_dat3 3 IO
gpio_139 4 IO
mm3_rxdm 6 IO
safe_mode 7 -
W2 NA uart1_cts 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_150 4 IO
safe_mode 7 -
AC16 NA vss 0 GND
AD18 NA vdds 0 PWR
L19 NA vss 0 GND
AC19 NA vss 0 GND
AD19 NA vdds 0 PWR
L20 NA vdds 0 PWR
P23 NA vdds_x 0 PWR
AE19 NA cap_vddu_array 0 PWR
AC21, D15, NA vdd_core 0 PWR - - - - - - - -
G11, G18,
H20, M7,
M17, R20,
T7, Y8, Y12
D13, G9, NA vdd_mpu_iva 0 PWR - - - - - - - -
G12, H7,
K11, L9, M9,
M10, N7,
N8, P10,
U7, U11,
U13, V7,
V11, W9,
Y9, Y11
A18, AC7, A3, A15, B5, vdds 0 PWR - - - - - - - -
AC15, F2, F21,
AC18, L20, W21
AC24,
AD20,
AE10, C11,
D9, E24,
G4, J15,
J18, L7,
L24, M4, T4,
T24, W24,
Y4, AB24
U12 NA vdds_sram 0 PWR - - - - - - - -
K13 NA vdda_dplls_dll 0 PWR - - - - - - - -
U14 NA vdda_dpll_per 0 PWR - - - - - - - -
W14 NA vdda_wkup_bg_bb 0 PWR - - - - - - - -
N23 NA vdds_mmc1 0 PWR - - - - - - - -
V25 NA vdda_dac 0 PWR - - - - - - - -
V24 NA vssa_dac 0 GND - - - - - - - -
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 61
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.)(5) (continued)
BALL BALL TOP PIN NAME [2] MODE [3] TYPE [4] BALL BALL RESET RESET POWER [8] HYS [9] BUFFER PULLUP IO CELL
BOTTOM [1] RESET REL. STATE REL. MODE STRENGTH /DOWN [12]
[1] STATE [5] [6] [7] (mA) [10] TYPE [11]
A6, A8, A13, A7, A13, vss 0 GND - - - - - - - -
AB5, AB22, B14, C1, F1,
AC10, F20, H2,
AD14, H20, L21,
AD25, AE7, M2, P20,
B2, B25, R2, W20 Y6,
C12, D7, Y11, AA7,
D10, D12, AA16
D14, D18,
D20, E22,
G1, G8,
G10, G20,
G23, H4,
K1, K15,
K25, L10,
L17, L23,
N4, N10,
N17, R1,
R4, R17,
T23, U25,
W1, W4,
W23, Y7,
Y10, Y16,
Y26
K14 NA cap_vddu_wkup_log 0 PWR - - - - - - - -
ic
A1, L1, T2, A1, J1, N2, Feed-Through - - - - - - - - - -
Y2, AE2, T2, W2, Y2, Pins(4)
AF4, AF5, AA6, Y7,
AF8, AF10, Y9, AA10,
AF12, AF13, AA11,
AF14, AF15, AA12,
AF17, AF16, AA13, Y14,
A20, AF21, AA14, B16,
AF18, AF24, Y17, AA17,
AF22, A25, Y19, AA19,
AE25, AF25, A20, Y20,
A26, B26, AA20, A21,
K26, U26, B21, H21,
AE26, AF26 P21, Y21,
AA21
62 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-2. Ball Characteristics (CBC Pkg.)(5) (continued)
BALL BALL TOP PIN NAME [2] MODE [3] TYPE [4] BALL BALL RESET RESET POWER [8] HYS [9] BUFFER PULLUP IO CELL
BOTTOM [1] RESET REL. STATE REL. MODE STRENGTH /DOWN [12]
[1] STATE [5] [6] [7] (mA) [10] TYPE [11]
A2, AF1, A2, AA1, No Connect(2) - - - - - - - - - -
B1,D5, K23, AA2,B1, B2,
A5, A7, A9, B20, Y1
A10, A11,
A12, A14,
A15, A16,
A17, A19,
A21, A22,
AA23,
AB23, AC9,
AC12,
AC13,
AC14,
AC17,
AC20,
AC22,
AC23, AD9,
AD11,
AD12,
AD13, AE1,
AE8, AE11,
AE12,
AE13, AF2,
AF3, AF11,
B7, B8, B9,
B10, B11,
B12, B13,
B14, B15,
B16, B17,
B18, B19,
B20, B21,
B22, C7,
C8, C9,
C10, C13,
C14, C15,
C16, C17
C18, C19,
C20, C21,
C22, D8,
D11, D16,
D17, D19,
D21, D22,
E23, F4, G7,
G13, G14,
G15, G16,
G17, G19,
H8, H9,
H10, H11,
H12, H13,
H14, H15,
H16, H17,
H18, H19,
H23, J3, J4,
J7, J8, J9,
J10, J11,
J12, J13,
J14, J16,
J17, J19,
J20, K4, K7,
K8, K9, K10,
K12, K16,
K17, K19,
L8, M8,
M23, N18,
P2, P4, P24,
R23, R24,
R25, R26,
T25, T26,
U23, V4,
W12, Y23
AF23 NA sys_xtalgnd 0 GND
A4 NA gpmc_a11 0 O L L 7 vdds Yes 8 PU/PD LVCMOS
safe_mode 7
D6 NA cap_vdd_bb_mpu_i 0 PWR
va
N9 NA cap_vdd_sram_mpu 0 PWR
_iva
K20 NA cap_vdd_sram_core 0 PWR
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 63
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
(1) The drive strength of these IOs is set according to the programmable load range: 2 pF to 4 pF per default or 4 pF to 12 pF. For a full
description of the drive strength programming, see the System Control Module chapter of the AM/DM37x Multimedia Device Technical
Reference Manual (literature number SPRUGN4).
(2) Pins labeled as "No connect" must be left unconnected. Any connections to these pins may result in unpredictable behavior.
(3) PU = [50 to 100 kΩ] per default or [10 to 50 kΩ] according to the selected mode.
For a full description of the pull-up drive strength programming, see the PRG_SDMMC_PUSTRENGTH configuration register bit field in
the System Control Module chapter of the AM/DM37x Multimedia Device Technical Reference Manual (literature number SPRUGN4).
PD: 30 to 150 kΩ.
(4) These signals are feed-through balls. For more information, see Table 2-27.
(5) NA in this table stands for "Not Applicable".
(6) In the safe_mode_out1, the buffer is configured to drive 1.
(7) Depending on the sys_clkreq direction the corresponding reset released state value can be:
Z if sys_clkreq is used as input
1 if sys_clkreq is used as output
For a full description of the sys_clkreq control, see Power, Reset, and Clock Management chapter of the AM/DM37x Multimedia Device
Technical Reference Manual (literature number SPRUGN4).
(8) The usage of this GPIO is strongly restricted. For more information, see the General-Purpose Interface chapter of the AM/DM37x
Multimedia Device Technical Reference Manual (literature number SPRUGN4).
(9) The pullup and pulldown can be either the standard LVCMOS 100-μA drive strength or the I2C pullup and pulldown described as
follows: Nominal resistance = 1.66 kΩin high-speed mode with a load range of 5 pF to 12 pF, 4.5 kΩin standard / fast mode with a load
range of 5 pF to 15 pF.
(10) The default buffer configuration is High-Speed I2C point-to-point mode using internal pullup. For a full description of the pull drive
strength programming, see prg_i2c1_pullupresx, prg_i2c1_lb1lb0, and prg_sr_pullupresx, prg_sr_lb bits of the CONTROL_PROG_IO1,
CONTROL_PROG_IO_WKUP1 control modules in the System Control Module chapter of the AM/DM37x Multimedia Device Technical
Reference Manual (literature number SPRUGN4) to modify the IO settings if required by the targeted interface application.
(11) The default buffer configuration is standard LVCMOS mode (non-I2C). For a full description of the pull drive strength programming, see
PADCONFS bits of CONTROL_PADCONF_X control modules (standard LVCMOS mode), or prg_i2c2_pullupresx, prg_i2c2_lb1lb0, and
prg_i2c3_pullupresx, prg_i2c3_lb1lb0 bits of the CONTROL_PROG_IO2, CONTROL_PROG_IO3 control modules (I2C mode) in the
System Control Module chapter of the AM/DM37x Multimedia Device Technical Reference Manual (literature number SPRUGN4) to
modify the IO settings if required by the targeted interface application.
(12) Mux0 if sys_boot6 is pulled down (clock master).
(13) If MMC1 functional signals are enabled, vdds_mmc1 for MMC1 must be supplied by a dedicated power source.
If MMC1 functional signals are disabled, other multiplexed CMOS signals of the interface can be enabled. The interface can be supplied
by the same power source as vdds. The vdds power source supplies the vdds_mmc1 ball.
If neither MMC1 functional balls or CMOS signals are enabled, the interface balls are left unconnected with its associated power supply
(vdda/vssa) grounded.
For the corresponding setting of the PBIASLITEPWRDNZ0 bit, see the System Control Module / SCM Programming Model /
Extended-Drain I/Os and PBIAS Cells Programming Guide section of the AM/DM37x Multimedia Device Technical Reference Manual
(literature number SPRUGN4).
Table 2-3. Ball Characteristics (CUS Pkg.)(1)
BALL PIN NAME [2] MODE [3] TYPE [4] BALL RESET BALL RESET RESET REL. POWER [8] HYS [9] BUFFER PULLUP IO CELL [12]
NUMBER [1] STATE [5] REL. STATE MODE [7] STRENGTH /DOWN
[6] (mA) [10] TYPE [11]
D7 sdrc_d0 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
C5 sdrc_d1 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
C6 sdrc_d2 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
B5 sdrc_d3 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
D9 sdrc_d4 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
D10 sdrc_d5 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
C7 sdrc_d6 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
B7 sdrc_d7 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
B11 sdrc_d8 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
C12 sdrc_d9 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
B12 sdrc_d10 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
D13 sdrc_d11 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
C13 sdrc_d12 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
B14 sdrc_d13 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
A14 sdrc_d14 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
B15 sdrc_d15 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
C9 sdrc_d16 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
64 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-3. Ball Characteristics (CUS Pkg.)(1) (continued)
BALL PIN NAME [2] MODE [3] TYPE [4] BALL RESET BALL RESET RESET REL. POWER [8] HYS [9] BUFFER PULLUP IO CELL [12]
NUMBER [1] STATE [5] REL. STATE MODE [7] STRENGTH /DOWN
[6] (mA) [10] TYPE [11]
E12 sdrc_d17 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
B8 sdrc_d18 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
B9 sdrc_d19 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
C10 sdrc_d20 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
B10 sdrc_d21 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
D12 sdrc_d22 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
E13 sdrc_d23 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
E15 sdrc_d24 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
D15 sdrc_d25 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
C15 sdrc_d26 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
B16 sdrc_d27 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
C16 sdrc_d28 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
D16 sdrc_d29 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
B17 sdrc_d30 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
B18 sdrc_d31 0 IO L Z 0 vdds_mem Yes 4 (8) PU/ PD LVCMOS
C18 sdrc_ba0 0 O 0 0 0 vdds_mem NA 4(8) PU/ PD LVCMOS
D18 sdrc_ba1 0 O 0 0 0 vdds_mem NA 4(8) PU/ PD LVCMOS
A4 sdrc_a0 0 O 0 0 0 vdds_mem NA 4(8) PU/ PD LVCMOS
B4 sdrc_a1 0 O 0 0 0 vdds_mem NA 4 (8) PU/ PD LVCMOS
D6 sdrc_a2 0 O 0 0 0 vdds_mem NA 4(8) PU/ PD LVCMOS
B3 sdrc_a3 0 O 0 0 0 vdds_mem NA 4(8) PU/ PD LVCMOS
B2 sdrc_a4 0 O 0 0 0 vdds_mem NA 4(8) PU/ PD LVCMOS
C3 sdrc_a5 0 O 0 0 0 vdds_mem NA 4(8) PU/ PD LVCMOS
E3 sdrc_a6 0 O 0 0 0 vdds_mem NA 4 (8) PU/ PD LVCMOS
F6 sdrc_a7 0 O 0 0 0 vdds_mem NA 4(8) PU/ PD LVCMOS
E10 sdrc_a8 0 O 0 0 0 vdds_mem NA 4(8) PU/ PD LVCMOS
E9 sdrc_a9 0 O 0 0 0 vdds_mem NA 4(8) PU/ PD LVCMOS
E7 sdrc_a10 0 O 0 0 0 vdds_mem NA 4(8) PU/ PD LVCMOS
G6 sdrc_a11 0 O 0 0 0 vdds_mem NA 4(8) PU/ PD LVCMOS
G7 sdrc_a12 0 O 0 0 0 vdds_mem NA 4(8) PU/ PD LVCMOS
F7 sdrc_a13 0 O 0 0 0 vdds_mem NA 4(8) PU/ PD LVCMOS
F9 sdrc_a14 0 O 0 0 0 vdds_mem NA 4(8) PU/ PD LVCMOS
A19 sdrc_ncs0 0 O 1 1 0 vdds_mem NA 4(8) PU/ PD LVCMOS
B19 sdrc_ncs1 0 O 1 1 0 vdds_mem NA 4(8) PU/ PD LVCMOS
A10 sdrc_clk 0 IO L 0 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
A11 sdrc_nclk 0 O 1 1 0 vdds_mem NA 4(8) PU/ PD LVCMOS
B20 sdrc_cke0 0 O H 1 7 vdds_mem NA 4(8) PU/ PD LVCMOS
safe_mode_out1(9) 7
C20 sdrc_cke1 0 O H 1 7 vdds_mem NA 4(8) PU/ PD LVCMOS
safe_mode_out1(9) 7
D19 sdrc_nras 0 O 1 1 0 vdds_mem NA 4(8) PU/ PD LVCMOS
C19 sdrc_ncas 0 O 1 1 0 vdds_mem NA 4(8) PU/ PD LVCMOS
A20 sdrc_nwe 0 O 1 1 0 vdds_mem NA 4 (8) PU/ PD LVCMOS
B6 sdrc_dm0 0 O 0 0 0 vdds_mem NA 4(8) PU/ PD LVCMOS
B13 sdrc_dm1 0 O 0 0 0 vdds_mem NA 4(8) PU/ PD LVCMOS
A7 sdrc_dm2 0 O 0 0 0 vdds_mem NA 4(8) PU/ PD LVCMOS
A16 sdrc_dm3 0 O 0 0 0 vdds_mem NA 4(8) PU/ PD LVCMOS
A5 sdrc_dqs0 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
A13 sdrc_dqs1 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
A8 sdrc_dqs2 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
A17 sdrc_dqs3 0 IO L Z 0 vdds_mem Yes 4(8) PU/ PD LVCMOS
K4 gpmc_a1 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_34 4 IO
safe_mode 7
K3 gpmc_a2 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 65
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.)(1) (continued)
BALL PIN NAME [2] MODE [3] TYPE [4] BALL RESET BALL RESET RESET REL. POWER [8] HYS [9] BUFFER PULLUP IO CELL [12]
NUMBER [1] STATE [5] REL. STATE MODE [7] STRENGTH /DOWN
[6] (mA) [10] TYPE [11]
gpio_35 4 IO
safe_mode 7
K2 gpmc_a3 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_36 4 IO
safe_mode 7
J4 gpmc_a4 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_37 4 IO
safe_mode 7
J3 gpmc_a5 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_38 4 IO
safe_mode 7
J2 gpmc_a6 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_39 4 IO
safe_mode 7
J1 gpmc_a7 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_40 4 IO
safe_mode 7
H1 gpmc_a8 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_41 4 IO
safe_mode 7
H2 gpmc_a9 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS
sys_ndmareq2 1 I
gpio_42 4 IO
safe_mode 7
G2 gpmc_a10 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS
sys_ndmareq3 1 I
gpio_43 4 IO
safe_mode 7
L2 gpmc_d0 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
M1 gpmc_d1 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
M2 gpmc_d2 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
N2 gpmc_d3 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
M3 gpmc_d4 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
P1 gpmc_d5 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
P2 gpmc_d6 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
R1 gpmc_d7 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
R2 gpmc_d8 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_44 4 IO
safe_mode 7
T2 gpmc_d9 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_45 4 IO
safe_mode 7
U1 gpmc_d10 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_46 4 IO
safe_mode 7
R3 gpmc_d11 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_47 4 IO
safe_mode 7
T3 gpmc_d12 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_48 4 IO
safe_mode 7
U2 gpmc_d13 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_49 4 IO
safe_mode 7
V1 gpmc_d14 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
66 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-3. Ball Characteristics (CUS Pkg.)(1) (continued)
BALL PIN NAME [2] MODE [3] TYPE [4] BALL RESET BALL RESET RESET REL. POWER [8] HYS [9] BUFFER PULLUP IO CELL [12]
NUMBER [1] STATE [5] REL. STATE MODE [7] STRENGTH /DOWN
[6] (mA) [10] TYPE [11]
gpio_50 4 IO
safe_mode 7
V2 gpmc_d15 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_51 4 IO
safe_mode 7
E2 gpmc_ncs0 0 O 1 1 0 vdds_mem NA 8 NA LVCMOS
D2 gpmc_ncs3 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS
sys_ndmareq0 1 I
gpio_54 4 IO
safe_mode 7
F4 gpmc_ncs4 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS
sys_ndmareq1 1 I
mcbsp4_ clkx 2 IO
gpt_9_pwm_evt 3 IO
gpio_55 4 IO
safe_mode 7
G5 gpmc_ncs5 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS
sys_ndmareq2 1 I
mcbsp4_dr 2 I
gpt_10_pwm_evt 3 IO
gpio_56 4 IO
safe_mode 7
F3 gpmc_ncs6 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS
sys_ndmareq3 1 I
mcbsp4_dx 2 IO
gpt_11_pwm_evt 3 IO
gpio_57 4 IO
safe_mode 7
G4 gpmc_ncs7 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS
gpmc_io_dir 1 O
mcbsp4_fsx 2 IO
gpt_8_pwm_evt 3 IO
gpio_58 4 IO
safe_mode 7
W2 gpmc_clk 0 O L 0 0 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_59 4 IO
safe_mode 7
F1 gpmc_nadv_ale 0 O 0 0 0 vdds_mem NA 8 PU/ PD LVCMOS
F2 gpmc_noe 0 O 1 1 0 vdds_mem NA 8 PU/ PD LVCMOS
G3 gpmc_nwe 0 O 1 1 0 vdds_mem NA 8 PU/ PD LVCMOS
K5 gpmc_nbe0_cle 0 O L 0 0 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_60 4 IO
safe_mode 7
L1 gpmc_nbe1 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_61 4 IO
safe_mode 7
E1 gpmc_nwp 0 O L 0 0 vdds_mem Yes 8 PU/ PD LVCMOS
gpio_62 4 IO
safe_mode 7
C1 gpmc_wait0 0 I H H 0 vdds_mem Yes NA PU/ PD LVCMOS
C2 gpmc_wait3 0 I H H 7 vdds_mem Yes 8 PU/ PD LVCMOS
sys_ndmareq1 1 I
uart4_rx 2 I
gpio_65 4 IO
safe_mode 7
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 67
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.)(1) (continued)
BALL PIN NAME [2] MODE [3] TYPE [4] BALL RESET BALL RESET RESET REL. POWER [8] HYS [9] BUFFER PULLUP IO CELL [12]
NUMBER [1] STATE [5] REL. STATE MODE [7] STRENGTH /DOWN
[6] (mA) [10] TYPE [11]
G22 dss_pclk 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS
gpio_66 4 IO
hw_dbg12 5 O
safe_mode 7
E22 dss_hsync 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS
gpio_67 4 IO
hw_dbg13 5 O
safe_mode 7
F22 dss_vsync 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS
gpio_68 4 IO
safe_mode 7
J21 dss_acbias 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_69 4 IO
safe_mode 7
AC19 dss_data0 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart1_cts 2 I NA
gpio_70 4 IO 8
safe_mode 7 8
AB19 dss_data1 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart1_rts 2 O 8
gpio_71 4 IO 8
safe_mode 7 8
AD20 dss_data2 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_72 4 IO 8
safe_mode 7 8
AC20 dss_data3 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_73 4 IO 8
safe_mode 7 8
AD21 dss_data4 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart3_rx_ irrx 2 I NA
gpio_74 4 IO 8
safe_mode 7 8
AC21 dss_data5 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart3_tx_ irtx 2 O 8
gpio_75 4 IO 8
safe_mode 7 8
D24 dss_data6 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart1_tx 2 O
gpio_76 4 IO
hw_dbg14 5 O
safe_mode 7
E23 dss_data7 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart1_rx 2 I
gpio_77 4 IO
hw_dbg15 5 O
safe_mode 7
E24 dss_data8 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart3_rx_irrx 2 I
gpio_78 4 IO
hw_dbg16 5 O
safe_mode 7
F23 dss_data9 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
uart3_tx_irtx 2 O
gpio_79 4 IO
hw_dbg17 5 O
68 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-3. Ball Characteristics (CUS Pkg.)(1) (continued)
BALL PIN NAME [2] MODE [3] TYPE [4] BALL RESET BALL RESET RESET REL. POWER [8] HYS [9] BUFFER PULLUP IO CELL [12]
NUMBER [1] STATE [5] REL. STATE MODE [7] STRENGTH /DOWN
[6] (mA) [10] TYPE [11]
safe_mode 7
AC22 dss_data10 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_80 4 IO
safe_mode 7
AC23 dss_data11 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_81 4 IO
safe_mode 7
AB22 dss_data12 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_82 4 IO
safe_mode 7
Y22 dss_data13 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_83 4 IO
safe_mode 7
W22 dss_data14 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_84 4 IO
safe_mode 7
V22 dss_data15 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_85 4 IO
safe_mode 7
J22 dss_data16 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_86 4 IO
safe_mode 7
G23 dss_data17 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_87 4 IO
safe_mode 7
G24 dss_data18 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
mcspi3_clk 2 IO
dss_data0 3 IO
gpio_88 4 IO
safe_mode 7
H23 dss_data19 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS
mcspi3_simo 2 IO
dss_data1 3 IO
gpio_89 4 IO
safe_mode 7
D23 dss_data20 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS
mcspi3_somi 2 IO
dss_data2 3 IO
gpio_90 4 IO
safe_mode 7
K22 dss_data21 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS
mcspi3_cs0 2 IO
dss_data3 3 IO
gpio_91 4 IO
safe_mode 7
V21 dss_data22 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS
mcspi3_cs1 2 O
dss_data4 3 IO
gpio_92 4 IO
safe_mode 7
W21 dss_data23 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS
dss_data5 3 IO
gpio_93 4 IO
safe_mode 7
AA23 cvideo2_out 0 AO 0 0 0 vdda_dac NA NA(6) NA 10-bit DAC
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 69
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.)(1) (continued)
BALL PIN NAME [2] MODE [3] TYPE [4] BALL RESET BALL RESET RESET REL. POWER [8] HYS [9] BUFFER PULLUP IO CELL [12]
NUMBER [1] STATE [5] REL. STATE MODE [7] STRENGTH /DOWN
[6] (mA) [10] TYPE [11]
AB24 cvideo1_out 0 AO 0 0 0 vdda_dac NA NA(6) NA 10-bit DAC
AB23 cvideo1_vfb 0 AO 0 NA 0 vdda_dac NA NA(7) NA 10-bit DAC
Y23 cvideo2_vfb 0 AO 0 NA 0 vdda_dac NA NA(7) NA 10-bit DAC
Y24 cvideo1_rset 0 AIO 0 NA 0 vdda_dac No NA NA 10-bit DAC
A22 cam_hs 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_94 4 IO
hw_dbg0 5 O
safe_mode 7
E18 cam_vs 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_95 4 IO
hw_dbg1 5 O
safe_mode 7
B22 cam_ xclka 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_96 4 IO
safe_mode 7
J19 cam_pclk 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_97 4 IO
hw_dbg2 5 O
safe_mode 7
H24 cam_fld 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
cam_global_reset 2 IO
hw_dbg3 5 O
gpio_98 4 IO
safe_mode 7
AB18 cam_d0 0 I L L 7 vdds Yes NA PU/ PD LVCMOS
gpio_99 4 I
safe_mode 7
AC18 cam_d1 0 I L L 7 vdds Yes NA PU/ PD LVCMOS
gpio_100 4 I
safe_mode 7
G19 cam_d2 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_101 4 IO
hw_dbg4 5 O
safe_mode 7
F19 cam_d3 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_102 4 IO
hw_dbg5 5 O
safe_mode 7
G20 cam_d4 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_103 4 IO
hw_dbg6 5 O
safe_mode 7
B21 cam_d5 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_104 4 IO
hw_dbg7 5 O
safe_mode 7
L24 cam_d6 0 I L L 7 vdds Yes NA PU/ PD LVCMOS
gpio_105 4 I
safe_mode 7
K24 cam_d7 0 I L L 7 vdds Yes NA PU/ PD LVCMOS
gpio_106 4 I
safe_mode 7
J23 cam_d8 0 I L L 7 vdds Yes NA PU/ PD LVCMOS
gpio_107 4 I
safe_mode 7
70 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-3. Ball Characteristics (CUS Pkg.)(1) (continued)
BALL PIN NAME [2] MODE [3] TYPE [4] BALL RESET BALL RESET RESET REL. POWER [8] HYS [9] BUFFER PULLUP IO CELL [12]
NUMBER [1] STATE [5] REL. STATE MODE [7] STRENGTH /DOWN
[6] (mA) [10] TYPE [11]
K23 cam_d9 0 I L L 7 vdds Yes NA PU/ PD LVCMOS
gpio_108 4 I
safe_mode 7
F21 cam_d10 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_109 4 IO
hw_dbg8 5 O
safe_mode 7
G21 cam_d11 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_110 4 IO
hw_dbg9 5 O
safe_mode 7
C22 cam_ xclkb 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_111 4 IO
safe_mode 7
F18 cam_wen 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
cam_ shutter 2 O
gpio_167 4 IO
hw_dbg10 5 O
safe_mode 7
J20 cam_ strobe 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_126 4 IO
hw_dbg11 5 O
safe_mode 7
V20 mcbsp2_fsx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_116 4 IO
safe_mode 7
T21 mcbsp2_ clkx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_117 4 IO
safe_mode 7
V19 mcbsp2_dr 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_118 4 IO
safe_mode 7
R20 mcbsp2_dx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_119 4 IO
safe_mode 7
M23 mmc1_clk 0 O L L 7 vdds_mmc1(1 Yes 1 PU/ PD (4) LVCMOS
4)
gpio_120 (5) 4 IO
safe_mode 7
L23 mmc1_cmd 0 IO L L 7 vdds_mmc1(1 Yes 1 PU/ PD(4) LVCMOS
4)
gpio_121 (5) 4 IO
safe_mode 7
M22 mmc1_dat0 0 IO L L 7 vdds_mmc1(1 Yes 1 PU/ PD(4) LVCMOS
4)
gpio_122 (5) 4 IO
safe_mode 7
M21 mmc1_dat1 0 IO L L 7 vdds_mmc1(1 Yes 1 PU/ PD(4) LVCMOS
4)
gpio_123(5) 4 IO
safe_mode 7
M20 mmc1_dat2 0 IO L L 7 vdds_mmc1(1 Yes 1 PU/ PD(4) LVCMOS
4)
gpio_124(5) 4 IO
safe_mode 7
N23 mmc1_dat3 0 IO L L 7 vdds_mmc1(1 Yes 1 PU/ PD(4) LVCMOS
4)
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 71
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.)(1) (continued)
BALL PIN NAME [2] MODE [3] TYPE [4] BALL RESET BALL RESET RESET REL. POWER [8] HYS [9] BUFFER PULLUP IO CELL [12]
NUMBER [1] STATE [5] REL. STATE MODE [7] STRENGTH /DOWN
[6] (mA) [10] TYPE [11]
gpio_125(5) 4 IO
safe_mode 7
N22 gpio_126(5) 4 IO L L 7 vdds_x Yes 1 PU/ PD(4) LVCMOS
safe_mode 7
P24 gpio_129(5) 4 IO L L 7 vdds_x Yes 1 PU/ PD (4) LVCMOS
safe_mode 7
Y1 mmc2_clk 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_clk 1 IO
gpio_130 4 IO
safe_mode 7
AB5 mmc2_cmd 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_ simo 1 IO
gpio_131 4 IO
safe_mode 7
AB3 mmc2_ dat0 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_ somi 1 IO
gpio_132 4 IO
safe_mode 7
Y3 mmc2_ dat1 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_133 4 IO
safe_mode 7
W3 mmc2_ dat2 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_cs1 1 O
gpio_134 4 IO
safe_mode 7
V3 mmc2_ dat3 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
mcspi3_cs0 1 IO
gpio_135 4 IO
safe_mode 7
AB2 mmc2_ dat4 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_dir_dat0 1 O
mmc3_dat0 3 IO
gpio_136 4 IO
safe_mode 7
AA2 mmc2_ dat5 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_dir_dat1 1 O
cam_global_reset 2 IO
mmc3_dat1 3 IO
gpio_137 4 IO
mm3_rxdp 6 IO
safe_mode 7
Y2 mmc2_dat6 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_dir_cmd 1 O
cam_shutter 2 O
mmc3_dat2 3 IO
gpio_138 4 IO
safe_mode 7
AA1 mmc2_dat7 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_clkin 1 I
mmc3_dat3 3 IO
gpio_139 4 IO
mm3_rxdm 6 IO
safe_mode 7
V6 mcbsp3_dx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart2_cts 1 I
72 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-3. Ball Characteristics (CUS Pkg.)(1) (continued)
BALL PIN NAME [2] MODE [3] TYPE [4] BALL RESET BALL RESET RESET REL. POWER [8] HYS [9] BUFFER PULLUP IO CELL [12]
NUMBER [1] STATE [5] REL. STATE MODE [7] STRENGTH /DOWN
[6] (mA) [10] TYPE [11]
gpio_140 4 IO
safe_mode 7
V5 mcbsp3_dr 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
uart2_rts 1 O
gpio_141 4 IO
safe_mode 7
W4 mcbsp3_ clkx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart2_tx 1 O
gpio_142 4 IO
safe_mode 7
V4 mcbsp3_fsx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart2_rx 1 I
gpio_143 4 IO
safe_mode 7
W7 uart1_tx 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_148 4 IO
safe_mode 7
W6 uart1_rts 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_149 4 IO
safe_mode 7
AC2 uart1_cts 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_150 4 IO
safe_mode 7
V7 uart1_rx 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
mcbsp1_ clkr 2 IO
mcspi4_clk 3 IO
gpio_151 4 IO
safe_mode 7
W19 mcbsp1_ clkr 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mcspi4_clk 1 IO
gpio_156 4 IO
safe_mode 7
AB20 mcbsp1_fsr 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
cam_global_reset 2 IO
gpio_157 4 IO
safe_mode 7
W18 mcbsp1_dx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mcspi4_ simo 1 IO
mcbsp3_dx 2 IO
gpio_158 4 IO
safe_mode 7
Y18 mcbsp1_dr 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
mcspi4_ somi 1 IO
mcbsp3_dr 2 I
gpio_159 4 IO
safe_mode 7
AA18 mcbsp_clks 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
cam_ shutter 2 O
gpio_160 4 IO
uart1_cts 5 I
safe_mode 7
AA19 mcbsp1_fsx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mcspi4_cs0 1 IO
mcbsp3_fsx 2 IO
gpio_161 4 IO
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 73
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.)(1) (continued)
BALL PIN NAME [2] MODE [3] TYPE [4] BALL RESET BALL RESET RESET REL. POWER [8] HYS [9] BUFFER PULLUP IO CELL [12]
NUMBER [1] STATE [5] REL. STATE MODE [7] STRENGTH /DOWN
[6] (mA) [10] TYPE [11]
safe_mode 7
V18 mcbsp1_ clkx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mcbsp3_ clkx 2 IO
gpio_162 4 IO
safe_mode 7
A23 uart3_cts_ rctx 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_163 4 IO
safe_mode 7
B23 uart3_rts_ sd 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_164 4 IO
safe_mode 7
B24 uart3_rx_ irrx 0 I H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_165 4 IO
safe_mode 7
C23 uart3_tx_ irtx 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_166 4 IO
safe_mode 7
R21 hsusb0_clk 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS
gpio_120 4 IO
safe_mode 7
R23 hsusb0_stp 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_121 4 IO
safe_mode 7
P23 hsusb0_dir 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_122 4 IO
safe_mode 7
R22 hsusb0_nxt 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_124 4 IO
safe_mode 7
T24 hsusb0_ data0 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart3_tx_ irtx 2 O
gpio_125 4 IO
uart2_tx 5 O
safe_mode 7
T23 hsusb0_ data1 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart3_rx_ irrx 2 I
gpio_130 4 IO
uart2_rx 5 I
safe_mode 7
U24 hsusb0_ data2 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart3_rts_ sd 2 O
gpio_131 4 IO
uart2_rts 5 O
safe_mode 7
U23 hsusb0_ data3 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
uart3_cts_ rctx 2 IO
gpio_169 4 IO
uart2_cts 5 I
safe_mode 7
W24 hsusb0_ data4 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_188 4 IO
safe_mode 7
V23 hsusb0_ data5 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_189 4 IO
safe_mode 7
74 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-3. Ball Characteristics (CUS Pkg.)(1) (continued)
BALL PIN NAME [2] MODE [3] TYPE [4] BALL RESET BALL RESET RESET REL. POWER [8] HYS [9] BUFFER PULLUP IO CELL [12]
NUMBER [1] STATE [5] REL. STATE MODE [7] STRENGTH /DOWN
[6] (mA) [10] TYPE [11]
W23 hsusb0_ data6 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_190 4 IO
safe_mode 7
T22 hsusb0_ data7 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_191 4 IO
safe_mode 7
K20 i2c1_scl 0 OD H H 0 vdds NA 3 PU/ PD(10)(11) Open Drain
K21 i2c1_sda 0 IOD H H 0 vdds Yes 3 PU/ PD(10)(11) Open Drain
AC15 i2c2_scl 0 OD H H 7 vdds Yes 3 PU/ PD(10)(12) Open Drain
gpio_168 4 IO 4
safe_mode 7
AC14 i2c2_sda 0 IOD H H 7 vdds Yes 3 PU/ PD(10)(12) Open Drain
gpio_183 4 IO 4
safe_mode 7
AC13 i2c3_scl 0 OD H H 7 vdds Yes 3 PU/ PD(10)(12) Open Drain
gpio_184 4 IO 4
safe_mode 7
AC12 i2c3_sda 0 IOD H H 7 vdds Yes 3 PU/ PD(10)(12) Open Drain
gpio_185 4 IO 4
safe_mode 7
Y16 i2c4_scl 0 OD H H 0 vdds Yes 3 PU/ PD(10)(11) Open Drain
sys_nvmode1 1 O 4
safe_mode 7
Y15 i2c4_sda 0 IOD H H 0 vdds Yes 3 PU/ PD(10)(11) Open Drain
sys_nvmode2 1 O 4
safe_mode 7
A24 hdq_sio 0 IOD H H 7 vdds Yes 4 PU/ PD LVCMOS
sys_altclk 1 I
i2c2_sccbe 2 OD
i2c3_sccbe 3 OD
gpio_170 4 IO
safe_mode 7
T5 mcspi1_clk 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_dat4 1 IO
gpio_171 4 IO
safe_mode 7
R4 mcspi1_ simo 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_dat5 1 IO
gpio_172 4 IO
safe_mode 7
T4 mcspi1_ somi 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_dat6 1 IO
gpio_173 4 IO
safe_mode 7
T6 mcspi1_cs0 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
mmc2_dat7 1 IO
gpio_174 4 IO
safe_mode 7
R5 mcspi1_cs3 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS
hsusb2_ data2 3 IO
gpio_177 4 IO
mm2_txdat 5 IO
safe_mode 7
N5 mcspi2_clk 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
hsusb2_ data7 3 IO
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 75
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.)(1) (continued)
BALL PIN NAME [2] MODE [3] TYPE [4] BALL RESET BALL RESET RESET REL. POWER [8] HYS [9] BUFFER PULLUP IO CELL [12]
NUMBER [1] STATE [5] REL. STATE MODE [7] STRENGTH /DOWN
[6] (mA) [10] TYPE [11]
gpio_178 4 IO
safe_mode 7
N4 mcspi2_ simo 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpt_9_pwm_evt 1 IO
hsusb2_ data4 3 IO
gpio_179 4 IO
safe_mode 7
N3 mcspi2_ somi 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS
gpt_10_pwm_evt 1 IO
hsusb2_ data5 3 IO
gpio_180 4 IO
safe_mode 7
M5 mcspi2_cs0 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS
gpt_11_pwm_evt 1 IO
hsusb2_ data6 3 IO
gpio_181 4 IO
safe_mode 7
M4 mcspi2_cs1 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpt_8_pwm_evt 1 IO
hsusb2_ data3 3 IO
gpio_182 4 IO
mm2_txen_n 5 IO
safe_mode 7
AA16 sys_32k 0 I Z Z 0 vdds Yes NA PU/ PD LVCMOS
AD15 sys_xtalin 0 AI Z Z 0 vdds Yes NA No Analog
AD14 sys_xtalout 0 AO Z 0 0 vdds NA NA NA Analog
Y13 sys_clkreq 0 IO 0 see (3) 0 vdds Yes 4 PU/ PD LVCMOS
gpio_1 4 IO
safe_mode 7
W16 sys_nirq 0 I H H 7 vdds Yes 4 PU/ PD LVCMOS
gpio_0 4 IO
safe_mode 7
AA10 sys_nrespwron 0 I Z Z 0 vdds Yes NA No LVCMOS
Y10 sys_nreswarm 0 IOD 0 H 0 vdds Yes 4 PU/ PD LVCMOS
gpio_30 4 IO
safe_mode 7
AB12 sys_boot0 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS
dss_data18 3 IO
gpio_2 4 IO
safe_mode 7
AC16 sys_boot1 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS
dss_data19 3 IO
gpio_3 4 IO
safe_mode 7
AD17 sys_boot2 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS
gpio_4 4 IO
safe_mode 7
AD18 sys_boot3 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS
dss_data20 3 O
gpio_5 4 IO
safe_mode 7
AC17 sys_boot4 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS
mmc2_dir_dat2 1 O
dss_data21 3 O
gpio_6 4 IO
76 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-3. Ball Characteristics (CUS Pkg.)(1) (continued)
BALL PIN NAME [2] MODE [3] TYPE [4] BALL RESET BALL RESET RESET REL. POWER [8] HYS [9] BUFFER PULLUP IO CELL [12]
NUMBER [1] STATE [5] REL. STATE MODE [7] STRENGTH /DOWN
[6] (mA) [10] TYPE [11]
safe_mode 7
AB16 sys_boot5 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS
mmc2_dir_dat3 1 O
dss_data22 3 O
gpio_7 4 IO
safe_mode 7
AA15 sys_boot6 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS
dss_data23 3 O
gpio_8 4 IO
safe_mode 7
AD23 sys_off_ mode 0 O 0 L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_9 4 IO
safe_mode 7
Y7 sys_clkout1 0 O L L 7(13) vdds Yes 4 PU/ PD LVCMOS
gpio_10 4 IO
safe_mode 7
AA6 sys_clkout2 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS
gpio_186 4 IO
safe_mode 7
AB7 jtag_ntrst 0 I L L 0 vdds Yes NA PU/ PD LVCMOS
AB6 jtag_tck 0 I L L 0 vdds Yes NA PU/ PD LVCMOS
AA7 jtag_rtck 0 O L 0 0 vdds NA 4 PU/ PD LVCMOS
AA9 jtag_tms_tmsc 0 IO H H 0 vdds Yes 4 PU/ PD LVCMOS
AB10 jtag_tdi 0 I H H 0 vdds Yes NA PU/ PD LVCMOS
AB9 jtag_tdo 0 O L Z 0 vdds NA 4 PU/ PD LVCMOS
AC24 jtag_emu0 0 IO H H 0 vdds Yes 4 PU/ PD LVCMOS
gpio_11 4 IO
safe_mode 7
AD24 jtag_emu1 0 IO H H 0 vdds Yes 4 PU/ PD LVCMOS
gpio_31 4 IO
safe_mode 7
AC1 etk_clk 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mcbsp5_ clkx 1 IO
mmc3_clk 2 O
hsusb1_stp 3 O
gpio_12 4 IO
mm1_rxdp 5 IO
hw_dbg0 7 O
AD3 etk_ctl 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mmc3_cmd 2 IO
hsusb1_clk 3 O
gpio_13 4 IO
hw_dbg1 7 O
AD6 etk_d0 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mcspi3_ simo 1 IO
mmc3_dat4 2 IO
hsusb1_ data0 3 IO
gpio_14 4 IO
mm1_rxrcv 5 IO
hw_dbg2 7 O
AC6 etk_d1 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mcspi3_ somi 1 IO
hsusb1_ data1 3 IO
gpio_15 4 IO
mm1_txse0 5 IO
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 77
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.)(1) (continued)
BALL PIN NAME [2] MODE [3] TYPE [4] BALL RESET BALL RESET RESET REL. POWER [8] HYS [9] BUFFER PULLUP IO CELL [12]
NUMBER [1] STATE [5] REL. STATE MODE [7] STRENGTH /DOWN
[6] (mA) [10] TYPE [11]
hw_dbg3 7 O
AC7 etk_d2 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mcspi3_cs0 1 IO
hsusb1_ data2 3 IO
gpio_16 4 IO
mm1_txdat 5 IO
hw_dbg4 7 O
AD8 etk_d3 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS
mcspi3_clk 1 IO
mmc3_dat3 2 IO
hsusb1_ data7 3 IO
gpio_17 4 IO
hw_dbg5 7 O
AC5 etk_d4 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
mcbsp5_dr 1 I
mmc3_dat0 2 IO
hsusb1_ data4 3 IO
gpio_18 4 IO
hw_dbg6 7 O
AD2 etk_d5 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
mcbsp5_fsx 1 IO
mmc3_dat1 2 IO
hsusb1_ data5 3 IO
gpio_19 4 IO
hw_dbg7 7 O
AC8 etk_d6 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
mcbsp5_dx 1 O
mmc3_dat2 2 IO
hsusb1_ data6 3 IO
gpio_20 4 IO
hw_dbg8 7 O
AD9 etk_d7 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
mcspi3_cs1 1 O
mmc3_dat7 2 IO
hsusb1_ data3 3 IO
gpio_21 4 IO
mm1_txen_n 5 IO
hw_dbg9 7 O
AC4 etk_d8 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
mmc3_dat6 2 IO
hsusb1_dir 3 I
gpio_22 4 IO
hw_dbg10 7 O
AD5 etk_d9 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
mmc3_dat5 2 IO
hsusb1_nxt 3 I
gpio_23 4 IO
mm1_rxdm 5 IO
hw_dbg11 7 O
AC3 etk_d10 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
uart1_rx 2 I
hsusb2_clk 3 O
gpio_24 4 IO
hw_dbg12 7 O
AC9 etk_d11 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
78 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-3. Ball Characteristics (CUS Pkg.)(1) (continued)
BALL PIN NAME [2] MODE [3] TYPE [4] BALL RESET BALL RESET RESET REL. POWER [8] HYS [9] BUFFER PULLUP IO CELL [12]
NUMBER [1] STATE [5] REL. STATE MODE [7] STRENGTH /DOWN
[6] (mA) [10] TYPE [11]
hsusb2_stp 3 O
gpio_25 4 IO
mm2_rxdp 5 IO
hw_dbg13 7 O
AC10 etk_d12 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
hsusb2_dir 3 I
gpio_26 4 IO
hw_dbg14 7 O
AD11 etk_d13 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
hsusb2_nxt 3 I
gpio_27 4 IO
mm2_rxdm 5 IO
hw_dbg15 7 O
AC11 etk_d14 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
hsusb2_ data0 3 IO
gpio_28 4 IO
mm2_rxrcv 5 IO
hw_dbg16 7 O
AD12 etk_d15 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS
hsusb2_ data1 3 IO
gpio_29 4 IO
mm2_txse0 5 IO
hw_dbg17 7 O
E16, F15, vdds_mem 0 PWR - - - - - - - -
F16, G15,
G16, H15, J6,
J7, J8, K6,
K7, K8
F12, F13, vdd_core 0 PWR - - - - - - - -
G12, G13,
H12, H13,
J17, J18,
K17, K18,
K19, L14,
L15, M14,
M15, R17,
R18, R19,
T17, T18,
T19, T20
F10, G9, vdd_mpu_iva 0 PWR - - - - - - - -
G10, H9,
H10, J9, J10,
L11, L12, M6,
M7, M8, M12,
N6, N7, N8,
R6, R7, R8,
T7, T8, U12,
U13, V12,
V13, W12,
W13
H8 vdds_x 0 PWR - - - - - - - -
M17, M18, vdds 0 PWR - - - - - - - -
M19, N17,
N18, N19,
U10, V9, V10,
W9, W10, Y9
N24 vdds_mmc1 0 PWR - - - - - - - -
Y12 cap_vddu_ 0 PWR - - - - - - - -
wkup_logic
U8 cap_vdd_sram_mpu_ 0 PWR - - - - - - - -
iva
H17 cap_vdd_sram_core 0 PWR - - - - - - - -
G18 vdda_dplls_dll 0 PWR - - - - - - - -
U17 vdda_dpll_per 0 PWR - - - - - - - -
AA12 vdds_sram 0 PWR - - - - - - - -
AA13 vdda_wkup_bg_bb 0 PWR - - - - - - - -
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 79
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.)(1) (continued)
BALL PIN NAME [2] MODE [3] TYPE [4] BALL RESET BALL RESET RESET REL. POWER [8] HYS [9] BUFFER PULLUP IO CELL [12]
NUMBER [1] STATE [5] REL. STATE MODE [7] STRENGTH /DOWN
[6] (mA) [10] TYPE [11]
N21 cap_vdd_bb_mpu_iv 0 PWR - - - - - - - -
a
N20 cap_vddu_array 0 PWR - - - - - - - -
AB15 vssa_dac 0 GND - - - - - - - -
AB13 vdda_dac 0 PWR - - - - - - - -
H11, H14, vss 0 GND - - - - - - - -
H16, J11,
J12, J13, J14,
J15, J16,
K10, K11,
K14, K15, L8,
L10, L13,
L17, M9,
M10, M11,
M13, M16,
N9, N10,
N11, N12,
N13, N14,
N15, N16,
P8, P10, P11,
P12, P13,
P14, P15,
P17, R10,
R11, R14,
R15, T9, T10,
T11, T12,
T13, T14,
T15, T16, U9,
U11, U14,
U15, U16,
V15, V16
AD1, A1, A2, No Connect(2) ----------
B1
W15 sys_xtalgnd 0 GND - - - - - - - -
(1) NA in this table stands for "Not Applicable".
(2) Pins labeled as "No connect" must be left unconnected. Any connections to these pins may result in unpredictable behavior.
(3) Depending on the sys_clkreq direction the corresponding reset released state value can be:
Z if sys_clkreq is used as input
1 if sys_clkreq is used as output
For a full description of the sys_clkreq control, see Power, Reset, and Clock Management chapter of the AM/DM37x Multimedia Device
Technical Reference Manual (literature number SPRUGN4).
(4) PU = [50 to 100 kΩ] per default or [10 to 50 kΩ] according to the selected mode. For a full description of the pull-up drive strength
programming, see the PRG_SDMMC_PUSTRENGTH configuration register bit field in the System Control Module chapter of the
AM/DM37x Multimedia Device Technical Reference Manual (literature number SPRUGN4). PD: 30 to 150 kΩ.
(5) The usage of this GPIO is strongly restricted. For more information, see the General-Purpose Interface chapter of the AM/DM37x
Multimedia Device Technical Reference Manual (literature number SPRUGN4).
(6) The drive strength is fixed regardless of the load. The driver is designed to drive 75Ωfor video applications.
(7) In buffer mode, the drive strength is fixed regardless of the load. The driver is designed to drive 75Ωfor video applications. In bypass
mode, the drive strength is 0.47 mA.
(8) The drive strength of these IOs is set according to the programmable load range: 2 pF to 4 pF per default or 4 pF to 12 pF. For a full
description of the drive strength programming, see the System Control Module chapter of the AM/DM37x Multimedia Device Technical
Reference Manual (literature number SPRUGN4).
(9) In the safe_mode_out1, the buffer is configured to drive 1.
(10) The pullup and pulldown can be either the standard LVCMOS 100-μA drive strength or the I2C pullup and pulldown described below:
Nominal resistance = 1.66 kΩin high-speed mode with a load range of 5 pF to 12 pF, 4.5 kΩin standard / fast mode with a load range
of 5 pF to 15 pF.
(11) The default buffer configuration is High-Speed I2C point-to-point mode using internal pullup. For a full description of the pull drive
strength programming, see prg_i2c1_pullupresx, prg_i2c1_lb1lb0, and prg_sr_pullupresx, prg_sr_lb bits of the CONTROL_PROG_IO1,
CONTROL_PROG_IO_WKUP1 control modules in the System Control Module / SCM Programming Model / Feature Settings section
and the System Control Module chapter of the AM/DM37x Multimedia Device Technical Reference Manual (literature number
SPRUGN4) to modify the IO settings if required by the targeted interface application.
(12) The default buffer configuration is standard LVCMOS mode (non-I2C). For a full description of the pull drive strength programming, see
PADCONFS bits of CONTROL_PADCONF_X control modules (standard LVCMOS mode), or prg_i2c2_pullupresx, prg_i2c2_lb1lb0, and
prg_i2c3_pullupresx, prg_i2c3_lb1lb0 bits of the CONTROL_PROG_IO2, CONTROL_PROG_IO3 control modules (I2C mode) in the
System Control Module chapter of the AM/DM37x Multimedia Device Technical Reference Manual (literature number SPRUGN4) to
modify the IO settings if required by the targeted interface application.
(13) Mux0 if sys_boot6 is pulled down (clock master).
80 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
(14) If MMC1 functional signals are enabled, vdds_mmc1 for MMC1 must be supplied by a dedicated power source.
If MMC1 functional signals are disabled, other multiplexed CMOS signals of the interface can be enabled. The interface can be supplied
by the same power source as vdds. The vdds power source supplies the vdds_mmc1 ball.
If neither MMC1 functional balls or CMOS signals are enabled, the interface balls are left unconnected with its associated power supply
(vdda/vssa) grounded.
For the corresponding setting of the PBIASLITEPWRDNZ0 bit, see the System Control Module / SCM Programming Model /
Extended-Drain I/Os and PBIAS Cells Programming Guide section of the AM/DM37x Multimedia Device Technical Reference Manual
(literature number SPRUGN4).
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 81
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
2.4 Multiplexing Characteristics
Table 2-4 provides a description of the multiplexing on the CBP, CBC, and CUS packages, respectively.
Note: The following does not take into account subsystem pin multiplexing options. Subsystem pin
multiplexing options are described in Section 2.5,Signal Description. For more information, see the
System Control Module / System Control Module Functional Description / Pad Functional Multiplexing and
Configuration section of the AM/DM37x Multimedia Device Technical Reference Manual (literature number
SPRUGN4).
Table 2-4. Multiplexing Characteristics
CBP CBC CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE
7
Bottom Top Bottom Top
NA J2 NA D1 D7 sdrc_d0
NA J1 NA G1 C5 sdrc_d1
NA G2 NA G2 C6 sdrc_d2
NA G1 NA E1 B5 sdrc_d3
NA F2 NA D2 D9 sdrc_d4
NA F1 NA E2 D10 sdrc_d5
NA D2 NA B3 C7 sdrc_d6
NA D1 NA B4 B7 sdrc_d7
NA B13 NA A10 B11 sdrc_d8
NA A13 NA B11 C12 sdrc_d9
NA B14 NA A11 B12 sdrc_d10
NA A14 NA B12 D13 sdrc_d11
NA B16 NA A16 C13 sdrc_d12
NA A16 NA A17 B14 sdrc_d13
NA B19 NA B17 A14 sdrc_d14
NA A19 NA B18 B15 sdrc_d15
NA B3 NA B7 C9 sdrc_d16
NA A3 NA A5 E12 sdrc_d17
NA B5 NA B6 B8 sdrc_d18
NA A5 NA A6 B9 sdrc_d19
NA B8 NA A8 C10 sdrc_d20
NA A8 NA B9 B10 sdrc_d21
NA B9 NA A9 D12 sdrc_d22
NA A9 NA B10 E13 sdrc_d23
NA B21 NA C21 E15 sdrc_d24
NA A21 NA D20 D15 sdrc_d25
NA D22 NA B19 C15 sdrc_d26
NA D23 NA C20 B16 sdrc_d27
NA E22 NA D21 C16 sdrc_d28
NA E23 NA E20 D16 sdrc_d29
NA G22 NA E21 B17 sdrc_d30
NA G23 NA G21 B18 sdrc_d31
NA AB21 NA AA18 C18 sdrc_ba0
NA AC21 NA V20 D18 sdrc_ba1
NA N22 NA G20 A4 sdrc_a0
NA N23 NA K20 B4 sdrc_a1
NA P22 NA J20 D6 sdrc_a2
NA P23 NA J21 B3 sdrc_a3
NA R22 NA U21 B2 sdrc_a4
NA R23 NA R20 C3 sdrc_a5
NA T22 NA M21 E3 sdrc_a6
NA T23 NA M20 F6 sdrc_a7
NA U22 NA N20 E10 sdrc_a8
NA U23 NA K21 E9 sdrc_a9
82 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-4. Multiplexing Characteristics (continued)
CBP CBC CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE
7
Bottom Top Bottom Top
NA V22 NA Y16 E7 sdrc_a10
NA V23 NA N21 G6 sdrc_a11
NA W22 NA R21 G7 sdrc_a12
NA W23 NA AA15 F7 sdrc_a13
NA Y22 NA Y12 F9 sdrc_a14
NA M22 NA T21 A19 sdrc_ncs0
NA M23 NA T20 B19 sdrc_ncs1
NA A11 NA A12 A10 sdrc_clk
NA B11 NA B13 A11 sdrc_nclk
NA J22 NA Y15 B20 sdrc_cke0 safe_mo
de_out1
NA J23 NA Y13 C20 sdrc_cke1 safe_mo
de_out1
NA L23 NA V21 D19 sdrc_nras
NA L22 NA U20 C19 sdrc_ncas
NA K23 NA Y18 A20 sdrc_nwe
NA C1 NA H1 B6 sdrc_dm0
NA A17 NA A14 B13 sdrc_dm1
NA A6 NA A4 A7 sdrc_dm2
NA A20 NA A18 A16 sdrc_dm3
NA C2 NA C2 A5 sdrc_dqs0
NA B17 NA B15 A13 sdrc_dqs1
NA B6 NA B8 A8 sdrc_dqs2
NA B20 NA A19 A17 sdrc_dqs3
N4 AC15 J2 NA K4 gpmc_a1 gpio_34 safe_mo
de
M4 AB15 H1 NA K3 gpmc_a2 gpio_35 safe_mo
de
L4 AC16 H2 NA K2 gpmc_a3 gpio_36 safe_mo
de
K4 AB16 G2 NA J4 gpmc_a4 gpio_37 safe_mo
de
T3 AC17 F1 NA J3 gpmc_a5 gpio_38 safe_mo
de
R3 AB17 F2 NA J2 gpmc_a6 gpio_39 safe_mo
de
N3 AC18 E1 NA J1 gpmc_a7 gpio_40 safe_mo
de
M3 AB18 E2 NA H1 gpmc_a8 gpio_41 safe_mo
de
L3 AC19 D1 NA H2 gpmc_a9 sys_ndmareq gpio_42 safe_mo
2 de
K3 AB19 D2 NA G2 gpmc_a10 sys_ndmareq gpio_43 safe_mo
3 de
NA AC20 A4 NA NA gpmc_a11 safe_mo
de
K1 M2 AA2 U2 L2 gpmc_d0
L1 M1 AA1 U1 M1 gpmc_d1
L2 N2 AC2 V2 M2 gpmc_d2
P2 N1 AC1 V1 N2 gpmc_d3
T1 R2 AE5 AA3 M3 gpmc_d4
V1 R1 AD6 AA4 P1 gpmc_d5
V2 T2 AD5 Y3 P2 gpmc_d6
W2 T1 AC5 Y4 R1 gpmc_d7
H2 AB3 V1 R1 R2 gpmc_d8 gpio_44 safe_mo
de
K2 AC3 Y1 T1 T2 gpmc_d9 gpio_45 safe_mo
de
P1 AB4 T1 N1 U1 gpmc_d10 gpio_46 safe_mo
de
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 83
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-4. Multiplexing Characteristics (continued)
CBP CBC CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE
7
Bottom Top Bottom Top
R1 AC4 U2 P2 R3 gpmc_d11 gpio_47 safe_mo
de
R2 AB6 U1 P1 T3 gpmc_d12 gpio_48 safe_mo
de
T2 AC6 P1 M1 U2 gpmc_d13 gpio_49 safe_mo
de
W1 AB7 L2 J2 V1 gpmc_d14 gpio_50 safe_mo
de
Y1 AC7 M2 K2 V2 gpmc_d15 gpio_51 safe_mo
de
G4 Y2 AD8 AA8 E2 gpmc_ncs0
H3 Y1 AD1 W1 NA gpmc_ncs1 gpio_52 safe_mo
de
V8 NA A3 NA NA gpmc_ncs2 gpio_53 safe_mo
de
U8 NA B6 NA D2 gpmc_ncs3 sys_ndmareq gpio_54 safe_mo
0 de
T8 NA B4 NA F4 gpmc_ncs4 sys_ndmareq mcbsp4_clkx gpt_9_pwm gpio_55 safe_mo
1 _evt de
R8 NA C4 NA G5 gpmc_ncs5 sys_ndmareq mcbsp4_dr gpt_10_pw gpio_56 safe_mo
2 m_evt de
P8 NA B5 NA F3 gpmc_ncs6 sys_ndmareq mcbsp4_dx gpt_11_pw gpio_57 safe_mo
3 m_evt de
N8 NA C5 NA G4 gpmc_ncs7 gpmc_io_dir mcbsp4_fsx gpt_8_pwm gpio_58 safe_mo
_evt de
T4 W2 N1 L1 W2 gpmc_clk gpio_59 safe_mo
de
F3 W1 AD10 AA9 F1 gpmc_nadv_a
le
G2 V2 N2 L2 F2 gpmc_noe
F4 V1 M1 K1 G3 gpmc_nwe
G3 AC12 K2 NA K5 gpmc_nbe0_c gpio_60 safe_mo
le de
U3 NA J1 NA L1 gpmc_nbe1 gpio_61 safe_mo
de
H1 AB10 AC6 Y5 E1 gpmc_nwp gpio_62 safe_mo
de
M8 AB12 AC11 Y10 C1 gpmc_wait0
L8 AC10 AC8 Y8 NA gpmc_wait1 gpio_63 safe_mo
de
K8 NA B3 NA NA gpmc_wait2 uart4_tx gpio_64 safe_mo
de
J8 NA C6 NA C2 gpmc_wait3 sys_ndmareq uart4_rx(3) gpio_65 safe_mo
1 de
D28 NA G25 NA G22 dss_pclk gpio_66 hw_dbg12 safe_mo
de
D26 NA K24 NA E22 dss_hsync gpio_67 hw_dbg13 safe_mo
de
D27 NA M25 NA F22 dss_vsync gpio_68 safe_mo
de
E27 NA F26 NA J21 dss_acbias gpio_69 safe_mo
de
AG22 NA AE21 NA AC19 dss_data0 uart1_cts gpio_70 safe_mo
de
AH22 NA AE22 NA AB19 dss_data1 uart1_rts gpio_71 safe_mo
de
AG23 NA AE23 NA AD20 dss_data2 gpio_72 safe_mo
de
AH23 NA AE24 NA AC20 dss_data3 gpio_73 safe_mo
de
AG24 NA AD23 NA AD21 dss_data4 uart3_rx_irrx gpio_74 safe_mo
de
AH24 NA AD24 NA AC21 dss_data5 uart3_tx_irtx gpio_75 safe_mo
de
E26 NA G26 NA D24 dss_data6 uart1_tx gpio_76 hw_dbg14 safe_mo
de
84 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-4. Multiplexing Characteristics (continued)
CBP CBC CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE
7
Bottom Top Bottom Top
F28 NA H25 NA E23 dss_data7 uart1_rx gpio_77 hw_dbg15 safe_mo
de
F27 NA H26 NA E24 dss_data8 uart3_rx_irrx gpio_78 hw_dbg16 safe_mo
de
G26 NA J26 NA F23 dss_data9 uart3_tx_irtx gpio_79 hw_dbg17 safe_mo
de
AD28 NA AC26 NA AC22 dss_data10 gpio_80 safe_mo
de
AD27 NA AD26 NA AC23 dss_data11 gpio_81 safe_mo
de
AB28 NA AA25 NA AB22 dss_data12 gpio_82 safe_mo
de
AB27 NA Y25 NA Y22 dss_data13 gpio_83 safe_mo
de
AA28 NA AA26 NA W22 dss_data14 gpio_84 safe_mo
de
AA27 NA AB26 NA V22 dss_data15 gpio_85 safe_mo
de
G25 NA L25 NA J22 dss_data16 gpio_86 safe_mo
de
H27 NA L26 NA G23 dss_data17 gpio_87 safe_mo
de
H26 NA M24 NA G24 dss_data18 mcspi3_clk dss_data0 gpio_88 safe_mo
de
H25 NA M26 NA H23 dss_data19 mcspi3_simo dss_data1 gpio_89 safe_mo
de
E28 NA F25 NA D23 dss_data20 mcspi3_somi dss_data2 gpio_90 safe_mo
de
J26 NA N24 NA K22 dss_data21 mcspi3_cs0 dss_data3 gpio_91 safe_mo
de
AC27 NA AC25 NA V21 dss_data22 mcspi3_cs1 dss_data4 gpio_92 safe_mo
de
AC28 NA AB25 NA W21 dss_data23 dss_data5 gpio_93 safe_mo
de
W28 NA V26 NA AA23 cvideo2_out
Y28 NA W26 NA AB24 cvideo1_out
Y27 NA W25 NA AB23 cvideo1_vfb
W27 NA U24 NA Y23 cvideo2_vfb
W26 NA V23 NA Y24 cvideo1_rset
A24 NA C23 NA A22 cam_hs gpio_94 hw_dbg0 safe_mo
de
A23 NA D23 NA E18 cam_vs gpio_95 hw_dbg1 safe_mo
de
C25 NA C25 NA B22 cam_xclka gpio_96 safe_mo
de
C27 NA C26 NA J19 cam_pclk gpio_97 hw_dbg2 safe_mo
de
C23 NA B23 NA H24 cam_fld cam_global_res gpio_98 hw_dbg3 safe_mo
et de
AG17 NA AE16 NA AB18 cam_d0 gpio_99(1) safe_mo
de
AH17 NA AE15 NA AC18 cam_d1 gpio_100(1) safe_mo
de
B24 NA A24 NA G19 cam_d2 gpio_101 hw_dbg4 safe_mo
de
C24 NA B24 NA F19 cam_d3 gpio_102 hw_dbg5 safe_mo
de
D24 NA D24 NA G20 cam_d4 gpio_103 hw_dbg6 safe_mo
de
A25 NA C24 NA B21 cam_d5 gpio_104 hw_dbg7 safe_mo
de
K28 NA P25 NA L24 cam_d6 gpio_105(1) safe_mo
de
L28 NA P26 NA K24 cam_d7 gpio_106(1) safe_mo
de
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 85
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-4. Multiplexing Characteristics (continued)
CBP CBC CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE
7
Bottom Top Bottom Top
K27 NA N25 NA J23 cam_d8 gpio_107(1) safe_mo
de
L27 NA N26 NA K23 cam_d9 gpio_108(1) safe_mo
de
B25 NA D25 NA F21 cam_d10 gpio_109 hw_dbg8 safe_mo
de
C26 NA E26 NA G21 cam_d11 gpio_110 hw_dbg9 safe_mo
de
B26 NA E25 NA C22 cam_xclkb gpio_111 safe_mo
de
B23 NA A23 NA F18 cam_wen cam_shutter gpio_167 hw_dbg10 safe_mo
de
D25 NA D26 NA J20 cam_strobe gpio_126 hw_dbg11 safe_mo
de
AG19 NA AD17 NA NA gpio_112(1) safe_mo
de
AH19 NA AD16 NA NA gpio_113(1) safe_mo
de
AG18 NA AE18 NA NA gpio_114(1) safe_mo
de
AH18 NA AE17 NA NA gpio_115(1) safe_mo
de
P21 NA U18 NA V20 mcbsp2_fsx gpio_116 safe_mo
de
N21 NA R18 NA T21 mcbsp2_clkx gpio_117 safe_mo
de
R21 NA T18 NA V19 mcbsp2_dr gpio_118 safe_mo
de
M21 NA R19 NA R20 mcbsp2_dx gpio_119 safe_mo
de
N28 NA N19 NA M23 mmc1_clk gpio_120(2) safe_mo
de
M27 NA L18 NA L23 mmc1_cmd gpio_121(2) safe_mo
de
N27 NA M19 NA M22 mmc1_dat0 gpio_122(2) safe_mo
de
N26 NA M18 NA M21 mmc1_dat1 gpio_123(2) safe_mo
de
N25 NA K18 NA M20 mmc1_dat2 gpio_124(2) safe_mo
de
P28 NA N20 NA N23 mmc1_dat3 gpio_125(2) safe_mo
de
P27 NA M20 NA N22 gpio_126(2) safe_mo
de
P26 NA P17 NA NA gpio_127(2) safe_mo
de
R27 NA P18 NA NA gpio_128 safe_mo
de
R25 NA P19 NA P24 gpio_129(2) safe_mo
de
AE2 NA W10 NA Y1 mmc2_clk mcspi3_clk gpio_130 safe_mo
de
AG5 NA R10 NA AB5 mmc2_cmd mcspi3_simo gpio_131 safe_mo
de
AH5 NA T10 NA AB3 mmc2_dat0 mcspi3_somi gpio_132 safe_mo
de
AH4 NA T9 NA Y3 mmc2_dat1 gpio_133 safe_mo
de
AG4 NA U10 NA W3 mmc2_dat2 mcspi3_cs1 gpio_134 safe_mo
de
AF4 NA U9 NA V3 mmc2_dat3 mcspi3_cs0 gpio_135 safe_mo
de
AE4 NA V10 NA AB2 mmc2_dat4 mmc2_dir_dat mmc3_dat0 gpio_136 safe_mo
0 de
AH3 NA M3 NA AA2 mmc2_dat5 mmc2_dir_dat cam_global_res mmc3_dat1 gpio_137 mm3_rxdp safe_mo
1 et de
86 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-4. Multiplexing Characteristics (continued)
CBP CBC CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE
7
Bottom Top Bottom Top
AF3 NA L3 NA Y2 mmc2_dat6 mmc2_dir_cm cam_shutter mmc3_dat2 gpio_138 safe_mo
d de
AE3 NA K3 NA AA1 mmc2_dat7 mmc2_clkin mmc3_dat3 gpio_139 mm3_rxdm safe_mo
de
AF6 NA P3 NA V6 mcbsp3_dx uart2_cts gpio_140 safe_mo
de
AE6 NA N3 NA V5 mcbsp3_dr uart2_rts gpio_141 safe_mo
de
AF5 NA U3 NA W4 mcbsp3_clkx uart2_tx gpio_142 safe_mo
de
AE5 NA W3 NA V4 mcbsp3_fsx uart2_rx gpio_143 safe_mo
de
AB26 NA Y24 NA NA uart2_cts mcbsp3_dx gpt_9_pwm_evt gpio_144 safe_mo
de
AB25 NA AA24 NA NA uart2_rts mcbsp3_dr gpt_10_pwm_e gpio_145 safe_mo
vt de
AA25 NA AD22 NA NA uart2_tx mcbsp3_clkx gpt_11_pwm_e gpio_146 safe_mo
vt de
AD25 NA AD21 NA NA uart2_rx mcbsp3_fsx gpt_8_pwm_evt gpio_147 safe_mo
de
AA8 NA L4 NA W7 uart1_tx gpio_148 safe_mo
de
AA9 NA R2 NA W6 uart1_rts gpio_149 safe_mo
de
W8 NA W2 NA AC2 uart1_cts gpio_150 safe_mo
de
Y8 NA H3 NA V7 uart1_rx mcbsp1_clkr mcspi4_clk gpio_151 safe_mo
de
AE1 NA V3 NA NA mcbsp4_clkx gpio_152 mm3_txse0 safe_mo
de
AD1 NA U4 NA NA mcbsp4_dr gpio_153 mm3_rxrcv safe_mo
de
AD2 NA R3 NA NA mcbsp4_dx gpio_154 mm3_txdat safe_mo
de
AC1 NA T3 NA NA mcbsp4_fsx gpio_155 mm3_txen_ safe_mo
n de
Y21 NA U19 NA W19 mcbsp1_clkr mcspi4_clk gpio_156 safe_mo
de
AA21 NA V17 NA AB20 mcbsp1_fsr cam_global_res gpio_157 safe_mo
et de
V21 NA U17 NA W18 mcbsp1_dx mcspi4_simo mcbsp3_dx gpio_158 safe_mo
de
U21 NA T20 NA Y18 mcbsp1_dr mcspi4_somi mcbsp3_dr gpio_159 safe_mo
de
T21 NA T19 NA AA18 mcbsp_clks cam_shutter gpio_160 uart1_cts safe_mo
de
K26 NA P20 NA AA19 mcbsp1_fsx mcspi4_cs0 mcbsp3_fsx gpio_161 safe_mo
de
W21 NA T17 NA V18 mcbsp1_clkx mcbsp3_clkx gpio_162 safe_mo
de
H18 NA F23 NA A23 uart3_cts_rctx gpio_163 safe_mo
de
H19 NA F24 NA B23 uart3_rts_sd gpio_164 safe_mo
de
H20 NA H24 NA B24 uart3_rx_irrx gpio_165 safe_mo
de
H21 NA G24 NA C23 uart3_tx_irtx gpio_166 safe_mo
de
T28 NA W19 NA R21 hsusb0_clk gpio_120 safe_mo
de
T25 NA U20 NA R23 hsusb0_stp gpio_121 safe_mo
de
R28 NA V19 NA P23 hsusb0_dir gpio_122 safe_mo
de
T26 NA W18 NA R22 hsusb0_nxt gpio_124 safe_mo
de
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 87
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-4. Multiplexing Characteristics (continued)
CBP CBC CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE
7
Bottom Top Bottom Top
T27 NA V20 NA T24 hsusb0_data0 uart3_tx_irtx gpio_125 uart2_tx safe_mo
de
U28 NA Y20 NA T23 hsusb0_data1 uart3_rx_irrx gpio_130 uart2_rx safe_mo
de
U27 NA V18 NA U24 hsusb0_data2 uart3_rts_sd gpio_131 uart2_rts safe_mo
de
U26 NA W20 NA U23 hsusb0_data3 uart3_cts_rctx gpio_169 uart2_cts safe_mo
de
U25 NA W17 NA W24 hsusb0_data4 gpio_188 safe_mo
de
V28 NA Y18 NA V23 hsusb0_data5 gpio_189 safe_mo
de
V27 NA Y19 NA W23 hsusb0_data6 gpio_190 safe_mo
de
V26 NA Y17 NA T22 hsusb0_data7 gpio_191 safe_mo
de
K21 NA J25 NA K20 i2c1_scl
J21 NA J24 NA K21 i2c1_sda
AF15 NA C2 NA AC15 i2c2_scl gpio_168 safe_mo
de
AE15 NA C1 NA AC14 i2c2_sda gpio_183 safe_mo
de
AF14 NA AB4 NA AC13 i2c3_scl gpio_184 safe_mo
de
AG14 NA AC4 NA AC12 i2c3_sda gpio_185 safe_mo
de
AD26 NA AD15 NA Y16 i2c4_scl sys_nvmode1 safe_mo
de
AE26 NA W16 NA Y15 i2c4_sda sys_nvmode2 safe_mo
de
J25 NA J23 NA A24 hdq_sio sys_altclk i2c2_sccbe i2c3_sccbe gpio_170 safe_mo
de
AB3 NA P9 NA T5 mcspi1_clk mmc2_dat4 gpio_171 safe_mo
de
AB4 NA P8 NA R4 mcspi1_simo mmc2_dat5 gpio_172 safe_mo
de
AA4 NA P7 NA T4 mcspi1_somi mmc2_dat6 gpio_173 safe_mo
de
AC2 NA R7 NA T6 mcspi1_cs0 mmc2_dat7 gpio_174 safe_mo
de
AC3 NA R8 NA NA mcspi1_cs1 mmc3_cmd gpio_175 safe_mo
de
AB1 NA R9 NA NA mcspi1_cs2 mmc3_clk gpio_176 safe_mo
de
AB2 NA T8 NA R5 mcspi1_cs3 hsusb2_dat gpio_177 mm2_txdat safe_mo
a2 de
AA3 NA W7 NA N5 mcspi2_clk hsusb2_dat gpio_178 safe_mo
a7 de
Y2 NA W8 NA N4 mcspi2_simo gpt_9_pwm_e hsusb2_dat gpio_179 safe_mo
vt a4 de
Y3 NA U8 NA N3 mcspi2_somi gpt_10_pwm_ hsusb2_dat gpio_180 safe_mo
evt a5 de
Y4 NA V8 NA M5 mcspi2_cs0 gpt_11_pwm_ hsusb2_dat gpio_181 safe_mo
evt a6 de
V3 NA V9 NA M4 mcspi2_cs1 gpt_8_pwm_e hsusb2_dat gpio_182 mm2_txen_ safe_mo
vt a3 n de
AE25 NA AE20 NA AA16 sys_32k
AE17 NA AF19 NA AD15 sys_xtalin
AF17 NA AF20 NA AD14 sys_xtalout
AF25 NA W15 NA Y13 sys_clkreq gpio_1 safe_mo
de
AF26 NA V16 NA W16 sys_nirq gpio_0 safe_mo
de
AH25 NA V13 NA AA10 sys_nrespwro
n
88 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-4. Multiplexing Characteristics (continued)
CBP CBC CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE
7
Bottom Top Bottom Top
AF24 NA AD7 AA5 Y10 sys_nreswar gpio_30 safe_mo
m de
AH26 NA F3 NA AB12 sys_boot0 dss_data18 gpio_2 safe_mo
de
AG26 NA D3 NA AC16 sys_boot1 dss_data19 gpio_3 safe_mo
de
AE14 NA C3 NA AD17 sys_boot2 gpio_4 safe_mo
de
AF18 NA E3 NA AD18 sys_boot3 dss_data20 gpio_5 safe_mo
de
AF19 NA E4 NA AC17 sys_boot4 mmc2_dir_dat dss_data21 gpio_6 safe_mo
2 de
AE21 NA G3 NA AB16 sys_boot5 mmc2_dir_dat dss_data22 gpio_7 safe_mo
3 de
AF21 NA D4 NA AA15 sys_boot6 dss_data23 gpio_8 safe_mo
de
AF22 NA V12 NA AD23 sys_off_mode gpio_9 safe_mo
de
AG25 NA AE14 NA Y7 sys_clkout1 gpio_10 safe_mo
de
AE22 NA W11 NA AA6 sys_clkout2 gpio_186 safe_mo
de
AA17 NA U15 NA AB7 jtag_ntrst
AA13 NA V14 NA AB6 jtag_tck
AA12 NA W13 NA AA7 jtag_rtck
AA18 NA V15 NA AA9 jtag_tms_tms
c
AA20 NA U16 NA AB10 jtag_tdi
AA19 NA Y13 NA AB9 jtag_tdo
AA11 NA Y15 NA AC24 jtag_emu0 gpio_11 safe_mo
de
AA10 NA Y14 NA AD24 jtag_emu1 gpio_31 safe_mo
de
AF10 NA AB2 NA AC1 etk_clk mcbsp5_clkx mmc3_clk hsusb1_stp gpio_12 mm1_rxdp hw_dbg
0
AE10 NA AB3 NA AD3 etk_ctl mmc3_cmd hsusb1_clk gpio_13 hw_dbg
1
AF11 NA AC3 NA AD6 etk_d0 mcspi3_simo mmc3_dat4 hsusb1_dat gpio_14 mm1_rxrcv hw_dbg
a0 2
AG12 NA AD4 NA AC6 etk_d1 mcspi3_somi hsusb1_dat gpio_15 mm1_txse0 hw_dbg
a1 3
AH12 NA AD3 NA AC7 etk_d2 mcspi3_cs0 hsusb1_dat gpio_16 mm1_txdat hw_dbg
a2 4
AE13 NA AA3 NA AD8 etk_d3 mcspi3_clk mmc3_dat3 hsusb1_dat gpio_17 hw_dbg
a7 5
AE11 NA Y3 NA AC5 etk_d4 mcbsp5_dr mmc3_dat0 hsusb1_dat gpio_18 hw_dbg
a4 6
AH9 NA AB1 NA AD2 etk_d5 mcbsp5_fsx mmc3_dat1 hsusb1_dat gpio_19 hw_dbg
a5 7
AF13 NA AE3 NA AC8 etk_d6 mcbsp5_dx mmc3_dat2 hsusb1_dat gpio_20 hw_dbg
a6 8
AH14 NA AD2 NA AD9 etk_d7 mcspi3_cs1 mmc3_dat7 hsusb1_dat gpio_21 mm1_txen_ hw_dbg
a3 n 9
AF9 NA AA4 NA AC4 etk_d8 mmc3_dat6 hsusb1_dir gpio_22 hw_dbg
10
AG9 NA V2 NA AD5 etk_d9 mmc3_dat5 hsusb1_nxt gpio_23 mm1_rxdm hw_dbg
11
AE7 NA AE4 NA AC3 etk_d10 uart1_rx hsusb2_clk gpio_24 hw_dbg
12
AF7 NA AF6 NA AC9 etk_d11 hsusb2_stp gpio_25 mm2_rxdp hw_dbg
13
AG7 NA AE6 NA AC10 etk_d12 hsusb2_dir gpio_26 hw_dbg
14
AH7 NA AF7 NA AD11 etk_d13 hsusb2_nxt gpio_27 mm2_rxdm hw_dbg
15
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 89
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-4. Multiplexing Characteristics (continued)
CBP CBC CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE
7
Bottom Top Bottom Top
AG8 NA AF9 NA AC11 etk_d14 hsusb2_dat gpio_28 mm2_rxrcv hw_dbg
a0 16
AH8 NA AE9 NA AD12 etk_d15 hsusb2_dat gpio_29 mm2_txse0 hw_dbg
a1 17
AC4, J4, H4, NA AC21, D15, NA F12, F13, vdd_core
D8, AE9, D9, G11, G18, G12, G13,
D15, Y16, H20, M7, H12, H13,
AE18, Y18, M17, R20, T7, J17, J18,
W18, K18, Y8, Y12 K17, K18,
J18, AE19, K19, L14,
Y19, U19, L15, M14,
T19, N19, M15, R17,
M19, J19, R18, R19,
Y20, W20, T17, T18,
V20, U20, T19, T20
P20, N20,
K20, J20,
D22, D23,
AE24, M25,
L25, E25
Y9, W9, T9, NA D13, G9, NA F10, G9, G10, vdd_mpu_iva
R9, M9, L9, G12, H7, K11, H9, H10, J9,
J9, Y10, U10, L9, M9, M10, J10, L11, L12,
T10, R10, N7, N8, P10, M6, M7, M8,
N10, M10, U7, U11, U13, M12, N6, N7,
L10, J10, V7, V11, W9, N8, R6, R7,
Y11, W11, Y9, Y11 R8, T7, T8,
K11, J11, U12, U13,
W12, K13, V12, V13,
Y14, K14, W12, W13
J14, Y15,
W15, J15
U4 NA D6 NA N21 cap_vdd_bb_
mpu_iva
AA15 NA K14 NA Y12 cap_vddu_wk
up_logic
K15 NA K13 NA G18 vdda_dplls_dll
W16 NA U12 NA AA12 vdds_sram
AD3, AD4, NA A18, AC7, A3,A15,B5,F2 M17, M18, vdds
W4, AF8, AC15, AC18, ,F21,L20,W21 M19, N17,
AE8, AF16, AC24, AD20, N18, N19,
AE16, AF23, AE10, C11, U10, V9, V10,
AE23, F25, D9, E24, G4, W9, W10, Y9
F26, AG27 J15, J18, L7,
L24, M4, T4,
T24, W24,
Y4, AB24
U1, J1, F1, AC5, P1, H1, NA NA E16, F15, vdds_mem
J2, F2, R4, F23, E1, C23, F16, G15,
B5, A5, AH6, A4, A7, A10, G16, H15, J6,
B8, A8, B12, A15, A18 J7, J8, K6,
A12, D16, K7, K8
C16, B18,
A18, B22,
A22, G28,
C28
AA16 NA U14 NA U17 vdda_dpll_per
AA14 NA W14 NA AA13 vdda_wkup_b
g_bb
90 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-4. Multiplexing Characteristics (continued)
CBP CBC CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE
7
Bottom Top Bottom Top
AG2, U2, B2, B4, B7, B10, A6, A8, A13, A7, A13, B14, H11, H14, vss
AG3, W3, P3, B15, B18, AB5, AB22, C1, F1, F20, H16, J11,
J3, E3, A3, C22, E2, F22, AC10, AD14, H2, H20, L21, J12, J13, J14,
P4, E4, AG6, H2, P2, AB5, AD25, AE7, M2, P20, R2, J15, J16,
D7, C7, V9, AB14, AB20 B2, B25, C12, W20 Y6, Y11, K10, K11,
U9, P9, N9, D7, D10, D12, AA7, AA16 K14, K15, L8,
K9, W10, D14, D18, L10, L13,
V10, P10, D20, E22, G1, L17, M9,
K10, D10, G8, G10, M10, M11,
C10, AF12, G20, G23, M13, M16,
AE12, Y12, H4, K1, K15, N9, N10, N11,
K12, J12, K25, L10, N12, N13,
Y13, W13, L17, L23, N4, N14, N15,
J13, D13, N10, N17, R1, N16, P8, P10,
C13, W14, R4, R17, T23, P11, P12,
K16, J16, U25, W1, W4, P13, P14,
W17, K17, W23, Y7, P15, P17,
J17, W19, Y10, Y16, R10, R11,
V19, R19, Y26 R14, R15, T9,
P19, L19, T10, T11,
K19, D19, T12, T13,
C19, AF20, T14, T15,
AE20, T20, T16, U9, U11,
AG15, AF2, U14, U15,
AF27, B15, U16, V15,
J27, M2, M26, V16
N2, AA2,
AG10, AC25,
AC26, Y25,
W25, M20,
L20, L26,
G27, D21,
C22, B27,
A26, R20,
R26
V25 NA V25 NA AB13 vdda_dac
Y26 NA V24 NA AB15 vssa_dac
K25 NA N23 NA N24 vdds_mmc1
P25 NA P23 NA H8 vdds_x
AG21 NA AD19 NA NA vdds
AH20 NA AE19 NA N20 cap_vddu_arr
ay
AH21 NA AC19 NA NA vss
AG16 NA AC16 NA NA vss
AG20 NA AD18 NA NA vdds
M28 NA L19 NA NA vss
H28 NA L20 NA NA vdds
V4 NA N9 NA U8 cap_vdd_sra
m_mpu_iva
L21 NA K20 NA H17 cap_vdd_sra
m_core
Y17 NA AF23 NA W15 sys_xtalgnd
(1) This GPIO is only an input (and not an output).
(2) The usage of this GPIO is strongly restricted. For more information, see the General-Purpose Interface chapter of the AM/DM37x
Multimedia Device Technical Reference Manual (literature number SPRUGN4).
(3) UART4 is only available on CBP and CBC packages.
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 91
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
2.5 Signal Description
Many signals are available on multiple pins according to the software configuration of the pin multiplexing
options.
1. SIGNAL NAME: The signal name
2. DESCRIPTION: Description of the signal
3. TYPE: Type = Ball type for this specific function:
I = Input
O = Output
Z = High-impedance
D = Open Drain
DS = Differential
A = Analog
4. BALL BOTTOM: Associated ball(s) bottom
5. BALL TOP: Associated ball(s) top
6. SUBSYSTEM PIN MULTIPLEXING: Contains a list of the pin multiplexing options at the
module/subsystem level. The pin function is selected at the module/system level.
Note: The Subsystem Multiplexing Signals are not described in the following tables. For more
information, see the System Control Module / System Control Module Functional Description / Pad
Functional Multiplexing and Configuration section of the AM/DM37x Multimedia Device Technical
Reference Manual (literature number SPRUGN4).
2.5.1 External Memory Interfaces
NOTE
For more information, see Memory Subsystem / General-Purpose Memory Controller /
GPMC Environment section of the AM/DM37x Multimedia Device Technical Reference
Manual (literature number SPRUGN4).
Table 2-5. External Memory Interfaces GPMC Signals Description(1)
SIGNAL NAME DESCRIPTION [2] TYPE BALL BALL BALL BOTTOM BALL TOP BALL SUBSYSTEM
[1] [3] BOTTOM TOP (CBC Pkg.) [4] (CBC Pkg.) [5] BOTTOM PIN
(CBP (CBP (CUS MULTIPLEXING
Pkg.) [4] Pkg.) [5] Pkg.) [4] [6]
gpmc_a1 GPMC output address bit 1 / O N4 / K1 AC15 / M2 J2 / AA2 NA / U2 K4 / L2 - / gpmc_d0
extended multiplexed address
gpmc_a17
gpmc_a2 GPMC output address bit 2 / O M4 / L1 AB15 / M1 H1 / AA1 NA / U1 K3 / M1 - / gpmc_d1
extended multiplexed address
gpmc_a18
gpmc_a3 GPMC output address bit 3 / O L4 / L2 AC16 / N2 H2 / AC2 NA / V2 K2 / M2 - / gpmc_d2
extended multiplexed address
gpmc_a19
gpmc_a4 GPMC output address bit 4 / O K4 / P2 AB16 / N1 G2 / AC1 NA / V1 J4 / N2 - / gpmc_d3
extended multiplexed address
gpmc_a20
gpmc_a5 GPMC output address bit 5 / O T3 / T1 AC17 / R2 F1 / AE5 NA / AA3 J3 / M3 - / gpmc_d4
extended multiplexed address
gpmc_a21
gpmc_a6 GPMC output address bit 6 / O R3 / V1 AB17 / R1 F2 / AD6 NA / AA4 J2/ P1 - / gpmc_d5
extended multiplexed address
gpmc_a22
gpmc_a7 GPMC output address bit 7 / O N3 / V2 AC18 / T2 E1 / AD5 NA / Y3 J1/ P2 - / gpmc_d6
extended multiplexed address
gpmc_a23
gpmc_a8 GPMC output address bit 8 / O M3 / W2 AB18 / T1 E2 / AC5 NA / Y4 H1/ R1 - / gpmc_d7
extended multiplexed address
gpmc_a24
92 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-5. External Memory Interfaces GPMC Signals Description(1) (continued)
SIGNAL NAME DESCRIPTION [2] TYPE BALL BALL BALL BOTTOM BALL TOP BALL SUBSYSTEM
[1] [3] BOTTOM TOP (CBC Pkg.) [4] (CBC Pkg.) [5] BOTTOM PIN
(CBP (CBP (CUS MULTIPLEXING
Pkg.) [4] Pkg.) [5] Pkg.) [4] [6]
gpmc_a9 GPMC output address bit 9 / O L3 / H2 AC19 / D1 / V1 NA / R1 H2/ R2 - / gpmc_d8
extended multiplexed address AB3
gpmc_a25
gpmc_a10 GPMC output address bit 10 / O K3 / K2 AB19 / D2 / Y1 T1 G2/ T2 - / gpmc_d9
extended multiplexed address AC3
gpmc_a26
gpmc_a11 GPMC output address bit 11 / O NC / P1 AC20 / A4 / T1 - / N1 NA - / gpmc_d10
extended multiplexed address AB4
gpmc_a27
gpmc_a12 General-purpose memory address O R1 AC4 U2 P2 R3 gpmc_d11
bit 12
gpmc_a13 General-purpose memory address O R2 AB6 U1 P1 T3 gpmc_d12
bit 13
gpmc_a14 General-purpose memory address O T2 AC6 P1 M1 U2 gpmc_d13
bit 14
gpmc_a15 General-purpose memory address O W1 AB7 L2 J2 V1 gpmc_d14
bit 15
gpmc_a16 General-purpose memory address O Y1 AC7 M2 K2 V2 gpmc_d15
bit 16
gpmc_a17 General-purpose memory address O N4 AC15 J2 NA K4 gpmc_a1
bit 17
gpmc_a18 General-purpose memory address O M4 AB15 H1 NA K3 gpmc_a2
bit 18
gpmc_a19 General-purpose memory address O L4 AC16 H2 NA K2 gpmc_a3
bit 19
gpmc_a20 General-purpose memory address O K4 AB16 G2 NA J4 gpmc_a4
bit 20
gpmc_a21 General-purpose memory address O T3 AC17 F1 NA J3 gpmc_a5
bit 21
gpmc_a22 General-purpose memory address O R3 AB17 F2 NA J2 gpmc_a6
bit 22
gpmc_a23 General-purpose memory address O N3 AC18 E1 NA J1 gpmc_a7
bit 23
gpmc_a24 General-purpose memory address O M3 AB18 E2 NA H1 gpmc_a8
bit 24
gpmc_a25 General-purpose memory address O L3 AC19 D1 NA H2 gpmc_a9
bit 25
gpmc_a26 General-purpose memory address O K3 AB19 D2 NA G2 gpmc_a10
bit 26
gpmc_d0 GPMC data bit 0 / multiplexed IO K1 M2 AA2 U2 L2 gpmc_d0
address gpmc_a1
gpmc_d1 GPMC data bit 1 / multiplexed IO L1 M1 AA1 U1 M1 gpmc_d1
address gpmc_a2
gpmc_d2 GPMC data bit 2 / multiplexed IO L2 N2 AC2 V2 M2 gpmc_d2
address gpmc_a3
gpmc_d3 GPMC data bit 3 / multiplexed IO P2 N1 AC1 V1 N2 gpmc_d3
address gpmc_a4
gpmc_d4 GPMC data bit 4 / multiplexed IO T1 R2 AE5 AA3 M3 gpmc_d4
address gpmc_a5
gpmc_d5 GPMC data bit 5 / multiplexed IO V1 R1 AD6 AA4 P1 gpmc_d5
address gpmc_a6
gpmc_d6 GPMC data bit 6 / multiplexed IO V2 T2 AD5 Y3 P2 gpmc_d6
address gpmc_a7
gpmc_d7 GPMC data bit 7 / multiplexed IO W2 T1 AC5 Y4 R1 gpmc_d7
address gpmc_a8
gpmc_d8 GPMC data bit 8 / multiplexed IO H2 AB3 V1 R1 R2 gpmc_d8
address gpmc_a9
gpmc_d9 GPMC data bit 9 / multiplexed IO K2 AC3 Y1 T1 T2 gpmc_d9
address gpmc_a10
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 93
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-5. External Memory Interfaces GPMC Signals Description(1) (continued)
SIGNAL NAME DESCRIPTION [2] TYPE BALL BALL BALL BOTTOM BALL TOP BALL SUBSYSTEM
[1] [3] BOTTOM TOP (CBC Pkg.) [4] (CBC Pkg.) [5] BOTTOM PIN
(CBP (CBP (CUS MULTIPLEXING
Pkg.) [4] Pkg.) [5] Pkg.) [4] [6]
gpmc_d10 GPMC data bit 10 / multiplexed IO P1 AB4 T1 N1 U1 gpmc_d10
address gpmc_a11
gpmc_d11 GPMC data bit 11 / multiplexed IO R1 AC4 U2 P2 R3 gpmc_d11
address gpmc_a12
gpmc_d12 GPMC data bit 12 / multiplexed IO R2 AB6 U1 P1 T3 gpmc_d12
address gpmc_a13
gpmc_d13 GPMC data bit 13 / multiplexed IO T2 AC6 P1 M1 U2 gpmc_d13
address gpmc_a14
gpmc_d14 GPMC data bit 14 / multiplexed IO W1 AB7 L2 J2 V1 gpmc_d14
address gpmc_a15
gpmc_d15 GPMC data bit 15 / multiplexed IO Y1 AC7 M2 K2 V2 gpmc_d15
address gpmc_a16
gpmc_ncs0 GPMC Chip Select bit 0 O G4 Y2 AD8 AA8 E2 NA
gpmc_ncs1 GPMC Chip Select bit 1 O H3 Y1 AD1 W1 NA NA
gpmc_ncs2 GPMC Chip Select bit 2 O V8 NA A3 NA NA NA
gpmc_ncs3 GPMC Chip Select bit 3 O U8 NA B6 NA D2 NA
gpmc_ncs4 GPMC Chip Select bit 4 O T8 NA B4 NA F4 NA
gpmc_ncs5 GPMC Chip Select bit 5 O R8 NA C4 NA G5 NA
gpmc_ncs6 GPMC Chip Select bit 6 O P8 NA B5 NA F3 NA
gpmc_ncs7 GPMC Chip Select bit 7 O N8 NA C5 NA G4 NA
gpmc_io_dir GPMC IO direction control for use O N8 NA C5 NA G4 NA
with external transceivers
gpmc_clk GPMC clock O T4 W2 N1 L1 W2 NA
gpmc_nadv_ale Address Valid or Address Latch O F3 W1 AD10 AA9 F1 NA
Enable
gpmc_noe Output Enable O G2 V2 N2 L2 F2 NA
gpmc_nwe Write Enable O F4 V1 M1 K1 G3 NA
gpmc_nbe0_cle Lower Byte Enable. Also used for O G3 AC12 K2 NA K5 NA
Command Latch Enable
gpmc_nbe1 Upper Byte Enable O U3 NA J1 NA L1 NA
gpmc_nwp Flash Write Protect O H1 AB10 AC6 Y5 E1 NA
gpmc_wait0 External indication of wait I M8 AB12 AC11 Y10 C1 NA
gpmc_wait1 External indication of wait I L8 AC10 AC8 Y8 NA NA
gpmc_wait2 External indication of wait I K8 NA B3 NA NA NA
gpmc_wait3 External indication of wait I J8 NA C6 NA C2 NA
(1) NA in table stands for "Not Applicable".
NOTE
For more information, see Memory Subsystem / SDRAM Controller (SDRC) Subsystem /
SDRC Subsystem Environment section of the AM/DM37x Multimedia Device Technical
Reference Manual (literature number SPRUGN4).
94 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-6. External Memory Interfaces SDRC Signals Description(1)
SIGNAL DESCRIPTION [2] TYPE [3] BALL BALL TOP BALL BOTTOM BALL TOP BALL BOTTOM
NAME [1] BOTTOM (CBP Pkg.) (CBC Pkg.) [4](2) (CBC Pkg.) [5] (CUS Pkg.) [4]
(CBP Pkg.) [5]
[4](2)
sdrc_d0 SDRAM data bit 0 IO NA J2 NA D1 D7
sdrc_d1 SDRAM data bit 1 IO NA J1 NA G1 C5
sdrc_d2 SDRAM data bit 2 IO NA G2 NA G2 C6
sdrc_d3 SDRAM data bit 3 IO NA G1 NA E1 B5
sdrc_d4 SDRAM data bit 4 IO NA F2 NA D2 D9
sdrc_d5 SDRAM data bit 5 IO NA F1 NA E2 D10
sdrc_d6 SDRAM data bit 6 IO NA D2 NA B3 C7
sdrc_d7 SDRAM data bit 7 IO NA D1 NA B4 B7
sdrc_d8 SDRAM data bit 8 IO NA B13 NA A10 B11
sdrc_d9 SDRAM data bit 9 IO NA A13 NA B11 C12
sdrc_d10 SDRAM data bit 10 IO NA B14 NA A11 B12
sdrc_d11 SDRAM data bit 11 IO NA A14 NA B12 D13
sdrc_d12 SDRAM data bit 12 IO NA B16 NA A16 C13
sdrc_d13 SDRAM data bit 13 IO NA A16 NA A17 B14
sdrc_d14 SDRAM data bit 14 IO NA B19 NA B17 A14
sdrc_d15 SDRAM data bit 15 IO NA A19 NA B18 B15
sdrc_d16 SDRAM data bit 16 IO NA B3 NA B7 C9
sdrc_d17 SDRAM data bit 17 IO NA A3 NA A5 E12
sdrc_d18 SDRAM data bit 18 IO NA B5 NA B6 B8
sdrc_d19 SDRAM data bit 19 IO NA A5 NA A6 B9
sdrc_d20 SDRAM data bit 20 IO NA B8 NA A8 C10
sdrc_d21 SDRAM data bit 21 IO NA A8 NA B9 B10
sdrc_d22 SDRAM data bit 22 IO NA B9 NA A9 D12
sdrc_d23 SDRAM data bit 23 IO NA A9 NA B10 E13
sdrc_d24 SDRAM data bit 24 IO NA B21 NA C21 E15
sdrc_d25 SDRAM data bit 25 IO NA A21 NA D20 D15
sdrc_d26 SDRAM data bit 26 IO NA D22 NA B19 C15
sdrc_d27 SDRAM data bit 27 IO NA D23 NA C20 B16
sdrc_d28 SDRAM data bit 28 IO NA E22 NA D21 C16
sdrc_d29 SDRAM data bit 29 IO NA E23 NA E20 D16
sdrc_d30 SDRAM data bit 30 IO NA G22 NA E21 B17
sdrc_d31 SDRAM data bit 31 IO NA G23 NA G21 B18
sdrc_ba0 SDRAM bank select 0 O NA AB21 NA AA18 C18
sdrc_ba1 SDRAM bank select 1 O NA AC21 NA V20 D18
sdrc_a0 SDRAM address bit 0 O NA N22 NA G20 A4
sdrc_a1 SDRAM address bit 1 O NA N23 NA K20 B4
sdrc_a2 SDRAM address bit 2 O NA P22 NA J20 D6
sdrc_a3 SDRAM address bit 3 O NA P23 NA J21 B3
sdrc_a4 SDRAM address bit 4 O NA R22 NA U21 B2
sdrc_a5 SDRAM address bit 5 O NA R23 NA R20 C3
sdrc_a6 SDRAM address bit 6 O NA T22 NA M21 E3
sdrc_a7 SDRAM address bit 7 O NA T23 NA M20 F6
sdrc_a8 SDRAM address bit 8 O NA U22 NA N20 E10
sdrc_a9 SDRAM address bit 9 O NA U23 NA K21 E9
sdrc_a10 SDRAM address bit 10 O NA V22 NA Y16 E7
sdrc_a11 SDRAM address bit 11 O NA V23 NA N21 G6
sdrc_a12 SDRAM address bit 12 O NA W22 NA R21 G7
sdrc_a13 SDRAM address bit 13 O NA W23 NA AA15 F7
sdrc_a14 SDRAM address bit 14 O NA Y22 NA Y12 F9
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 95
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-6. External Memory Interfaces SDRC Signals Description(1) (continued)
SIGNAL DESCRIPTION [2] TYPE [3] BALL BALL TOP BALL BOTTOM BALL TOP BALL BOTTOM
NAME [1] BOTTOM (CBP Pkg.) (CBC Pkg.) [4](2) (CBC Pkg.) [5] (CUS Pkg.) [4]
(CBP Pkg.) [5]
[4](2)
sdrc_ncs0 Chip select 0 O NA M22 NA T21 A19
sdrc_ncs1 Chip select 1 O NA M23 NA T20 B19
sdrc_clk Clock IO NA A11 NA A12 A10
sdrc_nclk Clock Invert O NA B11 NA B13 A11
sdrc_cke0 Clock Enable 0 O NA J22 NA Y15 B20
sdrc_cke1 Clock Enable 1 O NA J23 NA Y13 C20
sdrc_nras SDRAM Row Access O NA L23 NA V21 D19
sdrc_ncas SDRAM column O NA L22 NA U20 C19
address strobe
sdrc_nwe SDRAM write enable O NA K23 NA Y18 A20
sdrc_dm 0 Data Mask 0 O NA C1 NA H1 B6
sdrc_ dm1 Data Mask 1 O NA A17 NA A14 B13
sdrc_ dm2 Data Mask 2 O NA A6 NA A4 A7
sdrc_dm 3 Data Mask 3 O NA A20 NA A18 A16
sdrc_dqs0 Data Strobe 0 IO NA B17 NA C2 A5
sdrc_dqs1 Data Strobe 1 IO NA NA NA B15 A13
sdrc_dqs2 Data Strobe 2 IO NA NA NA B8 A8
sdrc_dqs3 Data Strobe 3 IO NA B20 NA A19 A17
(1) NA in this table stands for "Not Applicable".
(2) For a list of pins not supported on a particular package, see Table 2-4.
96 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
2.5.2 Video Interfaces
Table 2-7. Video Interfaces CAM Signals Description
SIGNAL NAME DESCRIPTION [2] TYPE [3] BALL BOTTOM BALL BOTTOM BALL BOTTOM
[1] (CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4]
cam_hs Camera Horizontal Synchronization IO A24 C23 A22
cam_vs Camera Vertical Synchronization IO A23 D23 E18
cam_xclka Camera Clock Output a O C25 C25 B22
cam_xclkb Camera Clock Output b O B26 E25 C22
cam_d0 Camera digital image data bit 0 I AG17 AE16 AB18
cam_d1 Camera digital image data bit 1 I AH17 AE15 AC18
cam_d2 Camera digital image data bit 2 I B24 A24 G19
cam_d3 Camera digital image data bit 3 I C24 B24 F19
cam_d4 Camera digital image data bit 4 I D24 D24 G20
cam_d5 Camera digital image data bit 5 I A25 C24 B21
cam_d6 Camera digital image data bit 6 I K28 P25 L24
cam_d7 Camera digital image data bit 7 I L28 P26 K24
cam_d8 Camera digital image data bit 8 I K27 N25 J23
cam_d9 Camera digital image data bit 9 I L27 N26 K23
cam_d10 Camera digital image data bit 10 I B25 D25 F21
cam_d11 Camera digital image data bit 11 I C26 E26 G21
cam_fld Camera field identification IO C23 B23 H24
cam_pclk Camera pixel clock I C27 C26 J19
cam_wen Camera Write Enable I B23 A23 F18
cam_strobe Flash strobe control signal O D25 D26 J20
cam_global_reset Global reset is used strobe IO C23 / AH3 / AA21 B23/M3/V17 H24/ AA2/ AB20
synchronization
cam_shutter Mechanical shutter control signal O B23 / AF3 / T21 A23 / T19/ L3 F18/ Y2/ AA18
NOTE
For more information, see Display Subsystem / Display Subsystem Environment section of
the AM/DM37x Multimedia Device Technical Reference Manual (literature number
SPRUGN4).
Table 2-8. Video Interfaces DSS Signals Description
SIGNAL NAME DESCRIPTION [2] TYPE [3] BALL BOTTOM BALL BOTTOM BALL BOTTOM
[1] (CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4]
dss_pclk LCD Pixel Clock O D28 G25 G22
dss_hsync LCD Horizontal Synchronization O D26 K24 E22
dss_vsync LCD Vertical Synchronization O D27 M25 F22
dss_acbias AC bias control (STN) or pixel data enable (TFT) output O E27 F26 J21
dss_data0 LCD Pixel Data bit 0 O AG22 / H26 AE21 / M24 AC19 / G24
dss_data1 LCD Pixel Data bit 1 O AH22 / H25 AE22 / M26 AB19 / H23
dss_data2 LCD Pixel Data bit 2 O AG23 / E28 AE23 / F25 AD20 / D23
dss_data3 LCD Pixel Data bit 3 O AH23 / J26 AE24 / N24 AC20 / K22
dss_data4 LCD Pixel Data bit 4 O AG24 / AC27 AD23 / AC25 AD21 / V21
dss_data5 LCD Pixel Data bit 5 O AH24 / AC28 AD24 / AB25 AC21 / W21
dss_data6 LCD Pixel Data bit 6 O E26 G26 D24
dss_data7 LCD Pixel Data bit 7 O F28 H25 E23
dss_data8 LCD Pixel Data bit 8 O F27 H26 E24
dss_data9 LCD Pixel Data bit 9 O G26 J26 F23
dss_data10 LCD Pixel Data bit 10 O AD28 AC26 AC22
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 97
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-8. Video Interfaces DSS Signals Description (continued)
SIGNAL NAME DESCRIPTION [2] TYPE [3] BALL BOTTOM BALL BOTTOM BALL BOTTOM
[1] (CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4]
dss_data11 LCD Pixel Data bit 11 O AD27 AD26 AC23
dss_data12 LCD Pixel Data bit 12 O AB28 AA25 AB22
dss_data13 LCD Pixel Data bit 13 O AB27 Y25 Y22
dss_data14 LCD Pixel Data bit 14 O AA28 AA26 W22
dss_data15 LCD Pixel Data bit 15 O AA27 AB26 V22
dss_data16 LCD Pixel Data bit 16 O G25 L25 J22
dss_data17 LCD Pixel Data bit 17 O H27 L26 G23
dss_data18 LCD Pixel Data bit 18 O H26 / AH26 M24 / F3 G24 / AB12
dss_data19 LCD Pixel Data bit 19 O H25 / AG26 M26 / D3 H23 / AC16
dss_data20 LCD Pixel Data bit 20 O E28 / AF18 F25 / E3 D23 / AD18
dss_data21 LCD Pixel Data bit 21 O J26 / AF19 N24 / E4 K22 / AC17
dss_data22 LCD Pixel Data bit 22 O AC27 / AE21 AC25 / G23 V21 / AB16
dss_data23 LCD Pixel Data bit 23 O AC28 / AF21 AB25 / D4 W21 / AA15
Table 2-9. Video Interfaces RFBI Signals Description
SIGNAL DESCRIPTION [2] TYPE [3] BALL BOTTOM BALL BOTTOM BALL BOTTOM SUBSYSTEM PIN
NAME [1] (CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4] MULTIPLEXING [6]
rfbi_a0 RFBI command/data control O E27 F26 J21 dss_acbias
rfbi_cs0 1st LCD chip select O D26 K24 E22 dss_hsync
rfbi_da0 RFBI data bus 0 IO AG22 / H26 AE21 / M24 AC19 / G24 dss_data0
rfbi_da1 RFBI data bus 1 IO AH22 / H25 AE22 / M26 AB19 / H23 dss_data1
rfbi_da2 RFBI data bus 2 IO AG23 / E28 AE23 / F25 AD20 / D23 dss_data2
rfbi_da3 RFBI data bus 3 IO AH23 / J26 AE24 / N24 AC20 / K22 dss_data3
rfbi_da4 RFBI data bus 4 IO AG24 / AC27 AD23 / AC25 AD21 / V21 dss_data4
rfbi_da5 RFBI data bus 5 IO AH24 / AC28 AD24 / AB25 AC21 / W21 dss_data5
rfbi_da6 RFBI data bus 6 IO E26 G26 D24 dss_data6
rfbi_da7 RFBI data bus 7 IO F28 H25 E23 dss_data7
rfbi_da8 RFBI data bus 8 IO F27 H26 E24 dss_data8
rfbi_da9 RFBI data bus 9 IO G26 J26 F23 dss_data9
rfbi_da10 RFBI data bus 10 IO AD28 AC26 AC22 dss_data10
rfbi_da11 RFBI data bus 11 IO AD27 AD26 AC23 dss_data11
rfbi_da12 RFBI data bus 12 IO AB28 AA25 AB22 dss_data12
rfbi_da13 RFBI data bus 13 IO AB27 Y25 Y22 dss_data13
rfbi_da14 RFBI data bus 14 IO AA28 AA26 W22 dss_data14
rfbi_da15 RFBI data bus 15 IO AA27 AB26 V22 dss_data15
rfbi_rd Read enable for RFBI O D28 G25 G22 dss_pclk
rfbi_wr Write Enable for RFBI O D27 M25 F22 dss_vsync
rfbi_te_vsync tearing effect removal and Vsync input I G25 L25 J22 dss_data16
0 from 1st LCD
rfbi_hsync0 Hsync for 1st LCD I H27 L26 G23 dss_data17
rfbi_te_vsync tearing effect removal and Vsync input I H26 / AH26 M24 / F3 G24 / AB12 dss_data18
1 from 2nd LCD
rfbi_hsync1 Hsync for 2nd LCD I H25 / AG26 M26 / D3 H23 / AC16 dss_data19
rfbi_cs1 2nd LCD chip select O E28 / AF18 F25 / E3 D23 / AD18 dss_data20
98 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-10. Video Interfaces TV Signals Description
SIGNAL NAME DESCRIPTION [2] TYPE [3] BALL BOTTOM BALL BOTTOM BALL BOTTOM
[1] (CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4]
cvideo1_out TV analog output Composite: AO Y28 W26 AB24
cvideo1_out
cvideo2_out TV analog output S-VIDEO: cvideo2_out AO W28 V26 AA23
cvideo1_vfb cvideo1_vfb: Feedback through external AO Y27 W25 AB23
resistor to composite
cvideo2_vfb cvideo2_vfb: Feedback through external AO W27 U24 Y23
resistor to S-VIDEO
cvideo1_rset cvideo1 input reference current resistor AIO W26 V23 Y24
setting
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 99
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
2.5.3 Serial Communication Interfaces
For more information, see HDQ/1-Wire / HDQ/1-Wire Environment section of the AM/DM37x Multimedia
Device Technical Reference Manual (literature number SPRUGN4).
Table 2-11. Serial Communication Interfaces HDQ/1-Wire Signals Description
SIGNAL DESCRIPTION [2] TYPE [3] BALL BOTTOM BALL BOTTOM BALL BOTTOM
NAME [1] (CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4]
hdq_sio Bidirectional HDQ 1-Wire control and data IOD J25 J23 A24
Interface. Output is open drain.
For more information, see Multimaster High-Speed I2C Controller / HS I2C Environment section of the
AM/DM37x Multimedia Device Technical Reference Manual (literature number SPRUGN4).
Table 2-12. Serial Communication Interfaces I2C Signals Description
SIGNAL NAME DESCRIPTION [2] TYPE [3] BALL BOTTOM BALL BOTTOM BALL BOTTOM
[1] (CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4]
INTER-INTEGRATED CIRCUIT INTERFACE (I2C1)
i2c1_scl OD K21 J25 K20
I2C Master Serial clock. Output is open
drain.
i2c1_sda IOD J21 J24 K21
I2C Serial Bidirectional Data. Output is
open drain.
INTER-INTEGRATED CIRCUIT INTERFACE (I2C3)
i2c3_scl OD AF14 AB4 AC13
I2C Master Serial clock. Output is open
drain.
i2c3_sda IOD AG14 AC4 AC12
I2C Serial Bidirectional Data. Output is
open drain.
i2c3_sccbe Serial Camera Control Bus Enable OD J25 J23 A24
INTER-INTEGRATED CIRCUIT INTERFACE (I2C2)
i2c2_scl OD AF15 C2 AC15
I2C Master Serial clock. Output is open
drain.
i2c2_sda IOD AE15 C1 AC14
I2C Serial Bidirectional Data. Output is
open drain.
i2c2_sccbe Serial Camera Control Bus Enable OD J25 J23 A24
For more information, see Power Reset and Clock Management / PRCM Introduction to Power
Management / SmartReflex Voltage-Control Overview section of the AM/DM37x Multimedia Device
Technical Reference Manual (literature number SPRUGN4).
Table 2-13. Serial Communication Interfaces SmartReflex Signals Description(1)
SIGNAL NAME DESCRIPTION [2] TYPE [3] BALL BOTTOM BALL BOTTOM BALL BOTTOM
[1] (CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4]
INTER-INTEGRATED CIRCUIT INTERFACE (I2C4)
i2c4_scl OD AD26 AD15 Y16
I2C Master Serial clock. Output is open
drain.
i2c4_sda IOD AE26 W16 Y15
I2C Serial Bidirectional Data. Output is
open drain.
(1) For more information on SmartReflex voltage control, see the PRCM chapter of the AM/DM37x Multimedia Device Technical Reference
Manual (literature number SPRUGN4).
For more information, see Multi-Channel Buffered Serial Port / McBSP Environment section of the
AM/DM37x Multimedia Device Technical Reference Manual (literature number SPRUGN4).
Table 2-14. Serial Communication Interfaces McBSP LP Signals Description
SIGNAL NAME DESCRIPTION [2] TYPE [3] BALL BOTTOM BALL BOTTOM BALL BOTTOM
[1] (CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4]
MULTICHANNEL SERIAL (McBSP LP 1)
100 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-14. Serial Communication Interfaces McBSP LP Signals Description (continued)
SIGNAL NAME DESCRIPTION [2] TYPE [3] BALL BOTTOM BALL BOTTOM BALL BOTTOM
[1] (CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4]
mcbsp1_dr Received serial data I U21 T20 Y18
mcbsp1_clkr Receive Clock IO Y8 / Y21 U19 / H3 V7 / W19
mcbsp1_fsr Receive frame synchronization IO AA21 V17 AB20
mcbsp1_dx Transmitted serial data O V21 U17 W18
mcbsp1_clkx Transmit clock IO W21 T17 V18
mcbsp1_fsx Transmit frame synchronization IO K26 P20 AA19
mcbsp_clks External clock input (shared by McBSP1, 2, I T21 T19 AA18
3, 4, and 5)
MULTICHANNEL SERIAL (McBSP LP 2)
mcbsp2_dr Received serial data I R21 T18 V19
mcbsp2_dx Transmitted serial data O M21 R19 R20
mcbsp2_clkx Combined serial clock IO N21 R18 T21
mcbsp2_fsx Combined frame synchronization IO P21 U18 V20
MULTICHANNEL SERIAL (McBSP LP 3)
mcbsp3_dr Received serial data I AE6 / AB25 / U21 T20 / AA24 / N3 V5 / Y18
mcbsp3_dx Transmitted serial data O AF6 / AB26 / V21 U17 / Y24 / P3 V6 / W18
mcbsp3_clkx Combined serial clock IO AF5 / AA25 / W21 T17 / AD22 / U3 W4 / V18
mcbsp3_fsx Combined frame synchronization IO AE5 / AD25 / K26 P20 / AD21 / W3 V4 / AA19
MULTICHANNEL SERIAL (McBSP LP 4)
mcbsp4_dr Received serial data I R8 / AD1 C4 / U4 G5
mcbsp4_dx Transmitted serial data O P8 / AD2 B5 / R3 F3
mcbsp4_clkx Combined serial clock IO T8 / AE1 B4 / V3 F4
mcbsp4_fsx Combined frame synchronization IO N8 / AC1 C5 / T3 G4
MULTICHANNEL SERIAL (McBSP LP 5)
mcbsp5_dr Received serial data I AE11 Y3 AC5
mcbsp5_dx Transmitted serial data O AF13 AE3 AC8
mcbsp5_clkx Combined serial clock IO AF10 AB2 AC1
mcbsp5_fsx Combined frame synchronization IO AH9 AB1 AD2
For more information, see Multichannel SPI / McSPI Environment section of the AM/DM37x Multimedia
Device Technical Reference Manual (literature number SPRUGN4).
Table 2-15. Serial Communication Interfaces McSPI Signals Description(1)
SIGNAL NAME DESCRIPTION [2] TYPE [3] BALL BOTTOM BALL BOTTOM BALL BOTTOM
[1] (CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4]
MULTICHANNEL SERIAL PORT INTERFACE (McSPI1)
mcspi1_clk SPI Clock IO AB3 P9 T5
mcspi1_simo Slave data in, master data out IO AB4 P8 R4
mcspi1_somi Slave data out, master data in IO AA4 P7 T4
mcspi1_cs0 SPI Enable 0, polarity configured by IO AC2 R7 T6
software
mcspi1_cs1 SPI Enable 1, polarity configured by O AC3 R8 NA
software
mcspi1_cs2 SPI Enable 2, polarity configured by O AB1 R9 NA
software
mcspi1_cs3 SPI Enable 3, polarity configured by O AB2 T8 R5
software
MULTICHANNEL SERIAL PORT INTERFACE (McSPI2)
mcspi2_clk SPI Clock IO AA3 W7 N5
mcspi2_simo Slave data in, master data out IO Y2 W8 N4
mcspi2_somi Slave data out, master data in IO Y3 U8 N3
mcspi2_cs0 SPI Enable 0, polarity configured by IO Y4 V8 M5
software
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 101
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-15. Serial Communication Interfaces McSPI Signals Description(1) (continued)
SIGNAL NAME DESCRIPTION [2] TYPE [3] BALL BOTTOM BALL BOTTOM BALL BOTTOM
[1] (CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4]
mcspi2_cs1 SPI Enable 1, polarity configured by O V3 V9 M4
software
MULTICHANNEL SERIAL PORT INTERFACE (McSPI3)
mcspi3_clk SPI Clock IO H26 / AE2 / AE13 W10 / M24 / AA3 G24 / Y1 / AD8
mcspi3_simo Slave data in, master data out IO H25 / AG5 / AF11 R10 / M26 / AC3 H23 / AB5 / AD6
mcspi3_somi Slave data out, master data in IO E28 / AH5 / AG12 F25 / T10 / AD4 D23 / AB3 / AC6
mcspi3_cs0 SPI Enable 0, polarity configured by IO J26 / AF4 / AH12 U9 / N24 / AD3 K22 / V3 / AC7
software
mcspi3_cs1 SPI Enable 1, polarity configured by O AC27 / AG4 / AH14 AC25 / U10 / AD2 V21 / W3 / AD9
software
MULTICHANNEL SERIAL PORT INTERFACE (McSPI4)
mcspi4_clk SPI Clock IO Y8 / Y21 U19 / H3 V7 / W19
mcspi4_simo Slave data in, master data out IO V21 U17 W18
mcspi4_somi Slave data out, master data in IO U21 T20 Y18
mcspi4_cs0 SPI Enable 0, polarity configured by IO K26 P20 AA19
software
(1) NA in this table stands for "Not applicable".
For more information, see UART/IrDA/CIR / UART/IrDA/CIR Environment section of the AM/DM37x
Multimedia Device Technical Reference Manual (literature number SPRUGN4).
Table 2-16. Serial Communication Interfaces UARTs Signals Description
SIGNAL NAME DESCRIPTION [2] TYPE [3] BALL BOTTOM BALL BOTTOM BALL BOTTOM
[1] (CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4]
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART1)
uart1_cts UART1 Clear To Send I AG22 / W8 / T21 AE21 / T19 / W2 AC19 / AC2 / AA18
uart1_rts UART1 Request To Send O AH22 / AA9 AE22 / R2 W6 / AB19
uart1_rx UART1 Receive data I F28 / Y8 / AE7 H3 / H25 / AE4 E23 / V7 / AC3
uart1_tx UART1 Transmit data O E26 / AA8 L4 / G26 D24 / W7
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART2)
uart2_cts UART2 Clear To Send I AF6 / AB26 / U26 Y24/ P3/ W20 V6/ U23
uart2_rts UART2 Request To Send O AE6 / AB25 / U27 AA24/ N3/ V18 V5/ U24
uart2_rx UART2 Receive data I AE5 / AD25/ U28 W3/ AD21/ Y20 T23/ V4
uart2_tx UART2 Transmit data O AF5 / AA25/ T27 U3/AD22/V20 T24/ W4
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART3) / IrDA
uart3_cts_rctx UART3 Clear To Send (input), IO H18 / U26 W20 / F23 A23 / U23
Remote TX (output)
uart3_rts_sd UART3 Request To Send, IR enable O H19 / U27 V18 / F24 B23 / U24
uart3_rx_irrx UART3 Receive data, IR and I AG24 / H20 / U28 / F27 AD23 / Y20 / H24/ H26 AD21 / B24 / T23 / E24
Remote RX
uart3_tx_irtx UART3 Transmit data, IR TX O AH24 / H21 / T27/ G26 AD24 / V20 / J29 / G24 AC21 / C23 / T24/ F23
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART4) / IrDA
uart4_rx UART4 Receive data I J8 C6 NA
uart4_tx UART4 Transmit data O K8 B3 NA
For more information, see High-Speed USB Host Subsystem and High-Speed USB OTG Controller /
High-Speed USB Host Subsystem / High-Speed USB Host Subsystem Environment section of the
AM/DM37x Multimedia Device Technical Reference Manual (literature number SPRUGN4).
Table 2-17. Serial Communication Interfaces USB Signals DescriptionSection 4.3.6
SIGNAL NAME DESCRIPTION [2] TYPE BALL BOTTOM BALL BOTTOM BALL BOTTOM
[1] [3] (CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4]
HIGH-SPEED UNIVERSAL SERIAL BUS INTERFACE (HSUSB0)
102 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-17. Serial Communication Interfaces USB Signals DescriptionSection 4.3.6 (continued)
SIGNAL NAME DESCRIPTION [2] TYPE BALL BOTTOM BALL BOTTOM BALL BOTTOM
[1] [3] (CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4]
hsusb0_clk Dedicated for external transceiver 60-MHz clock input to PHY I T28 W19 R21
hsusb0_stp Dedicated for external transceiver Stop signal O T25 U20 R23
hsusb0_dir Dedicated for external transceiver Data direction control from I R28 V19 P23
PHY
hsusb0_nxt Dedicated for external transceiver Next signal from PHY I T26 W18 R22
hsusb0_data0 Dedicated for external transceiver Bidirectional data bus IO T27 V20 T24
hsusb0_data1 Dedicated for external transceiver Bidirectional data bus IO U28 Y20 T23
hsusb0_data2 Dedicated for external transceiver Bidirectional data bus IO U27 V18 U24
hsusb0_data3 Dedicated for external transceiver Bidirectional data bus IO U26 W20 U23
hsusb0_data4 Dedicated for external transceiver Bidirectional data bus IO U25 W17 W24
additional signals for 12-pin ULPI operation
hsusb0_data5 Dedicated for external transceiver Bidirectional data bus IO V28 Y18 V23
additional signals for 12-pin ULPI operation
hsusb0_data6 Dedicated for external transceiver Bidirectional data bus IO V27 Y19 W23
additional signals for 12-pin ULPI operation
hsusb0_data7 Dedicated for external transceiver Bidirectional data bus IO V26 Y17 T22
additional signals for 12-pin ULPI operation
MM_FSUSB3
mm3_rxdm Vminus receive data (not used in 3- or 4-pin configurations) IO AE3 K3 NA
mm3_rxdp Vplus receive data (not used in 3- or 4-pin configurations) IO AH3 M3 NA
mm3_rxrcv Differential receiver signal input (not used in 3-pin mode) IO AD1 U4 NA
mm3_txse0 Single-ended zero. Used as VM in 4-pin VP_VM mode. IO AE1 V3 NA
mm3_txdat USB data. Used as VP in 4-pin VP_VM mode. IO AD2 R3 NA
mm3_txen_n Transmit enable IO AC1 T3 NA
MM_FSUSB2
mm2_rxdm Vminus receive data (not used in 3- or 4-pin configurations) IO AH7 AF7 AD11
mm2_rxdp Vplus receive data (not used in 3- or 4-pin configurations) IO AF7 AF6 AC9
mm2_rxrcv Differential receiver signal input (not used in 3-pin mode) IO AG8 AF9 AC11
mm2_txse0 Single-ended zero. Used as VM in 4-pin VP_VM mode. IO AH8 AE9 AD12
mm2_txdat USB data. Used as VP in 4-pin VP_VM mode. IO AB2 T8 R5
mm2_txen_n Transmit enable IO V3 V9 M4
MM_FSUSB1
mm1_rxdm Vminus receive data (not used in 3- or 4-pin configurations) IO AG9 V2 AD5
mm1_rxdp Vplus receive data (not used in 3- or 4-pin configurations) IO AF10 AB2 AC1
mm1_rxrcv Differential receiver signal input (not used in 3-pin mode) IO AF11 AC3 AD6
mm1_txse0 Single-ended zero. Used as VM in 4-pin VP_VM mode. IO AG12 AD4 AC6
mm1_txdat USB data. Used as VP in 4-pin VP_VM mode. IO AH12 AD3 AC7
mm1_txen_n Transmit enable IO AH14 AD2 AD9
HSUSB2
hsusb2_clk Dedicated for external transceiver 60-MHz clock input to PHY O AE7 AE4 AC3
hsusb2_stp Dedicated for external transceiver Stop signal O AF7 AF6 AC9
hsusb2_dir Dedicated for external transceiver Data direction control from I AG7 AE6 AC10
PHY
hsusb2_nxt Dedicated for external transceiver Next signal from PHY I AH7 AF7 AD11
hsusb2_data0 Dedicated for external transceiver Bidirectional data bus IO AG8 AF9 AC11
hsusb2_data1 Dedicated for external transceiver Bidirectional data bus IO AH8 AE9 AD12
hsusb2_data2 Dedicated for external transceiver Bidirectional data bus IO AB2 T8 R5
hsusb2_data3 Dedicated for external transceiver Bidirectional data bus IO V3 V9 M4
hsusb2_data4 Dedicated for external transceiver Bidirectional data bus IO Y2 W8 N4
additional signals for 12-pin ULPI operation
hsusb2_data5 Dedicated for external transceiver Bidirectional data bus IO Y3 U8 N3
additional signals for 12-pin ULPI operation
hsusb2_data6 Dedicated for external transceiver Bidirectional data bus IO Y4 V8 M5
additional signals for 12-pin ULPI operation
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 103
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-17. Serial Communication Interfaces USB Signals DescriptionSection 4.3.6 (continued)
SIGNAL NAME DESCRIPTION [2] TYPE BALL BOTTOM BALL BOTTOM BALL BOTTOM
[1] [3] (CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4]
hsusb2_data7 Dedicated for external transceiver Bidirectional data bus IO AA3 W7 N5
additional signals for 12-pin ULPI operation
HSUSB1
hsusb1_clk Dedicated for external transceiver 60-MHz clock input to PHY O AE10 AB3 AD3
hsusb1_stp Dedicated for external transceiver Stop signal O AF10 AB2 AC1
hsusb1_dir Dedicated for external transceiver data direction control from I AF9 AA4 AC4
PHY
hsusb1_nxt Dedicated for external transceiver Next signal from PHY I AG9 V2 AD5
hsusb1_data0 Dedicated for external transceiver Bidirectional data bus IO AF11 AC3 AD6
hsusb1_data1 Dedicated for external transceiver Bidirectional data bus IO AG12 AD4 AC6
hsusb1_data2 Dedicated for external transceiver Bidirectional data bus IO AH12 AD3 AC7
hsusb1_data3 Dedicated for external transceiver Bidirectional data bus IO AH14 AD2 AD9
hsusb1_data4 Dedicated for external transceiver Bidirectional data bus IO AE11 Y3 AC5
additional signals for 12-pin ULPI operation
hsusb1_data5 Dedicated for external transceiver Bidirectional data bus IO AH9 AB1 AD2
additional signals for 12-pin ULPI operation
hsusb1_data6 Dedicated for external transceiver Bidirectional data bus IO AF13 AE3 AC8
additional signals for 12-pin ULPI operation
hsusb1_data7 Dedicated for external transceiver Bidirectional data bus IO AE13 AA3 AD8
additional signals for 12-pin ULPI operation
NA in this table stands for "Not applicable".
This pin is not supported on the CUS package.
104 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
2.5.4 Removable Media Interfaces
For more information, see MMC/SDIO Card Interface / MMC/SDIO Environment section of the AM/DM37x
Multimedia Device Technical Reference Manual (literature number SPRUGN4).
Table 2-18. Removable Media Interfaces MMC/SDIO Signals Description
SIGNAL NAME DESCRIPTION [2] TYPE BALL BOTTOM BALL BOTTOM BALL BOTTOM
[1] [3] (CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4]
MULTIMEDIA MEMORY CARD (MMC1) / SECURE DIGITAL IO (SDIO1)
mmc1_clk MMC/SD Output Clock O N28 N19 M23
mmc1_cmd MMC/SD command signal IO M27 L18 L23
mmc1_dat0 MMC/SD Card Data bit 0 / SPI Serial Input IO N27 M19 M22
mmc1_dat1 MMC/SD Card Data bit 1 IO N26 M18 M21
mmc1_dat2 MMC/SD Card Data bit 2 IO N25 K18 M20
mmc1_dat3 MMC/SD Card Data bit 3 IO P28 N20 N23
MULTIMEDIA MEMORY CARD (MMC2) / SECURE DIGITAL IO (SDIO2)
mmc2_clk MMC/SD Output Clock O AE2 W10 Y1
mmc2_dir_dat0 Direction control for DAT0 signal case an external O AE4 V10 AB2
transceiver used
mmc2_dir_dat1 Direction control for DAT1 and DAT3 signals case an O AH3 M3 AA2
external transceiver used
mmc2_dir_dat2 Direction control for DAT2 signal case an external O AF19 E4 AC17
transceiver used
mmc2_dir_dat3 Direction control for DAT4, DAT5, DAT6, and DAT7 O AE21 G3 AB16
signals case an external transceiver used
mmc2_clkin MMC/SD input Clock I AE3 K3 AA1
mmc2_dat0 MMC/SD Card Data bit 0 IO AH5 T10 AB3
mmc2_dat1 MMC/SD Card Data bit 1 IO AH4 T9 Y3
mmc2_dat2 MMC/SD Card Data bit 2 IO AG4 U10 W3
mmc2_dat3 MMC/SD Card Data bit 3 IO AF4 U9 V3
mmc2_dat4 MMC/SD Card Data bit 4 IO AE4 / AB3 P9 / V10 AB2 / T5
mmc2_dat5 MMC/SD Card Data bit 5 IO AH3 / AB4 M3/P8 AA2 / R4
mmc2_dat6 MMC/SD Card Data bit 6 IO AF3 / AA4 L3/P7 Y2 / T4
mmc2_dat7 MMC/SD Card Data bit 7 IO AE3 / AC2 K3/R7 AA1 / T6
mmc2_dir_cmd Direction control for CMD signal case an external O AF3 L3 Y2
transceiver is used
mmc2_cmd MMC/SD command signal IO AG5 R10 AB5
MULTIMEDIA MEMORY CARD (MMC3) / SECURE DIGITAL IO (SDIO3)
mmc3_clk MMC/SD Output Clock O AB1 / AF10 R9 / AB2 AC1
mmc3_cmd MMC/SD command signal IO AC3 / AE10 R8 / AB3 AD3
mmc3_dat0 MMC/SD Card Data bit 0 / SPI Serial Input IO AE4 / AE11 V10 / Y3 AB2 / AC5
mmc3_dat1 MMC/SD Card Data bit 1 IO AH3 / AH9 M3/AB1 AA2 / AD2
mmc3_dat2 MMC/SD Card Data bit 2 IO AF3 / AF13 L3/AE3 Y2 / AC8
mmc3_dat3 MMC/SD Card Data bit 3 IO AE3 / AE13 K3/AA3 AA1 / AD8
mmc3_dat4 MMC/SD Card Data bit 4 IO AF11 AC3 AD6
mmc3_dat5 MMC/SD Card Data bit 5 IO AG9 V2 AD5
mmc3_dat6 MMC/SD Card Data bit 6 IO AF9 AA4 AC4
mmc3_dat7 MMC/SD Card Data bit 7 IO AH14 AD2 AD9
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 105
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
2.5.5 Test Interfaces
Table 2-19. Test Interfaces ETK Signals Description
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] BALL BOTTOM BALL BOTTOM BALL BOTTOM
(CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4]
etk_ctl ETK trace ctl O AE10 AB3 AD3
etk_clk ETK trace clock O AF10 AB2 AC1
etk_d0 ETK data 0 O AF11 AC3 AD6
etk_d1 ETK data 1 O AG12 AD4 AC6
etk_d2 ETK data 2 O AH12 AD3 AC7
etk_d3 ETK data 3 O AE13 AA3 AD8
etk_d4 ETK data 4 O AE11 Y3 AC5
etk_d5 ETK data 5 O AH9 AB1 AD2
etk_d6 ETK data 6 O AF13 AE3 AC8
etk_d7 ETK data 7 O AH14 AD2 AD9
etk_d8 ETK data 8 O AF9 AA4 AC4
etk_d9 ETK data 9 O AG9 V2 AD5
etk_d10 ETK data 10 O AE7 AE4 AC3
etk_d11 ETK data 11 O AF7 AF6 AC9
etk_d12 ETK data 12 O AG7 AE6 AC10
etk_d13 ETK data 13 O AH7 AF7 AD11
etk_d14 ETK data 14 O AG8 AF9 AC11
etk_d15 ETK data 15 O AH8 AE9 AD12
Table 2-20. Test Interfaces JTAG Signals Description
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] BALL BOTTOM BALL BOTTOM BALL BOTTOM
(CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4]
jtag_ntrst Test Reset I AA17 U15 AB7
jtag_tck Test Clock I AA13 V14 AB6
jtag_rtck ARM Clock O AA12 W13 AA7
Emulation
jtag_tms_tmsc Test Mode Select IO AA18 V15 AA9
jtag_tdi Test Data Input I AA20 U16 AB10
jtag_tdo Test Data Output O AA19 Y13 AB9
jtag_emu0 Test emulation 0 IO AA11 Y15 AC24
jtag_emu1 Test emulation 1 IO AA10 Y14 AD24
106 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-21. Test Interfaces SDTI Signals Description
SIGNAL DESCRIPTION [2] TYPE [3] BALL BOTTOM BALL BOTTOM BALL BOTTOM SUBSYSTEM
NAME [1] (CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4] SIGNAL
MULTIPLEXING [6]
sdti_clk Serial clock dual edge O AF7 / AA11 / AG8 AF6 / Y15 / AF9 AC9 / AC24 / AC11 etk_d11 / jtag_emu0 /
etk_d14
sdti_txd0 Serial data out (System Trace O AG7 / AA10 / AA11 AE6 / Y14 / Y15 AC10 / AD24 / etk_d12 / jtag_emu1 /
messages) AC24 jtag_emu0
sdti_txd1 Serial data out (System Trace O AH7 / AA10 AF7 / Y14 AD11 / AD24 etk_d13 / jtag_emu1
messages)
sdti_txd2 Serial data out (System Trace O AG8 AF9 AC11 etk_d14
messages)
sdti_txd3 Serial data out (System Trace O AH8 AE9 AD12 etk_d15
messages)
Table 2-22. Test Interfaces HWDBG Signals Description
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] BALL BOTTOM BALL BOTTOM BALL BOTTOM
(CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4]
hw_dbg0 Debug signal 0 O A24 / AF10 C23/AB2 AC1/A22
hw_dbg1 Debug signal 1 O A23 / AE10 D23/AB3 AD3/E18
hw_dbg2 Debug signal 2 O C27/ AF11 C26/AC3 AD6/J19
hw_dbg3 Debug signal 3 O C23 / AG12 B23/AD4 AC6/H24
hw_dbg4 Debug signal 4 O B24 / AH12 A24/AD3 AC7/G19
hw_dbg5 Debug signal 5 O C24 / AE13 B24/AA3 AD8/F19
hw_dbg6 Debug signal 6 O D24 / AE11 D24/Y3 AC5/G20
hw_dbg7 Debug signal 7 O A25 / AH9 C24/AB1 AD2/B21
hw_dbg8 Debug signal 8 O B25 / AF13 D25/AE3 AC8/F21
hw_dbg9 Debug signal 9 O C26 / AH14 E26/AD2 AD9/G21
hw_dbg10 Debug signal 10 O B23 / AF9 A23/AA4 AC4/F18
hw_dbg11 Debug signal 11 O D25 / AG9 D26/V2 AD5/J20
hw_dbg12 Debug signal 12 O D28 / AE7 G25/AE4 AC3/G22
hw_dbg13 Debug signal 13 O D26 / AF7 K24/AF6 AC9/E22
hw_dbg14 Debug signal 14 O E26 / AG7 G26/AE6 AC10/D24
hw_dbg15 Debug signal 15 O F28 / AH7 H25/AF7 AD11/E23
hw_dbg16 Debug signal 16 O F27 / AG8 H26/AF9 AC11/E24
hw_dbg17 Debug signal 17 O G26 / AH8 J26/AE9 AD12/F23
2.5.6 Miscellaneous
For more information, see Timers / GP Timers / GP Timers Environment section of the AM/DM37x
Multimedia Device Technical Reference Manual (literature number SPRUGN4).
Table 2-23. Miscellaneous GP Timer Signals Description
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] BALL BOTTOM BALL BOTTOM BALL BOTTOM
(CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4]
gpt_8_pwm_evt PWM or event for GP IO N8 / AD25 / V3 C5 / AD21/ V9 G4/ M4
timer 8
gpt_9_pwm_evt PWM or event for GP IO T8 / AB26 / Y2 B4 / W8 / Y24 F4 / N4
timer 9
gpt_10_pwm_evt PWM or event for GP IO R8 / AB25 / Y3 C4 / U8 / AA24 G5 / N3
timer 10
gpt_11_pwm_evt PWM or event for GP IO P8 / AA25 / Y4 B5 / V8 / AD22 F3 / M5
timer 11
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 107
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
2.5.7 General-Purpose IOs
For more information, see General-Purpose Interface / General-Purpose Interface Environment section of
the AM/DM37x Multimedia Device Technical Reference Manual (literature number SPRUGN4).
Table 2-24. General-Purpose IOs Signals Description(1)
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] BALL BOTTOM BALL BOTTOM BALL BOTTOM
(CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4]
gpio_0 General-purpose IO 0 IO AF26 V16 W16
gpio_1 General-purpose IO 1 IO AF25 W15 Y13
gpio_2 General-purpose IO 2 IO AH26 F3 AB12
gpio_3 General-purpose IO 3 IO AG26 D3 AC16
gpio_4 General-purpose IO 4 IO AE14 C3 AD17
gpio_5 General-purpose IO 5 IO AF18 E3 AD18
gpio_6 General-purpose IO 6 IO AF19 E4 AC17
gpio_7 General-purpose IO 7 IO AE21 G3 AB16
gpio_8 General-purpose IO 8 IO AF21 D4 AA15
gpio_9 General-purpose IO 9 IO AF22 V12 AD23
gpio_10 General-purpose IO 10 IO AG25 AE14 Y7
gpio_11 General-purpose IO 11 IO AA11 Y15 AC24
gpio_12 General-purpose IO 12 IO AF10 AB2 AC1
gpio_13 General-purpose IO 13 IO AE10 AB3 AD3
gpio_14 General-purpose IO 14 IO AF11 AC3 AD6
gpio_15 General-purpose IO 15 IO AG12 AD4 AC6
gpio_16 General-purpose IO 16 IO AH12 AD3 AC7
gpio_17 General-purpose IO 17 IO AE13 AA3 AD8
gpio_18 General-purpose IO 18 IO AE11 Y3 AC5
gpio_19 General-purpose IO 19 IO AH9 AB1 AD2
gpio_20 General-purpose IO 20 IO AF13 AE3 AC8
gpio_21 General-purpose IO 21 IO AH14 AD2 AD9
gpio_22 General-purpose IO 22 IO AF9 AA4 AC4
gpio_23 General-purpose IO 23 IO AG9 V2 AD5
gpio_24 General-purpose IO 24 IO AE7 AE4 AC3
gpio_25 General-purpose IO 25 IO AF7 AF6 AC9
gpio_26 General-purpose IO 26 IO AG7 AE6 AC10
gpio_27 General-purpose IO 27 IO AH7 AF7 AD11
gpio_28 General-purpose IO 28 IO AG8 AF9 AC11
gpio_29 General-purpose IO 29 IO AH8 AE9 AD12
gpio_30 General-purpose IO 30 IO AF24 AD7 Y10
gpio_31 General-purpose IO 31 IO AA10 Y14 AD24
gpio_34 General-purpose IO 34 IO N4 J2 K4
gpio_35 General-purpose IO 35 IO M4 H1 K3
gpio_36 General-purpose IO 36 IO L4 H2 K2
gpio_37 General-purpose IO 37 IO K4 G2 J4
gpio_38 General-purpose IO 38 IO T3 F1 J3
gpio_39 General-purpose IO 39 IO R3 F2 J2
gpio_40 General-purpose IO 40 IO N3 E1 J1
gpio_41 General-purpose IO 41 IO M3 E2 H1
gpio_42 General-purpose IO 42 IO L3 D1 H2
gpio_43 General-purpose IO 43 IO K3 D2 G2
gpio_44 General-purpose IO 44 IO H2 V1 R2
gpio_45 General-purpose IO 45 IO K2 Y1 T2
gpio_46 General-purpose IO 46 IO P1 T1 U1
gpio_47 General-purpose IO 47 IO R1 U2 R3
108 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-24. General-Purpose IOs Signals Description(1) (continued)
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] BALL BOTTOM BALL BOTTOM BALL BOTTOM
(CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4]
gpio_48 General-purpose IO 48 IO R2 U1 T3
gpio_49 General-purpose IO 49 IO T2 P1 U2
gpio_50 General-purpose IO 50 IO W1 L2 V1
gpio_51 General-purpose IO 51 IO Y1 M2 V2
gpio_52 General-purpose IO 52 IO H3 AD1 NA
gpio_53 General-purpose IO 53 IO V8 A3 NA
gpio_54 General-purpose IO 54 IO U8 B6 D2
gpio_55 General-purpose IO 55 IO T8 B4 F4
gpio_56 General-purpose IO 56 IO R8 C4 G5
gpio_57 General-purpose IO 57 IO P8 B5 F3
gpio_58 General-purpose IO 58 IO N8 C5 G4
gpio_59 General-purpose IO 59 IO T4 N1 W2
gpio_60 General-purpose IO 60 IO G3 K2 K5
gpio_61 General-purpose IO 61 IO U3 J1 L1
gpio_62 General-purpose IO 62 IO H1 AC6 E1
gpio_63 General-purpose IO 63 IO L8 AC8 NA
gpio_64 General-purpose IO 64 IO K8 B3 NA
gpio_65 General-purpose IO 65 IO J8 C6 C2
gpio_66 General-purpose IO 66 IO D28 G25 G22
gpio_67 General-purpose IO 67 IO D26 K24 E22
gpio_68 General-purpose IO 68 IO D27 M25 F22
gpio_69 General-purpose IO 69 IO E27 F26 J21
gpio_70 General-purpose IO 70 IO AG22 AE21 AC19
gpio_71 General-purpose IO 71 IO AH22 AE22 AB19
gpio_72 General-purpose IO 72 IO AG23 AE23 AD20
gpio_73 General-purpose IO 73 IO AH23 AE24 AC20
gpio_74 General-purpose IO 74 IO AG24 AD23 AD21
gpio_75 General-purpose IO 75 IO AH24 AD24 AC21
gpio_76 General-purpose IO 76 IO E26 G26 D24
gpio_77 General-purpose IO 77 IO F28 H25 E23
gpio_78 General-purpose IO 78 IO F27 H26 E24
gpio_79 General-purpose IO 79 IO G26 J26 F23
gpio_80 General-purpose IO 80 IO AD28 AC26 AC22
gpio_81 General-purpose IO 81 IO AD27 AD26 AC23
gpio_82 General-purpose IO 82 IO AB28 AA25 AB22
gpio_83 General-purpose IO 83 IO AB27 Y25 Y22
gpio_84 General-purpose IO 84 IO AA28 AA26 W22
gpio_85 General-purpose IO 85 IO AA27 AB26 V22
gpio_86 General-purpose IO 86 IO G25 L25 J22
gpio_87 General-purpose IO 87 IO H27 L26 G23
gpio_88 General-purpose IO 88 IO H26 M24 G24
gpio_89 General-purpose IO 89 IO H25 M26 H23
gpio_90 General-purpose IO 90 IO E28 F25 D23
gpio_91 General-purpose IO 91 IO J26 N24 K22
gpio_92 General-purpose IO 92 IO AC27 AC25 V21
gpio_93 General-purpose IO 93 IO AC28 AB25 W21
gpio_94 General-purpose IO 94 IO A24 C23 A22
gpio_95 General-purpose IO 95 IO A23 D23 E18
gpio_96 General-purpose IO 96 IO C25 C25 B22
gpio_97 General-purpose IO 97 IO C27 C26 J19
gpio_98 General-purpose IO 98 IO C23 B23 H24
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 109
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-24. General-Purpose IOs Signals Description(1) (continued)
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] BALL BOTTOM BALL BOTTOM BALL BOTTOM
(CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4]
gpio_99 General-purpose IO 99 I AG17 AE16 AB18
gpio_100 General-purpose IO 100 I AH17 AE15 AC18
gpio_101 General-purpose IO 101 IO B24 A24 G19
gpio_102 General-purpose IO 102 IO C24 B24 F19
gpio_103 General-purpose IO 103 IO D24 D24 G20
gpio_104 General-purpose IO 104 IO A25 C24 B21
gpio_105 General-purpose IO 105 I K28 P25 L24
gpio_106 General-purpose IO 106 I L28 P26 K24
gpio_107 General-purpose IO 107 I K27 N25 J23
gpio_108 General-purpose IO 108 I L27 N26 K23
gpio_109 General-purpose IO 109 IO B25 D25 F21
gpio_110 General-purpose IO 110 IO C26 E26 G21
gpio_111 General-purpose IO 111 IO B26 E25 C22
gpio_112 General-purpose IO 112 I AG19 AD17 NA
gpio_113 General-purpose IO 113 I AH19 AD16 NA
gpio_114 General-purpose IO 114 I AG18 AE18 NA
gpio_115 General-purpose IO 115 I AH18 AE17 NA
gpio_116 General-purpose IO 116 IO P21 U18 V20
gpio_117 General-purpose IO 117 IO N21 R18 T21
gpio_118 General-purpose IO 118 IO R21 T18 V19
gpio_119 General-purpose IO 119 IO M21 R19 R20
gpio_120 General-purpose IO 120 IO N28(3) / T28 W19 / N19(3) M23(3) / R21
gpio_121 General-purpose IO 121 IO M27(3) / T25 U20 / L18(3) L23(3) / R23
gpio_122 General-purpose IO 122 IO N27(3) / R28 V19 / M19(3) M22(3) / P23
gpio_123 General-purpose IO 123 IO N26(3) M18(3) M21(3)
gpio_124 General-purpose IO 124 IO N25(3) / T26 W18 / K18(3) M20(3)/R22
gpio_125 General-purpose IO 125 IO P28(3) / T27 V20 / N20(3) N23(3)/T24
gpio_126 General-purpose IO 126 IO D25 / P27(3) M20(3) / D26 J20 / N22(3)
gpio_127 General-purpose IO 127 IO P26(3) P17(3) NA
gpio_128 General-purpose IO 128 IO R27 P18 NA
gpio_129 General-purpose IO 129 IO R25(3) P19(3) P24(3)
gpio_130 General-purpose IO 130 IO AE2 / U28 Y20 / W10 Y1 / T23
gpio_131 General-purpose IO 131 IO AG5 / U27 V18 / R10 AB5 / U24
gpio_132 General-purpose IO 132 IO AH5 T10 AB3
gpio_133 General-purpose IO 133 IO AH4 T9 Y3
gpio_134 General-purpose IO 134 IO AG4 U10 W3
gpio_135 General-purpose IO 135 IO AF4 U9 V3
gpio_136 General-purpose IO 136 IO AE4 V10 AB2
gpio_137 General-purpose IO 137 IO AH3 M3 AA2
gpio_138 General-purpose IO 138 IO AF3 L3 Y2
gpio_139 General-purpose IO 139 IO AE3 K3 AA1
gpio_140 General-purpose IO 140 IO AF6 P3 V6
gpio_141 General-purpose IO 141 IO AE6 N3 V5
gpio_142 General-purpose IO 142 IO AF5 U3 W4
gpio_143 General-purpose IO 143 IO AE5 W3 V4
gpio_144 General-purpose IO 144 IO AB26 Y24 NA
gpio_145 General-purpose IO 145 IO AB25 AA24 NA
gpio_146 General-purpose IO 146 IO AA25 AD22 NA
gpio_147 General-purpose IO 147 IO AD25 AD21 NA
gpio_148 General-purpose IO 148 IO AA8 L4 W7
gpio_149 General-purpose IO 149 IO AA9 R2 W6
110 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-24. General-Purpose IOs Signals Description(1) (continued)
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] BALL BOTTOM BALL BOTTOM BALL BOTTOM
(CBP Pkg.) [4] (CBC Pkg.) [4] (CUS Pkg.) [4]
gpio_150 General-purpose IO 150 IO W8 W2 AC2
gpio_151 General-purpose IO 151 IO Y8 H3 V7
gpio_152 General-purpose IO 152 IO AE1 V3 NA
gpio_153 General-purpose IO 153 IO AD1 U4 NA
gpio_154 General-purpose IO 154 IO AD2 R3 NA
gpio_155 General-purpose IO 155 IO AC1 T3 NA
gpio_156 General-purpose IO 156 IO Y21 U19 W19
gpio_157 General-purpose IO 157 IO AA21 V17 AB20
gpio_158 General-purpose IO 158 IO V21 U17 W18
gpio_159 General-purpose IO 159 IO U21 T20 Y18
gpio_160 General-purpose IO 160 IO T21 T19 AA18
gpio_161 General-purpose IO 161 IO K26 P20 AA19
gpio_162 General-purpose IO 162 IO W21 T17 V18
gpio_163 General-purpose IO 163 IO H18 F23 A23
gpio_164 General-purpose IO 164 IO H19 F24 B23
gpio_165 General-purpose IO 165 IO H20 H24 B24
gpio_166 General-purpose IO 166 IO H21 G24 C23
gpio_167 General-purpose IO 167 IO B23 A23 F18
gpio_168 General-purpose IO 168 IO AF15 C2 AC15
gpio_169 General-purpose IO 169 IO U26 W20 U23
gpio_170 General-purpose IO 170 IO J25 J23 A24
gpio_171 General-purpose IO 171 IO AB3 P9 T5
gpio_172 General-purpose IO 172 IO AB4 P8 R4
gpio_173 General-purpose IO 173 IO AA4 P7 T4
gpio_174 General-purpose IO 174 IO AC2 R7 T6
gpio_175 General-purpose IO 175 IO AC3 R8 NA
gpio_176 General-purpose IO 176 IO AB1 R9 NA
gpio_177 General-purpose IO 177 IO AB2 T8 R5
gpio_178 General-purpose IO 178 IO AA3 W7 N5
gpio_179 General-purpose IO 179 IO Y2 W8 N4
gpio_180 General-purpose IO 180 IO Y3 U8 N3
gpio_181 General-purpose IO 181 IO Y4 V8 M5
gpio_182 General-purpose IO 182 IO V3 V9 M4
gpio_183 General-purpose IO 183 IO AE15 C1 AC14
gpio_184 General-purpose IO 184 IO AF14 AB4 AC13
gpio_185 General-purpose IO 185 IO AG14 AC4 AC12
gpio_186 General-purpose IO 186 IO AE22 W11 AA6
gpio_188 General-purpose IO 188 IO U25 W17 W24
gpio_189 General-purpose IO 189 IO V28 Y18 V23
gpio_190 General-purpose IO 190 IO V27 Y19 W23
gpio_191 General-purpose IO 191 IO V26 Y17 T22
(1) NA in table stands for "Not Applicable".
(2) The subsystem pin multiplexing options are not described in Table 2-1 and Table 2-4.
(3) The usage of this GPIO is strongly restricted. For more information, see the General-Purpose Interface / General-Purpose Interface
Environment section of the AM/DM37x Multimedia Device Technical Reference Manual (literature number SPRUGN4).
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 111
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
2.5.8 Power Supplies
Note: For more information, see Power Reset and Clock Management / PRCM Environment and the
Power, Reset, and Clock Management / PRCM Functional Description / PRCM Voltage Management
Functional Description sections of the AM/DM37x Multimedia Device Technical Reference Manual
(literature number SPRUGN4).
Table 2-25. Power Supplies Signals Description(1)
SIGNAL NAME [1] DESCRIPTION [2] BALL BOTTOM BALL TOP BALL BOTTOM BALL TOP BALL BOTTOM
(CBP Pkg.) [4] (CBP Pkg.) (2)[5] (CBC Pkg.) [4] (CBC Pkg.) (2)[5] (CUS Pkg.) (2) [4]
vdd_mpu_iva ARM power domain Y9 / W9 / T9 / NA H7/ N7/ U7/ V7/ N8/ NA W13/ W12/ V13/
R9 / M9 / L9 / J9 G9/ L9/ M9/ W9/ Y9/ V12/ U13/ U12/ T8/
/ Y10 / U10 / T10 M10/ P10/ K11/ U11/ T7/ R8/ R7/ R6/ N8/
/ R10 / N10 / V11/ Y11/ G12/ D13/ N7/ N6/ M12/ M8/
M10 / L10 / J10 / U13 M7/ M6/ L12/ L11/
Y11 / W11 / K11 J10/ J9/ H10/ H9/
/ J11 / W12 / K13 G10/ G9/F10
/ Y14 / K14 / J14
/ Y15 / W15 / J15
vdd_core Core power domain AC4 / J4 / H4 / NA M7/ T7/ Y8/ G11/ NA T20/ T19/ T18/ T17/
D8 / AE9 / D9 / Y12/ D15/ M17/ G18/ R19/ R18/ R17/
D15 / Y16 / H20/ R20/ AC21 M15/ M14/ L15/
AE18 / Y18 / L14/ K19/ K18/ K17/
W18 / K18 / J18 / J18/ J17/ H13/ H12/
AE19 / Y19 / G13/ G12/ F13/ F12
U19 / T19 / N19 /
M19 / J19 / Y20 /
W20 / V20 / U20
/ P20 / N20 / K20
/ J20 / D22 / D23
/ AE24 / M25 /
L25 / E25
cap_vddu_wkup_ Decoupling AA15 NA K14 NA Y12
logic capacitor for
WKUP/EMU
domains (logic)
vdda_dplls_dll Input power for the K15 NA K13 NA G18
analog part of the
MPU, CORE
DPLLs, and the DLL
vdda_dac Video DAC power V25 NA V25 NA AB13
plane
vssa_dac Video DAC ground Y26 NA V24 NA AB15
plane
vdds 1.8-V power for AD3 / AD4 / W4 / NA G4/ M4/ T4/ Y4/ L7/ A3 / A15 / B5 / F2 / Y9 / W10 / W9 / V10
standard IOs AF8 / AE8 / AC7/ D9/ AE10/ C11/ F21/ L20 / W21 / V9 / U10 / N19 /
AF16 / AE16 / J15/ AC15/ A18/ J18/ N18 / N17 / M19 /
AF23 / AE23 / AC18/ AD20/ E24/ M18 / M17
F25 / F26 / AG27 L24/ T24/ W24/ AC24
/ AB24
vdds_mem Memory IO power U1 / J1 / F1 / J2 / AC5 / P1 / H1 / F23 NA NA K8 / K7 / K6 / J8 /
plane F2 / R4 / B5 / A5 / E1 / C23 / A4 / A7 J7 / J6 / H15 / G16 /
/ AH6 / B8 / A8 / / A10 / A15 / A18 G15 / F16 / F15 /
B12 / A12 / D16 / E16
C16 / B18 / A18 /
B22 / A22 / G28 /
C28
vdda_dpll_per Input power for the AA16 NA U14 NA U17
analog part of the
Peripheral DPLLs
vdda_wkup_bg_bb For wakeup LDO AA14 NA W14 NA AA13
and VDDA (2 LDOs
SRAM and BG)
112 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-25. Power Supplies Signals Description(1) (continued)
SIGNAL NAME [1] DESCRIPTION [2] BALL BOTTOM BALL TOP BALL BOTTOM BALL TOP BALL BOTTOM
(CBP Pkg.) [4] (CBP Pkg.) (2)[5] (CBC Pkg.) [4] (CBC Pkg.) (2)[5] (CUS Pkg.) (2) [4]
vss Ground AG2 / U2 / B2 / H2 / B18 / AB5 / G1/ K1/ R1/ W1/ B2/ C1/ F1/ H2/ M2/ R2/ V16/ V15/ U16/
AG3 / W3 / P3 / AB14 / AB20 / P2 / H4/ N4/ R4/ W4/ AB5/ Y6/AA7/ Y11/ AA16/ U15/ U14/ U11/
J3 / E3 / A3 / P4 F22 / E2 / C22 / B4 / A6/ D7/ Y7/AE7/ A8/ W20/P20/ L21/ H20/ U9/T16/ T15/ T14/
/ E4 / AG6 / D7 / B7 / B10 / B15 G8/ D10/ G10/ L10/ F20/ B14/A13/ A7 T13/ T12/ T11/ T10/
C7 / V9 / U9 / P9 N10/ Y10/ AC10/ T9/ R15/ R14/ R11/
/ N9 / K9 / W10 / C12/ D12/A13/ D14/ R10/ P17/ P15/ P14/
V10 / P10 / K10 / AD14/ K15/ Y16/ L17/ P13/P12/ P11/ P10/
D10 / C10 / N17/ R17/ D18/ P8/ N16/ N15/ N14/
AF12 / AE12 / D20/G20/ E22/ AB22/ N13/ N12/ N11/
Y12 / K12 / J12 / G23/ L23/ T23/ W23/ N10/ N9/ M16/ M13/
Y13 / W13 / J13 / B25/ K25/U25/ AD25 / M11/ M10/ M9/ L17/
D13 / C13 / W14 Y26 L13/ L10/ L8/ K15/
/ K16 / J16 / W17 K14/ K11/ K10/ J16/
/ K17 / J17 / W19 J15/ J14/ J13/ J12/
/ V19 / R19 / P19 J11/H16/ H14/ H11
/ L19 / K19 / D19
/ C19 / AF20 /
AE20 / T20 / R20
/ M20 / L20 / D21
/ C22 / AC25 /
Y25 / W25 /
AC26 / R26 / L26
/ A26 / G27 / B27
vdds_sram SRAM LDOs W16 NA U12 NA AA12
vdds_mmc1 Input power for K25 NA N23 NA N24
MMC1 dual voltage
buffers
vdds_x Power supply for P25 NA P23 NA H8
dual voltage GPIOs
vss Ground M28 NA L19 NA NA
vdds IO power plane AG20 NA AD18 NA NA
vss Ground AG16 NA AC16 NA NA
vdds IO power plane H28 NA L20 NA NA
cap_vdd_sram_mpu_i Decoupling V4 NA N9 NA U8
va capacitor for SRAM
in processor
domains
cap_vdd_sram_core Decoupling L21 NA K20 NA H17
capacitor for CORE
domain (SRAM)
vdds IO power plane AG21 NA AD19 NA NA
cap_vddu_array Decoupling AH20 NA AE19 NA N20
capacitor for
WKUP/EMU
domains (array)
vss Ground AH21 NA AC19 NA NA
cap_vdd_bb_mpu_iva Decoupling U4 NA D6 NA N21
capacitor for
processor domains
(bb)
sys_xtalgnd Kelvin ground Y17 NA AF23 NA W15
(1) NA in this table stands for "Not applicable".
(2) For a list of pins not supported on a particular package, see Table 2-4.
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 113
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
2.5.9 System and Miscellaneous Terminals
Note: For more information, see the Power, Reset, and Clock Management / PRCM Environment section
of the AM/DM37x Multimedia Device Technical Reference Manual (literature number SPRUGN4).
Table 2-26. System and Miscellaneous Signals Description(1)
SIGNAL NAME DESCRIPTION [2] TYPE [3] BALL BALL TOP BALL BALL TOP BALL
[1] BOTTOM (CBP Pkg.) BOTTOM (CBC Pkg.) BOTTOM
(CBP Pkg.) (2)[5] (CBC Pkg.) (2)[5] (CUS Pkg.)
[4] [4] [4]
sys_32k 32-kHz clock input I AE25 NA AE20 NA AA16
sys_xtalin Main input clock. Oscillator input or LVCMOS at AI-I AE17 NA AF19 NA AD15
19.2, 13, or 12 MHz.
sys_xtalout Output of oscillator AO AF17 NA AF20 NA AD14
sys_altclk Alternate clock source selectable for GPTIMERs I J25 NA J23 NA A24
(maximum 54 MHz), USB (48 MHz), or
NTSC/PAL (54 MHz)
sys_clkreq Request from device for system clock (open IO AF25 NA W15 NA Y13
source type)
sys_clkout1 Configurable output clock1 O AG25 NA AE14 NA Y7
sys_clkout2 Configurable output clock2 O AE22 NA W11 NA AA6
sys_boot0 Boot configuration mode bit 0 I AH26 NA F3 NA AB12
sys_boot1 Boot configuration mode bit 1 I AG26 NA D3 NA AC16
sys_boot2 Boot configuration mode bit 2 I AE14 NA C3 NA AD17
sys_boot3 Boot configuration mode bit 3 I AF18 NA E3 NA AD18
sys_boot4 Boot configuration mode bit 4 I AF19 NA E4 NA AC17
sys_boot5 Boot configuration mode bit 5 I AE21 NA G3 NA AB16
sys_boot6 Boot configuration mode bit 6 I AF21 NA D4 NA AA15
sys_nrespwron Power On Reset I AH25 NA V13 NA AA10
sys_nreswarm Warm Boot Reset (open drain output) IOD AF24 NA AD7 AA5 Y10
sys_nirq External FIQ input I AF26 NA V16 NA W16
sys_nvmode1 Indicates the voltage mode O AD26 NA AD15 NA Y16
sys_nvmode2 Indicates the voltage mode O AE26 NA W16 NA Y15
sys_off_mode Indicates the voltage mode O AF22 NA V12 NA AD23
sys_ndmareq0 External A request 0 (system expansion). Level I U8 NA B6 NA D2
(active low) or edge (falling) selectable.
sys_ndmareq1 External A request 1 (system expansion). Level I T8 / J8 NA B4 / C6 NA F4 / C2
(active low) or edge (falling) selectable.
sys_ndmareq2 External A request 2 (system expansion). Level I L3 / R8 NA D1 / C4 NA H2 / G5
(active low) or edge (falling) selectable.
sys_ndmareq3 External A request 3 (system expansion). Level I K3 / P8 NA D2 / B5 NA G2 / F3
(active low) or edge (falling) selectable.
(1) NA in this table stands for "Not applicable".
(2) For a list of pins not supported on a particular package, see Table 2-4.
Table 2-27. CBC Package Feed-Through Balls
JEDEC 14x14mm, 0.65mm, JEDEC DESCRIPTION (1) BALL TOP BALL BOTTOM FEED-THROUGH BALL
152ball NAME
NC No Connect A1 A1 pop_a1_a1
d-vdd DDR Supply J1 L1 pop_j1_l1
NC No Connect AA1 AF1 NC
f-vdd Flash Supply N2 T2 pop_n2_t2
f-vdd Flash Supply T2 Y2 pop_t2_y2
NC No Connect W2 AE2 pop_w2_ae2
NC No Connect Y2 AF4 pop_y2_af4
f-vdd Flash Supply AA6 AF5 pop_aa6_af5
f-vdd Flash Supply Y7 AF8 pop_y7_af8
114 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 2-27. CBC Package Feed-Through Balls (continued)
NC, Int No Connect; Interrupt when Y9 AF10 pop_y9_af10
using OneNAND POP
f-nbe0, cle0 No Connect/CLE AA10 AF12 pop_aa10_af12
d-vdd DDR Supply/ POP FLASH AA11 AF13 pop_aa11_af13
vpp supply
d-tq No Connect/ DDR die AA12 AF14 pop_aa12_af14
temperature sensor
vss Shared Ground AA13 AF15 pop_aa13_af15
d-vdd DDR Supply Y14 AF17 pop_y14_af17
d-vddq DDR Supply AA14 AF16 pop_aa14_af16
d-vdd DDR Supply B16 A20 pop_b16_a20
vss Shared Ground Y17 AF21 pop_y17_af21
d-vdd DDR Supply AA17 AF18 pop_aa17_af18
vss Shared Ground Y19 AF24 pop_y19_af24
d-vddq DDR Supply AA19 AF22 pop_aa19_af22
NC No Connect A20 A25 pop_a20_a25
NC No Connect Y20 AE25 pop_y20_ae25
NC No Connect AA20 AF25 pop_aa20_af25
NC No Connect A21 A26 pop_a21_a26
NC No Connect B21 B26 pop_b21_b26
d-vdd DDR Supply H21 K26 pop_h21_k26
d-vdd DDR Supply P21 U26 pop_p21_u26
NC No Connect Y21 AE26 pop_y21_ae26
NC No Connect AA21 AF26 pop_aa21_af26
(1) For more details on the feedthrough pin connections, please refer to the PoP memory datasheet.
Table 2-28. CBP Package Feed-Through Balls
JEDEC 12x12, 0.5mm, JEDEC DESCRIPTION (1) BALL TOP BALL BOTTOM FEED-THROUGH BALL
168ball NAME
d-vdd DDR Supply A12 A15 pop_a12_a15
d-vdd DDR Supply AA23 AE28 pop_aa23_ae28
d-vdd DDR Supply H23 AF28 pop_h23_af28
d-vdd DDR Supply K1 J28 pop_k1_j28
d-vdd DDR Supply Y23 M1 pop_y23_m1
f-vdd Flash Supply AA1 AA1 pop_aa1_aa1
f-vdd Flash Supply AC8 AF1 pop_ac8_af1
f-vdd Flash Supply AC13 AH10 pop_ac13_ah10
f-vdd Flash Supply L1 AH15 pop_l1_ah15
f-vdd Flash Supply U1 N1 pop_u1_n1
f-vpp Flash vpp supply AC11 AH13 pop_ac11_ah13
NC, int0 No Connect/PoP OneNAND AB9 AG11 pop_ab9_ag11
interrupt
NC, int1 No Connect/PoP OneNAND AC9 AH11 pop_ac9_ah11
interrupt
NC No Connect A1 A1 NC
NC No Connect A2 A2 NC
NC No Connect A22 A27 pop_a22_a27
NC No Connect A23 A28 pop_a23_a28
NC No Connect AB1 AG1 pop_ab1_ag1
NC No Connect AB23 AG28 pop_ab23_ag28
NC No Connect AC1 AH1 pop_ac1_ah1
NC No Connect AC2 AH2 pop_ac2_ah2
NC No Connect AC22 AH27 pop_ac22_ah27
NC No Connect AC23 AH28 pop_ac23_ah28
Copyright ©20102011, Texas Instruments Incorporated TERMINAL DESCRIPTION 115
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 2-28. CBP Package Feed-Through Balls (continued)
NC No Connect B1 B1 NC
NC No Connect B23 B28 pop_b23_b28
f-rst#, rp# Flash reset AB11 AG13 pop_ab11_ag13
d-tq DDR temperature alert AC14 AH16 pop_ac14_ah16
vss Shared Ground AA2 AA2 pop_aa2_aa2
vss Shared Ground U2 AF2 pop_u2_af2
vss Shared Ground AA22 AF27 pop_aa22_af27
vss Shared Ground AB8 AG10 pop_ab8_ag10
vss Shared Ground AB13 AG15 pop_ab13_ag15
vss Shared Ground B12 B15 pop_b12_b15
vss Shared Ground H22 J27 pop_h22_j27
vss Shared Ground K2 M2 pop_k2_m2
vss Shared Ground K22 M26 pop_k22_m26
vss Shared Ground L2 N2 pop_l2_n2
(1) For more details on the feedthrough pin connections, please refer to the PoP memory datasheet.
116 TERMINAL DESCRIPTION Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
3 Electrical Characteristics
NOTE
For more information, see the Power Reset and Clock Management / PRCM Environment
section of the AM/DM37x Multimedia Device Technical Reference Manual (literature number
SPRUGN4).
3.1 Absolute Maximum Ratings
Stresses beyond those listed as absolute maximum ratings may cause permanent damage to the device.
These are stress ratings only, and functional operation of the device at these or any other conditions
beyond those listed under "Recommended Operating Conditions" is not implied. Exposure to absolute
maximum rated conditions for extended periods may affect device reliability.
Table 3-1. Absolute Maximum Rating over Junction Temperature Range
PARAMETER MIN MAX UNIT
vdd_mpu_iva Supply voltage range for MPU 0.5 1.5 V
vdd_core Supply voltage range for core domain 0.5 1.5 V
vdda_wkup_bg_bb Supply voltage range for wake-up domain (internal 0.5 2.1 V
LDO)
vdda_dplls_dll Supply voltage for MPU, Core DPLLs, and DLL 0.5 2.1 V
vdda_dpll_per Supply voltage for DPLLs (peripherals) 0.5 2.1 V
vdds_sram Supply voltage for SRAM LDOs 0.5 2.1 V
vdda_dac Supply voltage for video buffers and DAC 0.5 2.1 V
vdds Supply voltage for 1.8-V I/O macros 0.5 2.1 V
vdds_mem Supply voltage for memory buffers 0.5 2.1 V
vdds_mmc1 Supply voltage range for mmc1 dual voltage IOs 0.5 3.8 V
vdds_x Supply voltage range for dual voltage GPIOs 0.5 3.8 V
JTAG(9) 200
VESD ESD stress HBM (Human CAM(6) 400 V
voltage(1) Body Model)(2)
GPMC(8) 500
Other signals 1000
CDM (Charged Device Model)(3) 250
IIOI Current-pulse injection on each IO pin(5) 200 mA
Iclamp Clamp current for an input or output 20 20 mA
TSTG (4) Storage temperature range 65 150 °C
(1) Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device.
(2) Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001-2010. JEDEC document JEP155 states that 500V HBM allows
safe manufacturing with a standard ESD control process, and manufacturing with less than 500V HBM is possible if necessary
precautions are taken. Pins listed as 1000V may actually have higher performance.
(3) Level listed above is the passing level per EIA-JEDEC JESD22-C101E. JEDEC document JEP157 states that 250V CDM allows safe
manufacturing with a standard ESD control process. Pins listed as 250V may actually have higher performance.
(4) For tape and reel the storage temperature range is [10°C; +50°C] with a maximum relative humidity of 70%. It is recommended
returning to ambient room temperature before usage.
(5) Each device is tested with an IO pin injection of 200 mA with a stress voltage of 1.5 times the maximum Vdd at room temperature.
(6) Corresponding signals: cam_d0, cam_d1, cam_d6, cam_d7, cam_d8, cam_d9. Refer to Multiplexing Characteristicsto determine the ball
information per package.
(7) Corresponding signals: dss_data0, dss_data1, dss_data2, dss_data3, dss_data4, dss_data5. Refer to Multiplexing Characteristics to
determine the ball information per package.
(8) Corresponding signals: All 46 GPMC interface signals (vdds_mem is not included to this exception list). Refer to Multiplexing
Characteristics to determine the ball information per package.
(9) Corresponding signals: All 8 JTAG interface signals (jtag_emu0, jtag_emu1, jtag_ntrst, jtag_rtck, jtag_tck, jtag_tdi, jtag_tdo,
jtag_tms_tmsc). Refer to Multiplexing Characteristics to determine the ball information per package.
Copyright ©20102011, Texas Instruments Incorporated Electrical Characteristics 117
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 3-2 summarizes the power consumption at the ball level.
Table 3-2. Maximum Current Ratings at Ball Level (3)
PARAMETER MAX UNIT
SIGNAL DESCRIPTION
vdd_mpu_iva(7) Maximum current rating for MPU Processors AM3715/AM3703 (1G 900(1)(4) mA
domain Hz)
AM3715/AM3703 (800M 800(5)
Hz)
vdd_core(1) Maximum current rating for core Core AM3715 300 mA
domain AM3703 230
vdds Maximum current rating for 1.8-V I/O macros 60 mA
vdds_mem Maximum current rating for memory buffers 35 mA
vdds_mmc1(2) Maximum current rating for mmc1 dual voltage buffers 20 mA
vdds_x Maximum current rating for GPIO dual voltage buffers 2 mA
vdda_wkup_bg_b Maximum current rating for wake-up, bandgap and VBB LDOs 5 mA
b
vdda_dac Maximum current rating for video buffers and DAC 60 mA
vdda_dplls_dll Maximum current rating for MPU, core DPLLs and DLL 30 mA
vdda_dpll_per Maximum current rating for DPLLs (peripherals) 10 mA
vdds_sram Maximum current rating for SRAM LDOs (common) 41 mA
(1) With SmartReflexTM enabled.
(2) MMC card and I/O card are not included.
(3) The maximum current ratings documented in this table are preliminary data which are subject to change.
(4) Conditions used for maximum current ratings are worst case:
TJis up to 90C
Cold process is used
VDD1 (vdd_mpu_iva) supplies 1.38 V (maximum voltage supported)
(5) Conditions used for maximum current ratings are worst case:
TJis up to 90C
Hot process is used
VDD1 (vdd_mpu_iva) nominal OPP voltage:
AM3715 (800M Hz): @1.27V
(6) This maximum vdd_mpu_iva current is observed at OPP1G operating point.
(7) Depending on the microprocessor chosen, the IVA feature may or may not be supported. See the Features section for more information
on device features.
118 Electrical Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
3.2 Recommended Operating Conditions
The device is used under the recommended operating conditions described in Table 3-4. The POH
information in Table 3-3 is provided solely for your convenience and does not extend or modify the
warranty provided under TIs standard terms and conditions for TI semiconductor products.
Table 3-3. Reliability Data
JUNCTION TEMP TOTAL DEVICE LIFETIME OPP130 MAX TIME OPP1G MAX TIME
@105C 89K POH Not available Not available
@90C 100K POH 45K 25K(1)
@75C >100K POH 100K POH 75K
(1) If device is only operated at OPP1G, then POH can be extended to 35K POH.
NOTE
Logic functions and parameter values are not assured out of the range specified in the
recommended operating conditions.
Table 3-4. Recommended Operating Conditions
PARAMETER DESCRIPTION MIN NOM MAX UNIT
vdd_mpu_iva Supply voltage range for ARM See(1) V
Maximum Noise (peak-peak) 40 mVPP
vdd_core Supply voltage range for core domain See(1) V
Maximum Noise (peak-peak) 40 mVPP
vdds Supply voltage for 1.8-V I/O macros 1.71 1.80 1.91 V
Maximum Noise (peak-peak) Oscillator IO (Crystal or 40 mVPP
Square modes)
Others 90
vdds_mem Supply voltage for memory buffers 1.71 1.80 1.91 V
Maximum Noise (peak-peak) 90 mVPP
vdds_mmc1 Supply voltage range for mmc1 1.8-V mode 1.71 1.80 1.91 V
dual voltage IOs 3.0-V mode 2.70 3.00 to 3.30 3.60
Noise (peak-peak) 1.8-V mode 90 mVPP
3.0-V mode 150
vdds_x Supply voltage range for x dual 1.8-V mode 1.71 1.80 1.91 V
voltage IOs 3.0-V mode 2.70 3.00 3.60
Maximum Noise (peak-peak) 1.8-V mode 90 mVPP
3.0-V mode 150
vdda_wkup_bg_ Supply voltage range for wake-up LDO 1.71 1.80 1.91 V
bb Maximum Noise (peak-peak) 50 mVPP
vdda_dac Analog supply voltage for Video DAC 1.71 1.80 1.91 V
Maximum Noise (peak-peak) for a frequency from 0 to 100 30 mVPP
kHz
(For a frequency >100 kHz, decreases 20 dB/dec)
vdds_sram Supply voltage for SRAM LDOs 1.71 1.80 1.91 V
Maximum Noise (peak-peak) 50 mVPP
vdda_dplls_dll Supply voltage for MPU, core DPLLs and DLL 1.71 1.80 1.91 V
Maximum Noise (peak-peak) 30 mVPP
For any frequency
Copyright ©20102011, Texas Instruments Incorporated Electrical Characteristics 119
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 3-4. Recommended Operating Conditions (continued)
PARAMETER DESCRIPTION MIN NOM MAX UNIT
vdda_dpll_per Supply voltage for DPLLs (peripherals) 1.71 1.80 1.91 V
Maximum Noise (peak-peak) 50 mVPP
For any frequency
vssa_dac Ground for video buffers and DAC 0 V
vss Main ground 0 V
TJOperating junction temperature Commercial 0 90 °C
range Temperature
Industrial Temperature -40 90
Extended Temperature -40 105
(1) See Section 4.3.4,Processor Clocks. OPP voltage values may change following the silicon characterization result.
120 Electrical Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
3.3 DC Electrical Characteristics
Table 3-5 summarizes the dc electrical characteristics.
Note: The interfaces or signals described in Table 3-5 correspond to the interfaces or signals available in
multiplexing mode 0. All interfaces or signals multiplexed on the balls / pins described in Table 3-5 have
the same DC electrical characteristics.
Table 3-5. DC Electrical Characteristics
PARAMETER MIN NOM MAX UNIT
SDRC Mode (CBP Balls(19): C14 / B14 / C15 / B16 / D17 / C17 / B17 / D18 / H9 / H10 / H11 / H12 / A13 / A14 / H16 / H17 / H14 / H13 /
H15 / A16 / A17)(4)
VIH High-level input voltage 0.7 * vdds_mem V
VIL Low-level input voltage 0.3 * vdds_mem V
VHYS (1) Hysteresis voltage at an input 0.07 V
VOH High-level output voltage, driver enabled, IOH =4 mA 0.8 * vdds_mem vdds_mem V
pullup or pulldown disabled
VOL Low-level output voltage, driver enabled, IOL = 4 mA 0 0.2 * vdds_mem V
pullup or pulldown disabled
CIN Input capacitance 1.15 pF
tTIN(2) Input recommended rise, tRIN, and fall time, tFIN (measured 10 ns
between 20% and 80% at PAD)
tROUT(2) Output maximum rise time (rise time, tROUT, evaluated 1.15 ns
between 20% and 80% at PAD) @ maximum load
tFOUT(2) Output maximum fall time (fall time, tFOUT, evaluated 1.10 ns
between 20% and 80% at PAD) @ maximum load
COUT Load capacitance DS0 = 0(3) 2 4 pF
DS0 = 1(3) 4 12
MMC Interface 1 Mode (CBP Balls(19): N28 / M27 / N27 / N26 / N25 / P28)
1.8-V Mode
VIH High-level input voltage 0.70 * vdds_mmc1 vdds_mmc1 + 0.3 V
VIL Low-level input voltage 0.3 0.30 * vdds_mmc1 V
VOH High-level output voltage with 100-μA sink current IOH vdds_mmc1 0.2 V
VOL Low-level output voltage with 100-μA sink current at 0.2 V
vdds_mmc1 minimum
VHYS (1) Hysteresis voltage at an input 0.1 V
tTIN (2) Input transition time (tRIN or tFIN evaluated Normal Mode 3 ns
between 10% and 90% at PAD) (SPEEDCTRL
= 1)(4)
High-Speed 8
(SPEEDCTRL
= 0)(4)
COUT Load capacitance 10 30 pF
LOUT Line inductance (except vdds_mmc1) 16 nH
3.0-V Mode
VIH High-level input voltage 0.625 * vdds_mmc1 vdds_mmc1 + 0.3 V
VIL Low-level input voltage 0.3 0.25 * vdds_mmc1 V
VOH High-level output voltage with 100-μA sink current IOH 0.75 * vdds_mmc1 V
VOL Low-level output voltage with 100-μA source current at 0.125 * vdds_mmc1 V
vdds_mmc1 minimum
VHYS (1) Hysteresis voltage at an input 0.05 V
Copyright ©20102011, Texas Instruments Incorporated Electrical Characteristics 121
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 3-5. DC Electrical Characteristics (continued)
PARAMETER MIN NOM MAX UNIT
tTIN(2) Input transition time (tRIN or tFIN evaluated Normal Mode 3 ns
between 10% and 90% at PAD) (SPEEDCTRL
= 1)(4)
High-Speed 8
(SPEEDCTRL
= 0)(4)
COUT Load capacitance 10 30 pF
LOUT Line inductance (except vdds_mmc1) 16 nH
GPIO Mode (CBP Balls(19): P27 / P26 / R25)
1.8-V Mode
VIH High-level input voltage 0.70 * vdds_x vdds_x + 0.3 V
VIL Low-level input voltage 0.3 0.20 * vdds_x V
VOH High-level output voltage with 20-μA sink current IOH 0.8 * vdds_x vdds_x + 0.3 V
VOL Low-level output voltage with 1-mA source current at vdds_x 0.3 0.4 V
minimum
VHYS (1) Hysteresis voltage at an input 0.1 V
tTIN (2) Input transition time (tRIN or tFIN evaluated Normal Mode 35 ns
between 10% and 90% at PAD) (SPEEDCTRL
= 1)(4)
CIN Input capacitance 2.5 pF
COUT Load capacitance 30 pF
LOUT Line inductance (except vdds_x) 16 nH
3.0-V Mode
VIH High-level input voltage 0.70 * vdds_x vdds_x + 0.3 V
VIL Low-level input voltage 0.3 0.20 * vdds_x V
VOH High-level output voltage with 20-μA sink current IOH 0.7 * vdds_x vdds_x + 0.3 V
VOL Low-level output voltage with 1-mA source current at 0.3 0.4 V
vdds_sim minimum
VHYS (1) Hysteresis voltage at an input 0.05 V
tTIN (2) Input transition time (tRIN or tFIN evaluated Normal Mode 35 ns
between 10% and 90% at PAD) (SPEEDCTRL
= 1)(4)
CIN Input capacitance 2.5 pF
COUT Load capacitance 30 pF
LOUT Line inductance (except vdds_x) 16 nH
I2C Mode (CBP Balls(19): K21 / J21 / AF15 / AE15 / AF14 / AG14 / AD26 / AE26) (6)
Standard Mode
VIH High-level input voltage 0.7 * vdds vdds + 0.5 V
VIL Low-level input voltage 0.5 0.3 * vdds V
VHYS (1) Hysteresis voltage at an input 0.15 V
VOL Low-level output voltage open-drain at 3-mA sink current NA(18) NA(18) V
IIInput current at each I/O pin with an input voltage between 10 10 μA
0.1 * vdds to 0.9 * vdds
CICapacitance for each I/O pin 10 pF
tFOUT(5) Output fall time from VIHmin to VILmax with a bus capacitance 250 ns
CBfrom 10 pF to 400 pF
tROUT(5) Output rise time with a capacitive load from 10 pF to 150 pF 20 + 0.1CB250 ns
with internal pullup
Fast Mode
VIH High-level input voltage 0.7 * vdds vdds + 0.5 V
VIL Low-level input voltage 0.5 0.3 * vdds V
122 Electrical Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 3-5. DC Electrical Characteristics (continued)
PARAMETER MIN NOM MAX UNIT
VHYS (1) Hysteresis voltage at an input 0.15 V
VOL Low-level output voltage open-drain at 3-mA sink current 0 0.2 * vdds V
IIInput current at each I/O pin with an input voltage between 10 10 μA
0.1 * vdds to 0.9 * vdds
CICapacitance for each I/O pin 10 pF
tFOUT(5) Output fall time from VIHmin to VILmax with a bus capacitance 20 + 0.1CB250 ns
CBfrom 10 pF to 400 pF
tROUT(5) Output rise time with a capacitive load from 10 pF to 150 pF 20 + 0.1CB250 ns
with internal pullup
High-Speed Mode
VIH High-level input voltage 0.7 * vdds vdds + 0.5 V
VIL Low-level input voltage 0.5 0.3 * vdds V
VHYS (1) Hysteresis voltage at an input 0.15 V
VOL Low-level output voltage open-drain at 3-mA sink current 0 0.2 * vdds V
IIInput current at each I/O pin with an input voltage between 10 10 μA
0.1 * vdds to 0.9 * vdds
CICapacitance for each I/O pin 10 pF
tFOUT(5)(6) Output fall time with a capacitive load from 10 pF to 100 pF 10 40 ns
at 3-mA sink current
Output fall time with a capacitive load of 400 pF at 3-mA 20 80 ns
sink current
tROUT(5) Output rise time with a capacitive load from 10 pF to 80 pF 10 40 ns
with internal pullup
Standard LVCMOS Mode
VIH High-level input voltage 0.7 * vdds vdds V
VIL Low-level input voltage 0.5 0.3 * vdds V
VOH High-level output voltage at 4-mA sink current vdds 0.45 V
VOL Low-level output voltage at 4-mA sink current 0.45 V
CIN Input capacitance 1.15 pF
tTIN (2) Input transition time (tRIN or tFIN evaluated between 10% and 10 ns
90% at PAD)
tTOUT Output transition time at 40-pF load (tROUT or tFOUT 10 ns
evaluated between 10% and 90% at PAD)
MIPI D-PHY Interface
MIPI D-PHY Interface - GPI Mode (CBP Balls(19): AG19 / AH19 / AG18 / AH18 / K28 / L28 / K27 / AG17 / AH17)
VIH(7) High-level input voltage 0.65 * vdds_x(14) vdds_x + 0.3(14) V
VIL(8) Low-level input voltage 0.3 0.35 * vdds_x(14) V
VHYS (1) Hysteresis voltage at an input 0.15 V
CIN Input capacitance 1.3 pF
tTIN (2) Input transition time (tRIN or tFIN evaluated between 10% and 10 ns
90% at PAD)
Other Balls
Common to "Other Balls"
VIH High-level input voltage 0.65 * vdds vdds + 0.3 V
VIL Low-level input voltage 0.3 0.35 * vdds V
VHYS (1) Hysteresis voltage at an input 0.15 V
VOH High-level output voltage, driver enabled, IOH =X(17) vdds 0.45 V
pullup or pulldown disabled mA
VOL Low-level output voltage, driver enabled, IOL = X(17) mA 0.45 V
pullup or pulldown disabled
Differences Between "Other Balls"
Copyright ©20102011, Texas Instruments Incorporated Electrical Characteristics 123
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 3-5. DC Electrical Characteristics (continued)
PARAMETER MIN NOM MAX UNIT
Input Capacitance and Input Transition Time
sys_xtalin pin (CBP Ball(19): AE17)
CIN Input capacitance 1.00 1.15 1.35 pF
tTIN(2) Input transition time (rise time, tRIN or fall time, tFIN 10 ns
evaluated between 10% and 90% at PAD)
JTAG interface (CBP Balls(19): AA17 / AA13 / AA12 / AA18 / AA20 / AA19 / AA11 / AA10)
CIN Input capacitance 2.20 pF
tTIN(2) Input transition time (rise time, tRIN or fall time, tFIN 10 ns
evaluated between 10% and 90% at PAD)
Otherwise
CIN Input capacitance 1.15 pF
tTIN(2) Input transition time (rise time, tRIN or fall time, tFIN 10 ns
evaluated between 10% and 90% at PAD)
Output Capacitance Load and Output Transition Time
sys_32k, sys_clkreq, sys_off_mode, sys_clkout1, sys_nirq, uart3_cts_rctx, uart3_rts_sd, uart3_rx_irrx, uart3_tx_irtx, hdq_sio
(CBP Balls(19): R27 / AE25 / AF25 / AF22 / AG25 / AF26 / H18 / H19 / H20 / H21 / J25)
tTOUT Output transition time (rise time, tROUT or DS[1:0] = 00(3) 1(15) 15(16) ns
fall time, tFOUT evaluated between 10% and
90% at PAD)
CTOUT Output load 4 60 pF
tTOUT Output transition time (rise time, tROUT or DS[1:0] = 10(3) 0.4(15) 5(16) ns
fall time, tFOUT evaluated between 10% and
90% at PAD)
CTOUT Output load 2 21 pF
tTOUT Output transition time (rise time, tROUT or DS[1:0] = 01(3) 0.6(15) 7(16) ns
fall time, tFOUT evaluated between 10% and
90% at PAD)
CTOUT Output load 7 33 pF
CAM, HSUSB0, MMC2, UART1, UART2, McBSP, McSPI, ETK Interfaces, sys_clkout2 (CBP Ball(19): AE22)
tTOUT Output transition time (rise time, tROUT or fall time, tFOUT 1.5 5 ns
evaluated between 10% and 90% at PAD)
CTOUT Output load 2 22 pF
Otherwise
tTOUT Output transition time (rise time, tROUT or fall time, tFOUT 0.6 2.4(17) ns
evaluated between 10% and 90% at PAD)
CTOUT Output load 2 22 pF
Hysteresis
sys_xtalin pin (CBP Ball(19): AE17)
VHYS (1) Hysteresis voltage at an input 0.25 V
hsusb0_clk (CBP Ball(19): T28)
VHYS (1) Hysteresis voltage at an input 0.07 V
Otherwise
VHYS(1) Hysteresis voltage at an input 0.15 V
(1) Vhys is the magnitude of the difference between the positive-going threshold voltage VT+ and the negative-going threshold voltage VT.
Some receivers, but not all, are designed for hysteresis. Vhys applies only to those that are.
(2) The tIN (tRIN and tFIN also) value is the recommended condition. The tIN (tRIN and tFIN also) mismatch causes additional delay time inside
the device then leads to ac timing invalidation in this DM.
The tIN (tRIN and tFIN also) mismatch does not necessarily mean functional failure. This global value may be overridden on a per interface
basis if another value is explicitly defined for that interface in the Timing Requirements and Switching Characteristics chapter of the data
manual.
(3) For a full description of the DS0 load compensation register configuration, see the description of the CONTROL_PROG_IO1
configuration registers in System Control Module / Programming Model / Feature Settings / SDRC I/O Drive Strength Selection section
of the AM/DM37x Multimedia Device Technical Reference Manual (literature number SPRUGN4).
124 Electrical Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
(4) For a full description of the SPEEDCTRL speed register configuration, see the description of the CONTROL_PROG_IO1 configuration
registers in System Control Module / Programming Model / Feature Settings section of the AM/DM37x Multimedia Device Technical
Reference Manual (literature number SPRUGN4).
(5) Rise and fall times are specified for (0.3 * vdds) to (0.7 * vdds).
(6) For capacitive load from 100 pF to 400 pF, fall time should be linearly interpolated:
tFmin = (1 + (Load 100 pF) / 300 pF) * 10 ns
tFmax = (1 + (Load 100 pF) / 300 pF) * 40 ns
(7) VIH is the voltage at which the receiver is required to detect a high state in the input signal.
(8) VIL is the voltage at which the receiver is required to detect a low state in the input signal. VIL is larger than the maximum single-ended
line voltage during HS transmission. Therefore, both LP receivers will detect low during HS signaling.
(9) This value includes a ground difference of 50 mV between the transmitter and the receiver, the status common-mode level tolerance
and variations below 450 MHz.
(10) Common mode is defined as the average voltage level of DX and DY: VCM = (V(DX) + V(DY))/2. Common mode ripple may be due to
rise-fall time and transmission line impairments in the PCB.
(11) Value when driving into differential load impedance anywhere in the range 80 to 125 .
(12) ULPM stands for Ultra Low Power Mode.
(13) UI = 1 / (2 * fh), where fh is the fundamental frequency of HS data transmission. For example, for 800 Mbps fh is 400 MHz.
(14) vdda_x can be vdda_csiphy1 or vdda_csiphy2 depending on the interface used.
(15) At minimum load.
(16) At maximum load. Caution: This creates EMI parasitics up to 1.2 ns.
(17) For more information about IOH / IOL values, see one of the tables in the Ball Characteristics section, column BUFFER DRIVE
STRENGTH (mA) .
(18) No VOL specifications are applicable in Standard mode.
(19) For associated CBC and CUS balls, please refer to the Section 2.4,Multiplexing Characteristics table.
Copyright ©20102011, Texas Instruments Incorporated Electrical Characteristics 125
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
3.4 External Capacitors
To improve module performance, decoupling capacitors are required to suppress the switching noise
generated by high frequency and to stabilize the supply voltage. A decoupling capacitor is most effective
when it is close to the device, because this minimizes the inductance of the circuit board wiring and
interconnects.
3.4.1 Voltage Decoupling Capacitors
Table 3-6 summarizes the Core voltage decoupling characteristics.
3.4.1.1 Core Voltage Decoupling Capacitors
To improve module performance, decoupling capacitors are required to suppress the switching noise
generated by high frequency and to stabilize the supply voltage. A decoupling capacitor is most effective
when it is close to the device, because this minimizes the inductance of the circuit board wiring and
interconnects.
Table 3-6. Core Voltage Decoupling Characteristics
PARAMETER MIN TYP MAX UNIT
Cvdd_core (1) 0.6 1.2 1.8 μF
Cvdd_mpu_iva (2) See (2) μF
(1) The typical value corresponds to 2 capacitors of 470 nF, plus 3 capacitors of 100 nF. Except for the decoupling capacitance values, the
PCB rules of the PCB Design Requirements for VDD_MPU_IVA Power Distribution Network for TI OMAP3630, AM37xx, and DM37xx
Microprocessors (SPRABJ7) application note can be used.
(2) For more information regarding the vdd_mpu_iva decoupling capacitance recommendations, see the PCB Design Requirements for
VDD_MPU_IVA Power Distribution Network for TI OMAP3630, AM37xx, and DM37xx Microprocessors (SPRABJ7) application note.
(3) IVA functionality is not supported in the AM37xx device.
3.4.1.2 IO and Analog Voltage Decoupling Capacitors
Table 3-7 summarizes the power supply decoupling capacitor characteristics.
Table 3-7. Power Supply Decoupling Capacitor Characteristics
PARAMETER MIN TYP MAX UNIT
Cvdds (1)(2) 200 400 600 nF
Cvdds_mem (1)(3) 350 700 1050 nF
Cvdds_mmc1 (4) 50 100 150 nF
Cvdds_x (4) 50 100 150 nF
Cvdda_dplls_dll (4) 50 100 150 nF
Cvdda_dpll_per (4) 50 100 150 nF
Cvdds_sram (4) 110 220 330 nF
Cvdda_wkup_bg_bb(4) 240 470 700 nF
Cvdda_dac (4) 50 100 150 nF
(1) In power plan configuration.
(2) The typical value corresponds to 4 capacitors of 100 nF.
(3) The typical value corresponds to 7 capacitors of 100 nF.
(4) In power rail configuration.
126 Electrical Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
3.4.2 Output Capacitors
The capacitors at the outputs are required to stabilize the internal LDO supply voltages. The capacitors
must be placed as close as possible to the balls.
Table 3-8 summarizes the power supply decoupling characteristics.
Table 3-8. Output Capacitor Characteristics
PARAMETER MIN TYP MAX UNIT
Ccap_vdd_sram_mpu_iva 0.7 1 1.3 μF
Ccap_vdd_sram_core 0.7 1 1.3 μF
Ccap_vddu_wkup_logic 0.7 1 1.3 μF
Ccap_vddu_array 0.7 1 1.3 μF
Ccap_vdd_bb_mpu_iva 0.7 1 1.3 μF
Copyright ©20102011, Texas Instruments Incorporated Electrical Characteristics 127
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
cap_vdd_sram_mpu_iva
cap_vdd_sram_core
vdds_sram
DPLL5
DPLL4
vdda_dpll_per
MMC I/Os
vdds_mmc1
vss
vssa_dac Cvdds_sram
Ccap_vdd_sram_mpu_iva
Ccap_vdd_sram_core
Cvdda_dplls_dll
Cvdda_dpll_per
Cvdds_mmc1
vdda_dac
vdds_mmc1
vdds_sram
vdda_dpll_per
vdda_dplls_dll
vdds_mem
Cvdds_mem
CORE vdd_core
Cvdd_core
vdd_core
vdda_wkup_bg_bb
vdda_wkup_bg_bb
cap_vddu_wkup_logic
Cvdda_wkup_bg_bb
Ccap_vddu_array
cap_vddu_array
DLL
DPLL_MPU
DPLL_CORE
vdda_dplls_dll
WKUP_LOGIC
BG
SRAM_LDO1
SRAM_LDO2
Video DAC
VDDS_MEM
MPU vdd_mpu_iva vdd_mpu_iva
Cvdd_mpu_iva
vdds
VDDS I/O
Cvdda_dac
vdds_mem
Cvdds
vdds
BBLDO
cap_vdd_bb_mpu_iva
Ccap_vddu_wkup_logic
OSCILLATOR
Device
vdda_dac
Ccap_vdd_bb_mpu_iva
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Figure 3-1 illustrates an example of the external capacitors.
Figure 3-1. External Capacitors
128 Electrical Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
NOTE
Decoupling capacitors must be placed as closed as possible of the power ball. Choose
the ground located closest to the power pin for each decoupling capacitor. In case of
interconnecting powers, first insert the decoupling capacitor and then interconnect the
powers.
The decoupling capacitor value depends on the board characteristics.
3.5 Power-Up and Power-Down Sequences
This section provides the timing requirements for the device hardware signals.
NOTE
If the MMC dual voltages interfaces are used with 1.8-V or 3.0-V, then the power-up and
power-down sequences specified in the Figure 3-2 and Figure 3-3 must be followed
carefully to avoid any significant current consumption.
If the MMC dual voltages interfaces are used with 1.8-V only (3.0-V is never used), then
vdds_mmc1, vdds_x may be connected to the main power supply vdds so that they ramp
up together before vdd_core.
3.5.1 Power-Up Sequence
NOTE
For more information, see the Power, Reset, and Clock Management / PRCM Functional
Description / PRCM Reset Manager Functional Description / Reset Sequences of the
AM/DM37x Multimedia Device Technical Reference Manual (literature number SPRUGN4).
Figure 3-2 shows the power-up sequence.
Copyright ©20102011, Texas Instruments Incorporated Electrical Characteristics 129
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
vdds, vdds_mem,
vdds_sram,
vdda_wkup_bg_bb
vdda_dplls_dll,
vdda_dpll_per
vdd_core
vdd_mpu_iva
sys_32k
sys_xtalin
sys_nrespwron
sys_nreswarm
vdds_mmc1,
vdds_x, vdda_dac
1.8 V
1.1 V(1)
1.1 V(1)
1.8 V
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
(1) 1.2 V supported.
(2) If an external square clock is provided, it could be started after sys_nrespwron release, provided it is clean, i.e. no glitch, stable
frequency and duty cycle.
(3) sys_32k can be turned on any time between the vdds ramp-up and the sys_nrespwron release.
Figure 3-2. Power-Up Sequence
3.5.2 Power-Down Sequence
The following steps give two examples of power-down sequence supported by the AM37x device.
1. Put the AM37x device under reset (sys_nrespwron)
2. Stop all signals driven to its balls (sys_32k, sys_xtalin)
3. Either:
(a) Shutdown all power domains at once. This sequence is described in black color in Figure 3-3.
(b) Or, if the shutdown is sequenced, you must follow these steps (described in dash style blue color
in Figure 3-3):
Turn off all complex IO domains (vdds_mmc1, vdds_x)
Turn off all the core and MPU domains (vdd_core, vdd_mpu_iva)
Turn off all DPLL domains (vdda_dplls_dll, vdda_dpll_per)
Turn off all sram LDOs (vdds_sram)
Turn off all reference domains (vdda_wkup_bg_bb)
Turn off all standard IO domains (vdds, vdds_mem)
Figure 3-3 shows both power-down sequences: one of them is described in black color, and the other one
in dash style blue.
130 Electrical Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
vdda_dplls_dll,
vdda_dpll_per
vdd_core
vdd_mpu_iva
sys_32k
sys_xtalin
sys_nrespwron
vdds_mmc1, vdds_x,
vdda_dac
vdds_sram
vdda_wkup_bg_bb
vdds, vdds_mem
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
A. sys_32k can be turned off any time between the sys_nrespwron assertion and the vdds shut down.
Figure 3-3. Power-Down Sequence
Alternate power-down sequence:
vdd_mpu_iva shuts down before vdd_core.
vdda_sram, vdda_wkup_bg_bb, vdds and vdds_mem shut down simultaneously.
vdda_dplls_dll and vdda_dpll_per shut down anytime between all complex IO domains shut down and
vdda_sram shuts down.
Copyright ©20102011, Texas Instruments Incorporated Electrical Characteristics 131
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
Device
sys_32k
sys_altclk
sys_clkout1
Alternate clock source selectable (48-MHz, 54-MHz)
To quartz (oscillator output) or unconnected
From quartz (oscillator input) or square clock
Clock request. To square clock source or from peripherals
Oscillator
is used
Oscillator
is bypassed
Unconnected
Square
clock
source
To peripherals (from oscillator clock [sys_xtalin]): 12-,13-,
16.8-, 19.2-, 26-, or 38.4-MHz or Core_clk: up to 332 MHz
(possible divider: 4, 8, 16) or DPLL 54-MHz, DPLL 96-MHz
(possible divider: 1, 2, 4, 8, or 16)
GPin
To peripherals (from oscillator clock [sys_xtalin]): 12-,13-,
16.8-, 19.2-, 26-, or 38.4-MHz (no divider)
sys_clkout2
sys_xtalout
sys_xtalin
sys_clkreq
sys_xtalout
sys_xtalin
sys_clkreq
sys_xtalout
sys_xtalin
sys_clkreq
From power IC: 32 768-Hz
SWPS038-006
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
4 Clock Specifications
NOTE
For more information, see the Power, Reset, and Clock Management / PRCM Environment /
External Clock Signal and Power, Reset and Clock Management / PRCM Functional
Description / PRCM Clock Manager Functional Description sections of the AM/DM37x
Multimedia Device Technical Reference Manual (SPRUGN4).
Figure 4-1 shows external input clock sources and output clocks.
Figure 4-1. Clock Interface
132 Clock Specifications Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
The device operation requires the following three input clocks:
The sys_32k 32-kHz clock is used for low frequency operation. It supplies the wake-up domain for
operation in lowest power mode (off mode). This clock is provided through the sys_32k pin.
The sys_altclk system alternative clock can be used (through the sys_altclk pin) to provide alternative
48 MHz or 54 MHz.
The sys_xtalin / sys_xtalout system input clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz) is used to
generate the main source clock of the device. It supplies the DPLLs as well as several other modules.
The system input clock can be connected to either:
A crystal oscillator clock managed by sys_xtalin and sys_xtalout. In this case, the sys_clkreq is
used as an input (GPIN).
A CMOS digital clock through the sys_xtalin pin. In this case, the sys_clkreq is used as an output to
request the external system clock.
The device outputs externally two clocks:
sys_clkout1 can output the oscillator clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz) at any time. It can be
controlled by software or externally using sys_clkreq control. When the device is in the off state, the
sys_clkreq can be asserted to enable the oscillator and activate the sys_clkout1 without waking up the
device. The off state polarity of sys_clkout1 is programmable.
sys_clkout2 can output the oscillator clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz), core_clk (core DPLL
output), 96 MHz or 54 MHz. It can be divided by 2, 4, 8, or 16 and its off state polarity is
programmable. This output is active only when the core power domain is active.
4.1 Input Clock Specifications
4.1.1 Input Clock Requirements
Table 4-1 illustrates the requirements to supply a clock to the device.
Table 4-1. Input Clock Requirements (4)
PAD CLOCK FREQUENCY STABILITY DUTY CYCLE JITTER TRANSITION
sys_32k 32.768 kHz +/- 200 ppm - - <10 ns
sys_xtalout 12, 13, 16.8, or 19.2 MHz Crystal ±50 ppm (±5 - - -
sys_xtalin ppm)(1)
12, 13, 16.8, 19.2, 26, or 38.4 MHz Square ±50 ppm (±5 45% to 55% X%(2) * 10 ns
ppm)(1) tc(xtalin)(3) -
200ps
sys_altclk 48 or 54 MHz +/-50 ppm 49% to 51% <1% 10 ns
(1) ±50 ppm is the clock frequency stability/accuracy and ±5 ppm takes into account the aging effects.
(2) Depending on the internal system clock divider configuration (PRCM.PRM_CLKSRC_CTRL[7:6], SYSCLKDIV bit field), the sys_xtalin
input clock can be divided by 2 to provide the standard system clock (SYS_CLK) frequencies.
For more information, see the Power, Reset, and Clock Management chapter of the AM/DM37x Multimedia Device Technical Reference
Manual (SPRUGN4). In X%, X represents then the internal system clock divider with following possible values: X = 1 or 2.
(3) tc(xtalin) is the sys_xtalin cycle time of the clock coming to sys_xtalin ball.
(4) In this table, the transition times are calculated for 10%-90% of VDDS. For more information on the corresponding VDDS power supply
name, please see the Ball Characteristics table corresponding to your package. The POWER column defines the VDDS power supply
for each ball.
Copyright ©20102011, Texas Instruments Incorporated Clock Specifications 133
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
Device
sys_xtalin sys_xtalgnd sys_xtalout
Cf1 Cf2
Crystal
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
4.1.2 sys_xtalin / sys_xtalout External Crystal
An external crystal is connected to the device pins. Figure 4-2 describes the crystal implementation.
Figure 4-2. Crystal Implementation
1. When the crystal oscillator is in bypass mode (crystal implementation is unused), the sys_xtalgnd ball
is not connected.
The crystal must be in the fundamental mode of operation and parallel resonant. Table 4-2 summarizes
the required electrical constraints.
Table 4-2. Crystal Electrical Characteristics(1)
NAME DESCRIPTION MIN TYP MAX UNIT
fpParallel resonance crystal frequency(1) 12, 13, 16.8, or 19.2 MHz
Cf1 Cf1 load capacitance for crystal parallel resonance with Cf1 = Cf2 12 24 pF
Cf2 Cf2 load capacitance for crystal parallel resonance with Cf1 = Cf2 12 24 pF
ESR(Cf1,Cf2)(2) Frequency 12 MHz , Negative resistor at nominal 500 , Negative 100
resistor at worst case 300
Frequency 13 MHz, Negative resistor at nominal 400 , Negative 80
resistor at worst case 240
Frequency 16.8 MHz and 19.2 MHz, Negative resistor at nominal 60
300 , Negative resistor at worst case 180
CoCrystal shunt capacitance 4.5 pF
DL Crystal drive level 0.5 mW
(1) Measured with the load capacitance specified by the crystal manufacturer. This load is defined by the foot capacitances tied in series. If
CL= 20 pF, then both foot capacitors will be Cf1 = Cf2 = 40 pF. Parasitic capacitance from package and board must also be taken in
account.
(2) The crystal motional resistance Rmis related to the equivalent series resistance (ESR) by the following formula:
ESR = Rm* (1 + (CO* Cf1 * Cf2 / (Cf1 + Cf2)))2.
When selecting a crystal, the system design must take into account the temperature and aging
characteristics of a crystal versus the user environment and expected lifetime of the system.
134 Clock Specifications Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 4-3 details the switching characteristics of the oscillator and the requirements of the input clock.
Table 4-3. Oscillator Switching CharacteristicsCrystal Mode
NAME DESCRIPTION MIN TYP MAX UNIT
fpOscillation frequency 12, 13, 16.8, or 19.2 MHz
tsX Start-up time(1) (2) 3 ms
(1) Start-up time is defined as the time the oscillator takes to gain sys_xtalin amplitude enough to have 45% to 55% duty cycle at the core
input from the time power down (PWRDN) is released. Start-up time is a strong function of crystal parameters. At power-on reset, the
time is adjustable using the pin itself. The reset must be released when the oscillator or clock source is stable. To switch from bypass
mode to crystal or from crystal mode to bypass mode, there is a waiting time about 100 μs; however, if the chip comes from bypass
mode to crystal mode then the crystal will start-up after time mentioned in the tsX parameter.
(2) Before the processor boots up and the oscillator is set to bypass mode, there is a waiting time when the internal oscillator is in
application mode and receives a square wave. The switching time in this case is about 100 μs.
4.1.3 sys_xtalin Squarer Input Clock
Table 4-4 summarizes the base oscillator electrical characteristics.
Table 4-4. Oscillator Electrical CharacteristicsBypass Mode
NAME DESCRIPTION MIN TYP MAX UNIT
f Frequency 12, 13, 16.8, 19.2, 26, or 38.4 MHz
CiInput Capacitance 1.00 1.15 1.35 pF
RiInput Resistance 160 216 280
tsX Start-up time(1) See(2) ms
(1) To switch from bypass mode to crystal mode or from crystal mode to bypass mode, there is a waiting time about 100 μs; however, if the
chip comes from bypass mode to crystal mode then the crystal will start-up after time mentioned in Table 4-3, tsX parameter above.
(2) Before the processor boots up and the oscillator is set to bypass mode, there is a waiting time when the internal oscillator is in
application mode and receives a square wave. The switching time in this case is about 100 μs.
Copyright ©20102011, Texas Instruments Incorporated Clock Specifications 135
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-008
sys_xtalin
OSC0 OSC1 OSC1
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 4-5 details the squarer input clock timing requirements.
Table 4-5. sys_xtalin Squarer Input Clock Timing RequirementsBypass Mode (5)
NAME DESCRIPTION MIN TYP MAX UNIT
OCS0 1 / tc(xtalin) Frequency, sys_xtalin 12, 13, 16.8, 19.2, 26, or 38.4 MHz
OCS1 tw(xtalin) Pulse duration, sys_xtalin low or high 0.45 * tc(xtalin) 0.55 * tc(xtalin) ns
tJ(xtalin) Peak-to-peak jitter(1), sys_xtalin X%(2) * ps
tc(xtalin) (3) -
200
tR(xtalin) Rise time, sys_xtalin 10 ns
tF(xtalin) Fall time, sys_xtalin 10 ns
tJ(xtalin) Frequency stability, sys_xtalin +/-50 ppm
(+/-5ppm)(4)
(1)
Peak-to-peak jitter is meant here as follows:
The maximum value is the difference between the longest measured clock period and the expected clock period
The minimum value is the difference between the shortest measured clock period and the expected clock period Maximum and
minimum are obtained on a statistical population of 300 period samples and expressed relative to the expected clock period
(2) Depending on the internal system clock divider configuration (PRCM.PRM_CLKSRC_CTRL[7:6], SYSCLKDIV bit field), the sys_xtalin
input clock can be divided by 2 to provide the standard system clock (SYS_CLK) frequencies. For more information, see the Power,
Reset, and Clock Management chapter of the AM/DM37x Multimedia Device Technical Reference Manual (SPRUGN4). In X%, X
represents then the internal system clock divider with following possible values: X = 1 or 2.
(3) tc(xtalin) is the sys_xtalin cycle time of the clock coming to sys_xtalin ball.
(4) ±50 ppm is the clock frequency stability/accuracy and ±5 ppm takes into account the aging effects.
(5) In this table, the transition times are calculated for 10%-90% of VDDS. For more information on the corresponding VDDS power supply
name, please see the Ball Characteristics table corresponding to your package. The POWER column defines the VDDS power supply
for each ball.
Figure 4-3. sys_xtalin Squarer Input Clock
4.1.4 sys_32k CMOS Input Clock
Table 4-6 summarizes the electrical characteristics of the sys_32k input clock.
Table 4-6. sys_32k Input Clock Electrical Characteristics
NAME DESCRIPTION MIN TYP MAX UNIT
f Frequency, sys_32k 32.768 kHz
CiInput capacitance 1.6 pF
RiInput resistance 3 106M
Table 4-7 details the input requirements of the sys_32k input clock.
Table 4-7. sys_32k Input Clock Timing Requirements(1)
NAME DESCRIPTION MIN TYP MAX UNIT
CK0 1 / tc(32k) Frequency, sys_32k 32.768 kHz
tR(32k) Rise time, sys_32k 10 ns
tF(32k) Fall time, sys_32k 10 ns
tJ(32k) Frequency stability, sys_32k 200 ppm
136 Clock Specifications Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-009
sys_32k
CK0 CK1 CK1
SWPS038-010
sys_altclk
ALT0 ALT1 ALT1
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
(1) In this table, the transition times are calculated for 10%-90% of VDDS. For more information on the corresponding VDDS power supply
name, please see the Ball Characteristics table corresponding to your package. The POWER column defines the VDDS power supply
for each ball.
Figure 4-4. sys_32k Input Clock
4.1.5 sys_altclk CMOS Input Clock
Table 4-8 summarizes the electrical characteristics of the sys_altclk input clock.
Table 4-8. sys_altclk Input Clock Electrical Characteristics
NAME DESCRIPTION MIN TYP MAX UNIT
f Frequency, sys_altclk 48 or 54 MHz
Ci Input capacitance 1.6 pF
Ri Input resistance 3 106M
Table 4-9 details the input requirements of the sys_altclk input clock.
Table 4-9. sys_altclk Input Clock Timing Requirements(2)
NAME DESCRIPTION MIN TYP MAX UNIT
ALT0 1 / tc(altclk) Frequency, sys_altclk 48 or 54 MHz
ALT1 tw(altclk) Pulse duration, sys_altclk low or high 0.49 * tc(altclk) 0.51 * tc(altclk) ns
tJ(altclk) Peak-to-peak jitter(1), sys_altclk -1% 1%
tR(altclk) Rise time, sys_altclk 10 ns
tF(altclk) Fall time, sys_altclk 10 ns
tJ(altclk) Frequency stability, sys_altclk 50 ppm
(1) Peak-to-peak jitter is meant here as follows:
The maximum value is the difference between the longest measured clock period and the expected clock period
The minimum value is the difference between the shortest measured clock period and the expected clock period Maximum and
minimum are obtained on a statistical population of 300 period samples and expressed relative to the expected clock period
(2) In this table, the transition times are calculated for 10%-90% of VDDS. For more information on the corresponding VDDS power supply
name, please see the Ball Characteristics table corresponding to your package. The POWER column defines the VDDS power supply
for each ball.
Figure 4-5. sys_altclk Input Clock
Copyright ©20102011, Texas Instruments Incorporated Clock Specifications 137
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
4.2 Output Clocks Specifications
4.2.1 sys_clkout1 Output Clock
Table 4-10 summarizes the sys_clkout1 ouput clock electrical characteristics.
Table 4-10. sys_clkout1 Output Clock Electrical Characteristics
NAME DESCRIPTION MIN TYP MAX UNIT
f Frequency, sys_clkout1 sys_xtalin / sys_xtalout clock frequency MHz
SC[0:1] = 00(1)
CLLoad capacitance (transmission line load + far end load) 4 60 pF
ZTTransmission line impedance 30 70
LTTransmission line length 2 20 cm
SC[0:1] = 01(1)
CLLoad capacitance (transmission line load + far end load) 7 33 pF
ZTTransmission line impedance 30 70
LTTransmission line length 2 8 cm
SC[0:1] = 10(1)
CLLoad capacitance (transmission line load + far end load) 2 21 pF
ZTTransmission line impedance 30 70
LTTransmission line length 1 6 cm
(1) The mode is configured by bits SC0 and SC1 of the IO cell. For more details, see the AM/DM37x Multimedia Device Technical
Reference Manual (SPRUGN4).
Table 4-11 details the sys_clkout1 ouput clock switching characteristics.
Table 4-11. sys_clkout1 Output Clock Switching Characteristics(6)
NAME DESCRIPTION MIN TYP MAX UNIT
CO0 1 / tc(CLKOUT1) Frequency, sys_clkout1 sys_xtalin/sys_xtalout clock frequency MHz
SC[0:1] = 00(1)
CLLoad capacitance 4 60 pF
tJPeak-to-peak jitter X(5) + 693 ps
tJC2C Cycle-to-cycle jitter X(5) + 705 ps
tW(CLKOUT1) Pulse duration, sys_clkout1 low or high 0.45*tc(CLKOUT 0.55*tc(CLKOUT
1) 1)
tR(CLKOUT1) Rise time, sys_clkout1 1(2) (4) 15(3) ns
tF(CLKOUT1) Fall time, sys_clkout1 1(2) (4) 15(3) ns
SC[0:1] = 01(1)
CLLoad capacitance 7 33 pF
tJPeak-to-peak jitter X(5) + 543 ps
tJC2C Cycle-to-cycle jitter X(5) + 555 ps
tW(CLKOUT1) Pulse duration, sys_clkout1 low or high 0.45*tc(CLKOUT 0.55*tc(CLKOUT
1) 1)
tR(CLKOUT1) Rise time, sys_clkout1 0.6(2) (4) 7(3) ns
tF(CLKOUT1) Fall time, sys_clkout1 0.6(2) (4) 7(3) ns
SC[0:1] = 10(1)
CLLoad capacitance 2 21 pF
tJPeak-to-peak jitter X(5) + 603 ps
tJC2C Cycle-to-cycle jitter X(5) + 615 ps
tW(CLKOUT1) Pulse duration, sys_clkout1 low or high 0.47*tc(CLKOUT 0.53*tc(CLKOUT
1) 1)
tR(CLKOUT1) Rise time, sys_clkout1 0.4(2) (4) 5(3) ns
138 Clock Specifications Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-011
sys_clkout1
CO0 CO1 CO1
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 4-11. sys_clkout1 Output Clock Switching Characteristics(6) (continued)
NAME DESCRIPTION MIN TYP MAX UNIT
tF(CLKOUT1) Fall time, sys_clkout1 0.4(2) (4) 5(3) ns
(1) The mode is configured by bits SC0 and SC1 of the IO cell. For more details, see the AM/DM37x Multimedia Device Technical
Reference Manual (SPRUGN4).
(2) At minimum load
(3) At maximum load (Maximum frequency 20 MHz)
(4) Caution: this creates EMI parasitics up to 1.2 ns
(5) X parameter corresponds to the input jitter contribution added at sys_xtalin input pin. For more information regarding the sys_xtalin input
jitter requirement, see Section 4.1.1.
(6) In this table, the transition times are calculated for 10%-90% of VDDS. For more information on the corresponding VDDS power supply
name, please see the Ball Characteristics table corresponding to your package. The POWER column defines the VDDS power supply
for each ball.
Figure 4-6. sys_clkout1 Output Clock
4.2.2 sys_clkout2 Output Clock
Table 4-12 summarizes the sys_clkout2 ouput clock electrical characteristics.
Table 4-12. sys_clkout2 Output Clock Electrical Characteristics
NAME DESCRIPTION MIN TYP MAX UNIT
f Frequency, sys_clkout2 sys_xtalin clock or core_dpll clock(1) or 54 MHz
MHz, 96 MHz(2)
CLLoad capacitance 2 22 pF
ZTTransmission line impedance 30 70
LTTransmission line length 1 6 cm
(1) Possible divider: 4, 8, or 16.
(2) Possible divider: 1, 2, 4, 8, or 16.
Table 4-13 details the sys_clkout2 ouput clock switching characteristics.
Table 4-13. sys_clkout2 Output Clock Switching Characteristics(8)
NAME DESCRIPTION MIN TYP MAX UNIT
CO0 1 / tc(CLKOUT2) Frequency, sys_clkout2 sys_xtalin clock or core_dpll clock(3) or 54 MHz
MHz, 96 MHz(4)
tc(xtalin) Cycle time, sys_xtalin 1 / sys_xtalin ns
(MHz)
tc(coredpll) Cycle time, core_dpll (DPLL3) (7) 1 / core_dpll ns
(MHz)
tc(54mhz) Cycle time, 54MHz clock (DPLL4) (7) 18.52 ns
tc(96mhz) Cycle time, 96MHz clock (DPLL4) (7) 10.42 ns
CO1 tw(CLKOUT2) Pulse duration, sys_clkout2 low or high 0.49*tc(clkout 0.51*tc(clkout ns
2) 2)
Copyright ©20102011, Texas Instruments Incorporated Clock Specifications 139
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-012
sys_clkout2
CO0 CO1 CO1
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 4-13. sys_clkout2 Output Clock Switching Characteristics(8) (continued)
NAME DESCRIPTION MIN TYP MAX UNIT
tJ(5) Peak-to-peak jitter Source clock: X%(6) * ps
sys_xtalin tc(xtalin) + 200
Source clock: 4% * ps
core_dpll tc(coredpll) +
200
Source clock: 54MHz 4% * tc(54mhz) ps
+ 200
Source clock: 96MHz 4% * tc(96mhz) ps
+ 200
tR(CLKOUT2) Rise time, sys_clkout2 1.5(1) 5(2) ns
tF(CLKOUT2) Fall time, sys_clkout2 1.5(1) 5(2) ns
(1) At minimum load
(2) At maximum load (maximum frequency 104 MHz)
(3) Possible divider: 4, 8, 16
(4) Possible divider: 1, 2, 4, 8, or 16
(5) Peak-to-peak jitter is meant here as follows:
The maximum value is the difference between the longest measured clock period and the expected clock period
The minimum value is the difference between the shortest measured clock period and the expected clock period
Maximum and minimum are obtained on a statistical population of 300 period samples and expressed relative to the expected clock
period.
(6) Depending on the internal system clock divider configuration (PRCM.PRM_CLKSRC_CTRL[7:6], SYSCLKDIV bit field), the sys_xtalin
input clock can be divided by 2 to provide the standard system clock (SYS_CLK) frequencies. For more information, see the Power,
Reset, and Clock Management / PRCM Functional Description / PRCM Clock Manager Functional Description / External Clock I/Os /
External Clock Inputs / High-Frequency System Clock section of AM/DM37x Multimedia Device Technical Reference Manual (literature
number SPRUGN4).
In X%, X represents then the internal system clock divider with following possible values: X = 1 or 2.
(7) This cycle time specified here is the clock period of the clock going out of sys_clkout2.
(8) In this table, the transition times are calculated for 10%-90% of VDDS. For more information on the corresponding VDDS power supply
name, please see the Ball Characteristics table corresponding to your package. The POWER column defines the VDDS power supply
for each ball.
Figure 4-7. sys_clkout2 Output Clock
4.3 DPLL and DLL Specifications
NOTE
For more information, see Power, Reset, and Clock Management / PRCM Functional
Description / PRCM Clock Manager Functional Description / Internal Clock Generation /
DPLLs section of the AM/DM37x Multimedia Device Technical Reference Manual
(SPRUGN4).
The applicative subsystem integrates five DPLLs and a DLL. The PRM and CM drive those listed below.
The main DPLLs are:
DPLL1 (MPU)
DPLL3 (Core)
DPLL4 (Peripherals)
DPLL5 (Second peripherals DPLL)
140 Clock Specifications Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
4.3.1 DPLL Characteristics
Table 4-14 summarizes the DPLL characteristics and assumes testing over recommended operating
conditions.
Table 4-14. DPLL1 - DPLL3 - DPLL5 Characteristics
NAME DESCRIPTION MIN TYP MAX UNIT COMMENTS
vdda_dplls_dll Supply voltage for DPLLs (MPUand 1.71 1.8 1.91 V
Core) and DLL
vdda_dpll_per Supply voltage for DPLL 1.71 1.8 1.91 V
(Peripherals)
finput CLKINP Input frequency 0.032 52 MHz FINP
finternal Internal reference frequency 0.032 52 MHz REFCLK
fCLKINPHIF CLKINPHIF Input frequency 10 1000 MHz FINPHIF
fCLKINPULOW CLKINPULOW Input frequency 0.001 800 MHz
fCLKOUT CLKOUT output frequency 10(1) 1000(2) MHz [M / (N + 1)] * FINP * [1 /
M2]
fCLKOUTx2 CLKOUTx2 output frequency 20(1) 2000(2) MHz 2 * [M / (N + 1)] * FINP * [1
/ M2]
fCLKOUTHIF CLKOUTHIF output frequency 10(3) 1000(4) MHz FINPHIF / M3
20(3) 2000(4) 2 * [M / (N + 1)] * FINP * [1
/ M3]
fDCOCLKLDO DCOCLKLDO output frequency 20 2000 MHz 2 * [M / (N + 1)] * FINP
tlock Frequency lock time 1.9 + μs
350*REFCLK
plock Phase lock time 1.9 + μs
500*REFCLK
trelock-L Relock timeFrequency lock(5) (Low 1.9 + 70*REFCLK μs DPLL in low-power mode:
power bypass) lowcurrstdby = 1
prelock-L Relock timePhase lock(5) (Low 1.9 + μs DPLL in low-power mode:
power bypass) 120*REFCLK lowcurrstdby = 1
trelock-F Relock timeFrequency lock(5) (Fast 0.05 + μs DPLL in normal mode:
relock bypass) 70*REFCLK lowcurrstdby = 0
prelock-F Relock timePhase lock(5) (Fast 0.05 + μs DPLL in normal mode:
relock bypass) 120*REFCLK lowcurrstdby = 0
(1) The minimum frequencies on CLKOUT and CLKOUTX2 are assuming M2 = 1. For M2 >1, the minimum frequency on these clocks will
further scale down by factor of M2.
(2) The maximum frequencies on CLKOUT and CLKOUTX2 are assuming M2 = 1.
(3) The minimum frequency on CLKOUTHIF is assuming M3 = 1. For M3 >1, the minimum frequency on this clock will further scale down
by factor of M3.
(4) The maximum frequency on CLKOUTHIF is assuming M3 = 1.
(5) Relock time assumes typical operating conditions, 10°C maximum temperature drift.
Table 4-15. DPLL4 Characteristics
NAME DESCRIPTION MIN TYP MAX UNIT COMMENTS
vdda_dpll_per Supply voltage for DPLL (peripherals) 1.71 1.8 1.91 V
finput CLKINP input clock frequency 0.5 60 MHz FINP
finternal REFCLK internal reference frequency 0.5 2.5 MHz REFCLK
fCLKINPULOW CLKINPULOW bypass input 0.001 800 MHz
frequency
fCLKOUT CLKOUT output clock frequency 10(1) 2000(2) MHz [M / (N + 1)] * FINP * [1 /
M2]
fDCOCLKLDO Internal oscillator (DCO) output clock 500 2000 MHz [M / (N + 1)] * FINP
frequency
tlock Frequency lock time 350*REFCLK μs
plock Phase lock time 500*REFCLK μs
trelock-L Relock timeFrequency lock(3) (Low 7.5 + μs DPLL in low-power mode:
power bypass) 30*REFCLKs lowcurrstdby = 1
Copyright ©20102011, Texas Instruments Incorporated Clock Specifications 141
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 4-15. DPLL4 Characteristics (continued)
NAME DESCRIPTION MIN TYP MAX UNIT COMMENTS
prelock-L Relock timePhase lock(3) (Low 7.5 + μs DPLL in low-power mode:
power bypass) 125*REFCLKs lowcurrstdby = 1
trelock-F Relock timeFrequency lock(3) (Fast NA μs
relock bypass)
prelock-F Relock timePhase lock(3) (Fast NA μs
relock bypass)
(1) The minimum frequency on CLKOUT is assuming M2 = 1. For M2 >1, the minimum frequency on this clock will further scale down by
factor of M2.
(2) The maximum frequency on CLKOUT is assuming M2 = 1.
(3) Relock time assumes typical operating conditions, 10°C maximum temperature drift.
4.3.2 DLL Characteristics
Table 4-16 summarizes the DLL characteristics and assumes testing over recommended operating
conditions.
Table 4-16. DLL Characteristics
NAME DESCRIPTION MIN TYP MAX UNIT COMMENTS
vdda_dplls_dll Supply voltage for DPLLs (MPU and Core) and 1.71 1.8 1.91 V
DLL
finput Input clock frequency (1) 66 120 200 MHz Either application mode 0 and 1
tlock Lock time 500 Clocks
trelock Relock time (Mode transitions through idle 500 ns IDLE to MODEMAXDELAY
mode) 250 450 Clocks IDLE to APPLICATION MODE 1
or 0
1.88 3.38 μs IDLE to APPLICATION MODE
@133 MHz
1.50 2.71 μs IDLE to APPLICATION MODE
@166 MHz
1.25 2.25 μs IDLE to APPLICATION MODE
@200 MHz
(1) Maximum frequency for nominal conditions.
142 Clock Specifications Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
DPLL_MPU DPLL_CORE DLL
DPLL5 DPLL4
vdda_dplls_dll
vdda_dpll_per
C
Noise Filter
C
Noise Filter
030-017
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
4.3.3 DPLL and DLL Noise Isolation
The noise filters (decoupling capacitors) are required to suppress the switching noise generated by high
frequency and to stabilize the supply voltage.
A noise filter is most effective when it is close to the device, because this minimizes the inductance of the
circuit board wiring and interconnects.
Figure 4-8 illustrates an example of a noise filter.
A. This circuit is provided only as an example.
B. The filter must be located as close as possible to the device.
Figure 4-8. DPLL Noise Filter
Table 4-17 specifies the noise filter requirements.
Table 4-17. DPLL Noise Filter Requirements(1)
NAME MIN TYP MAX UNIT
Filtering capacitor 50 100 150 nF
(1) For more information, see IO and Analog Voltage Decoupling Capacitors.
4.3.4 Processor Clocks
Table 4-18 through Table 4-20 show the clocks AC performance values.
Table 4-18. Processor Voltages Without SmartReflexTM
RETENTIO OPP50 OPP100 OPP130(3)
N
MIN MIN TYP MAX MIN TYP MAX MIN TYP MAX
VDD1(1) (2) 0.8 0.92 0.97 1.02 1.08 1.14 1.2 1.21 1.27 1.33
(V)
(1) At ball level.
(2) Minimum OPP voltage values defined in this table include any voltage transient.
(3) OPP130 is not available above TJof 90C.
Table 4-19. Processor Voltages With SmartReflexTM
RETENTIO OPP50 OPP100 OPP130(4) OPP1G (4) (5)(6)
N
MIN MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX
Copyright ©20102011, Texas Instruments Incorporated Clock Specifications 143
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 4-19. Processor Voltages With SmartReflexTM (continued)
RETENTIO OPP50 OPP100 OPP130(4) OPP1G (4) (5)(6)
N
VDD1(1) (2) 0.8 0.92 0.97 1.02 1.08 1.14 1.2 1.21 1.27 1.33 1.28 1.33 1.38
(3) (V)
(1) At ball level.
(2) These VDD1 (vdd_mpu_iva) values are the required voltage ranges prior to enabling the SmartReflex AVS feature. After calibration, the
minimum voltage may be lower than this specification.
(3) Minimum OPP voltage values defined in this table include any voltage transient.
(4) OPP130 and OPP1G are not available above TJof 90C.
(5) OPP1G is a high performance operating point which has following requirements:
ABB LDO must be set to FBB (Forward Body Bias) mode when switching to this OPP. It requires having a 1μF capacitor connected
to cap_vdd_bb_mpu_iva.
AVS (Adaptive Voltage Scaling) power technique must be used to achieve optimum operating voltage.
(6) Based on DM3730 PCB constraints, the vdd_mpu_iva (VDD1) voltage value calibrated before enabling SmartReflexis recommended
to be 1.38V. Minimum (1.28V) and typical (1.33V) values provided can be achieved only with very good power delivery network design.
For more information on vdd_mpu_iva power delivery network design requirements, see the PCB Design Requirements for
VDD_MPU_IVA Power Distribution Network for TI OMAP3630, AM37xx, and DM37xx Microprocessors (SPRABJ7) application note.
Table 4-20. Processor Clocks
OPP50 OPP100 OPP130 OPP1G (2)
Description Source Clock Max Ratio Max Ratio Max Ratio Max Ratio
Freq.(MHz) Freq.(MHz) Freq.(MHz) Freq.(MHz)
DPLL1 - 1200 - 1200 - 1600 - 2000 -
Locked
Frequency
DPLL1CLKO DPLL1 300 2 *(M2 = 600 2 *(M2 = 800 2 *(M2 = 1000 2 *(M2 =
UT_M2 Locked 2)(1)(4) 1)(1)(4) 1)(1)(4) 1)(1)(4)
Frequency
ARM_FCLK DPLL1CLKO 300 1 600 1 800 1 1000 1
UT_M2
(1) This ratio is configurable by software programming. For more information, see the AM/DM37x Multimedia Device Technical Reference
Manual (SPRUGN4).
(2) OPP1G is a high performance operating point which has following requirements:
ABB LDO must be set to FBB (Forward Body Bias) mode when switching to this OPP. It requires having a 1μF capacitor connected
to cap_vdd_bb_mpu_iva.
AVS (Adaptive Voltage Scaling) power technique must be used to achieve optimum operating voltage.
(3) For more information about ARM_FCLK and IVA2_CLK processor clocks configuration, see the Power, Reset, and Clock Management /
PRCM Functional Description / PRCM Clock Manager Functional Description / Clock Configurations / Processor Clock Configurations
section or the MPU Subsystem / MPU Subsystem Integration / MPU Subsystem Clock and Reset Distribution / Clock Distribution section
of the AM/DM37x Multimedia Device Technical Reference Manual (SPRUGN4).
(4) The DPLL ratios documented in this table are recommended ratios. Other values may apply.
144 Clock Specifications Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
4.3.5 Device Core Clocks
Table 4-21 and Table 4-22 show the device core clocks AC performance values.
Table 4-21. Device Core Voltages
RETENTION OPP50 OPP100
MIN MIN TYP MAX MIN TYP MAX
VDD2 (1) (2) (3) (V) 0.8 0.90 0.95 1.00 1.08 1.14 1.20
(1) At ball level.
(2) Minimum OPP voltage values defined in this table include any voltage transient.
(3) When SmartReflexis not used, these values define the required voltage range. When SmartReflexwill be used, these voltages are
the required voltage range prior to enabling the SmartReflexfeature. After calibration, the minimum voltage may be lower than this
specification.
Table 4-22. Device Core Clocks
OPP50 OPP100
Descripti Source Max Ratio Max Ratio Max Ratio Max Ratio Max Ratio Max Ratio
on Freq.(MH Freq.(MH Freq.(MH Freq.(MH Freq.(MH Freq.(MH
z) z) z) z) z) z)
DPLL3 - 800 - 664 - 400 - 800 - 664 - 532 -
Locked
Frequenc
y
DPLL3C DPLL3 200 2 *(M2 = 166 2 *(M2 = 200 2 *(M2 = 400 2 *(M2 = 332 2 *(M2 = 266 2 *(M2 =
LKOUT_ Locked 2)(1)(2) 1)(1)(2) 1)(1)(2) 1)(1)(2) 1)(1)(2) 1)(1)(2)
M2 Frequenc
y
CORE_C DPLL3C 200 1 166 1 200 1 400 1 332 1 266 1
LK LKOUT_
M2
L3_ICLK CORE_C 100 2(1) 83 2(1) 100 2(1) 200 2(1) 166 2(1) 133 2(1)
LK
L4_ICLK L3_ICLK 50 2(1) 41.5 2(1) 50 2(1) 100 2(1) 83 2(1) 66.5 2(1)
SDRC_C L3_ICLK 100 1 83 1 100 1 200 1 166 1 133 1
LK
GPMC_C L3_ICLK 50 2(1) 41.5 2(1) 50 2(1) 100 2(1) 83 2(1) 66.5 2(1)
LK
(1) This ratio is configurable by software programming. For more information, see the AM/DM37x Multimedia Device Technical Reference
Manual (SPRUGN4).
(2) The DPLL ratios documented in this table are recommended ratios. Other values may apply.
4.3.6 Graphic Accelerator (SGX) Clocks
Table 4-23 and Table 4-24 show the recommended VDD2 (corresponding to vdd_core, Core and SGX
voltage at ball level) voltages ranges and the standard graphic accelerator (SGX) clocks speed
characteristics vs VDD2.
Table 4-23. Graphic Accelerator Voltages
OPP 100 (2)
MIN TYPICAL MAX
VDD2(1)(3)(4) (V) 1.08 1.14 1.20
(1) At ball level.
(2) SGX (Graphic Accelerator) is not available in the OPP50 operating point.
(3) When SmartReflexis not used, these values define the required voltage range. When SmartReflexwill be used, these voltages are
the required voltage range prior to enabling the SmartReflexfeature. After calibration, the minimum voltage may be lower than this
specification.
(4) Minimum OPP voltage values defined in this table include any voltage transient.
Copyright ©20102011, Texas Instruments Incorporated Clock Specifications 145
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 4-24. Graphic Accelerator Clocks(2)
OPP 100(2)
Max Freq Max Freq Max Freq
Description Source Clock Ratio Ratio Ratio
(MHz) (MHz) (MHz)
DPLL3 Locked Frequency 800 664 532
DPLL4 Locked Frequency 1728 1728 1728
1 * (M2 = 1 * (M2 = 1 * (M2 =
DPLL3CLKOUTX2_M2 DPLL3 Locked Frequency 800 664 532
1)(1)(3) 1)(1)(3) 1)(1)(3)
2 * (M2 = 2 * (M2 = 2 * (M2 =
DPLL3CLKOUT_M2 DPLL3 Locked Frequency 400 332 266
1)(1)(3) 1)(1)(3) 1)(1)(3)
1 * (M2 = 1 * (M2 = 1 * (M2 =
DPLL4CLKOUT_M2 DPLL4 Locked Frequency 192 192 192
9)(1)(3) 9)(1)(3) 9)(1)(3)
CORE_CLK DPLL4 Locked Frequency 400 1 332 1 266 1
COREX2_CLK DPLL3CLKOUTX2_M2 800 1 664 1 532 1
SGX_192M_FCLK DPLL4CLKOUT_M2 192 1 192 1 192 1
SGX Option 1 CORE_CLK 200 2 166 2 133 2
SGX Option 2 COREX2_CLK 177.3 3
SGX Option 3 SGX_192M_FCLK 192 1 192 1 192 1
(1) This ratio is configurable by software programming. For more information, see the AM/DM37x Multimedia Device Technical Reference
Manual (SPRUGN4).
(2) SGX (Graphic Accelerator) is not available in OPP50 operating point.
(3) The DPLL ratios documented in this table are recommended ratios. Other values may apply.
146 Clock Specifications Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
swps038-125
= External pin
VREF TVDET
TVBUF
+
I DAC
AVDAC
vssa_dac
vdda_dac
cvideo1_out
cvideo1_vfb
cvideo1_rset
RSET
RLOAD
ROUT
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
5 Video DAC Specifications
NOTE
For more information regarding the VideoDAC architecture, see the Display Subsystem /
Display Subsystem Functional Description / Video Encoder Functionalities / Video DAC
StageArchitecture and Control section of AM/DM37x Technical Reference Manual
(literature number SPRUGN4).
5.1 TVOUT Buffer Mode (DAC + Buffer)
NOTE
AVDAC normal mode (DAC + Buffer), higher values of the DAC input code provided by the
Video Encoder will result in lower output voltage due to the inverting configuration of the
TVOUT Buffer. See Figure 5-4 for more details on the relation between the composite video
signal levels and the DAC code values for normal mode of operation.
In AVDAC bypass mode (DAC only), higher values of the DAC input code will result in higher
output voltage, as the TVOUT Buffer path is bypassed.
The connection for this TVOUT buffer mode (DAC + Buffer) normal mode of operation is shown in
Figure 5-1. The default mode of operation is dc coupling. For more information regarding the
recommended values of the external components, see Section 5.4,Electrical Specifications Over
Recommended Operating Conditions.
Figure 5-1. Recommended Loading Conditions for TVOUT Buffer Mode(1)
(1) In single-channel configuration only channel-1 is used.
Copyright ©20102011, Texas Instruments Incorporated Video DAC Specifications 147
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
swps038-131
= External pin
VREF TVDET
TVBUF
+
I DAC
AVDAC
vssa_dac
vdda_dac
cvideo1_out
cvideo1_vfb
cvideo1_rset
RSET
RLOAD
OFF
OFF
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
5.2 TVOUT Bypass Mode (DAC Only)
In this case, TVOUT bypass input is high and the TVOUT buffer is bypassed (for more information, see
Section 5.5,TVOUT Bypass Mode Specifications (DAC-Only) Electrical Specifications Over
Recommended Operating Conditions). Figure 5-2 shows the connection. For more information regarding
the recommended values of the external components, see Section 5.4,Electrical Specifications Over
Recommended Operating Conditions.
Figure 5-2. Recommended Loading Conditions for TVOUT Bypass Mode(1)
(1) In single-channel configuration only channel-1 is used.
148 Video DAC Specifications Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
5.3 TVOUT Bypass Mode in Dual-Channel Configuration
In this case, TVOUT bypass input is high and the TVOUT buffer is bypassed (for more information, see
Section 5.5,TVOUT Bypass Mode Specifications (DAC-Only) Electrical Specifications Over
Recommended Operating Conditions). Figure 5-3 shows the connection. For more information regarding
the recommended values of the external components, see Section 5.4,Electrical Specifications Over
Recommended Operating Conditions.
Figure 5-3. Recommended Loading Conditions for TVOUT Bypass Mode in Dual-Channel Configuration(1)
(1) Here are some connections recommendations:
An external resistor RSET = 10 kΩ(±1%) is recommended to be connected to the cvideo1_rset signal of Channel 1.
The cvideo1_rset signal of Channel 2 is left unconnected.
External resistors RLOAD1LOAD2 = 1.5 kΩ(±1%) is recommended to be connected to cvideo1_vfb or cvideo2_vfb each channel.
Copyright ©20102011, Texas Instruments Incorporated Video DAC Specifications 149
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
5.4 Electrical Specifications Over Recommended Operating Conditions
NOTE
High-swing mode is the default mode. The low-swing mode is not compliant with the NTSC
and PAL video-standards. It shall be used only for backwards compatibility to AM/DM37x.
TVOUT DC High Swing Mode:
ROUT1/2 = 2.7 kΩ(±1%)
RSET = 4.7 kΩ(±1%)
RLOAD = 75 Ω(±5%)
ZCABLE = 75 Ω(±5%)
TVOUT DC Low Swing Mode:
ROUT1/2 = 2.7 kΩ(±1%)
RSET = 6.8 kΩ(±1%)
RLOAD = 75 Ω(±5%)
ZCABLE = 75 Ω(±5%)
TVOUT AC High Swing Mode:
ROUT1/2 = 2.7 kΩ(±1%)
RSET = 4.7 kΩ(±1%)
RLOAD = 75 Ω(±5%)
ZCABLE = 75 Ω(±5%)
CAC = 220 µF (±5%)
TVOUT AC Low Swing Mode:
ROUT1/2 = 2.7 kΩ(±1%)
RSET = 6.8 kΩ(±1%)
RLOAD = 75 Ω(±5%)
ZCABLE = 75 Ω(±5%)
CAC = 220 µF (±5%)
Table 5-1. DAC Static Electrical Specifications(8)
PARAMETER CONDITIONS/ASSUMPTIONS MIN TYP MAX UNIT
R Resolution 10 Bits
DC ACCURACY
INL(1) Integral Non-Linearity (INL) 50 to 111 input code range 6 6 LSB
Integral Non-Linearity (INL) 111 to 895 input code range 4 4
Signal video range
Integral Non-Linearity (INL) 783 to 1007 input code range 5 5
Synchronization pulse
DNL(2) Differential nonlinearity 111 to 895 input code range 2.5 2.5 LSB
ANALOG OUTPUT
- Output voltage 0 to 1023 input Low-swing mode 0.70 0.88 1.00 V
code range, High-swing mode 1.2 1.3 1.5
RLOAD = 75 Ω
- Gain error - Low-swing mode 20 20 % FS
High-swing mode 10 10
RVOUT Output impedance 67.5 75.0 82.5 Ω
REFERENCE
VREF Internal Band Gap Voltage Reference 0.55 V
150 Video DAC Specifications Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 5-1. DAC Static Electrical Specifications(8) (continued)
PARAMETER CONDITIONS/ASSUMPTIONS MIN TYP MAX UNIT
POWER CONSUMPTION
Ivdda-up Analog Supply DC mode No Average current on vdda_dac, no 4.5 6.5 8.5 mA
Current(4) load load, 2 channels
Input code 50 (maximum output
AC mode No 19 28 37
voltage)
load
Full load 75-Ω19 28 37
load
Ivdda-up (peak) Peak analog supply current Lasts less than 1 ns 60 mA
Ivdd-up Digital supply current(5) Average current, measured at fCLK 2 mA
= 54 MHz,
fOUT = 2 MHz sine wave, vdd = 1.1
V
Ivdd-up (peak) Peak digital supply current(6) Peak current, full-scale transition 8 mA
lasting less than 1 ns
Ivdda-down(9) Analog supply current, total power T = 30ºC, vdda_dac = 1.8 V, no 12 μA
down(9) load
Ivdda-stdby(9) Analog supply current, standby mode(9) Bandgap and internal LDO are ON, 90 180 270 μA
all other analog blocks are OFF, no
load, T = 30 Cº
Ivdd-down(pm)(9) Digital supply current, total power T = 30ºC, Full Low-swing mode 2 μA
down(9) or Partial Power High-swing mode 6
Management
Ivdd-down(nopm) Digital supply current, total power down T = 30ºC, VDD = 1.1 V, no Power 60 μA
(no power management) Management
(1) The INL is measured at the output of the DAC (accessible at an external pin during bypass mode). The INL at code 783 equals 0.
(2) The DNL is measured at the output of the DAC (accessible at an external pin during bypass mode). The INL at code 783 equals 0.
(3) Reference PSR measures the effect of a supply disturbance at cvideo1_out and cvideo2_out.
(4) The analog supply current Ivdda is directly proportional to the full-scale output current IFS and is insensitive to fCLK.
(5) The digital supply current IVDD is dependent on the digital input waveform, the DAC update rate fCLK, and the digital supply VDD.
(6) The peak digital supply current occurs at full-scale transition for duration less than 1 ns.
(7) See Section 5.6,Analog Supply (vdda_dac) Noise Requirements, for actual maximum ripple allowed on vdda_dac.
(8) For more information on code range definition, see Figure 5-4.
(9) For more information on AVDAC power-up, power-down, and standby mode configurations, see Display Subsystem / Display
Subsystem Functional Description / Video Encoder Functionalities / Video DAC Stage Power Management section of AM/DM37x
Technical Reference Manual (literature number SPRUGN4).
NOTE
High-swing mode is the default mode. The low-swing mode is not compliant with the NTSC
and PAL video-standards. It is used only for backwards compatibility to AM/DM37x.
Copyright ©20102011, Texas Instruments Incorporated Video DAC Specifications 151
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 5-2. Video DAC Dynamic Electrical Specifications(6)
PARAMET CONDITIONS/ASSUMPTIONS MIN TYP MAX UNIT
ER
fCLK(1) Output update rate Equal to input clock frequency 54 60 MHz
Clock jitter RMS clock jitter required in order to 40 70 ps
assure 10-bit accuracy
Attenuation at 5.1 MHz Corner frequency for DC mode 1.5 dB
signal AC mode
BW Signal bandwidth 3 dB DC mode 6 MHz
AC mode
Differential gain(2) 111 to 895 input code DC mode 5% 5%
range AC mode 5% 5%
Differential phase(2) 111 to 895 input code DC mode 3º3º
range AC mode 3º3º
SFDR Within bandwidth 1 kHz to fCLK = 54 MHz, fOUT = 1 DC mode 40 50 70 dB
6 MHz MHz, sine wane input, AC mode
111 to 895 input code
range
SNR Within bandwidth 1 kHz to fCLK = 54 MHz, fOUT = 1 DC mode 50 54 75 dB
6 MHz MHz, sine wane input, AC mode
256 to 768 input code
range
PSR(4) Power supply rejection (up 100 mVpp at 6 MHz, input code 895 6(4) dB
to 6 MHz)
Crosstalk Between the two video 50 40 dB
channels
CLoad TVOUT (cvideo_out1 and Total decoupling capacity from 300 pF
cvideo_out2) stability, cvideo_out1 or cvideo_out2 to ground,
TVOUT decoupling CLoad1
capacity
CTOT TVOUT stability, total Total decoupling capacity: CTOT = CLoad1 600 pF
TVOUT decoupling + CLoad2
capacity
(1) For internal input clock information, see the DSS chapter of AM/DM37x Technical Reference Manual (literature number SPRUGN4).
(2) The differential gain and phase value is for dc coupling. Note that there is degradation for the ac coupling. The Differential Gain and
Phase are measured with respect to the gain and phase of the burst signal (20 to 20 IRE)
(3) The SNR value is for dc coupling.
(4) PSR measures the effect of a supply disturbance at cvideo1_out and cvideo2_out.
(5) The flat band measurement is done at 500 kHz for characterizing the attenuation at 5.1 MHz.
(6) For more information on code range definition, see Figure 5-4.
152 Video DAC Specifications Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
STANDARD
VIDEO
RANGE
TVOUT
10-bit
DAC code
IRE
units
Normal
mode
0
50
111
223
741
783
895
1007
1023
140
131
120
100
20
7.5
0
-20
-40
1.3 V *
pp
Sync level
Black level
Blanking level
Peak level
White level
SWPS038-130
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Figure 5-4 describes the composite video signal levels.
Figure 5-4. Composite Video Signal Levels(1)(2)
(1) The 1.3 VPP (peak-to-peak) is referring to the output signal at cvideo1_out in the DAC + Buffer composite-video mode.
Note that the 1.3 VPP must apply to both cvideo1_out and cvideo2_out in DAC + Buffer s-video mode (dual-DAC mode configured for ac
or dc coupling).
(2) In AVDAC normal mode (DAC + Buffer), higher values of the DAC input code provided by the Video Encoder will result in lower output
voltage due to the inverting configuration of the TVOUT Buffer. See Figure 5-4 for more details on the relation between the composite
video signal levels and the DAC code values for normal mode of operation.
In AVDAC bypass mode (DAC only), higher values of the DAC input code will result in higher output voltage, as the TVOUTBuffer path
is bypassed.
5.5 TVOUT Bypass Mode Specifications (DAC-Only) Electrical Specifications Over
Recommended Operating Conditions
NOTE
The electrical characteristics for single- and dual-channel bypass modes are the same
except that the active current will double in the dual-channel configuration.
Copyright ©20102011, Texas Instruments Incorporated Video DAC Specifications 153
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Bypass Mode
RLOAD = 1.5 kΩ(±1%)
RSET = 10 kΩ(±1%)
Table 5-3. DACStatic Electrical SpecificationsBypass Mode(2)
PARAMETER CONDITIONS/ASSUMPTIONS MIN TYP MAX UNIT
R Resolution 10 Bits
DC ACCURACY
INL(1) Integral nonlinearity (INL) 37 to 954 input code range, RLOAD = 1.5 kΩ 1 1 LSB
DNL(1) Differential nonlinearity 37 to 954 input code range, RLOAD = 1.5 kΩ 1 1 LSB
ANALOG OUTPUT
- Output voltage RLOAD = 1.5 kΩ0.6 0.7 0.77 V
- Output current RLOAD = 1.5 kΩ0.6 0.7 0.77 V
- Gain error - 10 10 % FS
POWER CONSUMPTION
Ivdda-up Analog supply current Average current on vdda_dac, RLOAD = 1.5 kΩ0.7 1.0 1.4 mA
Input code 1023
Ivdda-down Analog supply current, total T = 30Cº, vdda_dac = 1.8 V, no load 12 μA
power down
Ivdda-stdby Analog supply current, Bandgap and internal LDO are ON, all other 90 180 270 μA
standby mode analog blocks are OFF, no load, T = 30Cº
(1) In bypass mode, output node is cvideo1_out and cvideo2_out nodes. For more information, see Section 5.2,TVOUT Bypass Mode
(DAC Only) or Section 5.3,TVOUT Bypass Mode in Dual-Channel Configuration.
(2) For more information on code range definition, see Figure 5-4.
Table 5-4. Video DACDynamic Electrical SpecificationsBypass Mode
PARAMETER CONDITIONS/ASSUMPTIONS MIN TYP MAX UNIT
fCLK Output update rate Equal to input clock frequency 54 60 MHz
Clock jitter RMS clock jitter required in order to 40 70 ps
assure 10-bit accuracy
BW Signal bandwidth 3dB 6 MHz
SFDR Within bandwidth 1 kHz to 6 MHz fCLK = 54 MHz, fOUT = 1 MHz, sine 40 50 70 dB
wave input, 111 to 895 input code
range
SNR Within bandwidth 1 kHz to 6 MHz fCLK = 54 MHz, fOUT = 1 MHz, sine 50 54 75 dB
wave input, 256 to 768 input code
range
PSR Power supply rejection (up to 6 MHz) 100 mVpp at 6 MHz, input code 895 6(1) dB
(1) For more information on code range definition, see Figure 5-4.
5.6 Analog Supply (vdda_dac) Noise Requirements
In order to assure 10-bit accuracy of the DAC analog output, the analog supply vdda_dac has to meet the
noise requirements stated in this section.
The DAC Power Supply Rejection Ratio (PSRR) is defined as the relative variation of the full-scale output
current divided by the supply variation. Thus, it is expressed in percentage of Full-Scale Range (FSR) per
volt of supply variation as shown in the following equation:
154 Video DAC Specifications Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Depending on frequency, the PSRR is defined in Table 5-5.
Table 5-5. Video DAC Power Supply Rejection Ratio
Supply Noise PSRR % FSR/V
Frequency
0 to 100 kHz 1
>100 kHz The rejection decreases 20 dB/dec.
Example: at 1 MHz the PSRR is 10% of FSR/V.
A graphic representation is shown in Figure 5-5.
Figure 5-5. Video DAC Power Supply Rejection Ratio
To ensure that the DAC SFDR specification is met, the PSRR values and the clock jitter requirements
translate to the following limits on vdda_dac (for the Video DAC).
The maximum peak-to-peak noise on vdda (ripple) is defined in Table 5-6.
Table 5-6. Video DAC Maximum Peak-to-Peak Noise on vdda_dac
Tone Frequency Maximum Peak-to-Peak Noise on vdda_dac
0 to 100 kHz <30 mVPP
>100 kHz Decreases 20 dB/dec.
Example: at 1 MHz the maximum is 3 mVPP
The maximum noise spectral density (white noise) is defined in Table 5-7.
Table 5-7. Video DAC Maximum Noise Spectral Density
Supply Noise Bandwidth Maximum Supply Noise Density
0 to 100 kHz <20 µV / Hz
>100 kHz Decreases 20 dB/dec.
Example: at 1 MHz the maximum noise density is 2 µV / Hz
Copyright ©20102011, Texas Instruments Incorporated Video DAC Specifications 155
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Because the DAC PSRR deteriorates at a rate of 20 dB/dec after 100 kHz, it is highly recommended to
have vdda_dac low pass filtered (proper decoupling) (see the illustrated application: Section 5.7,External
Component Value Choice).
156 Video DAC Specifications Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
5.7 External Component Value Choice
The output current IDACOUT appearing at the output of the 10-bit DAC is a function of both the input code
DAC_CODE (ranging from 0 to 1023) and IDACMAX and can be expressed as:
IDACOUT = IREF * (DAC_CODE / 120) (1)
The maximum output current IDACMAX from the DAC is given by:
IDACMAX = IREF * 1023 / 120 (2)
The reference current, IREF, is set by a combination of internal and external resistors in series, RREF, and
an internal reference voltage, VREF, and is given by:
IREF = VREF / RREF (3)
Typically, VREF = 0.55 V and RREF = 9.4 kΩin TVOUT High-Swing mode.
The video signal voltage at cvideo_out1 and cvideo_out2 nodes can be written as (excluding the offset
voltage):
VTVOUT =35*RLOAD * IDACMAX * (1 DAC_CODE / 1023) (4)
Figure 5-6 shows the cvideo_out1 and cvideo_out2 transfer function. Regarding the typical composite
video signal levels versus the DAC input code, for more information on code range definition, see
Figure 5-4.
Regarding the typical values of the typical values for Rout1/2 and Rset resistors, as well for Cout capacitor,
for different modes of the TV display interface, see the Display Subsystem / Display Subsystem
Environment / TV Display Support section of AM/DM37x Technical Reference Manual (literature number
SPRUGN4).
Figure 5-6. cvideo_out1 and cvideo_ou2 Transfer Function
NOTE
The dc levels (Voffset) will be shifted due to process variations.
Copyright ©20102011, Texas Instruments Incorporated Video DAC Specifications 157
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-013
Tn–1 Tn Tn+1
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
6 Timing Requirements and Switching Characteristics
6.1 Timing Test Conditions
All timing requirements and switching characteristics are valid over the recommended operating conditions
unless otherwise specified.
6.2 Interface Clock Specifications
6.2.1 Interface Clock Terminology
The interface clock is used at the system level to sequence the data and/or to control transfers accordingly
with the interface protocol.
6.2.2 Interface Clock Frequency
The two interface clock characteristics are:
The maximum clock frequency
The maximum operating frequency
The interface clock frequency documented in this document is the maximum clock frequency, which
corresponds to the maximum frequency programmable on this output clock. This frequency defines the
maximum limit supported by the device IC and doesnt take into account any system consideration (PCB,
Peripherals).
The system designer will have to consider these system considerations and the device IC timing
characteristics as well, to define properly the maximum operating frequency, which corresponds to the
maximum frequency supported to transfer the data on this interface.
6.2.3 Clock Jitter Specifications
Jitter is a phase noise, which may alter different characteristics of a clock signal. The jitter specified in this
document is the time difference between the typical cycle period and the actual cycle period affected by
noise sources on the clock. The cycle (or period) jitter terminology will be used to identify this type of jitter.
Figure 6-1. Cycle (or Period) Jitter
NOTE
Max. Cycle Jitter = Max (Ti)
Min. Cycle Jitter = Min (Ti)
Jitter Standard Deviation (or RMS Jitter) = Standard Deviation (Ti)
6.2.4 Clock Duty Cycle Error
The maximum duty cycle error is the difference between the absolute value of the maximum high-level
pulse duration or the maximum low-level pulse duration and the typical pulse duration value.
Maximum pulse duration = Typical pulse duration + maximum duty cycle error
Minimum pulse duration = Typical pulse duration - maximum duty cycle error
158 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
6.3 Timing Parameters
The timing parameter symbols used in the timing requirements and switching characteristics tables are
created in accordance with JEDEC Standard 100. To shorten the symbols, some of pin names and other
related terminologies have been abbreviated as follows:
Table 6-1. Timing Parameters
SUBSCRIPTS
SYMBOL PARAMETER
c Cycle time (period)
d Delay time
dis Disable time
en Enable time
h Hold time
su Setup time
START Start bit
t Transition time
v Valid time
w Pulse duration (width)
X Unknown, changing, or dont care level
F Fall time
H High
L Low
R Rise time
V Valid
IV Invalid
AE Active edge
FE First edge
LE Last edge
Z High impedance
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 159
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
6.4 External Memory Interfaces
The device includes the following external memory interfaces:
General-purpose memory controller (GPMC)
SDRAM controller (SDRC)
6.4.1 General-Purpose Memory Controller (GPMC)
NOTE
For more information, see Memory Subsystem / General-Purpose Memory Controller section
of the AM/DM37x Multimedia Device Technical Reference Manual (literature number
SPRUGN4).
The GPMC is the unified memory controller used to interface external memory devices such as:
Asynchronous SRAM-like memories and ASIC devices
Asynchronous page mode and synchronous burst NOR flash
NAND flash
6.4.1.1 GPMC/NOR FlashSynchronous Mode
Table 6-3 and Table 6-4 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 6-2 through Figure 6-6).
Table 6-2. GPMC/NOR Flash Timing ConditionsSynchronous Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
tRInput signal rise time 1.8 ns
tFInput signal fall time 1.8 ns
Output Conditions
CLOAD Output load capacitance(1) 12 pF
(1) The load setting of the IO buffer: LB0 = 1.
Table 6-3. GPMC/NOR Flash Timing RequirementsSynchronous Mode(1)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
F12 tsu(dV-clkH) Setup time, input data gpmc_d[15:0] valid before 2.3 2.3 ns
output clock gpmc_clk high
F13 th(clkH-dV) Hold time, input data gpmc_d[15:0] valid after output 1.5 1.5 ns
clock gpmc_clk high
F21 tsu(waitV-clkH) Setup time, input wait gpmc_waitx(2) valid before 2.3 2.3 ns
output clock gpmc_clk high
F22 th(clkH-waitV) Hold time, input wait gpmc_waitx(2) valid after output 1.9 1.9 ns
clock gpmc_clk high
(1) See Section 4.3.4,Processor Clocks.
(2) In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Table 6-4. GPMC/NOR Flash Switching CharacteristicsSynchronous Mode(2) (18)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
F0 1 / tc(clk) Frequency(15), output clock gpmc_clk 100 100 MHz
F1 tw(clkH) Typical pulse duration, output clock gpmc_clk high 0.5P(12) 0.5P(12) ns
F1 tw(clkL) Typical pulse duration, output clock gpmc_clk low 0.5P(12) 0.5P(12) ns
160 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 6-4. GPMC/NOR Flash Switching CharacteristicsSynchronous Mode(2) (18) (continued)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
tdc(clk) Duty cycle error, output clock gpmc_clk 500 500 500 500 ps
tJ(clk) Jitter standard deviation(16), output clock gpmc_clk 33.33 33.33 ps
tR(clk) Rise time, output clock gpmc_clk 1.6 1.6 ns
tF(clk) Fall time, output clock gpmc_clk 1.6 1.6 ns
tR(do) Rise time, output data gpmc_d[15:0] 2 2 ns
tF(do) Fall time, output data gpmc_d[15:0] 2 2 ns
F2 td(clkH-ncsV) Delay time, output clock gpmc_clk rising edge to F(6) 1.9 F(6) + 3.3 F(6) 1.9 F(6) + 3.3 ns
output chip select gpmc_ncsx(11) transition
F3 td(clkH-ncsIV) Delay time, output clock gpmc_clk rising edge to E(5) 1.9 E(5) + 3.3 E(5) 1.9 E(5) + 3.3 ns
output chip select gpmc_ncsx(11) invalid
F4 td(aV-clk) Delay time, output address gpmc_a[27:1] valid to B(2) 4.1 B(2) + 2.1 B(2) 4.1 B(2) + 2.1 ns
output clock gpmc_clk first edge
F5 td(clkH-aIV) Delay time, output clock gpmc_clk rising edge to 2.1 2.1 ns
output address gpmc_a[27:1] invalid
F6 td(nbeV-clk) Delay time, output lower byte enable/command latch B(2) 1.2 B(2) + 2.2 B(2) 1.2 B(2) + 2.2 ns
enable gpmc_nbe0_cle, output upper byte enable
gpmc_nbe1 valid to output clock gpmc_clk first edge
F7 td(clkH-nbeIV) Delay time, output clock gpmc_clk rising edge to D(4) 2.2 D(4) + 1.2 D(4) 2.2 D(4) + 1.2 ns
output lower byte enable/command latch enable
gpmc_nbe0_cle, output upper byte enable gpmc_nbe1
invalid
F8 td(clkH-nadv) Delay time, output clock gpmc_clk rising edge to G(7) + 0.8 G(7) + 2.2 G(7) + 0.8 G(7) + 2.2 ns
output address valid/address latch enable
gpmc_nadv_ale transition
F9 td(clkH-nadvIV) Delay time, output clock gpmc_clk rising edge to D(4) 1.9 D(4) + 4.1 D(4) 1.9 D(4) + 4.1 ns
output address valid/address latch enable
gpmc_nadv_ale invalid
F10 td(clkH-noe) Delay time, output clock gpmc_clk rising edge to H(8) 2.1 H(8) + 2.1 H(8) 2.1 H(8) + 2.1 ns
output enable gpmc_noe transition
F11 td(clkH-noeIV) Delay time, output clock gpmc_clk rising edge to E(5) 2.1 E(5) + 2.1 E(5) 2.1 E(5) + 2.1 ns
output enable gpmc_noe invalid
F14 td(clkH-nwe) Delay time, output clock gpmc_clk rising edge to I(9) 1.9 I(9) + 4.1 I(9) 1.9 I(9) + 4.1 ns
output write enable gpmc_nwe transition
F15 td(clkH-do) Delay time, output clock gpmc_clk rising edge to J(10) J(10) + J(10) J(10) + ns
output data gpmc_d[15:0] transition 1.7 1.2 1.7 1.2
F17 td(clkH-nbe) Delay time, output clock gpmc_clk rising edge to J(10) J(10) + J(10) J(10) + ns
output lower byte enable/command latch enable 2.2 1.2 2.2 1.2
gpmc_nbe0_cle transition
F18 tw(ncsV) Pulse duration, output chip select Read A(1) A(1) ns
gpmc_ncsx(11) low Write A(1) A(1) ns
F19 tw(nbeV) Pulse duration, output lower byte Read C(3) C(3) ns
enable/command latch enable Write C(3) C(3) ns
gpmc_nbe0_cle, output upper byte enable
gpmc_nbe1 low
F20 tw(nadvV) Pulse duration, output address Read K(13) K(13) ns
valid/address latch enable gpmc_nadv_ale Write K(13) K(13) ns
low
F23 td(clkH-iodir) Delay time, output clock gpmc_clk rising edge to H(8) 2.1 H(8) + 4.1 H(8) 2.1 H(8) + 4.1 ns
output IO direction control gpmc_io_dir high (IN
direction)
F24 td(clkH-iodirIV) Delay time, output clock gpmc_clk rising edge to M(17) M(17) + M(17) M(17) + ns
output IO direction control gpmc_io_dir low (OUT 2.1 4.1 2.1 4.1
direction)
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 161
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
(1) For single read: A = (CSRdOffTime CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
For burst read: A = (CSRdOffTime CSOnTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
For burst write: A = (CSWrOffTime CSOnTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
With n being the page burst access number.
(2) B = ClkActivationTime * GPMC_FCLK(14)
(3) For single read: C = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK (14)
For burst read: C = (RdCycleTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
For burst write: C = (WrCycleTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
With n being the page burst access number.
(4) For single read: D = (RdCycleTime AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
For burst read: D = (RdCycleTime AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
For burst write: D = (WrCycleTime AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
(5) For single read: E = (CSRdOffTime AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
For burst read: E = (CSRdOffTime AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
For burst write: E = (CSWrOffTime AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
(6) For nCS falling edge (CS activated):
Case GpmcFCLKDivider = 0:
F = 0.5 * CSExtraDelay * GPMC_FCLK(14)
Case GpmcFCLKDivider = 1:
F = 0.5 * CSExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and CSOnTime are odd) or (ClkActivationTime and CSOnTime
are even)
F = (1 + 0.5 * CSExtraDelay) * GPMC_FCLK(14) otherwise
Case GpmcFCLKDivider = 2:
F = 0.5 * CSExtraDelay * GPMC_FCLK(14) if ((CSOnTime ClkActivationTime) is a multiple of 3)
F = (1 + 0.5 * CSExtraDelay) * GPMC_FCLK(14) if ((CSOnTime ClkActivationTime 1) is a multiple of 3)
F = (2 + 0.5 * CSExtraDelay) * GPMC_FCLK(14) if ((CSOnTime ClkActivationTime 2) is a multiple of 3)
(7) For ADV falling edge (ADV activated):
Case GpmcFCLKDivider = 0:
G = 0.5 * ADVExtraDelay * GPMC_FCLK(14)
Case GpmcFCLKDivider = 1:
G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and ADVOnTime are odd) or (ClkActivationTime and
ADVOnTime are even)
G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) otherwise
Case GpmcFCLKDivider = 2:
G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) if ((ADVOnTime ClkActivationTime) is a multiple of 3)
G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) if ((ADVOnTime ClkActivationTime 1) is a multiple of 3)
G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) if ((ADVOnTime ClkActivationTime 2) is a multiple of 3)
For ADV rising edge (ADV deactivated) in Reading mode:
Case GpmcFCLKDivider = 0:
G = 0.5 * ADVExtraDelay * GPMC_FCLK(14)
Case GpmcFCLKDivider = 1:
G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and ADVRdOffTime are odd) or (ClkActivationTime and
ADVRdOffTime are even)
G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) otherwise
Case GpmcFCLKDivider = 2:
G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) if ((ADVRdOffTime ClkActivationTime) is a multiple of 3)
G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) if ((ADVRdOffTime ClkActivationTime 1) is a multiple of 3)
G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) if ((ADVRdOffTime ClkActivationTime 2) is a multiple of 3)
For ADV rising edge (ADV deactivated) in Writing mode:
Case GpmcFCLKDivider = 0:
G = 0.5 * ADVExtraDelay * GPMC_FCLK(14)
Case GpmcFCLKDivider = 1:
G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and ADVWrOffTime are odd) or (ClkActivationTime and
ADVWrOffTime are even)
G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) otherwise
Case GpmcFCLKDivider = 2:
G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) if ((ADVWrOffTime ClkActivationTime) is a multiple of 3)
G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) if ((ADVWrOffTime ClkActivationTime 1) is a multiple of 3)
G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) if ((ADVWrOffTime ClkActivationTime 2) is a multiple of 3)
(8) For OE falling edge (OE activated) / IO DIR rising edge (Data Bus input direction):
Case GpmcFCLKDivider = 0: o H = 0.5 * OEExtraDelay * GPMC_FCLK(14)
Case GpmcFCLKDivider = 1:
H = 0.5 * OEExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and OEOnTime are odd) or (ClkActivationTime and OEOnTime
are even)
H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK(14) otherwise
Case GpmcFCLKDivider = 2:
H = 0.5 * OEExtraDelay * GPMC_FCLK(14) if ((OEOnTime ClkActivationTime) is a multiple of 3)
162 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK(14) if ((OEOnTime ClkActivationTime 1) is a multiple of 3)
H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK(14) if ((OEOnTime ClkActivationTime 2) is a multiple of 3)
For OE rising edge (OE deactivated):
Case GpmcFCLKDivider = 0:
H = 0.5 * OEExtraDelay * GPMC_FCLK(14)
Case GpmcFCLKDivider = 1:
H = 0.5 * OEExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and OEOffTime are odd) or (ClkActivationTime and OEOffTime
are even)
H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK(14) otherwise
Case GpmcFCLKDivider = 2:
H = 0.5 * OEExtraDelay * GPMC_FCLK(14) if ((OEOffTime ClkActivationTime) is a multiple of 3)
H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK(14) if ((OEOffTime ClkActivationTime 1) is a multiple of 3)
H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK(14) if ((OEOffTime ClkActivationTime 2) is a multiple of 3)
(9) For WE falling edge (WE activated):
Case GpmcFCLKDivider = 0:
I = 0.5 * WEExtraDelay * GPMC_FCLK(14)
Case GpmcFCLKDivider = 1:
I = 0.5 * WEExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and WEOnTime are odd) or (ClkActivationTime and WEOnTime
are even)
I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK(14) otherwise
Case GpmcFCLKDivider = 2:
I = 0.5 * WEExtraDelay * GPMC_FCLK(14) if ((WEOnTime ClkActivationTime) is a multiple of 3)
I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK(14) if ((WEOnTime ClkActivationTime 1) is a multiple of 3)
I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK(14) if ((WEOnTime ClkActivationTime 2) is a multiple of 3)
For WE rising edge (WE deactivated):
Case GpmcFCLKDivider = 0:
I = 0.5 * WEExtraDelay * GPMC_FCLK (14)
Case GpmcFCLKDivider = 1:
I = 0.5 * WEExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and WEOffTime are odd) or (ClkActivationTime and WEOffTime
are even)
I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK(14) otherwise
Case GpmcFCLKDivider = 2:
I = 0.5 * WEExtraDelay * GPMC_FCLK(14) if ((WEOffTime ClkActivationTime) is a multiple of 3)
I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK(14) if ((WEOffTime ClkActivationTime 1) is a multiple of 3)
I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK(14) if ((WEOffTime ClkActivationTime 2) is a multiple of 3)
(10) J = GPMC_FCLK(14)
(11) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
(12) P = gpmc_clk period in ns
(13) For read: K = (ADVRdOffTime ADVOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
For write: K = (ADVWrOffTime ADVOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
(14) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.
(15) Related to the gpmc_clk output clock maximum and minimum frequencies programmable in the GPMC module by setting the
GPMC_CONFIG1_CSx configuration register bit field GpmcFCLKDivider.
(16) The jitter probability density can be approximated by a Gaussian function.
(17) M = (RdCycleTime AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
Above M parameter expression is given as one example of GPMC programming. IO DIR signal will go from IN to OUT after both
RdCycleTime and BusTurnAround completion. Behavior of IO direction signal does depend on kind of successive Read/Write accesses
performed to Memory and multiplexed or nonmultiplexed memory addressing scheme, bus keeping feature enabled or not. IO DIR
behaviour is automatically handled by GPMC controller. For a full description of the gpmc_io_dir feature, see the AM/DM37x Multimedia
Device Technical Reference Manual (literature number SPRUGN4).
(18) See Section 4.3.4,Processor Clocks.
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 163
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
gpmc_clk
gpmc_ncsx
gpmc_a[10:1]
gpmc_nbe0_cle
gpmc_nbe1
gpmc_nadv_ale
gpmc_noe
gpmc_d[15:0]
gpmc_waitx
gpmc_io_dir
Valid Address
D 0
OUT IN OUT
F0
F12
F13
F4
F6
F2
F8
F3
F7
F9
F11
F1
F1
F8
F19
F18
F20
F10
F6
F19
F23 F24
SWPS038-014
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
(2) In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-2. GPMC/NOR FlashSynchronous Single Read(GpmcFCLKDivider = 0)
164 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
gpmc_clk
gpmc_ncsx
gpmc_a[10:1]
gpmc_nbe0_cle
gpmc_nbe1
gpmc_nadv_ale
gpmc_noe
gpmc_d[15:0]
gpmc_waitx
gpmc_io_dir
Valid Address
D 0 D 1 D 2
OUTOUT IN OUT
F0
F12
F13 F13
F12
F4
F1
F1
F2
F6
F3
F7
F8 F8 F9
F10 F11
F21 F22
F6
F7
F23 F24
SWPS038-015
D 3
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
(2) In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-3. GPMC/NOR FlashSynchronous Burst Read4x16-bit (GpmcFCLKDivider = 0)
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 165
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-016
gpmc_clk
gpmc_ncsx
gpmc_a[10:1]
gpmc_nbe0_cle
gpmc_nbe1
gpmc_nadv_ale
gpmc_nwe
gpmc_d[15:0]
gpmc_waitx
gpmc_io_dir
D 0 D 1 D 2 D 3
OUT
F4
F15 F15 F15
F1
F1
F2
F6
F8F8
F0
F14F14
F3
F17
F17
F17
F9F6
F17
F17
F17
Valid Address
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
(2) In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-4. GPMC/NOR FlashSynchronous Burst Write(GpmcFCLKDivider >0)
166 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
gpmc_clk
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nbe1
gpmc_a[27:17]
(gpmc_a[11:1])
gpmc_a[16:1]
(gpmc_d[15:0])
gpmc_nadv_ale
gpmc_noe
gpmc_waitx
gpmc_io_dir
Valid
Valid
Address (MSB)
Address (LSB) D0 D1 D2 D3
OUTOUT IN OUT
F4
F6
F4
F2
F8 F8
F10
F13
F12
F12
F11
F9
F7
F3
F0 F1
F1
F5
F6 F7
F23 F24
SWPS038-017
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
(2) In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-5. GPMC/Multiplexed NOR FlashSynchronous Burst Read
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 167
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
gpmc_clk
gpmc_ncsx
gpmc_a[27:17]
(gpmc_a[11:1])
gpmc_nbe1
gpmc_nbe0_cle
gpmc_nadv_ale
gpmc_nwe
gpmc_waitx
gpmc_io_dir
Address (LSB) D 0 D 1 D 2 D 3
OUT
F4
F15 F15 F15
F1
F1
F2
F6
F8F8
F0
F3
F17
F17
F17
F9
F6 F17
F17
F17
F18
F20
F14
F22 F21
SWPS038-018
Address (MSB)
gpmc_a[16:1]
(gpmc_d[15:0])
F14
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
(2) In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-6. GPMC/Multiplexed NOR FlashSynchronous Burst Write
168 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
6.4.1.2 GPMC/NOR FlashAsynchronous Mode
Table 6-6 and Table 6-7 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 6-7 through Figure 6-12).
Table 6-5. GPMC/NOR Flash Timing ConditionsAsynchronous Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
tRInput signal rise time 1.8 ns
tFInput signal fall time 1.8 ns
Output Conditions
CLOAD Output load capacitance(1) 16 pF
(1) The load setting of the IO buffer: LB0 = 0.
Table 6-6. GPMC/NOR Flash Internal Timing ParametersAsynchronous Mode(1) (2) (4)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
FI1 Delay time, output data gpmc_d[15:0] generation from internal 6.6 7.0 ns
functional clock GPMC_FCLK(3)
FI2 Delay time, input data gpmc_d[15:0] capture from internal functional 4.4 7.0 ns
clock GPMC_FCLK(3)
FI3 Delay time, output chip select gpmc_ncsx generation from internal 6.5 7.0 ns
functional clock GPMC_FCLK(3)
FI4 Delay time, output address gpmc_a[27:1] generation from internal 7.6 7.0 ns
functional clock GPMC_FCLK(3)
FI5 Delay time, output address gpmc_a[27:1] valid from internal functional 7.6 7.0 ns
clock GPMC_FCLK(3)
FI6 Delay time, output lower-byte enable/command latch enable 6.5 7.0 ns
gpmc_nbe0_cle, output upper-byte enable gpmc_nbe1 generation
from internal functional clock GPMC_FCLK(3)
FI7 Delay time, output enable gpmc_noe generation from internal 5.8 7.0 ns
functional clock GPMC_FCLK(3)
FI8 Delay time, output write enable gpmc_nwe generation from internal 7.0 7.0 ns
functional clock GPMC_FCLK(3)
FI9 Skew, internal functional clock GPMC_FCLK(3) 100 170 ps
FI10 Delay time, IO direction generation from internal functional clock 6.3 7.0 ps
GPMC_FCLK(3)
(1) The internal parameters table must be used to calculate data access time stored in the corresponding CS register bit field.
(2) Internal parameters are referred to the GPMC functional internal clock which is not provided externally.
(3) GPMC_FCLK is general-purpose memory controller internal functional clock.
(4) See Section 4.3.4,Processor Clocks.
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 169
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 6-7. GPMC/NOR Flash Timing RequirementsAsynchronous Mode(7)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
FA5(1) tacc(d) Data access time H(5) H(5) ns
FA20(3) tacc1-pgmode(d) Page mode successive data access time P(4) P(4) ns
FA21(2) tacc2-pgmode(d) Page mode first data access time H(5) H(5) ns
(1) The FA5 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC functional
clock cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock
edge. FA5 value must be stored inside the AccessTime register bit field.
(2) The FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMC
functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data is internally sampled by
active functional clock edge. FA21 value must be stored inside the AccessTime register bit field.
(3) The FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of
GPMC functional clock cycles. After each access to input page data, next input page data is internally sampled by active functional clock
edge after FA20 functional clock cycles. The FA20 value must be stored in the PageBurstAccessTime register bit field.
(4) P = PageBurstAccessTime * (TimeParaGranularity + 1) * GPMC_FCLK(6)
(5) H = AccessTime * (TimeParaGranularity + 1) * GPMC_FCLK(6)
(6) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.
(7) See Section 4.3.4,Processor Clocks.
Table 6-8. GPMC/NOR Flash Switching CharacteristicsAsynchronous Mode(16)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
tR(d) Rise time, output data gpmc_d[15:0] 2 2 ns
tF(d) Fall time, output data gpmc_d[15:0] 2 2 ns
FA0 tw(nbeV) Pulse duration, output lower-byte Read N(12) N(12) ns
enable/command latch enable Write N(12) N(12)
gpmc_nbe0_cle, output
upper-byte enable gpmc_nbe1
valid time
FA1 tw(ncsV) Pulse duration, output chip select Read A(1) A(1) ns
gpmc_ncsx(13) low Write A(1) A(1)
FA3 td(ncsV-nadvIV) Delay time, output chip select Read B(2) 0.2 B(2) + 2.0 B(2) 0.2 B(2) + 2.6 ns
gpmc_ncsx(13) valid to output Write B(2) 0.2 B(2) + 2.0 B(2) 0.2 B(2) + 2.6
address valid/address latch
enable gpmc_nadv_ale invalid
FA4 td(ncsV-noeIV) Delay time, output chip select gpmc_ncsx(13) C(3) 0.2 C(3) + 2.0 C(3) 0.2 C(3) + 2.6 ns
valid to output enable gpmc_noe invalid
(Single read)
FA9 td(aV-ncsV) Delay time, output address gpmc_a[27:1] valid J(9) 0.2 J(9) + 2.0 J(9) 0.2 J(9) + 2.6 ns
to output chip select gpmc_ncsx(13) valid
FA10 td(nbeV-ncsV) Delay time, output lower-byte J(9) 0.2 J(9) + 2.0 J(9) 0.2 J(9) + 2.6 ns
enable/command latch enable
gpmc_nbe0_cle, output upper-byte enable
gpmc_nbe1 valid to output chip select
gpmc_ncsx(13) valid
FA12 td(ncsV-nadvV) Delay time, output chip select gpmc_ncsx(13) K(10) 0.2 K(10) + 2.0 K(10) 0.2 K(10) + 2.6 ns
valid to output address valid/address latch
enable gpmc_nadv_ale valid
FA13 td(ncsV-noeV) Delay time, output chip select gpmc_ncsx(13) L(11) 0.2 L(11) + 2.0 L (11) 0.2 L(11) + 2.6 ns
valid to output enable gpmc_noe valid
FA14 td(ncsV-iodir) Delay time, output chip select gpmc_ncsx(13) L(11) 0.2 L(11) + 2.0 L(11) 0.2 L(11) + 2.6 ns
valid to output IO direction control gpmc_io_dir
high
FA15 td(ncsV-iodir) Delay time, output chip select gpmc_ncsx(13) M(14) 0.2 M(14) + 2.0 M(14) 0.2 M(14) + 2.6 ns
valid to output IO direction control gpmc_io_dir
low
170 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 6-8. GPMC/NOR Flash Switching CharacteristicsAsynchronous Mode(16) (continued)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
FA16 tw(aIV) Pulse durationm output address gpmc_a[26:1] G(7) G(7) ns
invalid between 2 successive R/W accesses
FA18 td(ncsV-noeIV) Delay time, output chip select gpmc_ncsx(13) I(8) 0.2 I(8) + 2.0 I(8) 0.2 I(8) + 2.6 ns
valid to output enable gpmc_noe invalid (Burst
read)
FA20 tw(aV) Pulse duration, output address gpmc_a[27:1] D(4) D(4) ns
valid 2nd, 3rd, and 4th accesses
FA25 td(ncsV-nweV) Delay time, output chip select gpmc_ncsx(13) E(5) 0.2 E(5) + 2.0 E(5) 0.2 E(5) + 2.6 ns
valid to output write enable gpmc_nwe valid
FA27 td(ncsV-nweIV) Delay time, output chip select gpmc_ncsx(13) F(6) 0.2 F(6) + 2.0 F(6) 0.2 F(6) + 2.6 ns
valid to output write enable gpmc_nwe invalid
FA28 td(nweV-dV) Delay time, output write enable gpmc_ nwe 2.0 2.6 ns
valid to output data gpmc_d[15:0] valid
FA29 td(dV-ncsV) Delay time, output data gpmc_d[15:0] valid to J(9) 0.2 J(9) + 2.0 J(9) 0.2 J(9) + 2.6 ns
output chip select gpmc_ncsx(13) valid
FA37 td(noeV-aIV) Delay time, output enable gpmc_noe valid to 2.0 2.6 ns
output address gpmc_a[16:1]_d[15:0] phase
end
(1) For single read: A = (CSRdOffTime CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(15)
For single write: A = (CSWrOffTime CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(15)
For burst read: A = (CSRdOffTime CSOnTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(15)
For burst write: A = (CSWrOffTime CSOnTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(15)
with n being the page burst access number
(2) For reading: B = ((ADVRdOffTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay CSExtraDelay)) *
GPMC_FCLK(15)
For writing: B = ((ADVWrOffTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay CSExtraDelay)) *
GPMC_FCLK(15)
(3) C = ((OEOffTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay CSExtraDelay)) * GPMC_FCLK(15)
(4) D = PageBurstAccessTime * (TimeParaGranularity + 1) * GPMC_FCLK(15)
(5) E = ((WEOnTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay CSExtraDelay)) * GPMC_FCLK(15)
(6) F = ((WEOffTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay CSExtraDelay)) * GPMC_FCLK(15)
(7) G = Cycle2CycleDelay * GPMC_FCLK(15)
(8) I = ((OEOffTime + (n 1) * PageBurstAccessTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay CSExtraDelay)) *
GPMC_FCLK(15)
(9) J = (CSOnTime * (TimeParaGranularity + 1) + 0.5 * CSExtraDelay) * GPMC_FCLK(15)
(10) K = ((ADVOnTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay CSExtraDelay)) * GPMC_FCLK(15)
(11) L = ((OEOnTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay CSExtraDelay)) * GPMC_FCLK(15)
(12) For single read: N = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK(15)
For single write: N = WrCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK(15)
For burst read: N = (RdCycleTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(15)
For burst write: N = (WrCycleTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(15)
(13) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
(14) M = ((RdCycleTime CSOnTime) * (TimeParaGranularity + 1) 0.5 * CSExtraDelay) * GPMC_FCLK(15)
Above M parameter expression is given as one example of GPMC programming. IO DIR signal will go from IN to OUT after both
RdCycleTime and BusTurnAround completion. Behavior of IO direction signal does depend on kind of successive Read/Write accesses
performed to Memory and multiplexed or nonmultiplexed memory addressing scheme, bus keeping feature enabled or not. IO DIR
behaviour is automatically handled by GPMC controller. For a full description of the gpmc_io_dir feature, see the AM/DM37x Multimedia
Device Technical Reference Manual (literature number SPRUGN4).
(15) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.
(16) See Section 4.3.4,Processor Clocks.
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 171
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
GPMC_FCLK
gpmc_clk
gpmc_ncsx
gpmc_a[10:1]
gpmc_nbe0_cle
gpmc_nbe1
gpmc_nadv_ale
gpmc_noe
gpmc_d[15:0]
gpmc_waitx
gpmc_io_dir
Valid Address
Valid
Valid
Data IN 0 Data IN 0
OUT IN OUT
FA0
FA9
FA10
FA3
FA1
FA4
FA12
FA13
FA0
FA10
FA5
FA14
FA15
SWPS038-019
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
(2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock
cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock
edge. FA5 value must be stored inside AccessTime register bits field.
(3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
Figure 6-7. GPMC / NOR FlashAsynchronous ReadSingle Word
172 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
GPMC_FCLK
gpmc_clk
gpmc_ncsx
gpmc_a[10:1]
gpmc_nbe0_cle
gpmc_nbe1
gpmc_nadv_ale
gpmc_noe
gpmc_d[15:0]
gpmc_waitx
gpmc_io_dir
Address 0 Address 1
Valid Valid
Valid Valid
Data Upper
OUT IN OUT IN
FA9
FA10
FA3
FA9
FA3
FA13 FA13
FA1 FA1
FA4 FA4
FA12 FA12
FA10
FA0 FA0
FA16
FA0 FA0
FA10 FA10
FA5 FA5
FA14
FA15
FA14
FA15
SWPS038-020
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
(2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock
cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock
edge. FA5 value must be stored inside AccessTime register bits field.
(3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
Figure 6-8. GPMC / NOR FlashAsynchronous Read32-bit
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 173
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
GPMC_FCLK
gpmc_clk
gpmc_ncsx
gpmc_a[10:1]
gpmc_nbe0_cle
gpmc_nbe1
gpmc_nadv_ale
gpmc_noe
gpmc_d[15:0]
gpmc_waitx
gpmc_io_dir
Add0 Add1 Add2 Add3
Add4
D0 D1 D2 D3 D3
OUT IN OUT
FA1
FA0
FA18
FA13
FA12
FA0
FA9
FA10
FA10
FA21
FA14
FA15
SWPS038-021
FA20 FA20
FA20
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
(2) FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMC
functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data will be internally sampled
by active functional clock edge. FA21 calculation must be stored inside AccessTime register bits field.
(3) FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of
GPMC functional clock cycles. After each access to input page data, next input page data will be internally sampled by active
functional clock edge after FA20 functional clock cycles. FA20 is also the duration of address phases for successive input page data
(excluding first input page data). FA20 value must be stored in PageBurstAccessTime register bits field.
(4) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
Figure 6-9. GPMC / NOR FlashAsynchronous ReadPage Mode 4x16-bit
174 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
gpmc_fclk
gpmc_clk
gpmc_ncsx
gpmc_a[10:1]
gpmc_nbe0_cle
gpmc_nbe1
gpmc_nadv_ale
gpmc_nwe
gpmc_d[15:0]
gpmc_waitx
gpmc_io_dir
Valid Address
Data OUT
OUT
FA0
FA1
FA10
FA3
FA25
FA29
FA9
FA12
FA27
FA0
FA10
SWPS038-022
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-10. GPMC / NOR FlashAsynchronous WriteSingle Word
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 175
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
GPMC_FCLK
gpmc_clk
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nbe1
gpmc_nadv_ale
gpmc_noe
gpmc_io_dir
gpmc_waitx
Address (MSB)
Valid
Valid
Address (LSB) Data IN Data IN
OUT IN OUT
FA0
FA9
FA10
FA3
FA13
FA29
FA1
FA37
FA12
FA4
FA10
FA0
FA5
FA14
FA15
SWPS038-023
gpmc_a[27:17]
(gpmc_a[11:1])
gpmc_a[16:1]
(gpmc_d[15:0])
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
(2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock
cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock
edge. FA5 value must be stored inside AccessTime register bits field.
(3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
Figure 6-11. GPMC / Multiplexed NOR FlashAsynchronous ReadSingle Word
176 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
gpmc_fclk
gpmc_clk
gpmc_ncsx
gpmc_a[27:17]
(gpmc_a[11:1])
gpmc_nbe0_cle
gpmc_nbe1
gpmc_nadv_ale
gpmc_nwe
gpmc_a[16:1]
(gpmc_d[15:0])
gpmc_waitx
gpmc_io_dir
Address (MSB)
Valid Address (LSB) Data OUT
OUT
FA0
FA1
FA9
FA10
FA3
FA25
FA29
FA12
FA27
FA28
FA0
FA10
SWPS038-024
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-12. GPMC / Multiplexed NOR FlashAsynchronous WriteSingle Word
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 177
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
6.4.1.3 GPMC/NAND FlashAsynchronous Mode
Table 6-10 and Table 6-11 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 6-13 through Figure 6-16).
Table 6-9. GPMC/NAND Flash Timing ConditionsAsynchronous Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
tRInput signal rise time 1.8 ns
tFInput signal fall time 1.8 ns
Output Conditions
CLOAD Output load capacitance(1) 16 pF
(1) The load setting of the IO buffer: LB0 = 0.
Table 6-10. GPMC/NAND Flash Internal Timing ParametersAsynchronous Mode(1) (2) (4)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
GNFI1 Delay time, output data gpmc_d[15:0] generation from internal 6.5 9.1 ns
functional clock GPMC_FCLK(3)
GNFI2 Delay time, input data gpmc_d[15:0] capture from internal 4.0 5.6 ns
functional clock GPMC_FCLK(3)
GNFI3 Delay time, output chip select gpmc_ncsx generation from 6.5 9.1 ns
internal functional clock GPMC_FCLK(3)
GNFI4 Delay time, output address valid/address latch enable 6.5 9.1 ns
gpmc_nadv_ale generation from internal functional clock
GPMC_FCLK(3)
GNFI5 Delay time, output lower-byte enable/command latch enable 6.5 9.1 ns
gpmc_nbe0_cle generation from internal functional clock
GPMC_FCLK(3)
GNFI6 Delay time, output enable gpmc_noe generation from internal 6.5 9.1 ns
functional clock GPMC_FCLK(3)
GNFI7 Delay time, output write enable gpmc_nwe generation from 6.5 9.1 ns
internal functional clock GPMC_FCLK(3)
GNFI8 Skew, functional clock GPMC_FCLK(3) 100 170 ps
(1) Internal parameters table must be used to calculate data access time stored in the corresponding CS register bit field.
(2) Internal parameters are referred to the GPMC functional internal clock which is not provided externally.
(3) GPMC_FCLK is general-purpose memory controller internal functional clock.
(4) See Section 4.3.4,Processor Clocks.
Table 6-11. GPMC/NAND Flash Timing RequirementsAsynchronous Mode(4)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
GNF12(1) tacc(d) Access time, input data gpmc_d[15:0] J(2) J(2) ns
(1) The GNF12 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC
functional clock cycles. From start of the read cycle and after GNF12 functional clock cycles, input data is internally sampled by the
active functional clock edge. The GNF12 value must be stored inside AccessTime register bit field.
(2) J = AccessTime * (TimeParaGranularity + 1) * GPMC_FCLK(3)
(3) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.
(4) See Section 4.3.4,Processor Clocks.
178 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 6-12. GPMC/NAND Flash Switching CharacteristicsAsynchronous Mode(15)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
tR(d) Rise time, output data gpmc_d[15:0] 2 2 ns
tF(d) Fall time, output data gpmc_d[15:0] 2 2 ns
GNF0 tw(nweV) Pulse duration, output write enable gpmc_nwe A(1) A(1) ns
valid
GNF1 td(ncsV-nweV) Delay time, output chip select gpmc_ncsx(13) B(2) 0.2 B(2) + 2.0 B(2) 0.2 B(2) + 2.6 ns
valid to output write enable gpmc_nwe valid
GNF2 tw(cleH-nweV) Delay time, output lower-byte C(3) 0.2 C(3) + 2.0 C(3) 0.2 C(3) + 2.6 ns
enable/command latch enable gpmc_nbe0_cle
high to output write enable gpmc_nwe valid
GNF3 tw(nweV-dV) Delay time, output data gpmc_d[15:0] valid to D(4) 0.2 D(4) + 2.0 D(4) 0.2 D(4) + 2.6 ns
output write enable gpmc_nwe valid
GNF4 tw(nweIV-dIV) Delay time, output write enable gpmc_nwe E(5) 0.2 E(5) + 2.0 E(5) 0.2 E(5) + 2.6 ns
invalid to output data gpmc_d[15:0] invalid
GNF5 tw(nweIV-cleIV) Delay time, output write enable gpmc_nwe F(6) 0.2 F(6) + 2.0 F(6) 0.2 F(6) + 2.6 ns
invalid to output lower-byte enable/command
latch enable gpmc_nbe0_cle invalid
GNF6 tw(nweIV-ncsIV) Delay time, output write enable gpmc_nwe G(7) 0.2 G(7) + 2.0 G(7) 0.2 G(7) + 2.6 ns
invalid to output chip select gpmc_ncsx(13)
invalid
GNF7 tw(aleH-nweV) Delay time, output address valid/address latch C(3) 0.2 C(3) + 2.0 C(3) 0.2 C(3) + 2.6 ns
enable gpmc_nadv_ale high to output write
enable gpmc_nwe valid
GNF8 tw(nweIV-aleIV) Delay time, output write enable gpmc_nwe F(6) 0.2 F(6) + 2.0 F(6) 0.2 F(6) + 2.6 ns
invalid to output address valid/address latch
enable gpmc_nadv_ale invalid
GNF9 tc(nwe) Cycle time, write H(8) H(8) ns
GNF10 td(ncsV-noeV) Delay time, output chip select gpmc_ncsx(13) I(9) 0.2 I(9) + 2.0 I(9) 0.2 I(9) + 2.6 ns
valid to output enable gpmc_noe valid
GNF13 tw(noeV) Pulse duration, output enable gpmc_noe valid K(10) K(10) ns
GNF14 tc(noe) Cycle time, read L(11) L(11) ns
GNF15 tw(noeIV-ncsIV) Delay time, output enable gpmc_noe invalid to M(12) 0.2 M(12) + 2.0 M(12) 0.2 M(12) + 2.6 ns
output chip select gpmc_ncsx(13) invalid
(1) A = (WEOffTime WEOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
(2) B = ((WEOnTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay CSExtraDelay)) * GPMC_FCLK(14)
(3) C = ((WEOnTime ADVOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay ADVExtraDelay)) * GPMC_FCLK(14)
(4) D = (WEOnTime * (TimeParaGranularity + 1) + 0.5 * WEExtraDelay) * GPMC_FCLK(14)
(5) E = ((WrCycleTime WEOffTime) * (TimeParaGranularity + 1) 0.5 * WEExtraDelay) * GPMC_FCLK(14)
(6) F = ((ADVWrOffTime WEOffTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay WEExtraDelay)) * GPMC_FCLK(14)
(7) G = ((CSWrOffTime WEOffTime) * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay WEExtraDelay)) * GPMC_FCLK(14)
(8) H = WrCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK(14)
(9) I = ((OEOnTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay CSExtraDelay)) * GPMC_FCLK(14)
(10) K = (OEOffTime OEOnTime) * (1 + TimeParaGranularity) * GPMC_FCLK(14)
(11) L = RdCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK(14)
(12) M = ((CSRdOffTime OEOffTime) * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay OEExtraDelay)) * GPMC_FCLK(14)
(13) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
(14) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.
(15) See Section 4.3.4,Processor Clocks.
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 179
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
GPMC_FCLK
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nadv_ale
gpmc_noe
gpmc_nwe
gpmc_a[16:1]
(gpmc_d[15:0]) Command
GNF0
GNF1
GNF2
GNF3 GNF4
GNF5
GNF6
SWPS038-025
GPMC_FCLK
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nadv_ale
gpmc_noe
gpmc_nwe
gpmc_a[16:1]
(gpmc_d[15:0])
Address
GNF0
GNF1
GNF7
GNF3 GNF4
GNF6
GNF8
GNF9
SWPS038-026
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
Figure 6-13. GPMC / NAND FlashCommand Latch Cycle
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
Figure 6-14. GPMC / NAND FlashAddress Latch Cycle
180 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
GPMC_FCLK
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nadv_ale
gpmc_noe
gpmc_waitx
DATA
GNF10
GNF14
GNF15
GNF12
SWPS038-027
GNF13
gpmc_a[16:1]
(gpmc_d[15:0])
GPMC_FCLK
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nadv_ale
gpmc_noe
gpmc_nwe
DATA
GNF0
GNF1
GNF4
GNF9
GNF3
GNF6
SWPS038-028
gpmc_a[16:1]
(gpmc_d[15:0])
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
(1) GNF12 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional
clock cycles. From start of read cycle and after GNF12 functional clock cycles, input data will be internally sampled by active
functional clock edge. GNF12 value must be stored inside AccessTime register bits field.
(2) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
(3) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-15. GPMC / NAND FlashData Read Cycle
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
Figure 6-16. GPMC / NAND FlashData Write Cycle
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 181
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
6.4.2 SDRAM Memory Controller (SDRC)
NOTE
For more information, see Memory Subsystem / SDRAM Controller (SDRC) Subsystem
section of the AM/DM37x Multimedia Device Technical Reference Manual (literature number
SPRUGN4).
The SDRAM controller subsystem module provides connectivity between the processor and external
DRAM memory components. The module includes support for double-data-rate SDRAM (mobile DDR).
6.4.2.1 LPDDR Interface
The LPDDR interface is balled out on the bottom side of the CUS package and on the top side of the POP
packages. The LPDDR interface on the top of the POP package has been designed for compatibility any
POP LPDDR device with a matching footprint and compliance with the JEDEC LPDDR-266 specification.
This section provides the timing specification for the bottom-side LPDDR interface as a PCB design and
manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal
integrity, cross-talk, and signal timing. These rules, when followed, result in a reliable LPDDR memory
system without the need for a complex timing closure process. For more information regarding guidelines
for using this LPDDR specification, see the Understanding TI's PCB Routing Rule-Based DDR Timing
Specification Application Report (literature number SPRAAV0).
6.4.2.1.1 LPDDR Interface Schematic
Figure 6-17 and Figure 6-18 show the LPDDR interface schematics for a LPDDR memory system. The 1
x16 LPDDR system schematic is identical to Figure 6-17 except that the high word LPDDR device is
deleted.
182 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
sdrc_d0
sdrc_d7
sdrc_dm0
sdrc_dqs0
sdrc_d8
sdrc_d15
sdrc_dm1
sdrc_dqs1
sdrc_d16
sdrc_d23
sdrc_dm2
sdrc_dqs2
sdrc_d24
sdrc_d31
sdrc_dm3
sdrc_dqs3
sdrc_ba0
sdrc_ba1
sdrc_a0
sdrc_a14
sdrc_ncs0
sdrc_ncs1 N/C
sdrc_ncas
sdrc_nras
sdrc_nwe
sdrc_cke0
sdrc_cke1 N/C
sdrc_clk
sdrc_nclk
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
DQ0
DQ7
LDM
LDQS
DQ8
DQ15
UDM
UDQS
BA0
BA1
A0
A14
CS
CAS
RAS
WE
CKE
CK
CK
BA0
BA1
A0
A14
CS
CAS
RAS
WE
CKE
CK
CK
T
T
T
T
T
T
T
T
LPDDR
DQ0
DQ7
LDM
LDQS
DQ8
DQ15
UDM
UDQS
LPDDR
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Figure 6-17. AM37x LPDDR High Level Schematic (x16 memories)
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 183
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
sdrc_d0
sdrc_d7
sdrc_dm0
sdrc_dqs0
sdrc_d8
sdrc_d15
sdrc_dm1
sdrc_dqs1
sdrc_d16
sdrc_d23
sdrc_dm2
sdrc_dqs2
sdrc_d24
sdrc_d31
sdrc_dm3
sdrc_dqs3
sdrc_ba0
sdrc_ba1
sdrc_a0
sdrc_a14
sdrc_ncs0
sdrc_ncas
sdrc_nras
sdrc_nwe
sdrc_cke0
sdrc_clk
sdrc_nclk
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
BA0
BA1
A0
A14
CS
CAS
RAS
WE
CKE
CK
CK
T
T
T
T
T
T
T
T
DQ0
DQ7
DM0
DQS0
DQ8
DQ15
DM1
DQS1
LPDDR
DQ16
DQ23
DM2
DQS2
DQ24
DQ31
DM3
DQS3
N/C
N/C
sdrc_ncs1
sdrc_cke1
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Figure 6-18. AM37x LPDDR High Level Schematic (x32 memory)
6.4.2.1.2 Compatible JEDEC LPDDR Devices
Table 6-13 shows the parameters of the JEDEC LPDDR devices that are compatible with this interface.
Generally, the LPDDR interface is compatible with x16 and x32 LPDDR266 and LPDDR333 speed grade
LPDDR devices.
Table 6-13. Compatible JEDEC LPDDR Devices
NO. PARAMETER MIN MAX UNIT NOTES
JEDEC LPDDR Device Speed
1 LPDDR-266 See Note (1)
Grade
2 JEDEC LPDDR Device Bit Width 16 32 Bits
3 JEDEC LPDDR Device Count 1 2 Devices See Note (2)
JEDEC LPDDR Device Ball
4 60 90 Balls
Count
184 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
(1) Higher LPDDR speed grades are supported due to inherent JEDEC LPDDR backwards compatibility.
(2) 1 x16 LPDDR device is used for 16 bit LPDDR memory system. 1x32 or 2x16 LPDDR devices are used for a 32-bit LPDDR memory
system.
6.4.2.1.3 PCB Stackup
The minimum stackup required for routing the AM37x is a six layer stack as shown in Table 6-14.
Additional layers may be added to the PCB stack up to accommodate other circuitry or to reduce the size
of the PCB footprint.
Table 6-14. AM37x Minimum PCB Stack Up
LAYER TYPE DESCRIPTION
1 Signal Top Routing Mostly Horizontal
2 Plane Ground
3 Plane Power
4 Signal Internal Routing
5 Plane Ground
6 Signal Bottom Routing Mostly Vertical
Table 6-15. PCB Stack Up Specifications (4)
NO. PARAMETER MIN TYP MAX UNIT NOTES
1 PCB Routing/Plane Layers 6
2 Signal Routing Layers 3
3 Full ground layers under LPDDR routing region 2
4 Number of ground plane cuts allowed within LPDDR routing region 0
Number of ground reference planes required for each LPDDR routing 1
5 1
layer
Number of layers between LPDDR routing layer and reference ground 0
6 0
plane
7 PCB Routing Feature Size 4 Mils
8 PCB Trace Width w 4 Mils
9 PCB BGA escape via pad size 18 Mils
10 PCB BGA escape via hole size 8 Mils
11 Device BGA Pad Size See Note(1)
12 LPDDR Device BGA Pad Size See Note(2)
13 Single Ended Impedance, ZO 50 75
14 Impedance Control Z-5 Z Z + 5 See Note(3)
(1) See the Flip Chip Ball Grid Array Package (SPRU811) reference guide for device BGA pad size.
(2) See the LPDDR device manufacturer documentation for the LPDDR device BGA pad size.
(3) Z is the nominal singled ended impedance selected for the PCB specified by item 12.
(4) Specific routing guidelines for the CUS package can be found in the AM37x CUS Routing Guidelines (SPRABD4) application note.
6.4.2.2 Placement
Figure 6-19 shows the required placement for the AM37x device as well as the LPDDR devices. The
dimensions for Figure 6-19 are defined in Table 6-16. The placement does not restrict the side of the PCB
that the devices are mounted on. The ultimate purpose of the placement is to limit the maximum trace
lengths and allow for proper routing space. For 1x16 and 1x32 LPDDR memory systems, the second
LPDDR device is omitted from the placement.
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 185
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
A1
A1
X
Y
OFFSET
RecommendedLPDDRDevice
Orientation
Y
Y
OFFSET
LPDDR
Device
LPDDR
Controller
OMAP
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Figure 6-19. AM37xx and LPDDR Device Placement
Table 6-16. Placement Specifications
NO. PARAMETER MIN MAX UNIT NOTES
1 X 1440 Mils See Notes(1),(2)
2 Y 1030 Mils See Notes(1),(2)
3 Y Offset 525 Mils See Notes(1),(2),(3)
4 LPDDR Keepout Region See Note(4)
Clearance from non-LPDDR signal to LPDDR
5 4 w See Note(5)
Keepout Region
(1) See Figure 6-17 for dimension definitions.
(2) Measurements from center of device to center of LPDDR device.
(3) For 16 bit memory systems it is recommended that Y Offset be as small as possible.
(4) LPDDR keepout region to encompass entire LPDDR routing area.
(5) Non-LPDDR signals allowed within LPDDR keepout region provided they are separated from LPDDR routing layers by a ground plane.
6.4.2.3 LPDDR Keep Out Region
The region of the PCB used for the LPDDR circuitry must be isolated from other signals. The LPDDR
keep out region is defined for this purpose and is shown in Figure 6-20. The size of this region varies with
the placement and LPDDR routing. Additional clearances required for the keep out region are shown in
Table 6-16.
186 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
A1
A1
LPDDRController
LPDDRDevice
RegionshouldencompassallLPDDRcircuitryandvariesdepending
onplacement.Non-LPDDRsignalsshouldnotberoutedonthe
LPDDRsignallayerswithintheLPDDRkeepoutregion.Non-LPDDR
signalsmayberoutedintheregionprovidedtheyareroutedon
layersseparatedfromLPDDRsignallayersbyagroundlayer.No
breaksshouldbeallowedinthereferencegroundlayersinthis
region.Inaddition,the1.8Vpowerplaneshouldcovertheentirekeep
outregion.
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Figure 6-20. LPDDR Keepout Region
6.4.2.4 Net Classes
Table 6-17 lists the clock net classes for the LPDDR interface. Table 6-18 lists the signal net classes, and
associated clock net classes, for the signals in the LPDDR interface. These net classes are used for the
termination and routing rules that follow.
Table 6-17. Clock Net Class Definitions
CLOCK NET CLASS PIN NAMES
CK sdrc_clk/sdrc_nclk
DQS0 sdrc_dqs0
DQS1 sdrc_dqs1
DQS2 sdrc_dqs2
DQS3 sdrc_dqs3
Table 6-18. Signal Net Class Definitions
CLOCK NET CLASS ASSOCIATED CLOCK NET CLASS PIN NAMES
sdrc_ba[1:0], sdrc_a[14:0], sdrc_ncs[1:0],
ADDR_CTRL CK sdrc_ncas, sdrc_nras, sdrc_nwe,
sdrc_cke[1:0]
DQ0 DQS0 sdrc_d[7:0], sdrc_dm0
DQ1 DQS1 sdrc_d[15:8], sdrc_dm1
DQ2 DQS2 sdrc_d[23:16], sdrc_dm2
DQ3 DQS3 sdrc_d[31:24], sdrc_dm3
6.4.2.5 LPDDR Signal Termination
No terminations of any kind are required in order to meet signal integrity and overshoot requirements.
Serial terminators are permitted, if desired, to reduce EMI risk; however, serial terminations are the only
type permitted. Table 6-19 shows the specifications for the series terminators.
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 187
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
A1
A1
C B
A
T
LPDDR
Controller
OMAP
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 6-19. LPDDR Signal Terminations
NO. PARAMETER MIN TYP MAX UNIT NOTES
1 CK Net Class 0 10 See Note(1)
2 ADDR_CTRL Net Class 0 22 Zo See Notes(1),(2),(3)
Data Byte Net Classes
3 0 22 Zo See Notes(1),(2),(3)
(DQS0-DQS3, DQ0-DQ3)
(1) Only series termination is permitted, parallel or SST specifically disallowed.
(2) Terminator values larger than typical only recommended to address EMI issues.
(3) Termination value should be uniform across net class.
6.4.2.6 LPDDR CK and ADDR_CTRL Routing
Figure 6-21 shows the topology of the routing for the CK and ADDR_CTRL net classes. The route is a
balanced T as it is intended that the length of segments B and C be equal. In addition, the length of A
should be maximized.
Figure 6-21. CK and ADDR_CTRL Routing and Topology
Table 6-20. CK and ADDR_CTRL Routing Specification (5)
NO. PARAMETER MIN TYP MAX UNIT NOTES
1 Center to Center CK-CK spacing 2w
2 CK Differential Pair Skew Length Mismatch(4) 25 Mils See Note(1)
3 CK B to C Skew Length Mismatch 25 Mils
Center to Center CK to other
4 4w See Note(2)
LPDDR trace spacing
5 CK/ADDR_CTRL nominal trace length CACLM-50 CACLM CACLM+50 Mils See Note(3)
6 ADDR_CTRL to CK Skew Length Mismatch 100 Mils
ADDR_CTRL to ADDR_CTRL
7 100 Mils
Skew Length Mismatch
Center to Center ADDR_CTRL to other
8 4w See Note(2)
LPDDR trace spacing
Center to Center ADDR_CTRL to other
9 3w See Note(2)
ADDR_CTRL trace spacing
ADDR_CTRL A to B, ADDR_CTRL A to C
10 100 Mils See Note(1)
Skew Length Mismatch
11 ADDR_CTRL B to C Skew Length Mismatch 100 Mils
(1) Series terminator, if used, should be located closest to AM37x.
(2) Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing
congestion.
(3) CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes.
(4) Differential impedance should be 100 ohms.
(5) Specific routing guidelines for the CUS package can be found in the AM37x CUS Routing Guidelines (SPRABD4) application note.
188 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
A1
A1
E0
T
E1
T
E2
OMAP
E3
T
LPDDR
Controller
T
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Figure 6-22 shows the topology and routing for the DQS and DQ net classes; the routes are point to point.
Skew matching across bytes is not needed nor recommended.
Figure 6-22. DQS and DQ Routing and Topology
Table 6-21. DQS and DQ Routing Specification(1) (6)
PARAMETER MIN TYP MAX UNIT NOTES
DQS E Skew Length Mismatch 25 Mils
Center to Center DQS to other LPDDR trace 4w See Note(2)
spacing
DQS/DQ nominal trace length DQLM - 50 DQLM DQLM + 50 Mils See Note(2)
DQ to DQS Skew Length Mismatch 100 Mils See Note (4)
DQ to DQ Skew Length Mismatch 100 Mils See Note (4)
Center to Center DQ to other LPDDR trace 4w See Note(5)
spacing
Center to Center DQ to other DQ trace 3w See Note(2),(3)
spacing
DQ E Skew Length Mismatch 100 Mils
(1) Series terminator, if used, should be located closest to LPDDR.
(2) Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing
congestion.
(3) DQLM is the longest Manhattan distance of the DQS and DQ net classes.
(4) There is no need, and it is not recommended, to skew match across data bytes. This specification is only relative within a data byte.
(5) DQs from other bytes are considered other LPDDR traces.
(6) Specific routing guidelines for the CUS package can be found in the AM37x CUS Routing Guidelines (SPRABD4) application note.
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 189
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
6.5 Multimedia Interfaces
6.5.1 Camera ISP2P Interface
NOTE
For more information, see Camera ISP chapter of the AM/DM37x Multimedia Device
Technical Reference Manual (literature number SPRUGN4).
The camera subsystem provides the system interfaces and the processing capability to connect raw, YUV
or JPEG image sensor modules to the device for video-preview, video-record and still-image-capture
applications.
The camera ISP2P subsystem supports up to two simultaneous pixel flows but only one of them can use
the video processing hardware:
Parallel camera interface + Serial camera interface: one interface data goes through the video
processing hardware. The other interface data goes directly to memory
Serial camera interface + Serial camera interface: one serial interface data goes through the video
processing hardware. The other serial interface data goes directly to memory.
The camera ISP2P subsystem supports different camera configurations:
10-bit Parallel interface
12-bit Parallel interface
12-bit Parallel interface
Note: For more information, see the Camera ISP / Camera ISP Environment / Camera ISP Connectivity
Schemes section of the AM/DM37x Multimedia Device Technical Reference Manual (literature number
SPRUGN4).
6.5.1.1 Camera Output Clocks (cam_xclka and cam_xclkb)
Table 6-22. ISP2P cam_xclka and cam_xclkb Output Clocks Switching Characteristics
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
ISP15 1 / tc(xclk) Frequency(1), output clock cam_xclkn(4) 216 216 MHz
ISP16 tw(xclkH) Typical pulse duration, output clock 0.5P(2) 0.5P(2) ns
cam_xclkn(4) high
ISP16 tw(xclkL) Typical pulse duration, output clock 0.5P(2) 0.5P(2) ns
cam_xclkn(4) low
tdc(xclk) Duty cycle error, output clock cam_xclkn(4) 0.5 * P(2) - 2.083 0.5 * P(2) - 2.083 ps
tJ(xclk) Cycle jitter(3), output clock cam_xclkn(4) 0.044 * P(2) 0.044 * P(2) ps
tR(xclk) Rise time, output clock cam_xclkn(4) 0.93 0.93 ns
tF(xclk) Fall time, output clock cam_xclkn(4) 0.93 0.93 ns
(1) Related with the cam_xclkn(4) maximum and minimum frequencies programmable in the ISP module.
NOTE: You must disable the camera sensor or the camera module to change the frequency configuration. For more information, see the
AM/DM37x Multimedia Device Technical Reference Manual (literature number SPRUGN4).
(2) P = cam_xclkn(4) period in ns
(3) Maximum cycle jitter supported by cam_xclka and cam_xclkb output clocks.
(4) In cam_xclkn, n is equal to a or b.
190 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
6.5.1.2 Parallel Camera Interface (CPI)
6.5.1.2.1 CPIVideo and Graphics Digitizer 1.8V Mode
The imaging subsystem deals with the processing of the pixel data coming from an external image sensor
or from video and graphics digitizer. It is a key component for the following multimedia applications: video
preview, camera viewfinder, video record and still image capture. It supports RAW, RGB, and YUV data
processing.
Table 6-24 assumes testing over the recommended operating conditions and electrical characteristic
conditions below (see Figure 6-23 and Figure 6-24).
Table 6-23. CPI Timing ConditionsVideo and Graphics Digitizer 1.8-V Mode
TIMING CONDITION PARAMETER VALUE UNIT
MIN MAX
Input Conditions
tRInput signal rise time 80 1800 ps
tFInput signal fall time 80 1800 ps
Table 6-24. CPI Timing RequirementsVideo and Graphics Digitizer 1.8-V Mode(4) (6)
NO. PARAMETER OPP100 UNIT
MIN MAX
ISP1 1 / tc(pclk) Frequency(1), input pixel clock cam_pclk 148.5 MHz
ISP2 tw(pclkL) Typical pulse duration, input pixel clock cam_pclk low 0.5P(2) ns
ISP3 tw(pclkH) Typical pulse duration, input pixel clock cam_pclk high 0.5P(2) ns
tdc(pclk) Duty cycle error, input pixel clock cam_pclk 0.5*P(2) - ns
3.247
tJ(pclk) Cycle jitter(3), input pixel clock cam_pclk 0.06P(2) ns
ISP4 tsu(vsV-pclkH) Setup time, input vertical synchronization cam_vs valid before input 0.75 ns
pixel clock cam_pclk rising/falling edge
ISP5 th(pclkH-vsV) Hold time, input vertical synchronization cam_vs valid after input pixel 0.96 ns
clock cam_pclk rising/falling edge
ISP6 tsu(hsV-pclkH) Setup time, input horizontal synchronization cam_hs valid before input 0.75 ns
pixel clock cam_pclk rising/falling edge
ISP7 th(pclkH-hsV) Hold time, input horizontal synchronization cam_hs valid after input 0.96 ns
pixel clock cam_pclk rising/falling edge
ISP8 tsu(dV-pclkH) Setup time, input data cam_d[n:0](5) valid before input pixel clock 0.75 ns
cam_pclk rising/falling edge
ISP9 th(pclkH-dV) Hold time, input data cam_d[n:0](5) valid after input pixel clock 0.96 ns
cam_pclk rising/falling edge
ISP10 tsu(wenV-pclkH) Setup time, input write enable cam_wen valid before input pixel clock 0.75 ns
cam_pclk rising/falling edge
ISP11 th(pclkH-wenV) Hold time, input write enable cam_wen valid after input pixel clock 0.96 ns
cam_pclk rising/falling edge
ISP12 tsu(fldV-pclkH) Setup time, input field identification cam_fld valid before input pixel 0.75 ns
clock cam_pclk rising/falling edge
ISP13 th(pclkH-fldV) Hold time, input field identification cam_fld valid after input pixel clock 0.96 ns
cam_pclk rising/falling edge
(1) Related with the input maximum frequency supported by the ISP module in 8-bit mode with 8 to 16 data bits conversion bridge enabled.
(2) P = cam_pclk period in ns
(3) Maximum cycle jitter supported by cam_pclk input clock
(4) The timing requirements are assured up to the cycle jitter and duty cycle error conditions specified.
(5) n = 11 (Data bus size is limited to 8 bits. So the bits configuration is either cam_d[7:0] or cam_d[11:4]). Lines not connected must be
tied low.
(6) See Section 4.3.4,Processor Clocks.
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 191
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
D(n-2)
cam_pclk
cam_vs
cam_hs
cam_d[N:0]
cam_wen
cam_fld
D(0) D(n-2) D(n-1) D(0) D(n-1)
ISP1
ISP4 ISP5
ISP6 ISP7
ISP9
ISP8
ISP10 ISP11
ISP3
SWPS038-048
ISP2
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are software configurable. Optionally, the cam_wen signal can be used as
an external memory write-enable signal. For further details, see the AM/DM37x Multimedia Device Technical Reference Manual
(literature number SPRUGN4).
(2) N = 11 (Data bus size is limited to 8 bits. So the bits configuration is either cam_d[7:0] or cam_d[11:4]). When the number of data
lines is less than cam_d[N:0], data lines can be connected to the upper or lower lines of cam_d[N:0]. Lines not connected must be
tied low. For more information about video port mapping, see the AM/DM37x Multimedia Device Technical Reference Manual
(literature number SPRUGN4).
Figure 6-23. CPIVideo and Graphics Digitizer1.8-V Progressive Mode
192 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
cam_pclk
cam_vs
cam_hs
cam_d[N:0]
cam_wen
cam_fld
D(n–1) D(0) D(n–1) D(0) D(n–1)
EVEN ODD
ISP1 ISP2
ISP4 ISP5
ISP6 ISP7
ISP9
ISP8
ISP10 ISP11
ISP3
ISP12 ISP13
SWPS038-049
D(0) D(0) D(n–1)
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are software configurable. Optionally, the cam_wen signal can be used as
an external memory write-enable signal. For further details, see the AM/DM37x Multimedia Device Technical Reference Manual
(literature number SPRUGN4).
(2) N = 11 (Data bus size is limited to 8 bits. So the bits configuration is either cam_d[7:0] or cam_d[11:4]). When the number of data
lines is less than cam_d[N:0], data lines can be connected to the upper or lower lines of cam_d[N:0]. Lines not connected must be
tied low. For more information about video port mapping, see the AM/DM37x Multimedia Device Technical Reference Manual
(literature number SPRUGN4).
Figure 6-24. CPIVideo and Graphics Digitizer1.8-V Interlaced Mode
6.5.1.2.2 CPI12-Bit SYNC Normal Progressive Mode
Table 6-26 assumes testing over the recommended operating conditions and electrical characteristic
conditions below (see Figure 6-25).
Table 6-25. CPI Timing Conditions12-Bit SYNC Normal Progressive Mode(1)
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
tRInput signal rise time 2.7 ns
tFInput signal fall time 2.7 ns
Output Condition
CLOAD Output load capacitance 8.6 pF
(1) The load setting of the IO buffer: LB0 = 1.
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 193
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 6-26. CPI Timing Requirements12-Bit SYNC Normal Progressive Mode(4) (5)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
ISP17 1 / tc(pclk) Frequency(1), input pixel clock cam_pclk 75 45 MHz
ISP18 tw(pclkH) Typical pulse duration, input pixel clock cam_pclk high 0.5P(2) 0.5P(2) ns
ISP18 tw(pclkL) Typical pulse duration, input pixel clock cam_pclk low 0.5P(2) 0.5P(2) ns
tdc(pclk) Duty cycle error, input pixel clock cam_pclk 0.5P(2) - 0.5P(2) - ns
3.465 6.93
tJ(pclk) Cycle jitter(3), input pixel clock cam_pclk 0.0649*P 0.0649*P ns
(2) (2)
ISP19 tsu(dV-pclkH) Setup time, input data cam_d[11:0] valid before input 1.82 3.25 ns
pixel clock cam_pclk rising edge
ISP20 th(pclkH-dV) Hold time, input data cam_d[11:0] valid after input 1.82 3.25 ns
pixel clock cam_pclk rising edge
ISP21 tsu(dV-vsH) Setup time, input vertical synchronization cam_vs valid 1.82 3.25 ns
before input pixel clock cam_pclk rising edge
ISP22 th(pclkH-vsV) Hold time, input vertical synchronization cam_vs valid 1.82 3.25 ns
after input pixel clock cam_pclk rising edge
ISP23 tsu(dV-hsH) Setup time, input horizontal synchronization cam_hs 1.82 3.25 ns
valid before input pixel clock cam_pclk rising edge
ISP24 th(pclkH-hsV) Hold time, input horizontal synchronization cam_hs 1.82 3.25 ns
valid after input pixel clock cam_pclk rising edge
ISP25 tsu(dV-hsH) Setup time, input write enable cam_wen valid before 1.82 3.25 ns
input pixel clock cam_pclk rising edge
ISP26 th(pclkH-hsV) Hold time, input write enable cam_wen valid after input 1.82 3.25 ns
pixel clock cam_pclk rising edge
(1) Related with the input maximum frequency supported by the ISP module.
(2) P = cam_pclk period in ns
(3) Maximum cycle jitter supported by cam_pclk input clock.
(4) The timing requirements are assured up to the cycle jitter and duty cycle error conditions specified.
(5) See Section 4.3.4,Processor Clocks.
194 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
cam_xclki
cam_pclk
cam_vs
cam_hs
cam_d[11:0]
cam_wen
cam_fld
D(0) D(n–3) D(n–2) D(n–1) D(0) D(1)
ISP15
ISP16
ISP16
ISP17 ISP18
ISP19 ISP20
ISP21 ISP22
ISP24ISP23
ISP25 ISP26
ISP18
SWPS038-050
D(n–1)
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable. If the cam_hs, cam_vs, and cam_fld signals are output,
the signal length can be set.
(2) The parallel camera in SYNC mode supports progressive image sensor modules and 8-, 10-, 11-, or 12-bit data.
(3) When the image sensor has fewer than 12 data lines, it must be connected to the lower data lines and the unused lines must be
grounded.
(4) However, it is possible to shift the data to 0, 2, or 4 data internal lanes.
(5) The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit mode, cam_d[11:2] or cam_d[9:0] in 10-bit mode, cam_d[10:0] in 11-bit
mode and cam_d[11:0] in 12-bit mode.
(6) Optionally, the data write to memory can be qualified by the external cam_wen signal.
(7) The cam_wen signal can be used as an external memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs,
and cam_wen signals are asserted.
(8) In cam_xclki, i can be equal to a or b. See Table 6-22 for ISP15 and ISP16 parameters.
Figure 6-25. CPI12-Bit SYNC Normal Progressive Mode
6.5.1.2.3 CPI8-Bit SYNC Packed Progressive Mode
Table 6-28 assumes testing over the recommended operating conditions and electrical characteristic
conditions below (see Figure 6-26).
Table 6-27. CPI Timing Conditions8-Bit SYNC Packed Progressive Mode(1)
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
tRInput signal rise time 2.5 ns
tFInput signal fall time 2.5 ns
Output Condition
CLOAD Output load capacitance 8.6 pF
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 195
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
(1) The load setting of the IO buffer: LB0 = 1.
Table 6-28. CPI Timing Requirements8-Bit SYNC Packed Progressive Mode(4) (5)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
ISP3 1 / tc(pclk) Frequency (1), input pixel clock cam_pclk 130 65 MHz
ISP4 tw(pclkH) Typical pulse duration, input pixel clock 0.5*P(2) 0.5*P(2) ns
cam_pclk high
ISP4 tw(pclkL) Typical pulse duration, input pixel clock 0.5*P(2) 0.5*P(2) ns
cam_pclk low
tdc(pclk) Duty cycle error, input pixel clock cam_pclk 0.5*P(2) - 0.5*P(2) - ns
3.465 6.93
tJ(pclk) Cycle jitter(3), input pixel clock cam_pclk 0.0649*P(2) 0.0649*P(2) ns
ISP5 tsu(dV-pclkH) Setup time, input data cam_d[7:0] valid before 1.08 2.27 ns
input pixel clock cam_pclk rising edge
ISP6 th(pclkH-dV) Hold time, input data cam_d[7:0] valid after input 1.08 2.27 ns
pixel clock cam_pclk rising edge
ISP7 tsu(dV-vsH) Setup time, input vertical synchronization 1.08 2.27 ns
cam_vs valid before input pixel clock cam_pclk
rising edge
ISP8 th(pclkH-vsV) Hold time, input vertical synchronization cam_vs 1.08 2.27 ns
valid after input pixel clock cam_pclk rising edge
ISP9 tsu(dV-hsH) Setup time, input horizontal synchronization 1.08 2.27 ns
cam_hs valid before input pixel clock cam_pclk
rising edge
ISP10 th(pclkH-hsV) Hold time, input horizontal synchronization 1.08 2.27 ns
cam_hs valid after input pixel clock cam_pclk
rising edge
ISP11 tsu(dV-hsH) Setup time, input write enable cam_wen valid 1.08 2.27 ns
before input pixel clock cam_pclk rising edge
ISP12 th(pclkH-hsV) Hold time, input write enable cam_wen valid 1.08 2.27 ns
after input pixel clock cam_pclk rising edge
(1) Related with the input maximum frequency supported by the ISP module.
(2) P = cam_pclk period in ns
(3) Maximum cycle jitter supported by cam_pclk input clock.
(4) The timing requirements are assured up to the cycle jitter and duty cycle error conditions specified.
(5) See Section 4.3.4,Processor Clocks.
196 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
cam_xclki
cam_pclk
cam_vs
cam_hs
cam_d[7:0]
cam_wen
cam_fld
D(0) D(n-3) D(n-2) D(n-1) D(0) D(1) D(n-1)
ISP15
ISP16
ISP16
ISP3 ISP4
ISP5 ISP6
ISP7 ISP8
ISP10
ISP4
ISP9
ISP11 ISP12
SWPS038-051
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable.
(2) The image sensor is connected to the lower data lines and the unused lines are grounded. However, it is possible to shift the data to
0, 2, or 4 data internal lanes. The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit packed mode.
(3) Optionally, the data write to memory can be qualified by the external cam_wen signal. The cam_wen signal can be used as a
external memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and cam_wen signals are asserted. The
polarity of cam_fld is programmable.
(4) The camera module can pack 8-bit data into 16 bits. It doubles the maximum pixel clock. This mode can be particularly useful to
transfer an YCbCr data stream or compressed stream to memory at very high speed.
(5) In cam_xclki, i can be equal to a or b. See Table 6-22 for ISP15 and ISP16 parameters.
Figure 6-26. CPI8-Bit SYNC Packed Progressive Mode
6.5.1.2.4 CPI12-Bit SYNC Normal Interlaced Mode
Table 6-30 assumes testing over the recommended operating conditions and electrical characteristic
conditions below (see Figure 6-27).
Table 6-29. CPI Timing Conditions12-Bit SYNC Normal Interlaced Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
tRInput signal rise time 2.7 ns
tFInput signal fall time 2.7 ns
Output Condition
CLOAD Output load capacitance(1) 8.6 pF
(1) The load setting of the IO buffer: LB0 = 1.
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 197
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 6-30. CPI Timing Requirements12-Bit SYNC Normal Interlaced Mode(4) (5)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
ISP17 1 / tc(pclk) Frequency(1), input pixel clock cam_pclk 75 45 MHz
ISP18 tw(pclkH) Typical pulse duration, input pixel clock cam_pclk high 0.5P(2) 0.5P(2) ns
ISP18 tw(pclkL) Typical pulse duration, input pixel clock cam_pclk low 0.5P(2) 0.5P(2) ns
tdc(pclk) Duty cycle error, input pixel clock cam_pclk 0.5*P(2) - 0.5*P(2) - ns
3.465 6.93
tJ(pclk) Cycle jitter(3), input pixel clock cam_pclk 0.0649*P 0.0649*P ns
(2) (2)
ISP19 tsu(dV-pclkH) Setup time, input data cam_d[11:0] valid before input 1.82 3.25 ns
pixel clock cam_pclk rising edge
ISP20 th(pclkH-dV) Hold time, input data cam_d[11:0] valid after input 1.82 3.25 ns
pixel clock cam_pclk rising edge
ISP21 tsu(dV-vsH) Setup time, input vertical synchronization cam_vs valid 1.82 3.25 ns
before input pixel clock cam_pclk rising edge
ISP22 th(pclkH-vsV) Hold time, input vertical synchronization cam_vs valid 1.82 3.25 ns
after input pixel clock cam_pclk rising edge
ISP23 tsu(dV-hsH) Setup time, input horizontal synchronization cam_hs 1.82 3.25 ns
valid before input pixel clock cam_pclk rising edge
ISP24 th(pclkH-hsV) Hold time, input horizontal synchronization cam_hs 1.82 3.25 ns
valid after input pixel clock cam_pclk rising edge
ISP25 tsu(dV-hsH) Setup time, input write enable cam_wen valid before 1.82 3.25 ns
input pixel clock cam_pclk rising edge
ISP26 th(pclkH-hsV) Hold time, input write enable cam_wen valid after input 1.82 3.25 ns
pixel clock cam_pclk rising edge
ISP27 tsu(dV-fldH) Setup time, input field identification cam_fld valid 1.82 3.25 ns
before input pixel clock cam_pclk rising edge
ISP28 th(pclkH-fldV) Hold time, input field identification cam_fld valid after 1.82 3.25 ns
input pixel clock cam_pclk rising edge
(1) Related with the input maximum frequency supported by the ISP module.
(2) P = cam_pclk period in ns
(3) Maximum cycle jitter supported by cam_pclk input clock.
(4) The timing requirements are assured up to the cycle jitter and duty cycle error conditions specified.
(5) See Section 4.3.4,Processor Clocks.
198 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
cam_xclki
cam_pclk
cam_vs
cam_hs
cam_d[11:0]
cam_wen
cam_fld
FRAME(0)
L(0) L(0)
D(0) D(n-3) D(n-2) D(n-1) D(0) D(1) D(2) D(n-1)
PAIR IMPAIR
ISP16
ISP16
ISP17
ISP18
ISP27
ISP19
ISP21 ISP22
ISP23
ISP20
ISP28
ISP25 ISP26
SWPS038-052
FRAME(0)
L(n-1)
ISP18
ISP15
ISP24
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable. If the cam_hs, cam_vs, and cam_fld signals are output,
the signal length can be set.
(2) The parallel camera in SYNC mode supports interlaced image sensor modules and 8-, 10-, 11-, or 12-bit data.
(3) When the image sensor has fewer than 12 data lines, it is connected to the lower data lines and the unused lines are grounded.
(4) It is possible to shift the data to 0, 2, or 4 data internal lanes.
(5) The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit mode, cam_d[11:2] or cam_d[9:0] in 10-bit mode, cam_d[10:0] in 11-bit
mode and cam_d[11:0] in 12-bit mode.
(6) Optionally, the data write to memory can be qualified by the external cam_wen signal.
(7) The cam_wen signal can be used as an external memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs,
and cam_wen signals are asserted.
(8) In cam_xclki, i can be equal to a or b. See Table 6-22 for ISP15 and ISP16 parameters.
Figure 6-27. CPI12-bit SYNC Normal Interlaced ModeSection 5.3
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 199
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
6.5.1.2.5 CPI8-Bit SYNC Packed Interlaced Mode
Table 6-32 assumes testing over the recommended operating conditions and electrical characteristic
conditions below (see Figure 6-28).
Table 6-31. CPI Timing Conditions8-Bit SYNC Packed Interlaced Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
tRInput signal rise time 2.5 ns
tFInput signal fall time 2.5 ns
Output Condition
CLOAD Output load capacitance(1) 8.6 pF
(1) The load setting of the IO buffer: LB0 = 1.
Table 6-32. CPI Timing Requirements8-Bit SYNC Packed Interlaced Mode(4) (5)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
ISP3 1 / tc(pclk) Frequency(1), input pixel clock cam_pclk 130 65 MHz
ISP4 tw(pclkH) Typical pulse duration, input pixel clock cam_pclk high 0.5P(2) 0.5P(2) ns
ISP4 tw(pclkL) Typical pulse duration, input pixel clock cam_pclk low 0.5P(2) 0.5P(2) ns
tdc(pclk) Duty cycle error, input pixel clock cam_pclk 0.5*P(2) - 0.5*P(2) - ns
3.465 6.93
tJ(pclk) Cycle jitter(3), input pixel clock cam_pclk 0.0649*P 0.0649*P ns
(2) (2)
ISP5 tsu(dV-pclkH) Setup time, input data cam_d[8:0] valid before input 1.08 2.27 ns
pixel clock cam_pclk rising edge
ISP6 th(pclkH-dV) Hold time, input data cam_d[8:0] valid after input pixel 1.08 2.27 ns
clock cam_pclk rising edge
ISP7 tsu(dV-vsH) Setup time, input vertical synchronization cam_vs valid 1.08 2.27 ns
before input pixel clock cam_pclk rising edge
ISP8 th(pclkH-vsV) Hold time, input vertical synchronization cam_vs valid 1.08 2.27 ns
after input pixel clock cam_pclk rising edge
ISP9 tsu(dV-hsH) Setup time, input horizontal synchronization cam_hs 1.08 2.27 ns
valid before input pixel clock cam_pclk rising edge
ISP10 th(pclkH-hsV) Hold time, input horizontal synchronization cam_hs 1.08 2.27 ns
valid after input pixel clock cam_pclk rising edge
ISP11 tsu(dV-hsH) Setup time, input write enable cam_wen valid before 1.08 2.27 ns
input pixel clock cam_pclk rising edge
ISP12 th(pclkH-hsV) Hold time, input write enable cam_wen valid after input 1.08 2.27 ns
pixel clock cam_pclk rising edge
ISP13 tsu(dV-fldH) Setup time, input field identification cam_fld valid 1.08 2.27 ns
before input pixel clock cam_pclk rising edge
ISP14 th(pclkH-fldV) Hold time, input field identification cam_fld valid after 1.08 2.27 ns
input pixel clock cam_pclk rising edge
(1) Related with the input maximum frequency supported by the ISP module.
(2) P = cam_pclk period in ns
(3) Maximum cycle jitter supported by cam_pclk input clock.
(4) The timing requirements are assured up to the cycle jitter and duty cycle error conditions specified.
(5) See Section 4.3.4,Processor Clocks.
200 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
cam_xclki
cam_pclk
cam_vs
cam_hs
cam_d[7:0]
cam_wen
cam_fld
FRAME(0) FRAME(0)
L(0) L(0)
D(0) D(n-3) D(n-2) D(0) D(1) D(2) D(n-1)
PAIR IMPAIR
ISP15 ISP16 ISP16
ISP3 ISP4
ISP4
ISP13
ISP5
ISP7 ISP8
ISP9
ISP6
ISP14
ISP11 ISP12
SWPS038-053
D(n-1)
L(n-1)
ISP10
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable.
(2) The image sensor is connected to the lower data lines and the unused lines are grounded. However, it is possible to shift the data to
0, 2, or 4 data internal lanes. The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit packed mode .
(3) Optionally, the data write to memory can be qualified by the external cam_wen signal. The cam_wen signal can be used as an
external memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and cam_wen signals are asserted.
(4) The camera module can pack 8-bit data into 16 bits. It doubles the maximum pixel clock. This mode can be particularly useful to
transfer a YCbCr data stream or compressed stream to memory at very high speed.
(5) In cam_xclki, i can be equal to a or b. See Table 6-22 for ISP15 and ISP16 parameters.
Figure 6-28. CPI8-Bit SYNC Packed Interlaced Mode
6.5.1.2.6 CPIITU Mode
Table 6-34 assumes testing over the recommended operating conditions and electrical characteristic
conditions below (see Figure 6-29).
Table 6-33. CPI Timing ConditionsITU Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
tRInput signal rise time 2.7 ns
tFInput signal fall time 2.7 ns
Output Condition
CLOAD Output load capacitance(1) 8.6 pF
(1) The load setting of the IO buffer: LB0 = 1.
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 201
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-054
cam_xclki
cam_pclk
cam_d[9:0] SOF D(0) D(n-1) EOF SOF D(0) D(n-1) EOF
ISP16
ISP16
ISP17
ISP23 ISP24
ISP18 ISP18
ISP15
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 6-34. CPI Timing RequirementsITU Mode(4) (5)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
ISP17 1 / tc(pclk) Frequency(1), input pixel clock cam_pclk 75 45 MHz
ISP18 tw(pclkH) Typical pulse duration, input pixel clock cam_pclk high 0.5P(2) 0.5P(2) ns
ISP18 tw(pclkL) Typical pulse duration, input pixel clock cam_pclk low 0.5P(2) 0.5P(2) ns
tdc(pclk) Duty cycle error, input pixel clock cam_pclk 0.5*P(2) - 0.5*P(2) - ns
3.465 6.93
tJ(pclk) Cycle jitter(3), input pixel clock cam_pclk 0.0649*P 0.0649*P ns
(2) (2)
ISP23 tsu(dV-pclkH) Setup time, input data cam_d[9:0] valid before input 1.82 3.25 ns
pixel clock cam_pclk rising edge
ISP24 th(pclkH-dV) Hold time, input data cam_d[9:0] valid after input pixel 1.82 3.25 ns
clock cam_pclk rising edge
(1) Related with the input maximum frequency supported by the ISP module.
(2) P = cam_pclk period in ns
(3) Maximum cycle jitter supported by cam_pclk input clock.
(4) The timing requirements are assured up to the cycle jitter and duty cycle error conditions specified.
(5) See Section 4.3.4,Processor Clocks.
(1) The unused lines are grounded and the data bus is connected to the lower data lines. However, it is possible to shift the data to 0, 2,
or 4 data internal lanes. The different configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit mode and cam_d[11:2] or cam_d[9:0] in
10-bit mode.
(2) The parallel camera in ITU mode supports progressive camera modules.
(3) In cam_xclki, i can be equal to a or b. See Table 6-22 for ISP15 and ISP16 parameters.
Figure 6-29. CPIITU Mode
202 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
6.5.2 Display Subsystem (DSS)
NOTE
For more information, see Display Subsystem chapter of the AM/DM37x Multimedia Device
Technical Reference Manual (literature number SPRUGN4).
The display subsystem (DSS) provides the logic to display the video frame from external (SDRAM) or
internal (SRAM) memory on an LCD panel or a TV set. The display subsystem integrates the following
elements:
Display controller (DISPC) module
Remote frame buffer interface (RFBI) module
NTSC/PAL video encoder
LCD display with:
Parallel Interface
The two display supports can be active at the same time.
6.5.2.1 DSSParallel Interface
In parallel interface, the paths of the display subsystem modules are the display controller and the RFBI.
The display controller has two I/O pad modes and could be in the following configuration:
Bypass mode (RFBI disabled), which implements the MIPI DPI protocol
RFBI mode (RFBI enabled), which implements MIPI DBI 2.0 type B protocol
For more information about MIPI DPI and MIPI DBI protocols, see the DSS chapter in the AM/DM37x
Multimedia Device Technical Reference Manual (literature number SPRUGN4).
6.5.2.1.1 DSSParallel InterfaceBypass Mode
Two types of LCD panel are supported:
Thin film transistor (TFT) or active matrix technology
Supertwisted nematic (STN) or passive matrix technology
Both configurations are discussed in the following paragraphs.
6.5.2.1.2 DSSParallel InterfaceBypass ModeTFT Mode
Table 6-36 assumes testing over the recommended operating conditions and electrical characteristic
conditions below (see Figure 6-30).
Table 6-35. DSS Timing ConditionsTFT Mode
TIMING CONDITION PARAMETER VALUE UNIT
MIN MAX
Output Condition
CLOAD Output load capacitance(1) 10 pF
(1) Buffer strength configuration: LB0 = 1
Table 6-36. DSS Switching CharacteristicsTFT Mode(4)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
DL0 td(pclkA-hsync) Delay time, output pixel clock dss_pclk active edge to 4.215 4.215 4.658 4.658 ns
output horizontal synchronization dss_hsync transition
DL1 td(pclkA-vsync) Delay time, output pixel clock dss_pclk active edge to 4.215 4.215 4.658 4.658 ns
output vertical synchronization dss_vsync transition
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 203
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-055
dss_pclk
dss_vsync
dss_hsync
dss_acbias
dss_data[23:0]
DL4 DL5
DL3
DL0
DL2
DL1
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 6-36. DSS Switching CharacteristicsTFT Mode(4) (continued)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
DL2 td(pclkA-acbiasA) Delay time, output pixel clock dss_pclk active edge to 4.215 4.215 4.658 4.658 ns
output data enable dss_acbias active level
DL3 td(pclkA-dV) Delay time, output pixel clock dss_pclk active edge to 4.215 4.215 4.658 4.658 ns
output data dss_data[23:0] valid
DL4 1 / tc(pclk) Frequency(2), output pixel clock dss_pclk 74.3(3) 66(3) MHz
DL5 tw(pclk) Pulse duration, output pixel clock dss_pclk low or high 0.45P(1) 0.55P(1) 0.45P(1) 0.55P(1) ns
(5) (5)
(1) P = dss_pclk period in ns
(2) The pixel clock frequency is software programmable via the pixel clock divider configuration from 1 to 255 division range in the
DISPC_DIVISOR register.
(3) For the DSS (TFT mode) in HD-TV application, to run at full speed (74.3 MHz) it is recommended to use the dss_data[5:0] signals on
the dss_data[23:18] balls (H26, H25, E28, J26, AC27, AC28). In that case, the dss_data[23:18] signals are available on the sys_boot0,
sys_boot1, sys_boot3, sys_boot4, sys_boot5, and sys_boot6 balls (AH26, AG26, AF18, AF19, AE21, AF21) to run at full speed (74.3
MHz).
If the dss_data[5:0] signals are used on the dss_data[5:0] balls (AG22, AH22, AG23, AH23, AG24, AH24), OPP100 DSS (TFT mode)
are limited at 66 MHz. The values may change following the silicon characterization result.
(4) See Section 4.3.4,Processor Clocks.
(5) tW(pclk) = 0.66.P when DISPC_DIVISOR[6:0] PCD = 3.
(1) The pixel data bus depends on the use of 8-, 9-, 12-, 16-, 18-, or 24-bit per pixel data output pins.
(2) The pixel clock frequency is programmable.
(3) All timings not illustrated in the waveform are progammable by software, and control signal polarity and driven edge of dss_pclk too.
(4) For more information, see the DSS chapter in the AM/DM37x Multimedia Device Technical Reference Manual (literature number
SPRUGN4).
Figure 6-30. DSSTFT Mode
6.5.2.1.3 DSSParallel InterfaceBypass ModeSTN Mode
Table 6-38 assumes testing over the recommended operating conditions and electrical characteristic
conditions below (see Figure 6-31).
Table 6-37. DSS Timing ConditionsSTN Mode
TIMING CONDITION PARAMETER VALUE UNIT
MIN MAX
Output Condition
CLOAD Output load capacitance(1) 40 pF
204 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-056
dss_pclk
dss_vsync
dss_hsync
dss_acbias
dss_data[23:0]
DL4
DL5
DL3
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
(1) Buffer strength configuration: LB0 = 1
Table 6-38. DSS Switching CharacteristicsSTN Mode(3) (4)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
DL3 td(pclkA-dV) Delay time, output pixel clock dss_pclk active 6.868 6.868 6.868 6.868 ns
edge to output data dss_data[7:0] valid
DL4 1 / tc(pclk) Frequency(2), output pixel clock dss_pclk 44 44 MHz
DL5 tw(pclk) Pulse duration, output pixel clock dss_pclk low 0.45P(1) 0.55P(1) (5) 0.45P(1) 0.55P(1)(5) ns
or high
(1) P = dss_pclk period in ns
(2) The pixel clock frequency is software programmable via the pixel clock divider configuration from 1 to 255 division range in the
DISPC_DIVISOR register.
(3) The DSS in STN mode is used with 4 or 8 pins only; unused pixel data bits always remain low.
(4) See Section 4.3.4,Processor Clocks.
(5) tW(pclk) = 0.66P when DISPC_DIVISOR[6:0] PCD = 3.
(1) The pixel data bus depends on the use of 4-, 8-, 12-, 16-, 18-, or 24-bit per pixel data output pins.
(2) All timings not illustrated in the waveform are progammable by software, and control signal polarity and driven edge of dss_pclk too.
(3) dss_vsync width must be programmed to be as small as possible.
(4) The pixel clock frequency is programmable.
(5) For more information, see the DSS chapter in the AM/DM37x Multimedia Device Technical Reference Manual (literature number
SPRUGN4).
Figure 6-31. DSSSTN Mode
6.5.2.2 DSSParallel InterfaceRFBI Mode Applications
6.5.2.2.1 DSSParallel InterfaceRFBI ModeMIPI DBI-B 2.0 LCD Panel
The Remote Frame Buffer Interface (RFBI) module provides the necessary control signals and data
(MIPI®DBI 2.0 type B protocol) to interface to the LCD driver of the LCD panel.
Table 6-40 and Table 6-41 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 6-32 through Figure 6-34).
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 205
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 6-39. DSS Timing ConditionsRFBI ModeMIPI DBI 2.0 - LCD Panel(2)
TIMING CONDITION PARAMETER VALUE UNIT
MIN MAX
Input Conditions
tRInput signal rise time 15 ns
tFInput signal fall time 15 ns
Output Condition
CLOAD Output load capacitance(1) 30 pF
(1) Buffer strength configuration: LB0 = 1.
(2) For any information regarding the RFBI registers configuration, see Display Subsystem / the Display Subsystem Environment / LCD
Support / Parallel Interface / Parallel Interface in RFBI Mode (MIPI DBI Protocol) / Transaction Timing Diagrams section of the
AM/DM37x Multimedia Device Technical Reference Manual (literature number SPRUGN4).
Table 6-40. DSS Timing RequirementsRFBI ModeMIPI DBI 2.0 - LCD Panel
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
DR0 tsu(dV-rdH) Setup time, input data rfbi_da[15:0] valid to output 7.3 6.3 ns
read enable rfbi_rd high
DR1 th(rdH-dIV) Hold time, output read enable rfbi_rd high to input data 10.6 9.6 ns
rfbi_da[15:0] invalid
td(Data sampled) Input data rfbi_da[15:0] sampled at the end of the N(1) N(1) ns
access time
(1) N = (AccessTime) * (TimeParaGranularity + 1) * L4CLK
Table 6-41. DSS Switching CharacteristicsRFBI ModeMIPI DBI 2.0 - LCD Panel
PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
tw(wrH) Pulse duration, output write enable rfbi_wr high A(1) A(1) ns
tw(wrL) Pulse duration, output write enable rfbi_wr low B(2) B(2) ns
td(a0-wrL) Delay time, output command/data control rfbi_a0 transition to C(3) C(3) ns
output write enable rfbi_wr low
td(wrH-a0) Delay time, output write enable rfbi_wr high to output D(4) D(4) ns
command/data control rfbi_a0 transition
td(csx-wrL) Delay time, output chip select rfbi_csx(14) low to output write E(5) E(5) ns
enable rfbi_wr low
td(wrH-csxH) Delay time, output write enable rfbi_wr high to output chip select F(6) F(6) ns
rfbi_csx(14) high
td(dV) Output data rfbi_da[15:0] valid G(7) G(7) ns
td(a0H-rdL) Delay time, output command/data control rfbi_a0 high to output H(8) H(8) ns
read enable rfbi_rd low
td(rdlH-a0) Delay time, output read enable rfbi_rd high to output I(9) I(9) ns
command/data control rfbi_a0 transition
tw(rdH) Pulse duration, output read enable rfbi_rd high J(10) J(10) ns
tw(rdL) Pulse duration, output read enable rfbi_rd low K(11) K(11) ns
td(rdL-csxL) Delay time, output read enable rfbi_rd low to output chip select L(12) L(12) ns
rfbi_csx(14) low
td(rdH-csxH) Delay time, output read enable rfbi_rd high to output chip select M(13) M(13) ns
rfbi_csx(14) high
tR(wr) Rise time, output write enable rfbi_wr 10 10 ns
tF(wr) Fall time, output write enable rfbi_wr 10 10 ns
tR(a0) Rise time, output command/data control rfbi_a0 10 10 ns
tF(a0) Fall time, output command/data control rfbi_a0 10 10 ns
tR(csx) Rise time, output chip select rfbi_csx(14) 10 10 ns
206 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
rfbi_a0
rfbi_csx
rfbi_wr
rfbi_da[n:0]
rfbi_rd
rfbi_te_vsync[1:0]
rfbi_hsync[1:0]
DATA0 DATA1
CsOnTime
CsOffTime
WeOnTime
WeOffTime
CsOnTime
CsOffTime
WeOnTime
WeOffTime
CsPulseWidth
WeCycleTime WeCycleTime
SWPS038-057
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 6-41. DSS Switching CharacteristicsRFBI ModeMIPI DBI 2.0 - LCD Panel (continued)
PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
tF(csx) Fall time, output chip select rfbi_csx(14) 10 10 ns
tR(d) Rise time, output data rfbi_da[15:0] 10 10 ns
tF(d) Fall time, output data rfbi_da[15:0] 10 10 ns
tR(rd) Rise time, output read enable rfbi_rd 10 10 ns
tF(rd) Fall time, output read enable rfbi_rd 10 10 ns
(1) A = (WECycleTime WEOffTime) * (TimeParaGranularity + 1) * L4CLK
(2) B = (WEOffTime WEOntime) * (TimeParaGranularity + 1) * L4CLK
(3) C = WEOnTime * (TimeParaGranularity + 1) * L4CLK
(4) D = (WECycleTime + CSPulseWidth WEOffTime) * (TimeParaGranularity + 1) * L4CLK if mode Write to Read or Read to Write is
enabled
(5) E = (WEOnTime CSOnTime) * (TimeParaGranularity + 1) * L4CLK
(6) F = (CSOffTime WEOffTime) * (TimeParaGranularity + 1) * L4CLK
(7) G = WECycleTime * (TimeParaGranularity + 1) * L4CLK
(8) H = REOnTime * (TimeParaGranularity + 1) * L4CLK
(9) I = (RECycleTime + CSPulseWidth REOffTime) * (TimeParaGranularity + 1) * L4CLK if mode Write to Read or Read to Write is
enabled
(10) J = (RECycleTime REOffTime) * (TimeParaGranularity + 1) * L4CLK
(11) K = (REOffTime REOntime) * (TimeParaGranularity + 1) * L4CLK
(12) L = (REOnTime CSOnTime) * (TimeParaGranularity + 1) * L4CLK
(13) M = (CSOffTime REOffTime) * (TimeParaGranularity + 1) * L4CLK
(14) In rfbi_csx, x is equal to 0 or 1.
(1) In rfbi_csx, x is equal to 0 or 1.
(2) rfbi_data[n:0], n up to 15
(3) For more information, see the DSS chapter in the AM/DM37x Multimedia Device Technical Reference Manual (literature number
SPRUGN4).
Figure 6-32. DSSRFBI ModeMIPI DBI 2.0 LCD PanelCommand / Data Write
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 207
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
rfbi_a0
rfbi_csx
rfbi_rd
rfbi_da[n:0]
rfbi_wr
rfbi_te_vsync[1:0]
rfbi_hsync[1:0]
DATA0 DATA1
CsOnTime
ReOffTime
CsPulseWidth
AccessTime
CsOnTime
CsOffTime
ReOnTime
ReOffTime
AccessTime
ReCycleTime
DR1
SWPS038-058
ReCycleTime
CsOffTime
ReOnTime
DR0
rfbi_a0
rfbi_csx
rfbi_wr
rfbi_rd
rfbi_da[n:0]
rfbi_te_vsync[1:0]
rfbi_hsync[1:0]
WRITE READ WRITE
CsOnTime
CsOffTime
WEOffTime
WECycleTime
CsPulseWidth
ReCycleTime
AccessTime
CsOnTime
CsOffTime
ReOffTime
CsPulseWidth
CsOnTime
WEOffTime
CsOffTime
WECycleTime
SWPS038-059
WEOnTime
ReOnTime
WEOnTime
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
(1) In rfbi_csx, x is equal to 0 or 1.
(2) rfbi_data[n:0], n up to 15
(3) For more information, see the DSS chapter in the AM/DM37x Multimedia Device Technical Reference Manual (literature number
SPRUGN4).
Figure 6-33. DSSRFBI ModeMIPI DBI 2.0 LCD PanelCommand / Data Read
(1) In rfbi_csx, x is equal to 0 or 1.
(2) rfbi_data[n:0], n up to 15
(3) For more information, see the DSS chapter in the AM/DM37x Multimedia Device Technical Reference Manual (literature number
SPRUGN4).
Figure 6-34. DSSRFBI ModeMIPI DBI 2.0 LCD PanelCommand / Data Write to Read and Read to
Write Modes
208 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
6.5.2.2.2 DSSParallel InterfaceRFBI ModePico DLP
The Remote Frame Buffer Interface (RFBI) module can provide also the necessary control signals and
data to interface to the Pico DLP driver of the Pico DLP panel. Table 6-42 assumes testing over the
recommended operating conditions and electrical characteristic conditions below (see Figure 6-35).
Table 6-42. DSS Timing ConditionsRFBI ModePico DLP
TIMING CONDITION PARAMETER VALUE UNIT
MIN MAX
Output Condition
CLOAD Output load capacitance(1) 5 pF
(1) Buffer strength configuration: LB0 = 0
To use Pico DLP application, RFBI register must be configured as shown in Table 6-43:
Table 6-43. DSS Register ConfigurationRFBI ModePico DLP
DESCRIPTION REGISTER AND BIT FIELD(1) BIT VALUES
Selection parallel mode RFBI_CONFIGi and [1:0] 0b11: 16-bit parallel output interface
ParallelMode selected
Time Granularity (multiplies signal timing RFBI_CONFIGi [4] 0b0: x2 latency disable
latencies by 2). andTimeGranularity
CS signal assertion time from Start Access RFBI_ONOFF_TIMEi and [3:0] 0b0000
Time CSOnTime
CS signal de-assertion time from Start Access RFBI_ONOFF_TIMEi and [9:4] 0b000100: 4 cycles
Time CSOffTime
WE signal assertion time from Start Access RFBI_ONOFF_TIMEi and [13:10] 0b0000
Time WEOnTime
WE signal de-assertion time from Start Access RFBI_ONOFF_TIMEi and [19:14] 0b000010: 2 cycles
Time WEOffTime
RE signal assertion time from Start Access RFBI_ONOFF_TIMEi and [23:20] 0b0000
Time REOnTime
RE signal de-assertion time from Start Access RFBI_ONOFF_TIMEi and [29:24] 0b000000
Time REOffTime
Write cycle time RFBI_CYCLE_TIMEi and [5:0] 0b000100: 4 cycles
WECycleTime
Read cycle time RFBI_CYCLE_TIMEi and [11:6] 0b000000
ReCycleTime
CS pulse width RFBI_CYCLE_TIMEi and [17:12] 0b000000
CSPulseWidth
Read to Write CS pulse width enable RFBI_CYCLE_TIMEi and [18] 0b0
RWEnable
Read to Read CS pulse width enable RFBI_CYCLE_TIMEi and [19] 0b0
RREnable
Write to Write CS pulse width enable RFBI_CYCLE_TIMEi and [20] 0b0
WWEnable
Write to Read CS pulse width enable RFBI_CYCLE_TIMEi and [21] 0b0
WREnable
From Start Access Time to CLK rising edge RFBI_CYCLE_TIMEi and [27:22] 0b000000
used for the first data capture AccessTime
(1) i is equal to 0 or 1. For more information, see the DSS chapter in the AM/DM37x Multimedia Device Technical Reference Manual
(literature number SPRUGN4).
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 209
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 6-44. DSS Switching CharacteristicsRFBI ModePico DLP(15)(17)(18)
PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
tw(wrH) Pulse duration, output write enable rfbi_wr high A(1) A(1) ns
tw(wrL) Pulse duration, output write enable rfbi_wr low B(2) B(2) ns
td(a0-wrL) Delay time, output command/data control rfbi_a0 C(3) C(3) ns
transition to output write enable rfbi_wr low
td(wrH-a0) Delay time, output write enable rfbi_wr high to output D(4) D(4) ns
command/data control rfbi_a0 transition
td(csx-wrL) Delay time, output chip select rfbi_csx(14) low to output E(5) E(5) ns
write enable rfbi_wr low
td(wrH-csxH) Delay time, output write enable rfbi_wr high to output F(6) F(6) ns
chip select rfbi_csx(14) high
td(dataV) Output data rfbi_da[15:0](16) valid G(7) G(7) ns
td(Skew) Skew between output write enable falling rfbi_wr and 15.5 15.5 ns
output data rfbi_da[15:0](16) high or low
td(a0H-rdL) Delay time, output command/data control rfbi_a0 high to H(8) H(8) ns
output read enable rfbi_rd low
td(rdlH-a0) Delay time, output read enable rfbi_rd high to output I(9) I(9) ns
command/data control rfbi_a0 transition
tw(rdH) Pulse duration, output read enable rfbi_rd high J(10) J(10) ns
tw(rdL) Pulse duration, output read enable rfbi_rd low K(11) K(11) ns
td(rdL-csxL) Delay time, output read enable rfbi_rd low to output chip L(12) L(12) ns
select rfbi_csx(14) low
td(rdL-csxH) Delay time, output read enable rfbi_rd low to output chip M(13) M(13) ns
select rfbi_csx(14) high
tR(wr) Rise time, output write enable rfbi_wr 7 7 ns
tF(wr) Fall time, output write enable rfbi_wr 7 7 ns
tR(a0) Rise time, output command/data control rfbi_a0 7 7 ns
tF(a0) Fall time, output command/data control rfbi_a0 7 7 ns
tR(csx) Rise time, output chip select rfbi_csx(14) 7 7 ns
tF(csx) Fall time, output chip select rfbi_csx(14) 7 7 ns
tR(d) Rise time, output data rfbi_da[15:0](16) 7 7 ns
tF(d) Fall time, output data rfbi_da[15:0](16) 7 7 ns
tR(rd) Rise time, output read enable rfbi_rd 7 7 ns
tF(rd) Fall time, output read enable rfbi_rd 7 7 ns
CsOnTime CS signal assertion time from Start Access Time - 0(19) ns
RFBI_ONOFF_TIMEi Register
CsOffTime CS signal de-assertion time from Start Access Time - 40(19) ns
RFBI_ONOFF_TIMEi Register
WeOnTime WE signal assertion time from Start Access Time - 0(19) ns
RFBI_ONOFF_TIMEi Register
WeOffTime WE signal de-assertion time from Start Access Time - 20(19) ns
RFBI_ONOFF_TIMEi Register
ReOnTime RE signal assertion time from Start Access Time - - ns
RFBI_ONOFF_TIMEi Register
ReOffTime RE signal de-assertion time from Start Access Time - - ns
RFBI_ONOFF_TIMEi Register
WeCycleTime Write cycle time - RFBI_CYCLE_TIMEi Register 40(19) ns
ReCycleTime Read cycle time - RFBI_CYCLE_TIMEi Register - ns
CsPulseWidth CS pulse width - RFBI_CYCLE_TIMEi Register 0(19) ns
210 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
swps038-118
rfbi_hsync[1:0]
rfbi_a0
rfbi_csx
rfbi_wr
rfbi_da[n:0]
rfbi_rd
rfbi_te_vsync[1:0]
DATA0 DATA1
CsOnTime
CsOffTime
WeOffTime
CsOnTime
CsOffTime
WeOnTime
WeOffTime
CsPulseWidth
WeCycleTime
WeOnTime
WeCycleTime
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
(1) A = (WECycleTime WEOffTime) * (TimeParaGranularity + 1) * L4CLK
(2) B = (WEOffTime WEOntime) * (TimeParaGranularity + 1) * L4CLK
(3) C = WEOnTime * (TimeParaGranularity + 1) * L4CLK
(4) D = (WECycleTime + CSPulseWidth WEOffTime) * (TimeParaGranularity + 1) * L4CLK if mode Write to Read or Read to Write is
enabled.
(5) E = (WEOnTime CSOnTime) * (TimeParaGranularity + 1) * L4CLK
(6) F = (CSOffTime WEOffTime) * (TimeParaGranularity + 1) * L4CLK
(7) G = WECycleTime * (TimeParaGranularity + 1) * L4CLK
(8) H = REOnTime * (TimeParaGranularity + 1) * L4CLK
(9) I = (RECycleTime + CSPulseWidth REOffTime) * (TimeParaGranularity + 1) * L4CLK if mode Write to Read or Read to Write is
enabled.
(10) J = (RECycleTime REOffTime) * (TimeParaGranularity + 1) * L4CLK
(11) K = (REOffTime REOntime) * (TimeParaGranularity + 1) * L4CLK
(12) L = (REOnTime CSOnTime) * (TimeParaGranularity + 1) * L4CLK
(13) M = (CSOffTime REOffTime) * (TimeParaGranularity + 1) * L4CLK
(14) In rfbi_csx, x is equal to 0 or 1.
(15) See Section 4.3.4,Processor Clocks.
(16) 16-bit parallel output interface is selected in DSS register.
(17) At OPP100, L4 clock is 100 MHz and at OPP50, L4 clock is 50 MHz.
(18) rfbi_wr must be at 25 MHz.
(19) These values are calculated by the following formula: RFBI Register (Value) * L4 Clock (ns).
Figure 6-35. DSSRFBI ModePico DLPCommand / Data Write(1)(2)
(1) In rfbi_csx, x is equal to 0 or 1.
(2) rfbi_da[n:0], n up to 15
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 211
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
6.6 Serial Communications Interfaces
6.6.1 Multichannel Buffered Serial Port (McBSP)
NOTE
For more information, see Multi-Channel Buffered Serial Port chapter of the AM/DM37x
Multimedia Device Technical Reference Manual (literature number SPRUGN4).
The Multichannel Buffered Serial Port (McBSP) provides a full duplex direct serial interface between the
chip and other devices in a system such as other application chips, codecs. It can accommodate a wide
range of peripherals and clocked frame oriented protocols (I2S, PCM, T ) due to its high level of versatility.
McBSP may support two types of data transfer at the system level:
The full cycle mode, for which one clock period is used to transfer the data, generated on one edge
and captured on the same edge (one clock period later).
The half cycle mode, for which one half clock period is used to transfer the data, generated on one
edge and captured on the opposite edge (one half clock period later). Note that a new data is
generated only every clock period, which secures the required hold time.
The interface clock (clkx/clkr) activation edge (data/frame sync capture and generation) has to be
configured accordingly with the external peripheral (activation edge capability) and the type of data
transfer required at the system level.
Depending on the number of pins, McBSP supports either:
6-pin mode: dx and dr as data pins; clkx, clkr, fsx, and fsr as control pins
4-pin mode: dx and dr as data pins; clkx and fsx pins as control pins. The clkx and fsx pins are
internally looped back, via software configuration, respectively to the clkr and fsr internal signals for
data receive.
McBSP1 supports the 6-pin mode. McBSP2, 3, 4, and 5 support only the 4-pin mode.
The following sections describe the timing characteristics for applications in normal mode (that is, McBSPx
connected to one peripheral) and T applications in multipoint mode.
6.6.1.1 McBSP Timing ConditionsNormal Mode
Table 6-46 through Table 6-70 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 6-36 through Figure 6-43).
Table 6-45. McBSP Timing ConditionsNormal Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
tRInput signal rise time 2 ns
tFInput signal fall time 2 ns
Output Condition
CLOAD Output load capacitance(1) 10 pF
(1) Buffer strength configuration:
McBSP4 - Set #1: LB0 = 1.
Otherwise: LB0 = 0.
212 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 6-46. McBSP Output Clock CharacteristicsNormal Mode(4)
PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
McBSP1 tc(CLK) Cycle time, mcbsp1_clkx (multiplexing mode 0) / 48 24 MHz
mcbsp1_clkr (multiplexing mode 0 &2)
McBSP2 tc(CLK) Cycle time, mcbsp2_clkx (multiplexing mode 0) 48 24 MHz
McBSP3 tc(CLK) Cycle time, mcbsp3_clkx IO set 1 32 16 MHz
(multiplexing
mode 0)
IO set 2 48 24
(multiplexing
mode 1)
IO set 3 48 24
(multiplexing
mode 2)
McBSP4 tc(CLK) Cycle time, mcbsp4_clkx IO set 1 48 16 MHz
(multiplexing
mode 0)
IO set 3 32 16
(multiplexing
mode 2)
McBSP5 tc(CLK) Cycle time, mcbsp5_clkx IO set 2 32 16 MHz
(multiplexing
mode 1)
tW(CLKH) Typical pulse duration, mcbsp1_clkr / mcbspx_clkx high(2) 0.5*P(1) 0.5*P(1) ns
tW(CLKL) Typical pulse duration, mcbsp1_clkr / mcbspx_clkx low(2) 0.5*P(1) 0.5*P(1) ns
tdc(CLK) Duty cycle error, mcbsp1_clkr / mcbspx_clkx(2) 0.75 0.75 0.75 0.75 ns
Jitter, mcbsp1_clkr / mcbspx_clkx(3) / mcbsp_clks -0.40 0.40 -0.40 0.40 ns
(1) P = mcbspy_clkx(2) or mcbsp1_clkr output clock period in ns
(2) In mcbspy, y is equal to 1, 2, 3, 4, or 5.
(3) In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5.
(4) See Section 4.3.4,Processor Clocks.
6.6.1.1.1 Rising Edge as Activation Mode
6.6.1.1.1.1 Timing with Rising Edge as Activation EdgeReceive Mode
Table 6-47. McBSP1, 2, and 3 (Sets #2 and #3) Timing RequirementsRising Edge and Receive Mode(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
B3 tsu(DRV-CLKAE) Setup time, mcbspx_dr valid before Master 4.36 8.63 ns
mcbsp1_clkr / mcbspx_clkx active edge Slave 3.67 7.94 ns
B4 th(CLKAE-DRV) Hold time, mcbspx_dr valid after Master 1.01 1.01 ns
mcbsp1_clkr / mcbspx_clkx active edge Slave 0.4 0.4 ns
B5 tsu(FSV-CLKAE) Setup time, mcbsp1_fsr / mcbspx_fsx valid before 3.67 7.94 ns
mcbsp1_clkr / mcbspx_clkx active edge
B6 th(CLKAE-FSV) Hold time, mcbsp1_fsr / mcbspx_fsx valid after 0.5 0.5 ns
mcbsp1_clkr / mcbspx_clkx active edge
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 213
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
(2) See Section 4.3.4,Processor Clocks.
Table 6-48. McBSP1, 2, and 3 (Sets #2 and #3) Switching CharacteristicsRising Edge and Receive
Mode(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
B2 td(CLKAE-FSV) Delay time, mcbsp1_clkr / mcbspx_clkx active edge to 0.7 14.79 0.7 29.58 ns
mcbsp1_fsr / mcbspx_fsx valid
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
(2) See Section 4.3.4,Processor Clocks.
Table 6-49. McBSP4 (Set #1) Timing RequirementsRising Edge and Receive Mode(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
B3 tsu(DRV-CLKXAE) Setup time, mcbspx_dr valid before Master 2.87 8.63 ns
mcbspx_clkx active edge Slave 3.67 7.94 ns
B4 th(CLKXAE-DRV) Hold time, mcbspx_dr valid after Master 1.01 1.01 ns
mcbspx_clkx active edge Slave 0.4 0.4 ns
B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx 3.67 7.94 ns
active edge
B6 th(CLKXAE-FSXV) Hold time, mcbspx_fsx valid after mcbspx_clkx active 0.5 0.5 ns
edge
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-51 and Table 6-52.
(2) See Section 4.3.4,Processor Clocks.
Table 6-50. McBSP4 (Set #1) Switching CharacteristicsRising Edge and Receive Mode(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
B2 td(CLKXAE-FSXV) Delay time, mcbspx_clkx active edge to mcbspx_fsx 0.7 16.56 0.7 33.12 ns
valid
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-51 and Table 6-52.
(2) See Section 4.3.4,Processor Clocks.
Table 6-51. McBSP3 (Set #1), 4 (Set #2), and 5 Timing RequirementsRising Edge and Receive Mode(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
B3 tsu(DRV-CLKXAE) Setup time, mcbspx_dr valid before Master 6.49 12.90 ns
mcbspx_clkx active edge Slave 5.80 12.21 ns
B4 th(CLKXAE-DRV) Hold time, mcbspx_dr valid after Master 1.01 1.01 ns
mcbspx_clkx active edge Slave 0.4 0.4 ns
B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx 5.81 12.21 ns
active edge
B6 th(CLKXAE-FSXV) Hold time, mcbspx_fsx valid after mcbspx_clkx active 0.5 0.5 ns
edge
214 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-062
mcbspx_clkr
mcbspx_fsr
mcbspx_dr D7 D6 D5
B2 B2
B3 B4
SWPS038-063
mcbspx_clkr
mcbspx_fsr
mcbspx_dr D7 D6 D5
B3 B4
B5 B6
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in Table 6-47 and Table 6-48.
For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
(2) See Section 4.3.4,Processor Clocks.
Table 6-52. McBSP3 (Set #1), 4 (Set #2), and 5 Switching CharacteristicsRising Edge and Receive
Mode(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
B2 td(CLKXAE-FSXV) Delay time, mcbspx_clkx active edge to mcbspx_fsx 0.7 22.18 0.7 44.37 ns
valid
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in Table 6-47 and Table 6-48.
For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins)
(2) See Section 4.3.4,Processor Clocks.
(1) In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5.
Figure 6-36. McBSP Rising Edge Receive Timing in Master Mode
(1) In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5.
Figure 6-37. McBSP Rising Edge Receive Timing in Slave Mode
6.6.1.1.1.2 Timing with Rising Edge as Activation EdgeTransmit Mode
Table 6-53. McBSP1, 2, and 3 (Sets #2 and #3) Timing RequirementsRising Edge and Transmit Mode(1)
(2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx 3.67 7.94 ns
active edge
B6 th(CLKXAE-FSXV) Hold time, mcbspx_fsx valid after mcbspx_clkx active 0.5 0.5 ns
edge
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 215
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
(2) See Section 4.3.4,Processor Clocks.
Table 6-54. McBSP1, 2, and 3 (Sets #2 and #3) Switching CharacteristicsRising Edge and Transmit
Mode(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
B2 td(CLKXAE-FSXV) Delay time, mcbspx_clkx active edge to mcbspx_fsx 0.7 14.79 0.7 29.58 ns
valid
B8 td(CLKXAE-DXV) Delay time, mcbspx_clkx active edge to Master 0.6 14.79 0.6 29.58 ns
mcbspx_dx valid Slave 0.6 13.89 0.6 28.68 ns
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
(2) See Section 4.3.4,Processor Clocks.
Table 6-55. McBSP4 (Set #1) Timing RequirementsRising Edge and Transmit Mode(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx 3.67 7.94 ns
active edge
B6 th(CLKXAE-FSXV) Hold time, mcbspx_fsx valid after mcbspx_clkx active 0.5 0.5 ns
edge
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-57 and Table 6-58.
(2) See Section 4.3.4,Processor Clocks.
Table 6-56. McBSP4 (Set #1) Switching CharacteristicsRising Edge and Transmit Mode(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
B2 td(CLKXAE-FSXV) Delay time, mcbspx_clkx active edge to mcbspx_fsx 0.7 16.56 0.7 33.12 ns
valid
B8 td(CLKXAE-DXV) Delay time, mcbspx_clkx active edge to Master 0.6 16.56 0.6 33.12 ns
mcbspx_dx valid Slave 0.6 17.15 0.6 32.22 ns
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-57 and Table 6-58.
(2) See Section 4.3.4,Processor Clocks.
Table 6-57. McBSP3 (Set #1), 4 (Set #2), and 5 Timing RequirementsRising Edge and Transmit Mode(1)
(2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx 5.81 12.21 ns
active edge
B6 th(CLKXAE-FSXV) Hold time, mcbspx_fsx valid after mcbspx_clkx active 0.5 0.5 ns
edge
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in Table 6-53 and Table 6-54.
For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
(2) See Section 4.3.4,Processor Clocks.
216 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-064
mcbspx_clkx
mcbspx_fsx
mcbspx_dx D7 D6 D5
B2 B2
B8
SWPS038-065
mcbspx_clkx
mcbspx_fsx
mcbspx_dx D7 D6 D5
B8
B5 B6
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 6-58. McBSP3 (Set #1), 4 (Set #2), and 5 Switching CharacteristicsRising Edge and Transmit
Mode(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
B2 td(CLKXAE-FSXV) Delay time, mcbspx_clkx active edge to mcbspx_fsx 0.7 22.18 0.7 44.37 ns
valid
B8 td(CLKXAE-DXV) Delay time, mcbspx_clkx active edge to Master 0.6 21.28 0.6 43.47 ns
mcbspx_dx valid Slave 0.6 21.28 0.6 43.47 ns
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in Table 6-53 and Table 6-54.
For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
(2) See Section 4.3.4,Processor Clocks.
(1) In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5.
Figure 6-38. McBSP Rising Edge Transmit Timing in Master Mode
(1) In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5.
Figure 6-39. McBSP Rising Edge Transmit Timing in Slave Mode
6.6.1.1.2 Falling Edge as Activation Edge
6.6.1.1.2.1 Timing with Falling Edge as Activation Edge ModeReceive Mode
Table 6-59. McBSP1, 2, 3 (Sets #2 and #3) Timing RequirementsFalling Edge and Receive Mode(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
B3 tsu(DRV-CLKAE) Setup time, mcbspx_dr valid before Master 4.36 8.63 ns
mcbsp1_clkr / mcbspx_clkx active edge Slave 3.67 7.94 ns
B4 th(CLKAE-DRV) Hold time, mcbspx_dr valid after Master 1.01 1.01 ns
mcbsp1_clkr / mcbspx_clkx active edge Slave 0.4 0.4 ns
B5 tsu(FSV-CLKAE) Setup time, mcbsp1_fsr / mcbspx_fsx valid before 3.7 7.94 ns
mcbsp1_clkr / mcbspx_clkx active edge
B6 th(CLKAE-FSV) Hold time, mcbsp1_fsr / mcbspx_fsx valid after 0.5 0.5 ns
mcbsp1_clkr / mcbspx_clkx active edge
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 217
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
(2) See Section 4.3.4,Processor Clocks.
Table 6-60. McBSP1, 2, and 3 (Sets #2 and #3) Switching CharacteristicsFalling Edge and Receive
Mode(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
B2 td(CLKAE-FSV) Delay time, mcbsp1_clkr / mcbspx_clkx active edge to 0.7 14.79 0.7 29.58 ns
mcbsp1_fsr / mcbspx_fsx valid
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
(2) See Section 4.3.4,Processor Clocks.
Table 6-61. McBSP4 (Set #1) Timing RequirementsFalling Edge and Receive Mode(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
B3 tsu(DRV-CLKXAE) Setup time, mcbspx_dr valid before Master 2.87 8.63 ns
mcbspx_clkx active edge Slave 3.67 7.94 ns
B4 th(CLKXAE-DRV) Hold time, mcbspx_dr valid after Master 1.01 1.01 ns
mcbspx_clkx active edge Slave 0.4 0.4 ns
B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx 3.67 7.94 ns
active edge
B6 th(CLKXAE-FSXV) Hold time, mcbspx_fsx valid after mcbspx_clkx active 0.5 0.5 ns
edge
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-63 and Table 6-64.
(2) See Section 4.3.4,Processor Clocks.
Table 6-62. McBSP4 (Set #1) Switching CharacteristicsFalling Edge and Receive Mode(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
B2 td(CLKXAE-FSXV) Delay time, mcbspx_clkx active edge to mcbspx_fsx 0.7 16.56 0.7 33.12 ns
valid
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-63 and Table 6-64.
(2) See Section 4.3.4,Processor Clocks.
Table 6-63. McBSP3 (Set #1), 4 (Set #2), and 5 Timing RequirementsFalling Edge and Receive Mode(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
B3 tsu(DRV-CLKXAE) Setup time, mcbspx_dr valid before Master 6.5 12.9 ns
mcbspx_clkx active edge Slave 5.81 12.21 ns
B4 th(CLKXAE-DRV) Hold time, mcbspx_dr valid after Master 1.01 1.01 ns
mcbspx_clkx active edge Slave 0.4 0.4 ns
B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx 5.81 12.21 ns
active edge
B6 th(CLKXAE-FSXV) Hold time, mcbspx_fsx valid after mcbspx_clkx active 0.5 0.5 ns
edge
218 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-066
mcbspx_clkr
mcbspx_fsr
mcbspx_dr D7 D6 D5
B2 B2
B3 B4
SWPS038-067
mcbspx_clkr
mcbspx_fsr
mcbspx_dr D7 D6 D5
B3 B4
B5 B6
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in Table 6-59 and Table 6-60.
For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
(2) See Section 4.3.4,Processor Clocks.
Table 6-64. McBSP3 (Set #1), 4 (Set #2), and 5 Switching CharacteristicsFalling Edge and Receive
Mode(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
B2 td(CLKXAE-FSXV) Delay time, mcbspx_clkx active edge to mcbspx_fsx 0.7 22.19 0.7 44.37 ns
valid
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in Table 6-59 and Table 6-60.
(2) See Section 4.3.4,Processor Clocks.
(1) In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5.
Figure 6-40. McBSP Falling Edge Receive Timing in Master Mode
(1) In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5.
Figure 6-41. McBSP Falling Edge Receive Timing in Slave Mode
6.6.1.1.2.2 Timing with Falling Edge as Activation EdgeTransmit Mode
Table 6-65. McBSP1, 2, and 3 (Sets #2 and #3) Timing RequirementsFalling Edge and Transmit
Mode(1)(2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx 3.67 7.94 ns
active edge
B6 th(CLKXAE-FSXV) Hold time, mcbspx_fsx valid after mcbspx_clkx active 0.5 0.5 ns
edge
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 219
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
(2) See Section 4.3.4,Processor Clocks.
Table 6-66. McBSP1, 2, and 3 (Sets #2 and #3) Switching CharacteristicsFalling Edge and Transmit
Mode(1)(2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
B2 td(CLKXAE-FSXV) Delay time, mcbspx_clkx active edge to mcbspx_fsx 0.7 14.79 0.7 29.58 ns
valid
B8 td(CLKXAE-DXV) Delay time, mcbspx_clkx active edge to Master 0.6 14.79 0.6 29.58 ns
mcbspx_dx valid Slave 0.6 13.89 0.6 28.68 ns
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
(2) See Section 4.3.4,Processor Clocks.
Table 6-67. McBSP4 (Set #1) Timing RequirementsFalling Edge and Transmit Mode(1)(2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx 3.67 7.94 ns
active edge
B6 th(CLKXAE-FSXV) Hold time, mcbspx_fsx valid after mcbspx_clkx active 0.5 0.5 ns
edge
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-69 and Table 6-70.
(2) See Section 4.3.4,Processor Clocks.
Table 6-68. McBSP4 (Set #1) Switching CharacteristicsFalling Edge and Transmit Mode(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
B2 td(CLKXAE-FSXV) Delay time, mcbspx_clkx active edge to mcbspx_fsx 0.7 16.56 0.7 33.12 ns
valid
B8 td(CLKXAE-DXV) Delay time, mcbspx_clkx active edge to Master 0.6 16.56 0.6 33.12 ns
mcbspx_dx valid Slave 0.6 17.15 0.6 32.22 ns
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-69 and Table 6-70.
(2) See Section 4.3.4,Processor Clocks.
Table 6-69. McBSP3 (Set #1), 4 (Set #2), and 5 Timing RequirementsFalling Edge and Transmit Mode(1)
(2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx 5.81 12.21 ns
active edge
B6 th(CLKXAE-FSXV) Hold time, mcbspx_fsx valid after mcbspx_clkx active 0.5 0.5 ns
edge
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in Table 6-66 and Table 6-67.
For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
(2) See Section 4.3.4,Processor Clocks.
220 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-068
mcbspx_clkx
mcbspx_fsx
mcbspx_dx D7 D6 D5
B2 B2
B8
SWPS038-069
mcbspx_clkx
mcbspx_fsx
mcbspx_dx D7 D6 D5
B8
B5 B6
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 6-70. McBSP3 (Set #1), 4 (Set #2), and 5 Switching CharacteristicsFalling Edge and Transmit
Mode(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
B2 td(CLKXAE-FSXV) Delay time, mcbspx_clkx active edge to mcbspx_fsx 0.7 22.18 0.7 44.37 ns
valid
B8 td(CLKXAE-DXV) Delay time, mcbspx_clkx active edge to Master 0.6 21.28 0.6 43.47 ns
mcbspx_dx valid Slave 0.6 21.28 0.6 43.47 ns
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in Table 6-66 and Table 6-67.
For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
(2) See Section 4.3.4,Processor Clocks.
(1) In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5.
Figure 6-42. McBSP Falling Edge Transmit Timing in Master Mode
(1) In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5.
Figure 6-43. McBSP Falling Edge Transmit Timing in Slave Mode
6.6.1.2 McBSP in TDM Multipoint Mode (McBSP3)
For T application in multipoint mode, the processor is considered as a slave. Table 6-72 and Table 6-73
assume testing over the operating conditions and electrical characteristic conditions described below.
Table 6-71. McBSP3 (Set #3) Timing ConditionsT Multipoint Mode(1)
TIMING CONDITION PARAMETER VALUE UNIT
MIN MAX
Input Conditions
tRInput signal rise time 1.0 8.5 ns
tFInput signal fall time 1.0 8.5 ns
Output Condition
CLOAD Output load capacitance(2) 40 pF
(1) For McBSP3, these timings concern only Set #3 (multiplexing mode in McBSP1 pins)
(2) The load setting of the IO buffer: LB0 = 0.
Table 6-72. McBSP3 (Set #3) Timing RequirementsT Multipoint Mode(4)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
1 / tc(clkxH) Frequency, input clock mcbsp3_clkx 6 6 MHz
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 221
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 6-72. McBSP3 (Set #3) Timing RequirementsT Multipoint Mode(4) (continued)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
tw(clkxH) Pulse duration, input clock mcbsp3_clkx high 0.5P(1) 0.5P(1) ns
tw(clkxL) Pulse duration, input clock mcbsp3_clkx low 0.5P(1) 0.5P(1) ns
tdc(clkx) Duty cycle error, input clock mcbsp3_clkx 8.14 8.14 8.14 8.14 ns
B3(3) tsu(drV-clkxAE) Setup time, input data mcbsp3_dr valid before input 9 9 ns
clock mcbsp3_clkx active edge
B4(3) th(clkxAE-drV) Hold time, input data mcbsp3_dr valid after input clock 2.4 2.4 ns
mcbsp3_clkx active edge
B5(3) tsu(fsxV-clkxAE) Setup time, input frame synchronization mcbsp3_fsx 9 9 ns
valid before input clock mcbsp3_clkx active edge
B6(3) th(clkxAE-fsxV) Hold time, input frame synchronization mcbsp3_fsx 2.4 2.4 ns
valid after input clock mcbsp3_clkx active edge
(1) P = input clock mcbsp3_clkx period in ns
(2) For McBSP3, these timings concern only Set #3 (multiplexing mode in McBSP1 pins).
(3) See Section 6.6.1.1 for corresponding figures.
(4) See Section 4.3.4,Processor Clocks.
Table 6-73. McBSP3 (Set #3) Switching CharacteristicsT Multipoint Mode(1)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
B8(2) td(clkxAE-dxV) Delay time, mcbsp3_clkx active edge to output data 0.6 15.89 0.6 28.68 ns
mcbsp3_dx valid
(1) For McBSP3, these timings concern only Set #3 (multiplexing mode in McBSP1 pins).
(2) See Section 6.6.1.1 for corresponding figures.
222 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
6.6.2 Multichannel Serial Port Interface (McSPI)
NOTE
For more information, see Multichannel SPI chapter of the AM/DM37x Multimedia Device
Technical Reference Manual (literature number SPRUGN4).
McSPI allows a duplex, synchronous, serial communication between a local host and SPI compliant
external devices. The following timings are applicable to the different configurations of McSPI in
master/slave mode for any McSPI and any channel (n).
6.6.2.1 McSPISlave Mode
In slave mode, McSPI initiates data transfer on the data lines (mcspix_somi, mcspix_simo) when it
receives an SPI clock (mcspix_clk) from the external SPI master device.
Table 6-75 and Table 6-76 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 6-44 and Figure 6-45).
Table 6-74. McSPI Timing ConditionsSlave Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
tRInput signal rise time 4 ns
tFInput signal fall time 4 ns
Output Condition
CLOAD Output load capacitance(1) 20 pF
(1) The load setting of the IO buffer: LB0 = 1.
Table 6-75. McSPI Timing RequirementsSlave Mode(1) (3)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
SS0 1/tc(CLK) Frequency, mcspix_clk 24 12 MHz
SS1 tw(CLK) Pulse duration, mcspix_clk high or low 0.45*P(2) 0.55*P(2) 0.45*P(2) 0.55*P(2) ns
SS2 tsu(SIMOV-CLKAE) Setup time, mcspix_simo valid before mcspix_clk 4.2 9.5 ns
active edge
SS3 th(SIMOV-CLKAE) Hold time, mcspix_simo valid after mcspix_clk active 4.6 9.9 ns
edge
SS4 tsu(CS0V-CLKFE) Setup time, mcspix_cs0 valid before mcspix_clk first 13.8 28.6 ns
edge
SS5 th(CS0I-CLKLE) Hold time, mcspix_cs0 invalid after mcspix_clk last 13.8 28.6 ns
edge
(1) In mcspix, x is equal to 1, 2, 3, or 4.
(2) P = mcspix_clk clock period
(3) See Section 4.3.4,Processor Clocks.
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 223
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
mcspi_cs(IN)
mcspi_clk(IN)
mcspi_clk(IN)
mcspi_somi(OUT)
mcspi_cs(IN)
mcspi_clk(IN)
mcspi_clk(IN)
mcspi_somi(OUT)
Bit n–1 Bit n–2 Bit n–3 Bit n–4 Bit 0
Bit n–1 Bit n–2 Bit n–3 Bit 1 Bit 0
PHA=0
EPOL=1
POL=0
POL=1
POL=0
POL=1
PHA=1
EPOL=1
SS6
SS1
SS0
SS1
SS0
SS1
SS0
SS1
SS0
SS6
SS6
SS4 SS5
SS7
SS4
SS1
SS1
SS1
SS1
SS6 SS6SS6
SS5
SWPS038-070
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 6-76. McSPI Switching CharacteristicsSlave Mode(1) (3) (4)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
SS6 td(CLKAE-SOMIV) Delay time, mcspix_clk active edge to mcspix_somi 1.8 15.9 3.2 31.7 ns
shifted
SS7 td(CS0AE-SOMIV) Delay time, mcspix_cs0 active edge to Modes 0 15.9 31.7 ns
mcspix_somi shifted and 2(2)
(1) In mcspix, x is equal to 1, 2, 3, or 4.
(2) The polarity of mcspix_clk and the active edge (rising or falling) on which mcspix_simo is driven and mcspix_somi is latched is all
software configurable:
mcspix_clk(1) phase programmable with the bit PHA of MCSPI_CH(i)CONF register: PHA = 0 (Modes 0 and 2)
For more information, see the McSPI environment chapter, Data Format Configurations section of the AM/DM37x Multimedia Device
Technical Reference Manual (literature number SPRUGN4) for modes and phase correspondence description.
(3) This timing applies to all configurations regardless of mcspix_clk polarity and which clock edges are used to drive output data and
capture input data.
(4) See Section 4.3.4,Processor Clocks.
(1) The active clock edge selection of mcspi_clk (rising or falling) on which mcspi_simo is driven and mcspi_somi data is latched is
software configurable with the bit MCSPI_CH(i)CONF[1] = POL and the bit MCSPI_CH(i)CONF[0] = PHA.
(2) The polarity of mcspi_cs is software configurable with the bit MCSPI_CH(i)CONF[6] = EPOL.
Figure 6-44. McSPISlave ModeTransmit
224 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
mcspi_cs(IN)
mcspi_clk(IN)
mcspi_clk(IN)
mcspi_simo(IN)
mcspi_cs(IN)
mcspi_clk(IN)
mcspi_clk(IN)
mcspi_simo(IN)
Bit n–1 Bit n–2 Bit n–3 Bit n–4 Bit 0
Bit n–1 Bit n–2 Bit n–3 Bit 1 Bit 0
PHA=0
EPOL=1
POL=0
POL=1
POL=0
POL=1
PHA=1
EPOL=1
SS1
SS1
SS1
SS1
SS4 SS5
SS4 SS5
SS1
SS1
SS1
SS1
SS2
SS3
SS3
SS2
SS2
SS3
SS2
SS3
SWPS038-071
SS0
SS0
SS0
SS0
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
(1) The active clock edge selection of mcspi_clk (rising or falling) on which mcspi_simo is driven and mcspi_somi data is latched is
software configurable with the bit MCSPI_CH(i)CONF[1] = POL and the bit MCSPI_CH(i)CONF[0] = PHA.
(2) The polarity of mcspi_cs is software configuable with the bit MCSPI_CH(i)CONF[6] = EPOL.
Figure 6-45. McSPISlave ModeReceive
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 225
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
6.6.2.2 McSPIMaster Mode
In master mode, McSPI supports multichannel communication. McSPI initiates a data transfer on the data
lines (SPIDAT [1:0]) and generates clock (SPICLK) and control signals (SPIEN) to a single SPI slave
device at a time.
Table 6-78 and Table 6-81 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 6-46 and Figure 6-47).
Table 6-77. McSPI Timing ConditionsMaster Mode(1)
TIMING CONDITION PARAMETER VALUE UNIT
MIN MAX
Input Conditions
tRInput signal rise time 4 ns
tFInput signal fall time 4 ns
Output Conditions
McSPI1, McSPI2, McSPI3, and McSPI4
CLOAD Output load capacitance for spix_csn signals 20 pF
McSPI2 and McSPI3
CLOAD Output load capacitance for spix_clk and spix_simo 30 pF
McSPI1 and McSPI4
CLOAD Output load capacitance for spix_clk and spix_simo 20 pF
(1) Buffer strength configuration: LB0 = 1.
Table 6-78. McSPI1, 2, and 4 Timing RequirementsMaster Mode(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
SM2 tsu(SOMIV-CLKAE) Setup time, mcspix_somi valid before mcspix_clk 1.1 1.5 ns
active edge
SM3 th(SOMIV-CLKAE) Hold time, mcspix_somi valid after mcspix_clk active 1.9 2.8 ns
edge
(1) In mcspix, x is equal to 1, 2, or 4. In mcspix_csn, n is equal to 0, 1, 2, or 3 for x equal to 1, n is equal to 0 or 1 for x equal to 2 and 4.
(2) See Section 4.3.4,Processor Clocks.
Table 6-79. McSPI1, 2, and 4 Switching CharacteristicsMaster Mode(1) (6)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
SM0 1/tc(CLK) Frequency, mcspix_clk 48 24 MHz
SM1 tw(CLK) Pulse duration, mcspix_clk high or low 0.45*P(3) 0.55*P(3) 0.45*P(3) 0.55*P(3) ns
tR(clk) Rise time, output clock mcspi1_clk and mcspi4_clk 5.72 5.68 ns
Rise time, output clock mcspi2_clk 7.33 7.31
tF(clk) Fall time, output clock mcspi1_clk and mcspi4_clk 5.22 5.21 ns
Fall time, output clock mcspi2_clk 6.77 6.71
SM4 td(CLKAE-SIMOV) Delay time, mcspix_clk active edge to mcspix_simo 2.1 5.0 2.1 11.3 ns
shifted
SM5 td(CSnA-CLKFE) Delay time, mcspix_csi active to Modes 1 and 3(2) A(4) 3.2 A(4) 4.4 ns
mcspix_clk first edge Modes 0 and 2(2) B(5) 3.2 B(5) 4.4 ns
SM6 td(CLKLE-CSnI) Delay time, mcspix_clk last Modes 1 and 3(2) B(5) 3.2 B(5) 4.4 ns
edge to mcspix_csi inactive Modes 0 and 2(2) A(4) 3.2 A(4) 4.4 ns
SM7 td(CSnAE-SIMOV) Delay time, mcspix_csi active edge to mcspix_simo 5.0 11.3 ns
shifted
226 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
(1) In mcspix, x is equal to 1, 2, or 4. In mcspix_csn, n is equal to 0, 1, 2, or 3 for x equal to 1, n is equal to 0 or 1 for x equal to 2 and 4.
(2) The polarity of mcspix_clk and the active edge (rising or falling) on which mcspix_simo is driven and mcspix_somi is latched is all
software configurable:
mcspix_clk(1) phase programmable with the bit PHA of MCSPI_CH(i)CONF register: PHA = 1 (Modes 1 and 3).
mcspix_clk(1) phase programmable with the bit PHA of MCSPI_CH(i)CONF register: PHA = 0 (Modes 0 and 2).
For more information, see the McSPI environment chapter, Data Format Configurations section of the AM/DM37x Multimedia Device
Technical Reference Manual (literature number SPRUGN4) for modes and phase correspondence description.
(3) P = mcspix_clk clock period
(4) Case P = 20.8 ns, A = (TCS+0.5)*P(3) (TCS is a bit field of MSPI_CHCONFx[26:25] register).
Case P >20.8 ns, A = TCS*P(3) (TCS is a bitfield of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of
the AM/DM37x Multimedia Device Technical Reference Manual (literature number SPRUGN4).
(5) B = TCS*P(3) (TCS is a bit field of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of the AM/DM37x
Multimedia Device Technical Reference Manual (literature number SPRUGN4).
(6) See Section 4.3.4,Processor Clocks.
Table 6-80. McSPI3 Timing RequirementsMaster Mode(1)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
SM2 tsu(SOMIV-CLKAE) Setup time, mcspi3_somi valid before mcspi3_clk 1.5 4.3 ns
active edge
SM3 th(SOMIV-CLKAE) Hold time, mcspi3_somi valid after mcspi3_clk active 2.8 5.9 ns
edge
(1) See Section 4.3.4,Processor Clocks.
Table 6-81. McSPI3 Switching CharacteristicsMaster Mode(1) (2) (6)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
SM0 1/tc(CLK) Frequency, mcspi3_clk 24 12 MHz
SM1 tw(CLKH) Pulse duration, mcspi3_clk high or low 0.45*P(3) 0.55*P(3) 0.45*P(3) 0.55*P(3) ns
tR(clk) Rise time, output clock mcspi3_clk CBP 7.33 7.31 ns
Balls:
AE2 /
AE13
CBP 4.31 4.30
Ball: H26
tF(clk) Fall time, output clock mcspi3_clk CBP 6.77 6.71 ns
Balls:
AE2 /
AE13
CBP 4.0 4.0
Ball: H26
SM4 td(CLK-SIMO) Delay time, mcspi3_clk active edge to mcspi3_simo 2.1 11.3 5.3 23.6 ns
shifted
SM5 td(CSn-CLK) Delay time, mcspi3_csi active to Modes 1 A(4) 4.4 A(4) ns
mcspi3_clk first edge and 3 10.1
Modes 0 B(5) 4.4 B(5) ns
and 2 10.1
SM6 td(CLK-CSn) Delay time, mcspi3_clk last edge to Modes 1 B(5) 4.4 B(5) ns
mcspi3_csi inactive and 3 10.1
Modes 0 A(4) 4.4 A(4) ns
and 2 10.1
SM7 td(csn-simo) Delay time, mcspi3_csi active edge to Modes 0 11.3 23.6 ns
mcspi3_simo shifted and 2
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 227
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
mcspi_cs(OUT)
mcspi_clk(OUT)
mcspi_clk(OUT)
mcspi_simo(OUT)
mcspi_cs(OUT)
mcspi_clk(OUT)
mcspi_clk(OUT)
mcspi_simo(OUT)
Bit n–1 Bit n–2 Bit n–3 Bit n–4 Bit 0
Bit n–1 Bit n–2 Bit n–3 Bit 1 Bit 0
PHA=0
EPOL=1
POL=0
POL=1
PHA=1
EPOL=1
POL=0
POL=1
SM5 SM6
SM4
SM1
SM0
SM1
SM0
SM5 SM6SM1
SM0
SM1
SM0
SM4
SM7 SM4
SM1
SM1
SM1
SM1
SM4 SM4 SM4
SWPS038-072
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
(1) In mcspi3_csn, n is equal to 0 or 1. The polarity of mcspi3_clk and the active edge (rising or falling) on which mcspi3_simo is driven and
mcspi3_somi is latched is all software configurable.
mcspi3_clk phase programmable with the bit PHA of MCSPI_CH(i)CONF register: PHA = 1 (Modes 1 and 3).
mcspi3_clk phase programmable with the bit PHA of MCSPI_CH(i)CONF register: PHA = 0 (Modes 0 and 2).
For more information, see the McSPI environment chapter, Data Format Configurations section of the AM/DM37x Multimedia Device
Technical Reference Manual (literature number SPRUGN4) for modes and phase correspondence description.
(2) This timing applies to all configurations regardless of McSPI3_CLK polarity and which clock edges are used to drive output data and
capture input data.
(3) P = mcspi3_clk clock period
(4) Case P = 20.8 ns, A = (TCS + 0.5)*P(3) (TCS is a bit field of MSPI_CHCONFx[26:25] register).
Case P >20.8 ns, A = TCS*P(3) (TCS is a bit field of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of
AM/DM37x Multimedia Device Technical Reference Manual (literature number SPRUGN4).
(5) B = TCS*P(3) (TCS is a bit field of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of AM/DM37x
Multimedia Device Technical Reference Manual (literature number SPRUGN4).
(6) See Section 4.3.4,Processor Clocks.
(1) The active clock edge selection of mcspi_clk (rising or falling) on which mcspi_simo is driven and mcspi_somi data is latched is
software configurable with the bit MCSPI_CH(i)CONF[1] = POL and the bit MCSPI_CH(i)CONF[0] = PHA.
(2) The polarity of mcspi_ncs is software configuable with the bit MCSPI_CH(i)CONF[6] = EPOL.
Figure 6-46. McSPIMaster ModeTransmit
228 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
mcspi_cs(OUT)
mcspi_clk(OUT)
mcspi_clk(OUT)
mcspi_somi(IN)
mcspi_cs(OUT)
mcspi_clk(OUT)
mcspi_clk(OUT)
mcspi_somi(IN)
Bit n–1 Bit n–2 Bit n–3 Bit n-4 Bit 0
Bit n–1 Bit n–2 Bit n–3 Bit 1 Bit 0
PHA=0
EPOL=1
PHA=1
EPOL=1
POL=0
POL=1
POL=0
POL=1
SM5 SM6
SM1
SM0
SM1
SM0
SM5 SM6SM1
SM0
SM1
SM0
SM1
SM1
SM1
SM1
SM3 SM3
SM3 SM3
SM2 SM2
SM2 SM2
SWPS038-073
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
(1) The active clock edge selection of mcspi_clk (rising or falling) on which mcspi_simo is driven and mcspi_somi data is latched is
software configurable with the bit MCSPI_CH(i)CONF[1] = POL and the bit MCSPI_CH(i)CONF[0] = PHA.
(2) The polarity of mcspi_ncs is software configuable with the bit MCSPI_CH(i)CONF[6] = EPOL.
Figure 6-47. McSPIMaster ModeReceive
6.6.3 Multiport Full-Speed Universal Serial Bus (FS-USB)
NOTE
For more information, see High-Speed USB Host Subsystem and High-Speed USB OTG
Controller / High-Speed USB Host Subsystem section of the AM/DM37x Multimedia Device
Technical Reference Manual (literature number SPRUGN4).
The processor provides three USB ports working in full- and low-speed data transactions (up to 12Mbit/s).
When connected to either a serial link controller or a serial PHY (PHY interface modes) it supports:
6-pin (Tx: Dat/Se0 or Tx: Dp/ ) unidirectional mode
4-pin bidirectional mode
3-pin bidirectional
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 229
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
6.6.3.1 FS-USBUnidirectional Standard 6-pin Mode
Table 6-83 and Table 6-84 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 6-48).
Table 6-82. LS- / FS-USB Timing ConditionsUnidirectional Standard 6-Pin Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
tRInput signal rise time 2 ns
tFInput signal fall time 2 ns
Output Condition
CLOAD Output load capacitance(1) 15 pF
(1) Buffer strength configuration: LB0 = 1.
Table 6-83. LS- / FS-USB Timing RequirementsUnidirectional Standard 6-Pin Mode(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
FSU1 td(vp,vm) Time duration, mmx_rxdp and mmx_rx low together 14 14 ns
during transition
FSU2 td(vp,vm) Time duration, mmx_rxdp and mmx_rx high together 8 8 ns
during transition
FSU3 td(rcvU0) Time duration, mmx_rrxcv undefine during a single 14 14 ns
end 0 (mmx_rxdp and mmx_rx low together)
FSU4 td(rcvU1) Time duration, mmx_rxrcv undefine during a single 8 8 ns
end 1 (mmx_rxdp and mmx_rx high together)
(1) In mmx, x is equal to 0, 1, or 2.
(2) See Section 4.3.4,Processor Clocks.
Table 6-84. LS- / FS-USB Switching CharacteristicsUnidirectional Standard 6-Pin Mode(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
FSU5 td(txenL-dV) Delay time, mmx_txen_n low to mmx_txdat valid 81.8 84.8 81.8 84.8 ns
FSU6 td(txenL-se0V) Delay time, mmx_txen_n low to mmx_txse0 valid 81.8 84.8 81.8 84.8 ns
FSU7 ts(d-se0) Skew between mmx_txdat and mmx_txse0 transition 1.5 1.5 ns
FSU8 td(dI-txenH) Delay time, mmx_txdat invalid to mmx_txen_n high 81.8 81.8 ns
FSU9 td(se0I-txenH) Delay time, mmx_txse0 invalid to mmx_txen_n high 81.8 81.8 ns
(1) In mmx, x is equal to 0, 1, or 2.
(2) See Section 4.3.4,Processor Clocks.
230 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
mmx_txen_n
mmx_txdat
mmx_txse0
mmx_rxdp
mmx_rxdm
mmx_rxrcv
FSU5
FSU6 FSU7
FSU1
FSU1
FSU2
FSU2
FSU3 FSU4
FSU8
FSU9
Transmit Receive
SWPS038-074
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
(1) In mmx, x is equal to 0, 1, or 2.
Figure 6-48. LS- / FS-USBUnidirectional Standard 6-Pin Mode
6.6.3.2 FS-USBBidirectional Standard 4-pin Mode
Table 6-86 and Table 6-87 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 6-49).
Table 6-85. LS- / FS-USB Timing ConditionsBidirectional Standard 4-Pin Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
tRInput signal rise time 2 ns
tFInput signal fall time 2 ns
Output Condition
CLOAD Output load capacitance(1) 15 pF
(1) Buffer strength configuration: LB0 = 1.
Table 6-86. LS- / FS-USB Timing RequirementsBidirectional Standard 4-Pin Mode(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
FSU10 td(d,se0) Time duration, mmx_txdat and mmx_txse0 low 14 14 ns
together during transition
FSU11 td(d,se0) Time duration, mmx_txdat and mmx_txse0 high 8 8 ns
together during transition
FSU12 td(rcvU0) Time duration, mmx_rrxcv undefine during a single 14 14 ns
end 0 (mmx_txdat and mmx_txse0 low together)
FSU13 td(rcvU1) Time duration, mmx_rxrcv undefine during a single 8 8 ns
end 1 (mmx_txdat and mmx_txse0 high together)
(1) In mmx, x is equal to 0, 1, or 2.
(2) See Section 4.3.4,Processor Clocks.
Table 6-87. LS- / FS-USB Switching CharacteristicsBidirectional Standard 4-Pin Mode(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
FSU14 td(txenL-dV) Delay time, mmx_txen_n low to mmx_txdat valid 81.8 84.8 81.8 84.8 ns
FSU15 td(txenL-se0V) Delay time, mmx_txen_n low to mmx_txse0 valid 81.8 84.8 81.8 84.8 ns
FSU16 ts(d-se0) Skew between mmx_txdat and mmx_txse0 transition 1.5 1.5 ns
FSU17 td(dV-txenH) Delay time, mmx_txdat invalid before mmx_txen_n 81.8 81.8 ns
high
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 231
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
mmx_txen_n
mmx_txdat
mmx_txse0
mmx_rxrcv
FSU16
FSU14
FSU15
FSU10
FSU10
FSU11
FSU11
FSU12 FSU13
FSU17
FSU18
Transmit Receive
SWPS038-075
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 6-87. LS- / FS-USB Switching CharacteristicsBidirectional Standard 4-Pin Mode(1) (2) (continued)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
FSU18 td(se0V-txenH) Delay time, mmx_txse0 invalid before mmx_txen_n 81.8 81.8 ns
high
(1) In mmx, x is equal to 0, 1, or 2.
(2) See Section 4.3.4,Processor Clocks.
(1) In mmx, x is equal to 0, 1, or 2.
Figure 6-49. LS- / FS-USBBidirectional Standard 4-Pin Mode
6.6.3.3 FS-USBBidirectional Standard 3-pin Mode
Table 6-89 and Table 6-90 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 6-50).
Table 6-88. LS- / FS-USB Timing ConditionsBidirectional Standard 3-Pin Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
tRInput signal rise time 2 ns
tFInput signal fall time 2 ns
Output Condition
CLOAD Output load capacitance(1) 15 pF
(1) Buffer strength configuration: LB0 = 1.
Table 6-89. LS- / FS-USB Timing RequirementsBidirectional Standard 3-Pin Mode(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
FSU19 td(d,se0) Time duration, mmx_txdat and mmx_txse0 low 14 14 ns
together during transition
FSU20 td(d,se0) Time duration, mmx_tsdat and mmx_txse0 high 8 8 ns
together during transition
(1) In mmx, x is equal to 0, 1, or 2.
(2) See Section 4.3.4,Processor Clocks.
232 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-076
mmx_txen_n
mmx_txdat
mmx_txse0
FSU23
FSU21
FSU22
FSU19
FSU19
FSU20
FSU20
FSU24
FSU25
Receive
Transmit
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 6-90. LS- / FS-USB Switching CharacteristicsBidirectional Standard 3-Pin Mode(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
FSU21 td(txenL-dV) Delay time, mmx_txen_n low to mmx_txdat valid 81.8 84.8 81.8 84.8 ns
FSU22 td(txenL-se0V) Delay time, mmx_txen_n low to mmx_txse0 valid 81.8 84.8 81.8 84.8 ns
FSU23 ts(d-se0) Skew between mmx_txdat and mmx_txse0 transition 1.5 1.5 ns
FSU24 td(dI-txenH) Delay time, mmx_txdat invalid to mmx_txen_n high 81.8 81.8 ns
FSU25 td(se0I-txenH) Delay time, mmx_txse0 invalid to mmx_txen_n high 81.8 81.8 ns
(1) In mmx, x is equal to 0, 1, or 2.
(2) See Section 4.3.4,Processor Clocks.
Figure 6-50. LS- / FS-USBBidirectional Standard 3-Pin Mode(1)
(1) In mmx, x is equal to 0, 1, or 2.
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 233
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
6.6.4 Multiport High-Speed Universal Serial Bus (HS-USB)
NOTE
For more information, see High-Speed USB Host Subsystem and High-Speed USB OTG
Controller / High-Speed USB OTG Controller and High-Speed USB Host Subsystem and
High-Speed USB OTG Controller / High-Speed USB Host Subsystem sections of the
AM/DM37x Multimedia Device Technical Reference Manual (literature number SPRUGN4).
In addition to the full-speed (FS) USB controller, a high-speed (HS) USB OTG controller is incorporated in
the device. It allows high-speed transactions (up to 480 Mbit/s) on the USB ports 0, 1, 2, and 3 described
below:
Port 0:
12-bit slave mode (SDR)
Ports 1 and 2:
12-bit master mode (SDR)
Port 3:
6.6.4.1 HSUSB0Port 012-bit Slave Mode
Table 6-92 and Table 6-93 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 6-51).
Table 6-91. HSUSB0 Timing Conditions12-bit Slave Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
tRInput signal rise time 2 ns
tFInput signal fall time 2 ns
Output Condition
CLOAD Output load capacitance(1) 3.5 pF
(1) Buffer strength configuration: LB0 = 0.
Table 6-92. HSUSB0 Timing Requirements12-bit Slave Mode(3) (4)
NO. PARAMETER OPP100 UNIT
MIN MAX
HSU0 fp(CLK) hsusb0_clk clock frequency(1) 60.03 MHz
tJ(CLK) Cycle jitter(2), hsusb0_clk 500 ps
HSU3 ts(DIRV-CLKH) Setup time, hsusb0_dir valid before hsusb0_clk rising edge 6.68 ns
ts(NXTV-CLKH) Setup time, hsusb0_nxt valid before hsusb0_clk rising edge 6.68 ns
HSU4 th(CLKH-DIRIV) Hold time, hsusb0_dir valid after hsusb0_clk rising edge 0 ns
th(CLKH-NXT/IV) Hold time, hsusb0_nxt valid after hsusb0_clk rising edge 0 ns
HSU5 ts(DATAV-CLKH) Setup time, hsusb0_data[0:7] valid before hsusb0_clk rising edge 6.68 ns
HSU6 th(CLKH-DATIV) Hold time, hsusb0_data[0:7] valid after hsusb0_clk rising edge 0 ns
(1) Related with the input maximum frequency supported by the USB module.
(2) Maximum cycle jitter supported by hsusb0_clk input clock
(3) The timing requirements are assured up to the cycle jitter error condition specified.
(4) See Section 4.3.4,Processor Clocks.
234 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-080
hsusb0_clk
hsusb0_stp
hsusb0_dir
and
hsusb0_nxt
hsusb0_data[7:0] Data_OUT Data_IN
HSU1
HSU0
HSU1
HSU4
HSU2 HSU2 HSU6
HSU3
HSU5
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 6-93. HSUSB0 Switching Characteristics12-bit Slave Mode(1)
NO. PARAMETER OPP100 UNIT
MIN MAX
HSU1 td(clkL-STPV) Delay time, hsusb0_clk high to output usb0_stp valid 8.6 ns
td(clkL-STPIV) Delay time, hsusb0_clk high to output usb0_stp invalid 0 ns
HSU2 td(clkL-DV) Delay time, hsusb0_clk high to output hsusb0_data[0:7] valid 8.6 ns
td(clkL-DIV) Delay time, hsusb0_clk high to output hsusb0_data[0:7] invalid 0 ns
(1) See Section 4.3.4,Processor Clocks.
Figure 6-51. HSUSB012-bit Slave Mode
6.6.4.2 HSUSB1 and HSUSB2Ports 1 and 212-bit Slave Mode
Table 6-95 and Table 6-96 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 6-52).
Table 6-94. HSUSB1 and HSUSB2 Timing Conditions12-bit Master Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
tRInput signal rise time 3 ns
tFInput signal fall time 2 ns
Output Condition
CLOAD Output load capacitance(1) 5 pF
(1) Buffer strength configuration: LB0 = 0.
Table 6-95. HSUSB1 and HSUSB2 Timing Requirements12-bit Master Mode(1) (2)
NO. PARAMETER OPP100 UNIT
MIN MAX
HSU3 tsu(dirV-clkH) Setup time, input direction control hsusbx_dir valid before output clock 9.3 ns
hsusbx_clk rising edge
tsu(nxtV-clkH) Setup time, input next signal hsusbx_nxt valid before output clock 9.3 ns
hsusbx_clk rising edge
HSU4 th(clkH-dirIV) Hold time, input direction control hsusbx_dir valid after output clock 0.52 ns
hsusbx_clk rising edge
th(clkH-nxtIV) Hold time, input next signal hsusbx_nxt valid after output clock 0.52 ns
hsusbx_clk rising edge
HSU5 tsu(dV-clkH) Setup time, input data hsusbx_data[7:0] valid before output clock 9.3 ns
hsusbx_clk rising edge
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 235
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-081
hsusbx_clk
hsusbx_stp
hsusbx_dir
and
hsusbx_nxt
hsusbx_data[7:0] Data_OUT Data_IN
HSU1
HSU0
HSU1
HSU4
HSU2 HSU2 HSU6
HSU3
HSU5
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 6-95. HSUSB1 and HSUSB2 Timing Requirements12-bit Master Mode(1) (2) (continued)
NO. PARAMETER OPP100 UNIT
MIN MAX
HSU6 th(clkH-dV) Hold time, input data hsusbx_data[7:0] valid after output clock 0.52 ns
hsusbx_clk rising edge
(1) In hsusbx, x is equal to 1 or 2.
(2) See Section 4.3.4,Processor Clocks.
Table 6-96. HSUSB1 and HSUSB2 Switching Characteristics12-bit Master Mode(1) (3)
NO. PARAMETER OPP100 UNIT
MIN MAX
HSU0 fp(clk) Frequency, output clock hsusbx_clk 60 MHz
tJ(clk) Jitter standard deviation(2), output clock hsusbx_clk 400 ps
HSU1 td(clkH-stpV) Delay time, output clock hsusbx_clk rising edge to output stop signal 12.81 ns
hsusbx_stp valid
td(clkH-stpIV) Delay time, output clock hsusbx_clk rising edge to output stop signal 1.95 ns
hsusbx_stp invalid
HSU2 td(clkH-dV) Delay time, output clock hsusbx_clk rising edge to output data 12.81 ns
hsusbx_data[7:0] valid
td(clkH-dIV) Delay time, output clock hsusbx_clk rising edge to output data 1.95 ns
hsusbx_data[7:0] invalid
tR(d) Rise time, output data hsusbx_data[7:0] 0 ns
tF(d) Fall time, output data hsusbx_data[7:0] 0 ns
(1) In hsusbx, x is equal to 1 or 2.
(2) The jitter probability density can be approximated by a Gaussian function.
(3) See Section 4.3.4,Processor Clocks.
(1) In hsusbx, x is equal to 1 or 2.
Figure 6-52. HSUSB1 and HSUSB212-bit Master Mode
6.6.5 Inter-Integrated Circuit Interface (I2C)
NOTE
For more information, see Multimaster High-Speed I2C Controller chapter of the AM/DM37x
Multimedia Device Technical Reference Manual (literature number SPRUGN4).
The multi-master I2C peripheral provides an interface between two or more devices via an I2C serial bus.
236 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
The I2C controller supports the multi-master mode which allows more than one device capable of
controlling the bus to be connected to it. Each I2C device is recognized by a unique address and can
operates as either transmitter or receiver, according to the function of the device. In addition to being a
transmitter or receiver, a device connected to the I2C bus can also be considered as master or slave when
performing data transfers. This data transfer is carried out via two serial bidirectional wires:
An SDA data line
An SCL clock line
In Figure 6-53 the data transfer is in master or slave configuration with 7-bit addressing format.
The I2C interface is compliant with Philips I2C specification version 2.1. It supports standard mode (up to
100K bits/s), fast mode (up to 400K bits/s) and high-speed mode (up to 3.4Mb/s).
6.6.5.1 I2CStandard and Fast Modes
Table 6-97. I2CStandard and Fast Modes
NO. PARAMETER STANDARD MODE FAST MODE UNIT
MIN MAX MIN MAX
fscl Frequency, clock i2cx_scl(4) 100 400 kHz
I1 tw(sclH) Pulse duration, clock i2cx_scl(4) high 4.0 0.6 μs
I2 tw(sclL) Pulse duration, clock i2cx_scl(4) low 4.7 1.3 μs
I3 tsu(sdaV-sclH) Setup time, data i2cx_sda(4) valid before clock 250 100(1) ns
i2cx_scl(4) active level
I4 th(sclH-sdaV) Hold time, data i2cx_sda(4) valid after clock 0(2) 3.45(3) 0(2) 0.9(3) μs
i2cx_scl(4) active level
I5 tsu(sdaL-sclH) Setup time, clock i2cx_scl(4) high after data 4.7 0.6 μs
i2cx_sda(4) low (for a START(5) condition or a
repeated START condition)
I6 th(sclH-sdaH) Hold time, data i2cx_sda low level after clock 4.0 0.6 μs
i2cx_scl(4) high level (STOP condition)
I7 th(sclH-RSTART) Hold time, data i2cx_sda(4) low level after 4.0 0.6 μs
clock i2cx_scl(4) high level (for a repeated
START condition)
I8 tw(sdaH) Pulse duration, data i2cx_sda(4) high between 4.7(4) 1.3 μs
STOP and START conditions
tR(scl) Rise time, clock i2cx_scl(4) 1000 20 + 300 ns
0.1CB
tF(scl) Fall time, clock i2cx_scl(4) 300 20 + 300 ns
0.1CB
tR(sda) Rise time, data i2cx_sda(4) 1000 20 + 300 ns
0.1CB
tF(sda) Fall time, data i2cx_sda(4) 300 20 + 300 ns
0.1CB
CBCapacitive load for each bus line 400 400 pF
(1) A fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement tsu(SDAV-SCLH) 250 ns must then be
met. This is automatically the case if the device does not stretch the low period of the i2cx_scl(4). If such a device does stretch the low
period of the i2cx_scl(4), it must output the next data bit to the i2cx_sda(4) line tr(SDA) max + tsu(SDAV-SCLH) = 1000 + 250 = 1250 ns
(according to the standard-mode I2C-bus specification) before the i2cx_scl(4) line is released.
(2) The device provides (via the I2C bus) a minimum hold time (= I2C_FCLK period x (PSC+1) x 4) for the i2cx_sda(4) signal (see the fall
and rise times of i2cx_scl(4)) to bridge the undefined region of the falling edge of i2cx_scl(4).
(3) The maximum th(SCLH-SDA) has only to be met if the device does not stretch the low period of the i2cx_scl(4) signal.
(4) In i2cx, x is equal to 1, 2, 3, or 4. Note that I2C4 is master transmitter only.
(5) After this time, the first clock is generated.
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 237
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-084
i2cX_sda
i2cX_scl
START REPEAT
STOP
START START
I1 I2 I3 I4
I5
I6I6 I7
I8
SWPS038-085
i2cX_sda
i2cX_scl
STOPSTART REPEAT
IH1 IH2 IH3 IH4IH6IH5 IH7
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
(1) In i2cX, X is equal to 1, 2, 3, or 4.
Figure 6-53. I2CStandard and Fast Modes
6.6.5.2 I2CHigh-Speed Mode
Table 6-98. I2CHigh-Speed Mode
NO. PARAMETER MIN MAX UNIT
fscl Frequency, clock i2cx_scl(3) 3.4(5) MHz
I1 tw(sclH) Pulse duration, clock i2cx_scl(3) high 60(1) ns
I2 tw(sclL) Pulse duration, clock i2cx_scl(3) low 160(1) ns
I3 tsu(sdaV-sclH) Setup time, data i2cx_sda(3) valid before clock i2cx_scl(3) active level 10 ns
I4 th(sclH-sdaV) Hold time, data i2cx_sda(3) valid after clock i2cx_scl(3) active level 0(4) 70 ns
I5 tsu(sdaL-sclH) Setup time, clock i2cx_scl(3) high after data i2cx_sda(3) low (for a 160 ns
START(2) condition or a repeated START condition)
I6 th(sclH-sdaH) Hold time, data i2cx_sda(3) low level after clock i2cx_scl(3) high level 160 ns
(STOP condition)
I7 th(sclH-RSTART) Hold time, data i2cx_sda(3) low level after clock i2cx_scl(3) high level 160 ns
(for a repeated START condition)
tR(scl) Rise time, clock i2cx_scl(3) 10 40 ns
tR(scl) Rise time, clock i2cx_scl(3) after a repeated START condition and after 10 80 ns
a bit acknowledge
tF(scl) Fall time, clock i2cx_scl(3) 10 40 ns
tR(sda) Rise time, data i2cx_sda(3) 10 80 ns
tF(sda) Fall time, data i2cx_sda(3) 10 80 ns
CBCapacitive load for each bus line 100 pF
(1) HS-mode master devices generate a serial clock signal with a high to low ratio of 1 to 2. tw(sclL) >2 * tw(sclH).
(2) After this time, the first clock is generated.
(3) In i2cx, x is equal to 1, 2, 3, or 4. Note that I2C4 is master transmitter only.
(4) The device provides (via the I2C bus) a minimum hold time (= I2C_FCLK period x 4) for the i2cx_sda(3) signal (see the fall and rise times
of i2cx_scl(3)) to bridge the undefined region of the falling edge of i2cx_scl(3).
(5) The I2C4 clock frequency in high-speed mode is equal to the sys_xtalin input clock frequency divided by 15.
(1) In i2cX, X is equal to 1, 2, 3, or 4.
Figure 6-54. I2CHigh-Speed Mode
238 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 6-99. I2C Correspondence Standard vs Data Manual Timing References
TI STANDARD-I2C
Standard/Fast Modes High-Speed Mode
fscl FSCL FSCLH
I1 tw(sclH) THIGH THIGH
I2 tw(sclL) TLOW TLOW
I3 tsu(sdaV-sclH) TSU;DAT TSU;DAT
I4 th(sclH-sdaV) TSU;DAT TSU;DAT
I5 tsu(sdaL-sclH) TSU;STA TSU;STA
I6 th(sclH-sdaH) THD;STA THD;STA
I7 th(sclH-RSTART) TSU;STO TSU;STO
I8 tw(sdaH) TBUF
6.6.6 HDQ / 1-Wire Interface (HDQ/1-Wire)
NOTE
For more information, see HDQ/1-Wire / HDQ/1-Wire chapter of the AM/DM37x Multimedia
Device Technical Reference Manual (literature number SPRUGN4).
The module is intended to work with both HDQ and 1-Wire protocols. The protocols use a single wire to
communicate between the master and the slave. The protocols employ an asynchronous return to one
mechanism where, after any command, the line is pulled high.
6.6.6.1 HDQ/1-WireHDQ Mode
Table 6-100 and Table 6-102 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 6-55 through Figure 6-59).
Table 6-100. HDQ Interface Read Timing
PARAMETER DESCRIPTION MIN TYP MAX UNIT
tCYCH Read bit window timing 190 250 μs
tHW1 Read one data valid after HDQ low 32(2) 66(2) μs
tHW0 Read zero data hold after HDQ low 70(2) 145(2) μs
tRSPS Response time from HDQ slave device(1) 190 320 μs
(1) Defined by software
(2) If the HDQ slave device drives a logic-low state after tHW0 max, it can be interpreted as a break pulse. For more information see
Table 6-101 and the HDQ/1-Wire chapter of the AM/DM37x Multimedia Device Technical Reference Manual (literature number
SPRUGN4).
Table 6-101. HDQ Sampling Cases(1)
CASES FIRST SAMPLING (at 68 µs) SECOND SAMPLING (at 180 µs)
1 L (logic-low state) L (logic-low state)
2 L (logic-low state) H (logic-high state)
3 H (logic-high state) L (logic-low state)
4 H (logic-high state) H (logic-high state)
(1) The different cases can be interpreted as follows:
Case 1: If a logic-low state is present at the first sampling time and also at the second sampling time, the receive data can be
interpreted as a break pulse.
Case 2: If a logic-low state is present at the first sampling time and a logic-high state is present at the second sampling time, the
receive data on the line is a zero (data).
Case 3: Undefined.
Case 4: If a logic-high state is present at the first sampling time and also at the second sampling time, the receive data on the line is
a one (data).
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 239
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-086
HDQ
tBtBR
HDQ
First sampling time Second sampling time
tHW1
tHW0
tBtBR
SWPS038-122
SWPS038-087
HDQ
tHW1
tHW0
tCYCH
SWPS038-088
HDQ
tDW1
tDW0
tCYCD
SWPS038-089
HDQ
Break
0_(LSB)
1 6 7_(MSB)
tRSPS 1
6
Command_byte_written Data_byte_received
0_(LSB)
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 6-102. HDQ Write Switching Characteristics
PARAMETER DESCRIPTION MIN TYP MAX UNIT
tBBreak timing 190 μs
tBR Break recovery time 40 μs
tCYCD Write bit windows timing 190 μs
tDW1 Write one data valid after HDQ low 0.5 50 μs
tDW0 Write zero data hold after HDQ low 86 145 μs
Figure 6-55. HDQ Break and Break Recovery TimingHDQ Interface Writing to Slave
Figure 6-56. HDQ Break DetectionHDQ Interface Reading Slave
Figure 6-57. HDQ Interface Bit Read Timing (Data)
Figure 6-58. HDQ Interface Bit Write Timing (Command/Address or Data)
Figure 6-59. HDQCommunication
6.6.6.2 HDQ/1-Wire1-Wire Mode
Table 6-103 and Table 6-104 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 6-60 through Figure 6-63).
240 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-090
1-WIRE
tRSTH
tPDL
tPDH
tRTSL
SWPS038-091
1-WIRE
tLOWR
tREL
tSLOT
tRDV
tREC
1-WIRE
tLOW1
tSLOT tREC
SWPS038-123
1-WIRE
tLOW0
tSLOT tREC
SWPS038-124
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 6-103. HDQ/1-Wire Timing Requirements1-Wire Mode
PARAMETER DESCRIPTION MIN TYP MAX UNIT
tPDH Presence pulse delay high 15 60 μs
tPDL Presence pulse delay low 60 240 μs
tRDV Read data valid time tLOWR 15 μs
tREL Read data release time 0 45 μs
Table 6-104. HDQ/1-Wire Switching Characteristics1-Wire Mode
PARAMETER DESCRIPTION MIN TYP MAX UNIT
tRSTL Reset time low 480 960 μs
tRSTH Reset time high 480 μs
tSLOT Bit cycle time 60 120 μs
tLOW1 Write bit-one time 1 15 μs
tLOW0 Write bit-zero time(2) 60 120 μs
tREC Recovery time 1 μs
tLOWR Read bit strobe time(1) 1 15 μs
(1) tLOWR (low pulse sent by the master) must be short as possible to maximize the master sampling window.
(2) tLOW0 must be less than tSLOT.
Figure 6-60. 1-Wire Reset Timing
Figure 6-61. 1-Wire Read Bit Timing (Data)
Figure 6-62. 1-Wire Write Bit-One Timing (Command / Address or Data)
Figure 6-63. 1-Wire Write Bit-Zero Timing (Command/Address or Data)
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 241
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
6.6.7 Universal Asynchronous Receiver Transmitter (UART)
NOTE
For more information, see UART/IrDA/CIR chapter of the AM/DM37x Multimedia Device
Technical Reference Manual (literature number SPRUGN4).
6.6.7.1 UART
Table 6-105. UART Switching Characteristics(2)
SIGNAL NAME MUX MODE DESCRIPTION MIN MAX UNIT
Universal Asynchronous Receiver/Transmitter (UART1)
UART1 (uart1_tx): AA8 0 tR, Rise time 1.5 5.5 ns
tF, Fall time
CL, Output load 2 22 pF
UART1 (uart1_rts): AA9 0 tR, Rise time 1.5 5.5 ns
tF, Fall time
CL, Output load 2 22 pF
UART1 (uart1_tx): E26 2 tR, Rise time 0.6 2.4 ns
tF, Fall time
CL, Output load 2 22 pF
UART1 (uart1_rts): AH22 2 tR, Rise time SC0, SC1 = 00(1) 1 15 ns
tF, Fall time
CL, Output load 4 60 pF
tR, Rise time SC0, SC1 = 00(1) 0.4 5 ns
tF, Fall time
CL, Output load 2 21 pF
tR, Rise time SC0, SC1 = 00(1) 0.6 7 ns
tF, Fall time
CL, Output load 7 33 pF
Universal Asynchronous Receiver/Transmitter (UART2)
UART2 (uart2_tx): AA25 0 tR, Rise time 1.5 5.5 ns
tF, Fall time
CL, Output load 2 22 pF
UART2 (uart2_rts): AB25 0 tR, Rise time 1.5 5.5 ns
tF, Fall time
CL, Output load 2 22 pF
UART2 (uart2_tx): AF5 1 tR, Rise time 1.5 5.5 ns
tF, Fall time
CL, Output load 2 22 pF
UART2 (uart2_rts): AE6 1 tR, Rise time 1.5 5.5 ns
tF, Fall time
CL, Output load 2 22 pF
UART2 (uart2_tx): T27 5 tR, Rise time 1.5 5.5 ns
tF, Fall time
CL, Output load 2 22 pF
UART2 (uart2_rts): U27 5 tR, Rise time 1.5 5.5 ns
tF, Fall time
CL, Output load 2 22 pF
Universal Asynchronous Receiver/Transmitter (UART3)
242 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 6-105. UART Switching Characteristics(2) (continued)
SIGNAL NAME MUX MODE DESCRIPTION MIN MAX UNIT
UART3 (uart3_cts_rctx): H18 0 tR, Rise time SC0, SC1 = 00(1) 1 15 ns
tF, Fall time
CL, Output load 4 60 pF
tR, Rise time SC0, SC1 = 00(1) 0.4 5 ns
tF, Fall time
CL, Output load 2 21 pF
tR, Rise time SC0, SC1 = 00(1) 0.6 7 ns
tF, Fall time
CL, Output load 7 33 pF
UART3 (uart3_rts_sd): H19 0 tR, Rise time SC0, SC1 = 00(1) 1 15 ns
tF, Fall time
CL, Output load 4 60 pF
tR, Rise time SC0, SC1 = 00(1) 0.4 5 ns
tF, Fall time
CL, Output load 2 21 pF
tR, Rise time SC0, SC1 = 00(1) 0.6 7 ns
tF, Fall time
CL, Output load 7 33 pF
UART3 (uart3_tx_irtx): H21 0 tR, Rise time SC0, SC1 = 00(1) 1 15 ns
tF, Fall time
CL, Output load 4 60 pF
tR, Rise time SC0, SC1 = 00(1) 0.4 5 ns
tF, Fall time
CL, Output load 2 21 pF
tR, Rise time SC0, SC1 = 00(1) 0.6 7 ns
tF, Fall time
CL, Output load 7 33 pF
UART3 (uart3_cts_rctx): U26 2 tR, Rise time 1.5 5.5 ns
tF, Fall time
CL, Output load 2 22 pF
UART3 (uart3_rts_sd): U27 2 tR, Rise time 1.5 5.5 ns
tF, Fall time
CL, Output load 2 22 pF
UART3 (uart3_tx_irtx): AH24 2 tR, Rise time SC0, SC1 = 00(1) 1 15 ns
tF, Fall time
CL, Output load 4 60 pF
tR, Rise time SC0, SC1 = 00(1) 0.4 5 ns
tF, Fall time
CL, Output load 2 21 pF
tR, Rise time SC0, SC1 = 00(1) 0.6 7 ns
tF, Fall time
CL, Output load 7 33 pF
UART3 (uart3_tx_irtx): G26 2 tR, Rise time 0.6 2.4 ns
tF, Fall time
CL, Output load 2 22 pF
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 243
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-093
Pulse Duration
90% 90%
50%50%
10% 10%
trtf
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 6-105. UART Switching Characteristics(2) (continued)
SIGNAL NAME MUX MODE DESCRIPTION MIN MAX UNIT
UART3 (uart3_tx_irtx): T27 2 tR, Rise time 1.5 5.5 ns
tF, Fall time
CL, Output load 2 22 pF
Universal Asynchronous Receiver/Transmitter (UART4)
UART4 (uart4_tx): K8 2 tR, Rise time 0.6 2.4 ns
tF, Fall time
CL, Output load 2 22 pF
(1) The mode is configured by bits SC0 and SC1 of the IO cell. For more details, see the AM/DM37x Multimedia Device Technical
Reference Manual (literature number SPRUGN4).
(2) Caution: Up to a rise time or a fall time of 1.2 ns, this can create EMI parasitics.
6.6.7.2 UART3 IrDA
The IrDA module can operate in three different modes:
Slow infrared (SIR) (115.2 Kbits/s)
Medium infrared (MIR) (0.576 Mbits/s and 1.152 Mbits/s)
Fast infrared (FIR) (4 Mbits/s)
Figure 6-64. UART IrDA Pulse Parameters
6.6.7.2.1 UART3 IrDAReceive Mode
Table 6-106. UART3 IrDA Signaling Rate and Pulse DurationReceive Mode
SIGNALING RATE ELECTRICAL PULSE DURATION UNIT
MIN TYP MAX
SIR
2.4 Kbit/s 52.17 78.13 208.33 μs
9.6 Kbit/s 13.10 19.53 52.08 μs
19.2 Kbit/s 6.59 9.77 26.04 μs
38.4 Kbit/s 3.34 4.88 13.02 μs
57.6 Kbit/s 2.25 3.26 8.68 μs
115.2 Kbit/s 1.17 1.63 4.34 μs
MIR
0.576 Mbit/s 300.55 416.67 867.86 ns
244 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 6-106. UART3 IrDA Signaling Rate and Pulse DurationReceive Mode (continued)
SIGNALING RATE ELECTRICAL PULSE DURATION UNIT
MIN TYP MAX
1.152 Mbit/s 192.04 208.33 433.83 ns
FIR
4.0 Mbit/s (Single pulse) 62.70 125.00 170.63 ns
4.0 Mbit/s (Double pulse) 208.53 250.00 291.47 ns
Table 6-107. UART3 IrDA Rise and Fall TimesReceive Mode
PARAMETER MIN TYP MAX UNIT
tRRise time, input data uart3_rx_irrx 200 ns
tFFall time, input data uart3_rx_irrx 200 ns
6.6.7.2.2 UART3 IrDATransmit Mode
Table 6-108. UART3 IrDA Signaling Rate and Pulse DurationTransmit Mode
SIGNALING RATE ELECTRICAL PULSE DURATION UNIT
MIN TYP MAX
SIR
2.4 Kbit/s 78.1 78.1 78.1 μs
9.6 Kbit/s 19.5 19.5 19.5 μs
19.2 Kbit/s 9.75 9.75 9.75 μs
38.4 Kbit/s 4.87 4.87 4.87 μs
57.6 Kbit/s 3.25 3.25 3.25 μs
115.2 Kbit/s 1.62 1.62 1.62 μs
MIR
0.576 Mbit/s 414 416 419 ns
1.152 Mbit/s 206 208 211 ns
FIR
4.0 Mbit/s (Single pulse) 123 125 128 ns
4.0 Mbit/s (Double pulse) 248 250 253 ns
6.6.8 Removable Media Interfaces
6.6.8.1 Multimedia Memory Card and Secure Digital IO Card (MMC)
NOTE
For more information, see MMC/SD/SDIO Card Interface chapter of the AM/DM37x
Multimedia Device Technical Reference Manual (literature number SPRUGN4).
The MMC host controller provides an interface to high-speed and standard MMC, SD memory cards, or
SDIO cards. The application interface is responsible for managing transaction semantics. The MMC/SDIO
host controller deals with MMC/SDIO protocol at transmission level, packing data, adding CRC, start/end
bit, and checking for syntactical correctness.
There are three MMC interfaces on the device:
MMC1:
1.8-V / 3-V support
4-bit in Standard MMC, High-Speed MMC, Standard SD, and High-Speed SD modes
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 245
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
MMC2:
1.8-V support
8-bit without external transceiver
4-bit with external transceiver allowing supporting 3-V peripherals. Transceiver direction control
signals are multiplexed with the upper four data bits.
MMC3:
1.8-V support
8-bit without external transceiver
6.6.8.1.1 MMC1 InterfaceSD Identification Modes
Table 6-110 and Table 6-111 assume testing over the recommended operating conditions and electrical
characteristic conditions below.
Table 6-109. MMC1 Interface Timing ConditionsSD Identification Modes
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
tRInput signal rise time 10 ns
tFInput signal fall time 10 ns
Output Condition
CLOAD Output load capacitance(1) 40 pF
(1) Buffer strength configuration: LB0 = 0.
Table 6-110. MMC1 Interface Timing RequirementsSD Identification Modes(1) (2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
MMC1 Interface (1.8-V IO)
SD3 tsu(CMDV-CLKIH) Setup time, mmc1_cmd valid before mmc1_clk rising 1198.4 1198.4 ns
clock edge
SD4 th(CLKIH-CMDIV) Hold time, mmc1_cmd valid after mmc1_clk rising 1249.2 1249.2 ns
clock edge
MMC1 Interface (3.0-V IO)
SD3 tsu(CMDV-CLKIH) Setup time, mmc1_cmd valid before mmc1_clk rising 1198.4 1198.4 ns
clock edge
SD4 th(CLKIH-CMDIV) Hold time, mmc1_cmd valid after mmc1_clk rising 1249.2 1249.2 ns
clock edge
(1) Corresponding figures showing timing parameters are common with other interface modes. (See SD , HS SD modes).
(2) See Section 4.3.4,Processor Clocks.
Table 6-111. MMC1 Interface Switching CharacteristicsSD Identification Modes(4) (7)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
SD Identification Mode
SD1 tc(clk) Frequency(1), output clock period 0.4 0.4 MHz
SD2 tW(clkH) Typical pulse duration, output clock high X(5)*PO(2) X(5)*PO(2) ns
SD2 tW(clkL) Typical pulse duration, output clock low Y(6)*PO(2) Y(6)*PO(2) ns
tdc(clk) Duty cycle error, output clock 125 125 ns
tJ(clk) Jitter standard deviation(3), output clock 200 200 ps
MMC1 Interface (1.8-V IO)
tR(clk) Rise time, output clock 10 10 ns
tF(clk) Fall time, output clock 10 10 ns
246 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 6-111. MMC1 Interface Switching CharacteristicsSD Identification Modes(4) (7) (continued)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
tR(data) Rise time, output data 10 10 ns
tF(data) Fall time, output data 10 10 ns
SD5 td(CLKOH-CMD) Delay time, mmc1_clk rising clock edge to mmc1_cmd 6.3 2492.7 6.3 2492.7 ns
transition
MMC1 Interface (3.0-V IO)
tR(clk) Rise time, output clock 10 10 ns
tF(clk) Fall time, output clock 10 10 ns
tR(data) Rise time, output data 10 10 ns
tF(data) Fall time, output data 10 10 ns
SD5 td(CLKOH-CMD) Delay time, mmc1_clk rising clock edge to mmc1_cmd 6.3 2492.7 6.3 2492.7 ns
transition
(1) Related with the output clock maximum and minimum frequencies programmable in mmc module.
(2) PO = output clock period in ns
(3) The jitter probability density can be approximated by a Gaussian function.
(4) Corresponding figures showing timing parameters are common with other interface modes. (See SD, HS SD modes).
(5) The X parameter is defined as follows:
CLKD X
1 or Even 0.5
Odd (trunk[CLKD/2]+1)/CLKD
All required details about clock division factor CLKD can be found in the AM/DM37x Multimedia Device Technical Reference Manual
(literature number SPRUGN4).
(6) The Y parameter is defined as follows:
CLKD Y
1 or Even 0.5
Odd (trunk[CLKD/2])/CLKD
All required details about clock division factor CLKD can be found in the AM/DM37x Multimedia Device Technical Reference Manual
(literature number SPRUGN4).
(7) See Section 4.3.4,Processor Clocks.
6.6.8.1.2 MMC1 InterfaceHigh-Speed SD Mode
Table 6-113 and Table 6-114 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 6-65 and Figure 6-66).
Table 6-112. MMC1 Interface Timing ConditionsHigh-Speed SD Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
tRInput signal rise time 3 ns
tFInput signal fall time 3 ns
Output Condition
CLOAD Output load capacitance(1) 40 pF
(1) Buffer strength configuration: SPEEDCTRL = 1.
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 247
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 6-113. MMC1 Interface Timing RequirementsHigh-Speed SD Mode(2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
MMC1 Interface (1.8-V IO)
HSSD3 tsu(CMDV-CLKIH) Setup time, mmc1_cmd valid before mmc1_clk rising 5.6 26 ns
clock edge
HSSD4 th(CLKIH-CMDIV) Hold time, mmc1_cmd valid after mmc1_clk rising 2.3 1.9 ns
clock edge
HSSD7 tsu(DATxV-CLKIH) Setup time, mmc1_dat[n:0](1) valid before mmc1_clk 5.6 26 ns
rising clock edge
HSSD8 th(CLKIH-DATxIV) Hold time, mmc1_dat[n:0](1) valid after mmc1_clk 2.3 1.9 ns
rising clock edge
MMC1 Interface (3.0-V IO)
HSSD3 tsu(CMDV-CLKIH) Setup time, mmc1_cmd valid before mmc1_clk rising 5.6 26 ns
clock edge
HSSD4 th(CLKIH-CMDIV) Hold time, mmc1_cmd valid after mmc1_clk rising 2.3 1.9 ns
clock edge
HSSD7 tsu(DATxV-CLKIH) Setup time, mmc1_dat[n:0](1) valid before mmc1_clk 5.6 26 ns
rising clock edge
HSSD8 th(CLKIH-DATxIV) Hold time, mmc1_dat[n:0](1) valid after mmc1_clk 2.3 1.9 ns
rising clock edge
(1) In mmc1_dat[n:0], n is equal to 3.
(2) See Section 4.3.4,Processor Clocks.
248 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 6-114. MMC1 Interface Switching CharacteristicsHigh-Speed SD Mode(7)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
High-Speed SD Mode
HSSD1 tc(clk) Frequency(1), output clock period 48 24 MHz
HSSD2 tW(clkH) Typical pulse duration, output clock high X(4)*PO(2) X(4)*PO(2) ns
HSSD2 tW(clkL) Typical pulse duration, output clock low Y(5)*PO(2) Y(5)*PO(2) ns
tdc(clk) Duty cycle error, output clock 1041.67 2083.33 ps
tJ(clk) Jitter standard deviation(3), output clock 200 200 ps
MMC1 Interface (1.8-V IO)
tR(clk) Rise time, output clock 3 3 ns
tF(clk) Fall time, output clock 3 3 ns
tR(data) Rise time, output data 3 3 ns
tF(data) Fall time, output data 3 3 ns
HSSD5 td(CLKOH-CMD) Delay time, mmc1_clk rising clock edge to mmc1_cmd 3.72 14.11 4.13 34.53 ns
transition
HSSD6 td(CLKOH-DATx) Delay time, mmc1_clk rising clock edge to 3.72 14.11 4.13 34.53 ns
mmc1_dat[n:0](6) transition
MMC1 Interface (3.0-V IO)
tR(clk) Rise time, output clock 3 3 ns
tF(clk) Fall time, output clock 3 3 ns
tR(data) Rise time, output data 3 3 ns
tF(data) Fall time, output data 3 3 ns
HSSD5 td(CLKOH-CMD) Delay time, mmc1_clk rising clock edge to mmc1_cmd 3.72 14.11 4.13 34.53 ns
transition
HSSD6 td(CLKOH-DATx) Delay time, mmc1_clk rising clock edge to 3.72 14.11 4.13 34.53 ns
mmc1_dat[n:0](6) transition
(1) Related with the output clock maximum and minimum frequencies programmable in MMC module.
(2) PO = output clock period in ns
(3) The jitter probability density can be approximated by a Gaussian function.
(4) The X parameter is defined as follows:
CLKD X
1 or Even 0.5
Odd (trunk[CLKD/2]+1)/CLKD
All required details about clock division factor CLKD can be found in the AM/DM37x Multimedia Device Technical Reference Manual
(literature number SPRUGN4).
(5) The Y parameter is defined as follows:
CLKD Y
1 or Even 0.5
Odd (trunk[CLKD/2])/CLKD
All required details about clock division factor CLKD can be found in the AM/DM37x Multimedia Device Technical Reference Manual
(literature number SPRUGN4).
(6) In mmc1_dat[n:0], n is equal to 3.
(7) See Section 4.3.4,Processor Clocks.
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 249
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-094
mmc1_clk
mmc1_cmd
mmc1_dat[3:0]
HSSD3
HSSD7
HSSD4
HSSD8
HSSD1 HSSD2
SWPS038-095
mmc1_clk
mmc1_cmd
mmc1_dat[3:0]
HSSD5 HSSD5
HSSD6 HSSD6
HSSD1 HSSD2
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Figure 6-65. MMC1 InterfaceHigh-Speed SD ModeData/Command Receive
Figure 6-66. MMC1 InterfaceHigh-Speed SD ModeData/Command Transmit
6.6.8.1.3 MMC1 InterfaceStandard SD Mode
Table 6-116 and Table 6-117 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 6-67 and Figure 6-68).
Table 6-115. MMC1 Interface Timing ConditionsStandard SD Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
tRInput signal rise time 10 ns
tFInput signal fall time 10 ns
Output Condition
CLOAD Output load capacitance(1) 40 pF
(1) Buffer strength configuration: SPEEDCTRL = 1.
Table 6-116. MMC1 Interface Timing RequirementsStandard SD Mode(1) (2) (4)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
MMC1 Interface (1.8-V IO)
SD3 tsu(CMDV-CLKIH) Setup time, mmc1_cmd valid before mmc1_clk rising 3.3 21.9 ns
clock edge
SD4 th(CLKIH-CMDIV) Hold time, mmc1_cmd valid after mmc1_clk rising 18.1 36.7 ns
clock edge
SD7 tsu(DATxV-CLKIH) Setup time, mmc1_dat[n:0](3) valid before mmc1_clk 3.3 21.9 ns
rising clock edge
SD8 th(CLKIH-DATxIV) Hold time, mmc1_dat[n:0](3) valid after mmc1_clk 18.1 36.7 ns
rising clock edge
MMC1 Interface (3.0-V IO)
SD3 tsu(CMDV-CLKIH) Setup time, mmc1_cmd valid before mmc1_clk rising 3.3 21.9 ns
clock edge
250 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 6-116. MMC1 Interface Timing RequirementsStandard SD Mode(1) (2) (4) (continued)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
SD4 th(CLKIH-CMDIV) Hold time, mmc1_cmd valid after mmc1_clk rising 18.1 36.7 ns
clock edge
SD7 tsu(DATxV-CLKIH) Setup time, mmc1_dat[n:0](3) valid before mmc1_clk 3.3 21.9 ns
rising clock edge
SD8 th(CLKIH-DATxIV) Hold time, mmc1_dat[n:0](3) valid after mmc1_clk 18.1 36.7 ns
rising clock edge
(1) Timing parameters are referred to output clock specified in Table 6-117.
(2) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-117.
(3) In mmc1_dat[n:0], n is equal to 3.
(4) See Section 4.3.4,Processor Clocks.
Table 6-117. MMC1 Interface Switching CharacteristicsStandard SD Mode(7)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
Standard SD Mode
SD1 tc(clk) Frequency(1), output clock period 24 12 MHz
SD2 tW(clkH) Typical pulse duration, output clock high X(4)*PO(2) X(4)*PO(2) ns
SD2 tW(clkL) Typical pulse duration, output clock low Y(5)*PO(2) Y(5)*PO(2) ns
tdc(clk) Duty cycle error, output clock 2083.33 4166.67 ps
tJ(clk) Jitter standard deviation(3), output clock 200 200 ps
MMC1 Interface (1.8-V)
tR(clk) Rise time, output clock 10 10 ns
tF(clk) Fall time, output clock 10 10 ns
tR(data) Rise time, output data 10 10 ns
tF(data) Fall time, output data 10 10 ns
SD5 td(CLKOH-CMD) Delay time, mmc1_clk rising clock edge to mmc1_cmd 6.13 35.53 6.3 77.03 ns
transition
SD6 td(CLKOH-DATx) Delay time, mmc1_clk rising clock edge to 6.13 35.53 6.3 77.03 ns
mmc1_dat[n:0](6) transition
MMC1 Interface (3.0-V)
tR(clk) Rise time, output clock 10 10 ns
tF(clk) Fall time, output clock 10 10 ns
tR(data) Rise time, output data 10 10 ns
tF(data) Fall time, output data 10 10 ns
SD5 td(CLKOH-CMD) Delay time, mmc1_clk rising clock edge to mmc1_cmd 6.13 35.53 6.3 77.03 ns
transition
SD6 td(CLKOH-DATx) Delay time, mmc1_clk rising clock edge to 6.13 35.53 6.3 77.03 ns
mmc1_dat[n:0](6) transition
(1) Related with the output clock maximum and minimum frequencies programmable in MMC module.
(2) PO = output clock period in ns
(3) The jitter probability density can be approximated by a Gaussian function.
(4) The X parameter is defined as follows:
CLKD X
1 or Even 0.5
Odd (trunk[CLKD/2]+1)/CLKD
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 251
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-098
mmc1_clk
mmc1_cmd
mmc1_dat[n:0]
SD3
SD7
SD4
SD8
SD1 SD2
SWPS038-099
mmc1_clk
mmc1_cmd
mmc1_dat[n:0]
SD1 SD2
SD5
SD6
SD5
SD6
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
All required details about clock division factor CLKD can be found in the AM/DM37x Multimedia Device Technical Reference Manual
(literature number SPRUGN4).
(5) The Y parameter is defined as follows:
CLKD Y
1 or Even 0.5
Odd (trunk[CLKD/2])/CLKD
All required details about clock division factor CLKD can be found in the AM/DM37x Multimedia Device Technical Reference Manual
(literature number SPRUGN4).
(6) In mmc1_dat[n:0], n is equal to 3.
(7) See Section 4.3.4,Processor Clocks.
Figure 6-67. MMC1 InterfaceStandard SD ModeData/Command Receive
Figure 6-68. MMC1 InterfaceStandard SD ModeData/Command Transmit
6.6.8.1.4 MMC1 InterfaceStandard MMC and MMC Identification Modes
Table 6-119 and Table 6-120 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 6-69 and Figure 6-70).
252 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 6-118. MMC1 Interface Timing ConditionsStandard MMC and MMC Identification Modes
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
tRInput signal rise time 3 ns
tFInput signal fall time 3 ns
Output Conditions
CLOAD Output load capacitance(1) 30 pF
(1) Buffer strength configuration: SPEEDCTRL = 1.
Table 6-119. MMC1 Interface Timing RequirementsStandard MMC and MMC Identification Modes(2) (3) (4)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
MMC1 Interface (1.8-V IO)
MMC3 tsu(CMDV-CLKIH) Setup time, mmc1_cmd valid before mmc1_clk rising 13.6 55.1 ns
clock edge
MMC4 th(CLKIH-CMDIV) Hold time, mmc1_cmd valid after mmc1_clk rising 7.7 7.5 ns
clock edge
MMC7 tsu(DATxV-CLKIH) Setup time, mmc1_dat[n:0](1) valid before mmc1_clk 13.6 55.1 ns
rising clock edge
MMC8 th(CLKIH-DATxIV) Hold time, mmc1_dat[n:0](1) valid after mmc1_clk 7.7 7.5 ns
rising clock edge
MMC1 Interface (3.0-V IO)
MMC3 tsu(CMDV-CLKIH) Setup time, mmc1_cmd valid before mmc1_clk rising 13.6 55.1 ns
clock edge
MMC4 th(CLKIH-CMDIV) Hold time, mmc1_cmd valid after mmc1_clk rising 7.7 7.5 ns
clock edge
MMC7 tsu(DATxV-CLKIH) Setup time, mmc1_dat[n:0](1) valid before mmc1_clk 13.6 55.1 ns
rising clock edge
MMC8 th(CLKIH-DATxIV) Hold time, mmc1_dat[n:0](1) valid after mmc1_clk 7.7 7.5 ns
rising clock edge
(1) In mmc1_dat[n:0], n is equal to 3.
(2) Timing parameters are referred to output clock specified in Table 6-120.
(3) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-120.
(4) See Section 4.3.4,Processor Clocks.
Table 6-120. MMC1 Interface Switching CharacteristicsStandard MMC and MMC Identification Modes(7)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
MMC Identification Mode
MMC1 1/tc(clk) Frequency(1), output clk period 0.4 0.4 MHz
MMC2 tW(clkH) Typical pulse duration, output clk high X(5)*PO(2) X(5)*PO(2) ns
MMC2 tW(clkL) Typical pulse duration, output clk low Y(6)*PO(2) Y(6)*PO(2) ns
tdc(clk) Duty cycle error, output clk 125 125 ns
tJ(clk) Jitter standard deviation(3), output clk 200 200 ps
Standard MMC Identification Mode
MMC1 tc(clk) Frequency(1), output clk period 24 12 MHz
MMC2 tW(clkH) Typical pulse duration, output clk high X(5)*PO(2) X(5)*PO(2) ns
MMC2 tW(clkL) Typical pulse duration, output clk low Y(6)*PO(2) Y(6)*PO(2) ns
tdc(clk) Duty cycle error, output clk 2083.3 4166.7 ps
tJ(clk) Jitter standard deviation(3), output clk 200 200 ps
MMC1 Interface (1.8-V IO)
tR(clk) Rise time, output clk 10 10 ns
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 253
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-102
mmc1_clk
mmc1_cmd
mmc1_dat[3:0]
MMC3
MMC7
MMC4
MMC8
MMC1 MMC2
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 6-120. MMC1 Interface Switching CharacteristicsStandard MMC and MMC Identification Modes(7)
(continued)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
tF(clk) Fall time, output clk 10 10 ns
tR(data) Rise time, output data 10 10 ns
tF(data) Fall time, output data 10 10 ns
MMC5 td(CLKOH-CMD) Delay time, mmc1_clk rising clock edge to mmc1_cmd 4.1 37.6 4.3 79 ns
transition
MMC6 td(CLKOH-DATx) Delay time, mmc1_clk rising clock edge to 4.1 37.6 4.3 79 ns
mmc1_dat[n:0](4) transition
MMC1 Interface (3.0-V IO)
tR(clk) Rise time, output clk 10 10 ns
tF(clk) Fall time, output clk 10 10 ns
tR(data) Rise time, output data 10 10 ns
tF(data) Fall time, output data 10 10 ns
MMC5 td(CLKOH-CMD) Delay time, mmc1_clk rising clock edge to mmc1_cmd 4.1 37.6 4.3 79 ns
transition
MMC6 td(CLKOH-DATx) Delay time, mmc1_clk rising clock edge to 4.1 37.6 4.3 79 ns
mmc1_dat[n:0](4) transition
(1) Related with the output clock maximum and minimum frequencies programmable in MMC module.
(2) PO = output clock period in ns
(3) The jitter probability density can be approximated by a Gaussian function.
(4) In mmc1_dat[n:0], n is equal to 3.
(5) The X parameter is defined as follows:
CLKD X
1 or Even 0.5
Odd (trunk[CLKD/2]+1)/CLKD
All required details about clock division factor CLKD can be found in the AM/DM37x Multimedia Device Technical Reference Manual
(literature number SPRUGN4).
(6) The Y parameter is defined as follows:
CLKD Y
1 or Even 0.5
Odd (trunk[CLKD/2])/CLKD
All required details about clock division factor CLKD can be found in the AM/DM37x Multimedia Device Technical Reference Manual
(literature number SPRUGN4).
(7) See Section 4.3.4,Processor Clocks.
Figure 6-69. MMC1 InterfaceStandard MMC and MMC Identification ModesData/Command Receive
254 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-103
mmc1_clk
mmc1_cmd
mmc1_dat[3:0]
MMC5 MMC5
MMC6 MMC6
MMC1 MMC2
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Figure 6-70. MMC1 InterfaceStandard MMC and MMC Identification ModesData/Command Transmit
6.6.8.1.5 MMC1 InterfaceHigh-Speed MMC Mode
Table 6-122 and Table 6-123 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 6-71 and Figure 6-72).
Table 6-121. MMC1 Interface Timing ConditionsHigh-Speed MMC Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
tRInput signal rise time 3 ns
tFInput signal fall time 3 ns
Output Conditions
CLOAD Output load capacitance(1) 30 pF
(1) The load setting of the IO buffer: SPEEDCTRL = 1.
Table 6-122. MMC1 Interface Timing RequirementsHigh-Speed MMC Mode(2) (3) (4) (5)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
MMC1 Interface (1.8-V IO)
MMC3 tsu(CMDV-CLKIH) Setup time, mmc1_cmd valid before mmc1_clk rising 5.6 26.0 ns
clock edge
MMC4 th(CLKIH-CMDIV) Hold time, mmc1_cmd valid after mmc1_clk rising 2.3 1.9 ns
clock edge
MMC7 tsu(DATxV-CLKIH) Setup time, mmc1_dat[n:0](1) valid before mmc1_clk 5.6 26.0 ns
rising clock edge
MMC8 th(CLKIH-DATxIV) Hold time, mmc1_dat[n:0](1) valid after mmc1_clk 2.3 1.9 ns
rising clock edge
MMC1 Interface (3.0-V IO)
MMC3 tsu(CMDV-CLKIH) Setup time, mmc1_cmd valid before mmc1_clk rising 5.6 26.0 ns
clock edge
MMC4 th(CLKIH-CMDIV) Hold time, mmc1_cmd valid after mmc1_clk rising 2.3 1.9 ns
clock edge
MMC7 tsu(DATxV-CLKIH) Setup time, mmc1_dat[n:0](1) valid before mmc1_clk 5.6 26.0 ns
rising clock edge
MMC8 th(CLKIH-DATxIV) Hold time, mmc1_dat[n:0](1) valid after mmc1_clk 2.3 1.9 ns
rising clock edge
(1) In mmc1_dat[n:0], n is equal to 3.
(2) Timing parameters are referred to output clock specified in Table 6-123.
(3) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-123.
(4) Corresponding figures showing timing parameters are common with the Standard MMC mode figures.
(5) See Section 4.3.4,Processor Clocks.
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 255
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 6-123. MMC1 Interface Switching CharacteristicsHigh-Speed MMC Mode(4) (8)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
MMC1 tc(clk) Frequency(1), output clk period 48 24 MHz
MMC2 tW(clkH) Typical pulse duration, output clk high X(6)*PO(2) X(6)*PO(2) ns
MMC2 tW(clkL) Typical pulse duration, output clk low Y(7)*PO(2) Y(7)*PO(2) ns
tdc(clk) Duty cycle error, output clk 1041.7 2083.3 ps
tJ(clk) Jitter standard deviation(3), output clk 200 200 ps
MMC1 Interface (1.8-V IO)
tR(clk) Rise time, output clk 3 3 ns
tF(clk) Fall time, output clk 3 3 ns
tR(data) Rise time, output data 3 3 ns
tF(data) Fall time, output data 3 3 ns
MMC5 td(CLKOH-CMD) Delay time, mmc1_clk rising clock edge to mmc1_cmd 3.7 14.1 4.1 34.5 ns
transition
MMC6 td(CLKOH-DATx) Delay time, mmc1_clk rising clock edge to 3.7 14.1 4.1 34.5 ns
mmc1_dat[n:0](5) transition
MMC1 Interface (3.0-V IO)
tR(clk) Rise time, output clk 3 3 ns
tF(clk) Fall time, output clk 3 3 ns
tR(data) Rise time, output data 3 3 ns
tF(clk) Fall time, output data 3 3 ns
MMC5 td(CLKOH-CMD) Delay time, mmc1_clk rising clock edge to mmc1_cmd 3.7 14.1 4.1 34.5 ns
transition
MMC6 td(CLKOH-DATx) Delay time, mmc1_clk rising clock edge to 3.7 14.1 4.1 34.5 ns
mmc1_dat[n:0](5) transition
(1) Related with the output clock maximum and minimum frequencies programmable in MMC module.
(2) PO = output clock period in ns
(3) The jitter probability density can be approximated by a Gaussian function.
(4) Corresponding figures showing timing parameters are common with the Standard MMC mode figures.
(5) In MMC1_dat[n:0], n is equal to 3.
(6) The X parameter is defined as follows:
CLKD X
1 or Even 0.5
Odd (trunk[CLKD/2]+1)/CLKD
All required details about clock division factor CLKD can be found in the AM/DM37x Multimedia Device Technical Reference Manual
(literature number SPRUGN4).
(7) The Y parameter is defined as follows:
CLKD Y
1 or Even 0.5
Odd (trunk[CLKD/2])/CLKD
All required details about clock division factor CLKD can be found in the AM/DM37x Multimedia Device Technical Reference Manual
(literature number SPRUGN4).
(8) See Section 4.3.4,Processor Clocks.
256 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-100
mmc1_clk
mmc1_cmd
mmc1_dat[3:0]
MMC3
MMC7
MMC4
MMC8
MMC1 MMC2
SWPS038-101
mmc1_clk
mmc1_cmd
mmc1_dat[3:0]
MMC5 MMC5
MMC6 MMC6
MMC1 MMC2
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Figure 6-71. MMC1 InterfaceHigh-Speed MMC ModeData/Command Receive
Figure 6-72. MMC1 InterfaceHigh-Speed MMC ModeData/Command Transmit
6.6.8.1.6 MMC2 and MMC3 InterfacesSDIO Identification Mode
Table 6-125 and Table 6-126 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 6-73 and Figure 6-74).
Table 6-124. MMC2 and MMC3 Interfaces Timing ConditionsSDIO Identification Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
tRInput signal rise time 10 ns
tFInput signal fall time 10 ns
Output Condition
CLOAD Output load capacitance(1) 5 pF
(1) Buffer strength configuration: LB0 = 0
Table 6-125. MMC2 and MMC3 Interfaces Timing RequirementsSDIO Identification Mode(1)(2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
MMC2 and MMC3 Interface (1.8-V IO)
SD3 tsu(CMDV-CLKIH) Setup time, mmcx_cmd valid before 1198.4 1198.4 ns
mmcx_clk rising clock edge
SD4 th(CLKIH-CMDIV) Hold time, mmcx_cmd valid after mmcx_clk 1249.2 1249.2 ns
rising clock edge
(1) See Section 4.3.4,Processor Clocks.
(2) In mmcx, x is equal to 2 or 3.
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 257
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Table 6-126. MMC2 and MMC3 Interfaces Switching CharacteristicsSDIO Identification Mode(4)(7)(7)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
Standard SDIO Mode
SD1 tc(clk) Frequency(1), output clock period 0.4 0.4 MHz
SD2 tW(clkH) Typical pulse duration, output clock high X(5) * X(5) * ns
PO(2) PO(2)
SD2 tW(clkL) Typical pulse duration, output clock low Y(6) * Y(6) * ns
PO(2) PO(2)
tdc(clk) Duty cycle error, output clock 125 125 ns
tJ(clk) Jitter standard deviation(3), output clock 200 200 ps
tR(clk) Rise time, output clock 10 10 ns
tF(clk) Fall time, output clock 10 10 ns
tR(data) Rise time, output data 10 10 ns
tF(data) Fall time, output data 10 10 ns
SD5 td(CLKOH-CMD) Delay time, mmcx_clk rising clock edge to 6.3 2492.7 6.3 77.03 ns
mmcx_cmd transition
(1) Related to the output mmcx_clk maximum and minimum frequency.
(2) P = output mmcx_clk period in ns
(3) The jitter probability density can be approximated by a Gaussian function.
(4) Corresponding figures showing timing parameters are common with other interface modes (see SDIO, HS SDIO modes).
(5) The X parameter is defined as follows:
CLKD X
1 or Even 0.5
Odd (trunk[CLKD/2]+1)/CLKD
All required details about clock division factor CLKD can be found in the AM/DM37x Multimedia Device Technical Reference Manual
(literature number SPRUGN4).
(6) The Y parameter is defined as follows:
CLKD Y
1 or Even 0.5
Odd (trunk[CLKD/2])/CLKD
All required details about clock division factor CLKD can be found in the AM/DM37x Multimedia Device Technical Reference Manual
(literature number SPRUGN4).
(7) In mmcx, x is equal to 2 or 3.
6.6.8.1.7 MMC2 and MMC3 InterfacesHigh-Speed SDIO Mode
Table 6-128 and Table 6-129 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 6-73 and Figure 6-74).
Table 6-127. MMC2 and MMC3 Interfaces Timing ConditionsHigh-Speed SDIO Mode
TIMING CONDITION PARAMETER VALUE UNIT
MIN MAX
Input Conditions
tRInput signal rise time 0.18 5.69 ns
tFInput signal fall time 0.19 5.70 ns
Output Condition
CLOAD Output load capacitance(1) 5 pF
258 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-096
mmcx_clk
mmcx_cmd
mmcx_dat[n:0]
HSSD4
HSSD8
HSSD3
HSSD7
HSSD1
HSSD2HSSD2
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
(1) Buffer strength configuration for MMC2 and MMC3: LB0 = 0.
Table 6-128. MMC2 and MMC3 Interfaces Timing RequirementsHigh-Speed SDIO Mode(2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
HSSD3 tsu(dV-clkH) Setup time, mmcx_cmd valid before mmcx_clk rising 3.4 23.8 ns
clock edge
HSSD4 th(clkH-dV) Hold time, mmcx_cmd valid after mmcx_clk rising 1.7 1.3 ns
clock edge
HSSD7 tsu(dV-clkH) Setup time, mmcx_dat[n:0](1) valid before mmcx_clk 3.4 23.8 ns
rising clock edge
HSSD8 th(clkH-dV) Hold time, mmcx_dat[n:0](1) valid after mmcx_clk rising 1.7 1.3 ns
clock edge
(1) In mmcx_dat[n:0], n is equal to 3 for mmc2 and 7 for mmc3.
(2) See Section 4.3.4,Processor Clocks.
Table 6-129. MMC2 and MMC3 Interfaces Switching CharacteristicsHigh-Speed SDIO Mode(2) (5)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
HSSD1 tc(clk) Frequency(1), output mmcx_clk period 48 24 MHz
HSSD2 tW(clkH) Typical pulse duration, output mmcx_clk high 0.5*P(3) 0.5*P(3) ns
HSSD2 tW(clkL) Typical pulse duration, output mmcx_clk low 0.5*P(3) 0.5*P(3) ns
tdc(clk) Duty cycle error, output mmcx_clk 1042 1042 2083 2083 ps
tJ(clk) Jitter standard deviation(4), output mmcx_clk 65 65 65 65 ps
HSSD5 td(clkL-doV) Delay time, mmcx_clk rising clock edge to mmcx_cmd 2.6 13.8 3 34.3 ns
transition
HSSD6 td(clkL-doV) Delay time, mmcx_clk rising clock edge to 2.6 13.8 3 34.3 ns
mmcx_dat[n:0](2) transition
(1) Related with the output mmcx_clk maximum and minimum frequency.
(2) In mmcx, x = 2 or 3. In mmcx_dat[n:0], n is equal to 3 for mmc2 and 7 for mmc3.
(3) P = output mmcx_clk period in ns.
(4) The jitter probability density can be approximated by a Gaussian function.
(5) See Section 4.3.4,Processor Clocks.
Figure 6-73. MMC2 and MMC3 InterfacesHigh-Speed SDIO ModeData/Command Receive(1)
(1) In mmcx, x = 2 or 3. In mmcx_dat[n:0], n is equal to 3 for mmc2 and 7 for mmc3.
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 259
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-097
mmcx_clk
mmcx_cmd
mmcx_dat[n:0]
HSSD5 HSSD5
HSSD6 HSSD6
HSSD1
HSSD2HSSD2
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Figure 6-74. MMC2 and MMC3 InterfacesHigh-Speed SDIO ModeData/Command Transmit(1)
(1) In mmcx, x = 2 or 3. In mmcx_dat[n:0], n is equal to 3 for mmc2 and 7 for mmc3.
6.6.8.1.8 MMC2 and MMC3 InterfacesStandard SDIO Mode
Table 6-131 and Table 6-132 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-89 and Figure 5-90).
Table 6-130. MMC2 and MMC3 Interfaces Timing ConditionsStandard SDIO Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
tRInput signal rise time 10 ns
tFInput signal fall time 10 ns
Output Condition
CLOAD Output load capacitance(1) 5 pF
(1) Buffer strength configuration: SPEEDCTRL = 1
Table 6-131. MMC2 and MMC3 Interfaces Timing RequirementsStandard SDIO Mode(2)(3)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
MMC2 and MMC3 Interface (1.8-V IO)
SD3 tsu(CMDV-CLKIH) Setup time, mmcx_cmd valid before 3.3 21.9 ns
mmcx_clk rising clock edge
SD4 th(CLKIH-CMDIV) Hold time, mmcx_cmd valid after mmcx_clk 18.1 36.7 ns
rising clock edge
SD7 tsu(DATxV-CLKIH) Setup time, mmcx_dat[n:0](1) valid before 3.3 21.9 ns
mmcx_clk rising clock edge
SD8 th(CLKIH-DATxIV) Hold time, mmcx_dat[n:0](1) valid after 18.1 36.7 ns
mmcx_clk rising clock edge
(1) In mmcx_dat[n:0], n is equal to 3 for MMC2 and 7 for MMC3.
(2) See Section 4.3.4,Processor Clocks.
(3) In mmcx, x is equal to 2 or 3.
Table 6-132. MMC2 and MMC3 Interfaces Switching CharacteristicsStandard SDIO Mode(6)(7)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
Standard SDIO Mode
SD1 tc(clk) Frequency(1), output clock period 24 12 MHz
SD2 tW(clkH) Typical pulse duration, output clock high X(4) * X(4) * ns
PO(2) PO(2)
SD2 tW(clkL) Typical pulse duration, output clock low Y(5) * Y(5) * ns
PO(2) PO(2)
tdc(clk) Duty cycle error, output clock 2083.33 4166.67 ps
260 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-098
mmc1_clk
mmc1_cmd
mmc1_dat[n:0]
SD3
SD7
SD4
SD8
SD1 SD2
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 6-132. MMC2 and MMC3 Interfaces Switching CharacteristicsStandard SDIO Mode(6)(7) (continued)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
tJ(clk) Jitter standard deviation(3), output clock 200 200 ps
tR(clk) Rise time, output clock 10 10 ns
tF(clk) Fall time, output clock 10 10 ns
tR(data) Rise time, output data 10 10 ns
tF(data) Fall time, output data 10 10 ns
SD5 td(CLKOH-CMD) Delay time, mmcx_clk rising clock edge to 6.13 35.53 6.3 77.03 ns
mmcx_cmd transition
SD6 td(CLKOH-DATx) Delay time, mmcx_clk rising clock edge to 6.13 35.53 6.3 77.03 ns
mmcx_dat[n:0](6) transition
(1) Related to the output mmcx_clk maximum and minimum frequency.
(2) P = output mmcx_clk period in ns
(3) The jitter probability density can be approximated by a Gaussian function.
(4) The X parameter is defined as follows:
CLKD X
1 or Even 0.5
Odd (trunk[CLKD/2]+1)/CLKD
All required details about clock division factor CLKD can be found in the AM/DM37x Multimedia Device Technical Reference Manual
(literature number SPRUGN4).
(5) The Y parameter is defined as follows:
CLKD Y
1 or Even 0.5
Odd (trunk[CLKD/2])/CLKD
All required details about clock division factor CLKD can be found in the AM/DM37x Multimedia Device Technical Reference Manual
(literature number SPRUGN4).
(6) In mmcx, x is equal to 2 or 3. In mmcx_dat[n :0] is equal to 3 for mmc2 and 7 for mmc3.
(7) See Section 4.3.4,Processor Clocks.
Figure 6-75. MMC2 and MMC3 InterfacesStandard SDIO ModeData/Command Receive(1)
(1) In mmcx, x is equal to 2 or 3. In mmcx_dat[n:0] is equal to 3 for MMC2 and 7 for MMC3.
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 261
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-099
mmc1_clk
mmc1_cmd
mmc1_dat[n:0]
SD1 SD2
SD5
SD6
SD5
SD6
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
Figure 6-76. MMC2 and MMC3 InterfacesStandard SDIO ModeData/Command Transmit(1)
(1) In mmcx, x is equal to 2 or 3. In mmcx_dat[n:0] is equal to 3 for MMC2 and 7 for MMC3.
6.6.8.1.9 MMC2 and MMC3 InterfacesEmbedded Media Interface (eMMC)High-Speed JC64 Mode
Table 6-134 and Table 6-135 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 6-77 through Figure 6-78).
Table 6-133. MMC2 and MMC3 Interfaces Timing ConditionsHigh-Speed JC64 Mode
TIMING CONDITION PARAMETER VALUE UNIT
MIN MAX
Input Conditions
tRInput signal rise time 0.38 3.82 ns
tFInput signal fall time 0.39 3.68 ns
Output Condition
CLOAD Output load capacitance(1) 14 pF
(1) Buffer strength configuration for MMC3: LB0 = 1.
Table 6-134. MMC2 and MMC3 Interfaces Timing RequirementsHigh-Speed JC64 Mode(1)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
MMC3 tsu(cmdV-clkH) Setup time, input command mmcx_cmd valid before 5.1 25.5 ns
output clock mmcx_clk rising edge
MMC4 th(clkH-cmdIV) Hold time, input command mmcx_cmd valid after 1.3 0.9 ns
output clock mmcx_clk rising edge
MMC7 tsu(dV-clkH) Setup time, input data mmcx_dat[n:0] valid before 5.1 25.5 ns
output clock mmcx_clk rising edge
MMC8 th(clkH-dIV) Hold time, input data mmcx_dat[n:0] valid after output 1.3 0.9 ns
clock mmcx_clk rising edge
(1) In mmx_dat[n:0], x is equal to 2 or 3 and n is equal to 7.
(2) In mmx_cmd, x is equal to 2 or 3.
(3) In mmx_clk, x is equal to 2 or 3.
Table 6-135. MMC2 and MMC3 Interfaces Switching CharacteristicsHigh-Speed JC64 Mode(5) (6)(7)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
MMC1 1/tc(clk) Frequency(1), output mmcx_clk period 48 24 MHz
MMC2 tW(clkH) Typical pulse duration, output mmcx_clk high 0.5*P(2) 0.5*P(2) ns
MMC2 tW(clkL) Typical pulse duration, output mmcx_clk low 0.5*P(2) 0.5*P(2) ns
tdc(clk) Duty cycle error, output mmcx_clk 1042 1042 2083 2083 ps
tJ(clk) Jitter standard deviation(3), output mmcx_clk 65 65 65 65 ps
tR(clk) Rising time, output mmcx_clk 2263 2263 ps
tF(clk) Falling time, output mmcx_clk 2136 2136 ps
262 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-104
mmcx_clk
mmcx_cmd
mmcx_dat[n:0]
MMC5 MMC5
MMC6 MMC6
MMC1
MMC2MMC2
SWPS038-105
mmcx_clk
mmcx_cmd
mmcx_dat[n:0]
MMC4
MMC8
MMC3
MMC7
MMC1
MMC2MMC2
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 6-135. MMC2 and MMC3 Interfaces Switching CharacteristicsHigh-Speed JC64 Mode(5)
(6)(7) (continued)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
MMC5 td(clkL-doV) Delay time, mmcx_clk rising clock edge to mmcx_cmd 3.6 16.8 4 37.2 ns
transition
tR(do) Rising time, output mmcx_cmd 2263 2263 ps
tF(do) Falling time, output mmcx_cmd 2136 2136 ps
MMC6 td(clkL-doV) Delay time, mmcx_clk rising clock edge to mmcx_daty 3.6 16.8 4 37.2 ns
transition
tR(do) Rising time, output mmcx_dat[n:0](4) 2263 2263 ps
tF(do) Falling time, output mmcx_dat[n:0](4) 2136 2136 ps
(1) Related with the output clock maximum and minimum frequencies programmable in MMC module.
(2) PO = output clock period in ns
(3) The jitter probability density can be approximated by a Gaussian function.
(4) In mmx_dat[n:0], x is equal to 2 or 3 and n is equal to 7.
(5) See Section 4.3.4,Processor Clocks.
(6) In mmx_cmd, x is equal to 2 or 3.
(7) In mmx_clk, x is equal to 2 or 3.
Figure 6-77. MMC2 and MMC3 InterfacesHigh-Speed JC64 Transmiter Mode(1)(2)(3)
(1) In mmx_dat[n:0], x is equal to 2 or 3 and n is equal to 7.
(2) In mmx_cmd, x is equal to 2 or 3.
(3) In mmx_clk, x is equal to 2 or 3.
Figure 6-78. MMC2 and MMC3 InterfacesHigh-Speed JC64 Receiver Mode(1)(2)(3)
(1) In mmx_dat[n:0], x is equal to 2 or 3 and n is equal to 7.
(2) In mmx_cmd, x is equal to 2 or 3.
(3) In mmx_clk, x is equal to 2 or 3.
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 263
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
etk_clk
etk_ctl
etk_d[15:0]
TPIU1
TPIU2 TPIU3
TPIU4
TPIU5 TPIU5
TPIU4
SWPS038-106
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
6.6.9 Test Interfaces
6.6.9.1 Embedded Trace Macro Interface (ETM)
Table 6-137 assumes testing over the recommended operating conditions and electrical characteristic
conditions below (see Figure 6-79).
Table 6-136. ETM Timing ConditionsTransmit Mode
TIMING CONDITION PARAMETER VALUE UNIT
MIN MAX
Output Condition
CLOAD Output load capacitance(1) 10 pF
(1) Buffer strength configuration: LB0 = 1.
Table 6-137. ETM Switching CharacteristicsTransmit Mode(4)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
TPIU1 1 / tc(clk) Frequency(3), output clock etk_clk 166 166 MHz
TPIU2 tw(clkH) Pulse duration, output clock etk_clk high 0.5P(1) 0.5P(1) ns
TPIU3 tw(clkL) Pulse duration, output clock etk_clk low 0.5P(1) 0.5P(1) ns
tdc(clk) Duty cycle error, output clock etk_clk 301 301 301 301 ps
tJ(clk) Jitter standard deviation(2), output clock etk_clk 65 65 ps
tR(clk) Rise time, output clock etk_clk 1.2 1.2 ns
tF(clk) Fall time, output clock etk_clk 1.2 1.2 ns
TPIU4 td(clk-ctl) Delay time, output clock etk_clk low/high to output 0.839 0.839 ns
control etk_ctl transition
TPIU5 td(clkH-d) Delay time, output clock etk_clk low/high to output 0.839 0.839 ns
data etk_d[15:0] transition
tR(d/ctl) Rise time, output data etk_d[15:0] and output control 1.2 1.2 ns
etk_ctl
tF(d/ctl) Fall time, output data etk_d[15:0] and output control 1.2 1.2 ns
etk_ctl
(1) P = etk_clk period in ns
(2) The jitter probability density can be approximated by a Gaussian function.
(3) Related with the etm_clk maximum frequency.
(4) See Section 4.3.4,Processor Clocks.
Figure 6-79. ETMTransmit Mode
264 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-107
sdti_clk
sdti_txd[3:0] Header Header Ad[7:4] Ad[3:0] Da[15:12] Da[11:8] Da[7:4] Da[3:0]
SD1 SD2
SD3 SD3
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
6.6.9.2 System Debug Trace Interface (SDTI)
The System Debug Trace Interface (SDTI) module provides real-time software tracing functionality to the
device. The trace interface has four trace data pins and a trace clock pin.
This interface is a dual-edge interface:
The data are available on rising and falling edge of sdti_clk.
But can be also configured in single-edge mode where data are available on the falling edge of
sdti_clk.
Serial interface operates in clock stop regime: serial clock is not free-running; when there is no trace data,
there is no trace clock.
6.6.9.2.1 SDTIDual-Edge Mode
Table 6-139 assumes testing over the recommended operating conditions and electrical characteristic
conditions below (see Figure 6-80).
Table 6-138. SDTI Timing ConditionsDual-Edge Mode
TIMING CONDITION PARAMETER VALUE UNIT
Output Condition
CLOAD Output load capacitance(1) 25 pF
(1) Buffer strength configuration: LB0 = 1.
Table 6-139. SDTI Switching CharacteristicsDual-Edge Mode(2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
SD1 1 / tc(clk) Frequency, output clock sdti_clk 34.5 34.5 MHz
SD2 tw(clk) Pulse duration, output clock sdti_clk high or low 0.5P(1) 0.5P(1) + 0.5P(1) 0.5P(1) + ns
1.2 1.2 1.2 1.2
SD3 td(clk-txd) Delay time, output clock sdti_clk Multiplexing mode on 2.3 10.9 2.3 10.9 ns
transition to output data etk pins
sdti_txd[3:0] transition Multiplexing mode on 2.3 13.9 2.3 13.9
jtag_emu pins
(1) P = sdti_clk clock period in ns
(2) See Section 4.3.4,Processor Clocks.
Figure 6-80. SDTIDual-Edge Mode
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 265
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
SWPS038-108
sdti_clk
sdti_txd[3:0] Header Header Ad[7:4] Ad[3:0] Da[15:12] Da[11:8] Da[7:4] Da[3:0]
SD1 SD2
SD3 SD3
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
6.6.9.2.2 SDTISingle-Edge Mode
Table 6-141 assumes testing over the recommended operating conditions and electrical characteristic
conditions below (see Figure 6-81).
Table 6-140. SDTI Timing ConditionsSingle-Edge Mode
TIMING CONDITION PARAMETER VALUE UNIT
Output Condition
CLOAD Output load capacitance(1) 25 pF
(1) Buffer strength configuration: LB0 = 1.
Table 6-141. SDTI Switching CharacteristicsSingle-Edge Mode(2)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
SD1 1 / tc(clk) Frequency, output clock sdti_clk 34.5 34.5 MHz
SD2 tw(clk) Pulse duration, output clock sdti_clk high or low 0.5P(1) 0.5P(1) + 0.5P(1) 0.5P(1) + ns
1.2 1.2 1.2 1.2
SD3 td(clk-txd) Delay time, output clock sdti_clk Multiplexing mode on 2.3 26.5 2.3 26.5 ns
transition to output data etk pins
sdti_txd[3:0] transition Multiplexing mode on 2.3 33.2 2.3 33.2
jtag_emu pins
(1) P = sdti_clk clock period in ns
(2) See Section 4.3.4,Processor Clocks.
Figure 6-81. SDTISingle-Edge Mode
6.6.9.3 JTAG Interface (JTAG)
The JTAG TAP controller handles standard IEEE JTAG interfaces. The following section defines the
timing requirements for several tools used to test the device as:
Free-running clock tool, like XDS560 and XDS510 tools
Adaptive clock tool, like RealView®ICE tool and LauterbachTM tool
6.6.9.3.1 JTAGFree-Running Clock Mode
Table 6-143 and Table 6-144 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 6-82).
Table 6-142. JTAG Timing ConditionsFree-Running Clock Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
tRInput signal rise time 5 ns
tFInput signal fall time 5 ns
Output Condition
CLOAD Output load capacitance 30 pF
266 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Table 6-143. JTAG Timing RequirementsFree-Running Clock Mode(5) (6)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
JT4 1 / tc(tck) Frequency(1), input clock jtag_tck 50 50 MHz
JT5 tw(tckL) Pulse duration, input clock jtag_tck low 0.5P(2) 0.5P(2) ns
JT6 tw(tckH) Pulse duration, input clock jtag_tck high 0.5P(2) 0.5P(2) ns
tdc(tck) Duty cycle error, input clock jtag_tck 1250 1250 1667 1667 ps
tJ(tck) Cycle jitter(3), input clock jtag_tck 1250 1250 1667 1667 ps
JT7 tsu(tdiV-rtckH) Setup time, input data jtag_tdi valid before output 1.6 1.6 ns
clock jtag_rtck high
JT8 th(tdiV-rtckH) Hold time, input data jtag_tdi valid after output clock 0.7 1.0 ns
jtag_rtck high
JT9 tsu(tmsV-rtckH) Setup time, input mode select jtag_tms_tmsc valid 1.6 1.6 ns
before output clock jtag_rtck high
JT10 th(tmsV-rtckH) Hold time, input mode select jtag_tms_tmsc valid after 0.7 1.0 ns
output clock jtag_rtck high
JT12 tsu(emuxV-rtckH) Setup time, input emulation jtag_emux(4) valid before 14.4 19.6 ns
output clock jtag_rtck high
JT13 th(emuxV-rtckH) Hold time, input emulation jtag_emux(4) valid after 2.0 2.7 ns
output clock jtag_rtck high
(1) Related with the input maximum frequency supported by the JTAG module.
(2) P = input clock jtag _tck period in ns
(3) Maximum cycle jitter supported by input clock jtag _tck.
(4) In jtag_emux, x is equal to 0 or 1.
(5) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.
(6) See Section 4.3.4,Processor Clocks.
Table 6-144. JTAG Switching CharacteristicsFree-Running Clock Mode(5)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
JT1 1 / tc(rtck) Frequency(1), output clock jtag_rtck 50 50 MHz
JT2 tw(rtckL) Pulse duration, output clock jtag_rtck low 0.5P(2) 0.5P(2) ns
JT3 tw(rtckH) Pulse duration, output clock jtag_rtck high 0.5P(2) 0.5P(2) ns
tdc(rtck) Duty cycle error, output clock jtag_rtck 1250 1250 1667 1667 ps
tJ(rtck) Jitter standard deviation(3), output clock jtag_rtck 33.3 33.3 ps
tR(rtck) Rise time, output clock jtag_rtck 0 0 ns
tF(rtck) Fall time, output clock jtag_rtck 0 0 ns
JT11 td(rtckL-tdoV) Delay time, output clock jtag_rtck low to output data 5.8 5.8 7.9 7.9 ns
jtag_tdo valid
tR(tdo) Rise time, output data jtag_tdo 0 0 ns
tF(tdo) Fall time, output data jtag_tdo 0 0 ns
JT14 td(rtckH-emuxV) Delay time, output clock jtag_rtck high to output 2.7 15.1 2.7 20.4 ns
emulation ,jtag_emux(4) valid
(1) Related with the jtag_rtck maximum frequency.
(2) P = output clock jtag _rtck period in ns
(3) The jitter probability density can be approximated by a Gaussian function.
(4) In jtag_emux, x is equal to 0 or 1.
(5) See Section 4.3.4,Processor Clocks.
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 267
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
jtag_tck
jtag_rtck
jtag_tdi
jtag_tms_tmsc
jtag_emux(IN)
jtag_tdo
jtag_emux(OUT)
JT7
JT11
JT1
JT2 JT3
JT8
JT10JT9
JT4
JT5 JT6
JT12 JT13
JT14
SWPS038-109
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
(1) In jtag_emux, x is equal to 0 or 1.
Figure 6-82. JTAGFree-Running Clock Mode
6.6.9.3.2 JTAGAdaptative Clock Mode
Table 6-146 and Table 6-147 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 6-83).
Table 6-145. JTAG Timing ConditionsAdaptative Clock Mode
TIMING CONDITION PARAMETER VALUE UNIT
Input Conditions
tRInput signal rise time 5 ns
tFInput signal fall time 5 ns
Output Condition
CLOAD Output load capacitance 30 pF
Table 6-146. JTAG Timing RequirementsAdaptative Clock Mode(4) (5)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
JA4 1 / tc(tck) Frequency(1), input clock jtag_tck 50 50 MHz
JA5 tw(tckL) Pulse duration, input clock jtag_tck low 0.5P(2) 0.5P(2) ns
JA6 tw(tckH) Pulse duration, input clock jtag_tck high 0.5P(2) 0.5P(2) ns
tdc(lclk) Duty cycle error, input clock jtag_tck 2500 2500 2500 2500 ps
tJ(lclk) Cycle jitter(3), input clock jtag_tck 1500 1500 1500 1500 ps
JA7 tsu(tdiV-tckH) Setup time, input data jtag_tdi valid before input clock 13.8 13.8 ns
jtag_tck high
JA8 th(tdiV-tckH) Hold time, input data jtag_tdi valid after input clock 13.8 13.8 ns
jtag_tck high
JA9 tsu(tmsV-tckH) Setup time, input mode select jtag_tms_tmsc valid 13.8 13.8 ns
before input clock jtag_tck high
JA10 th(tmsV-tckH) Hold time, input mode select jtag_tms_tmsc valid after 13.8 13.8 ns
input clock jtag_tck high
268 Timing Requirements and Switching Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
jtag_tck
jtag_tdi
jtag_tms
jtag_rtck
jtag_tdo
JA1
JA2 JA3
JA4
JA5 JA6
JA7 JA8
JA10JA9
JA11
SWPS038-110
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
(1) Related with the input maximum frequency supported by the JTAG module
(2) P = input clock jtag _tck period in ns
(3) Maximum cycle jitter supported by input clock jtag _tck.
(4) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.
(5) See Section 4.3.4,Processor Clocks.
Table 6-147. JTAG Switching CharacteristicsAdaptative Clock Mode(4)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
JA1 1 / tc(rtck) Frequency(1), output clock jtag_rtck 50 50 MHz
JA2 tw(rtckL) Pulse duration, output clock jtag_rtck low 0.5P(2) 0.5P(2) ns
JA3 tw(rtckH) Pulse duration, output clock jtag_rtck high 0.5P(2) 0.5P(2) ns
tdc(rtck) Duty cycle error, output clock jtag_rtck 2500 2500 2500 2500 ps
tJ(rtck) Jitter standard deviation(3), output clock jtag_rtck 33.3 33.3 ps
tR(rtck) Rise time, output clock jtag_rtck 0 0 ns
tF(rtck) Fall time, output clock jtag_rtck 0 0 ns
JA11 td(rtckL-tdoV) Delay time, output clock jtag_rtck low to output data 14.6 14.6 14.6 14.6 ns
jtag_tdo valid
(1) Related to the jtag _rtck maximum frequency programmable.
(2) P = output clock jtag _rtck period in ns
(3) The jitter probability density can be approximated by a Gaussian function.
(4) See Section 4.3.4,Processor Clocks.
Figure 6-83. JTAGAdaptative Clock Mode
Copyright ©20102011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics 269
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
7 Package Characteristics
7.1 Package Thermal Characteristics
Table 7-1 and Table 7-2 provide the thermal resistance characteristics for the packages used on this
device.
Note: This table provides simulation data and may not represent actual use-case values.
Table 7-1. Thermal Resistance Characteristics 800MHz ARM Operation-4Gb DDR + Flash
PACKAGE Power (W)(5) θJA(°C/W)(2) θJB(°C/W)(3) θJC(°C/W)(4) BOARD TYPE
CBP Package 1.42 20.06 6.44 (6) 2S2P(1)
CBC Package 1.42 19.97 7.76 (6) 2S2P(1)
CUS Package 1.05 24.75 11.06 7.06 2S2P(1)
(1) The board types are defined by JEDEC (reference JEDEC standard JESD51-9, Test Board for Array Surface Mount Package Thermal
Measurements).
(2) θJA (Theta-JA) = Thermal Resistance Junction-to-Ambient, °C/W
(3) θJB (Theta-JB) = Thermal Resistance Junction-to-Board, °C/W
(4) θJC (Theta-JC) = Thermal Resistance Junction-to-Board, °C/W
(5) These power numbers are based on simulation results for DM37x. Power numbers for CBP and CBC packages include the AM37x
device and POP memory. CUS package is AM37x only.
(6) Not applicable since these packages have memory package mounted on top.
Table 7-2. Thermal Resistance Characteristics 1GHz ARM Operation-8Gb DDR
PACKAGE Power (W)(5) θJA(°C/W)(2) θJB(°C/W)(3) θJC(°C/W)(4) BOARD TYPE
CBP Package 2.06 19.51 6.19 (6) 2S2P(1)
CBC Package 2.06 20.11 8.01 (6) 2S2P(1)
CUS Package 1.4 24.75 11.06 7.06 2S2P(1)
(1) The board types are defined by JEDEC (reference JEDEC standard JESD51-9, Test Board for Array Surface Mount Package Thermal
Measurements).
(2) θJA (Theta-JA) = Thermal Resistance Junction-to-Ambient, °C/W
(3) θJB (Theta-JB) = Thermal Resistance Junction-to-Board, °C/W
(4) θJC (Theta-JC) = Thermal Resistance Junction-to-Board, °C/W
(5) These power numbers are based on simulation results for DM37x. Power numbers for CBP and CBC packages include the AM37x
device and POP memory. CUS package is AM37x only.
(6) Not applicable since these packages have memory package mounted on top.
7.2 Device Support
7.2.1 Device and Development-Support Tool Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
AM37x processors and support tools. Each device has one of three prefixes: X, P, or null (no prefix).
Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and
TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes
(TMDX) through fully qualified production devices/tools (TMDS).
Device development evolutionary flow:
XExperimental device that is not necessarily representative of the final devices electrical
specifications and may not use production assembly flow. (TMX definition)
PPrototype device that is not necessarily the final silicon die and may not necessarily meet
final electrical specifications. (TMP definition)
null Production version of the silicon die that is fully qualified. (TMS definition)
270 Package Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
PREFIX
X AM3715 ( )
X = Experimental Device
P = Prototype Device
blank = Production Device
DEVICE
PACKAGE TYPE
CBP = 515-pin sPBGA
CBC = 515-pin sPBGA
CUS = 423-pin sPBGA
SILICON REVISION
CBP ( )
blank = commercial temperature
A = extended temperature
D = industrial temperature
( )
blank = 800 MHz Cortex-A8
100 = 1GHz Cortex-A8
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
Support tool development evolutionary flow:
TMDX Development support product that has not yet completed Texas Instruments internal
qualification testing.
TMDS Fully qualified development support product.
TMX and TMP devices and TMDX development-support tools are shipped against the following
disclaimer:
Developmental product is intended for internal evaluation purposes.
Production devices and TMDS development-support tools have been characterized fully, and the quality
and reliability of the device have been demonstrated fully. TIs standard warranty applies.
Predictions show that prototype devices (X or P), have a greater failure rate than the standard production
devices. Texas Instruments recommends that these devices not be used in any production system
because their expected end-use failure rate still is undefined. Only qualified production devices are to be
used.
For additional description of the device nomenclature markings, see the Processor Silicon Errata.
Figure 7-1. Device Nomenclature
7.2.2 Documentation Support
7.2.2.1 Related Documentation from Texas Instruments
The following documents describe the AM3715/03 MicroprocessorDigital Media Processor. Copies of
these documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the
search box provided at www.ti.com.
The current documentation that describes the AM3715/03 MicroprocessorDigital Media Processor, related
peripherals, and other technical collateral, is available in the product folder at: www.ti.com.
SPRUGN4 . Collection of documents providing detailed information on the SitaraTM architecture
including power, reset, and clock control, interrupts, memory map, and switch fabric
interconnect. Detailed information on the microprocessor unit (MPU) subsystem as well a
functional description of the peripherals supported on AM3715/03devices is also included.
7.2.2.1.1 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;
see TI's Terms of Use.
TI E2E Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and
help solve problems with fellow engineers.
Copyright ©20102011, Texas Instruments Incorporated Package Characteristics 271
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
SPRS616FJUNE 2010REVISED AUGUST 2011
www.ti.com
TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help
developers get started with Embedded Processors from Texas Instruments and to foster
innovation and growth of general knowledge about the hardware and software surrounding
these devices.
7.2.2.2 Related Documentation from Other Sources
The following documents are related to the AM3715, AM3703 Sitara ARM Microprocessors. Copies of
these documents can be obtained directly from the internet or from your Texas Instruments representative.
Cortex-A8 Technical Reference Manual. This is the technical reference manual for the Cortex-A8
processor. A copy of this document can be obtained via the internet at http://infocenter.arm.com. Please
see the AM3715, AM3703 Sitara ARM Microprocessors Silicon Errata (literature number SPRZ318) to
determine the revision of the Cortex-A8 core used on your device.
ARM Core CortexTM-A8 (AT400/AT401) Errata Notice. Provides a list of advisories for the different
revisions of the Cortex-A8 processor. Contact your TI representative for a copy of this document. Please
see the AM3715, AM3703 Sitara ARM Microprocessors Silicon Errata (literature number SPRZ318) to
determine the revision of the Cortex-A8 core used on your device.
272 Package Characteristics Copyright ©20102011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
AM3715, AM3703
www.ti.com
SPRS616FJUNE 2010REVISED AUGUST 2011
7.3 Mechanical Data
Copyright ©20102011, Texas Instruments Incorporated Package Characteristics 273
Submit Documentation Feedback
Product Folder Link(s): AM3715 AM3703
PACKAGE OPTION ADDENDUM
www.ti.com 21-Aug-2012
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
AM3703CBC ACTIVE POP-FCBGA CBC 515 119 Green (RoHS
& no Sb/Br) Call TI Level-3-260C-168 HR
AM3703CBC100 ACTIVE POP-FCBGA CBC 515 1 Green (RoHS
& no Sb/Br) Call TI Level-3-260C-168 HR
AM3703CBCA ACTIVE POP-FCBGA CBC 515 119 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR
AM3703CBCD100 ACTIVE POP-FCBGA CBC 515 119 Green (RoHS
& no Sb/Br) Call TI Level-3-260C-168 HR
AM3703CBP ACTIVE POP-FCBGA CBP 515 168 Green (RoHS
& no Sb/Br) Call TI Level-3-260C-168 HR
AM3703CBP100 ACTIVE POP-FCBGA CBP 515 168 Green (RoHS
& no Sb/Br) Call TI Level-3-260C-168 HR
AM3703CBPA ACTIVE POP-FCBGA CBP 515 168 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR
AM3703CBPD100 ACTIVE POP-FCBGA CBP 515 168 Green (RoHS
& no Sb/Br) Call TI Level-3-260C-168 HR
AM3703CUS ACTIVE FCBGA CUS 423 90 Green (RoHS
& no Sb/Br) Call TI Level-3-260C-168 HR
AM3703CUS100 ACTIVE FCBGA CUS 423 1 Green (RoHS
& no Sb/Br) Call TI Level-3-260C-168 HR
AM3703CUSA ACTIVE FCBGA CUS 423 90 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR
AM3703CUSD100 ACTIVE FCBGA CUS 423 90 Green (RoHS
& no Sb/Br) Call TI Level-3-260C-168 HR
AM3715CBC ACTIVE POP-FCBGA CBC 515 119 Green (RoHS
& no Sb/Br) Call TI Level-3-260C-168 HR
AM3715CBC100 ACTIVE POP-FCBGA CBC 515 119 Green (RoHS
& no Sb/Br) Call TI Level-3-260C-168 HR
AM3715CBCA ACTIVE POP-FCBGA CBC 515 1 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR
AM3715CBCD100 ACTIVE POP-FCBGA CBC 515 1 Green (RoHS
& no Sb/Br) Call TI Level-3-260C-168 HR
AM3715CBP ACTIVE POP-FCBGA CBP 515 168 Green (RoHS
& no Sb/Br) Call TI Level-3-260C-168 HR
PACKAGE OPTION ADDENDUM
www.ti.com 21-Aug-2012
Addendum-Page 2
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
AM3715CBP100 ACTIVE POP-FCBGA CBP 515 168 Green (RoHS
& no Sb/Br) Call TI Level-3-260C-168 HR
AM3715CBPA ACTIVE POP-FCBGA CBP 515 168 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR
AM3715CBPD100 ACTIVE POP-FCBGA CBP 515 1 Green (RoHS
& no Sb/Br) Call TI Level-3-260C-168 HR
AM3715CUS ACTIVE FCBGA CUS 423 90 Green (RoHS
& no Sb/Br) Call TI Level-3-260C-168 HR
AM3715CUS100 ACTIVE FCBGA CUS 423 90 Green (RoHS
& no Sb/Br) Call TI Level-3-260C-168 HR
AM3715CUSA ACTIVE FCBGA CUS 423 1 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR
AM3715CUSD100 ACTIVE FCBGA CUS 423 90 Green (RoHS
& no Sb/Br) Call TI Level-3-260C-168 HR
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
PACKAGE OPTION ADDENDUM
www.ti.com 21-Aug-2012
Addendum-Page 3
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time
of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated