-1-
A
AE
EH
H
H
Ha
al
lf
f-
-b
br
ri
ic
ck
k
S
Se
er
ri
ie
es
s
T
Te
ec
ch
hn
ni
ic
ca
al
l
R
Re
ef
fe
er
re
en
nc
ce
e
N
No
ot
te
es
s
48V Input, 2.5V Output
48V Input, 2.5V Output
50-150W DC-DC Converter
50-150W DC-DC Converter
(Rev01)
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 Publishing Date: 20020702
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-2-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Introduction
Introduction
The AEH series comes in a industry standard
half-brick package of 2.4" x 2.28" x 0.5" and
footprint, and incorporates the super high effi-
ciency up to 87% in 2.5V output and high power
density up to 54.8W/in3. The AEH series is
available with 2:1 input range of 36V-75V ( and
36V-72V is for 5V output ). Outputs of 2.5V,
3.3V, and 5V are fully isolated from input and
the isolation voltage is 1500Vdc. The typical
efficiencies are 90% for the 5V output, 89%
for the 3V output, and 87% for the 2.5V out-
put.
Designed using a synchronous rectification
topology, AEH series incorporates simple struc-
ture, good electrical performance and high reli-
ability. Standard features include input LVP,
OCP, output OVP, short circuit protection, and
over-temperature protection. Using aluminum
based plate, the maximum case temperature
can reach 100 °C without derating.
The AEH series is designed to meet CISPR22,
FCC Class A, UL, TUV, and CSA certifications.
Design Features
Design Features
! High Efficiency
! High power density
! Low output noise
! Metal baseplate
! CNT function
! Remote sense
! Trim function
! Input under-voltage lockout
! Output short circuit protection
! Output current limiting
! Output over-voltage protection
! Overtemperature protection
! High input-output isolation voltage
Options
Options
! Heat sink available for extended operation.
! Choice of CNT logic configuration.
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-3-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Fuse*
Trim
-Vout
-Sense
+Vout
+Sense
-Vin
CNT
+Vin
Load
C4 C2
Case
Vin
C1
C3
Fuse*: Use external fuse ( fast blow type ) for each unit.
50W rated output : 5A fuse
75W rated output : 7.5A fuse
100W rated output : 10A fuse
150W rated output : 20A fuse
C1: Recommended input capacitor C1
-40 °C~ +100 °C: m47µF/100V electrolytic capacitor.
C2: Recommended output capacitor C2
0°C~ +100°C: one 2200 µF/ 6.3V electrolytic capacitor
Below 0°C: use 1 X 220µF tantalum capacitor parallel with a 2200µF/ 6.3V electrolytic capacitor
C3: Recommended 4700pF/2000V
C4: Recommended 1µF/10V
T
Typical Application
ypical Application
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-4-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Block Diagram
Block Diagram
Ordering Information
Ordering Information
AEH10G48N 36-75V Negative 10A 40 150 84% 86%
AEH10G48 36-75V Positive 10A 40 150 84% 86%
AEH15G48N 36-75V Negative 15A 40 150 83% 85%
AEH15G48 36-75V Positive 15A 40 150 83% 85%
AEH20G48N 36-75V Negative 20A 40 150 85% 87%
AEH20G48 36-75V Positive 20A 40 150 85% 87%
AEH30G48N 36-75V Negative 30A 40 150 83% 85%
AEH30G48 36-75V Positive 30A 40 150 83% 85%
+Vout
-Vout
+Sense
-Sense
Trim
+Vin
-Vin
CNT
Model Input CNT Output Ripple Noise Efficiency
Number Voltage Logic Current (mV rms) (mV pp) min typ
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-5-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Absolute Maximum Rating
Input Voltage(continuous) -0.3 80 Vdc
Input Voltage(peak/surge) -0.3 100 Vdc 100ms non-repetitive
Operating temperature -40 100* °C *: case temperture
Storage temperature -55 125 °C
Input Characteristics
Input Voltage Range 36 48 75 Vdc
Input Reflected Current 25 50 mAp-p
T urn-of f Input Voltage 30 33 35 V
T urn-on Input Voltage 31 34 36 V
T urn On Time 15 25 ms
CNT Function
Logic High 3 15 Vdc
Logic Low 1.2 Vdc
Control Current 2 mA
General Specifications
MTBF 2080 k Hrs Bellcore TR332, Tc=30°C
Isolation 1500 Vdc
Pin solder temperature 260 °C wave solder < 10 s
Hand Soldering Time 5 s iron temperature 425°C
Weight 70 grams
Characteristic Min Typ Max Units Notes
Characteristic Min Typ Max Units Notes
Characteristic Min Typ Max Units Notes
Characteristic Min Typ Max Units Notes
AEH10G48(N) Output Characteristics
Power 25 W
Output Current 10 A
Output Setpoint Voltage 2.475 2.5 2.525 Vdc Vin=48V, Io=10A
Line Regulation 0.02 0.2 %Vo Vin=36~75V, Io=10A
Load Regulation 0.1 0.5 %Vo Io=0~10A, Vin=48V
Dynamic Response
50-75% load 1.5 %Vo Ta=25°C, di/dt = 1A/10µs
100 µs Ta=25°C, di/dt = 1A/10µs
50-25% load 1.5 %Vo Ta=25°C, di/dt = 1A/10µs
100 µs Ta=25°C, di/dt = 1A/10µs
Current Limit Threshold 11 12.5 14 A
Short Circuit Current 17 A
Efficiency 84 86 % Vin=48V, Io=10A
T rim Range 90 110 %Vo
Over Voltage Protection Setpoint 3 3.9 V
Sense Compensation 10 %Vo 5%V o each leg
Temperature Regulation 0.02 %Vo/°C
Ripple (rms) 20 40 mV ( 0 to 20MHz Bandwidth )
Noise (p-p) 100 150 mV ( 0 to 20MHz Bandwidth )
Over Temperature Protection 105 °C
Switching Frequency 180 kHz
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-6-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Characteristic Min Typ Max Units Notes
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-7-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
AEH15G48(N) Output Characteristics
Power 37.5 W
Output Current 15 A
Output Setpoint Voltage 2.475 2.5 2.525 Vdc Vin=48V, Io=15A
Line Regulation 0.02 0.2 %Vo Vin=36~75V, Io=15A
Load Regulation 0.1 0.5 %Vo Io=0~15A, Vin=48V
Dynamic Response
50-75% load 1.5 %Vo Ta=25°C, di/dt = 1A/10µs
100 µs Ta=25°C, di/dt = 1A/10µs
50-25% load 1.5 %Vo Ta=25°C, di/dt = 1A/10µs
100 µs Ta=25°C, di/dt = 1A/10µs
Current Limit Threshold 16.5 19 21 A
Short Circuit Current 20 A
Efficiency 83 85 % Vin=48V, Io=15A
T rim Range 90 110 %Vo
Over Voltage Protection Setpoint 3 3.9 V
Sense Compensation 10 %Vo 5%V o each leg
Temperature Regulation 0.02 %Vo/°C
Ripple (rms) 20 40 mV ( 0 to 20MHz Bandwidth )
Noise (p-p) 100 150 mV ( 0 to 20MHz Bandwidth )
Over Temperature Protection 105 °C
Switching Frequency 180 kHz
Characteristic Min Typ Max Units Notes
AEH20G48(N) Output Characteristics
Power 50 W
Output Current 20 A
Output Setpoint Voltage 2.475 2.5 2.525 Vdc Vin=48V, Io=20A
Line Regulation 0.02 0.2 %Vo Vin=36~75V, Io=20A
Load Regulation 0.1 0.5 %V o Io=0~20A, V in=48V
Dynamic Response
50-75% load 1.5 %Vo Ta=25°C, di/dt = 1A/10µs
100 µs Ta=25°C, di/dt = 1A/10µs
50-25% load 2.5 %Vo Ta=25°C, di/dt = 1A/10µs
100 µs Ta=25°C, di/dt = 1A/10µs
Current Limit Threshold 22 25 28 A
Short Circuit Current 30 A
Efficiency 85 87 % Vin=48V, Io=20A
T rim Range 90 110 %Vo
Over Voltage Protection Setpoint 3 3.9 V
Sense Compensation 10 %Vo 5%V o each leg
Temperature Regulation 0.02 %Vo/°C
Ripple (rms) 20 40 mV ( 0 to 20MHz Bandwidth )
Noise (pp) 100 150 mV ( 0 to 20MHz Bandwidth )
Over Temperature Protection 105 °C
Switching Frequency 180 kHz
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-8-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Characteristic Min Typ Max Units Notes
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-9-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
AEH30G48(N) Output Characteristics
Power 75 W
Output Current 30 A
Output Setpoint Voltage 2.475 2.5 2.525 Vdc Vin=48V, Io=30A
Line Regulation 0.02 0.2 %Vo Vin=36~75V, Io=30A
Load Regulation 0.1 0.5 %V o Io=0~30A, V in=48V
Dynamic Response
50-75% load 2.5 %V o Ta=25°C, di/dt = 1A/10µs
100 µs Ta=25°C, di/dt = 1A/10µs
50-25% load 2.5 %V o Ta=25°C, di/dt = 1A/10µs
100 µs Ta=25°C, di/dt = 1A/10µs
Current Limit Threshold 32 36 40 A
Short Circuit Current 40 A
Efficiency 83 85 % Vin=48V, Io=30A
T rim Range 90 110 %Vo
Over Voltage Protection Setpoint 3 3.9 V
Sense Compensation 10 %Vo 5%V o each leg
Temperature Regulation 0.02 %Vo/°C
Ripple (rms) 20 40 mV ( 0 to 20MHz Bandwidth )
Noise (pp) 100 150 mV ( 0 to 20MHz Bandwidth )
Over Temperature Protection 105 °C
Switching Frequency 180 kHz
Characteristic Min Typ Max Units Notes
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-10-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Characteristic Curves
Characteristic Curves (at 25
(at 25 °C)
°C)
Typical Efficiency AEH10G48N
%Iomax
Efficiency (%)
60
65
70
75
80
85
90
0102030405060708090100
Vin=36V
Vin=48V
Vin=75V
Typical Efficiency AEH15G48N
%Iomax
Efficiency (%)
0 102030405060708090100
70
74
78
82
86
90
Vin=36V
Vin=48V
Vin=75V
%Iomax
Efficiency (%)
0 102030405060708090100
70
74
78
82
86
90
Vin=36V
Vin=48V
Vin=75V
%Iomax
Efficiency (%)
0 102030405060708090100
70
74
78
82
86
90
Vin=36V
Vin=48V
Vin=75V
Typical Efficiency AEH20G48N Typical Efficiency AEH30G48N
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Characteristic Curves
Characteristic Curves (at 25
(at 25 °C)
°C)
AA
AAEE
EEHH
HH
HH
HHii
iigg
gghh
hh
EE
EEff
ffff
ffii
iicc
ccii
iiee
eenn
nncc
ccyy
yy
SS
SSee
eerr
rrii
iiee
eess
ss
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66
VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55
VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00
WW
WWaa
aatt
tttt
tt
-11-
Typical Output Overcurrent Characteristics
AEH10G48N
Output Voltage (volts)
Output Curent (amps)
0.4
0.8
1.2
1.6
2
2.4
2.8
03691215
Vin=36V
Vin=48V
Vin=75V
Typical Output Overcurrent Characteristics
AEH15G48N
Output Voltage (volts)
Output Curent (amps)
0.4
0.8
1.2
1.6
2
2.4
2.8
0 3 6 9 12 15 18 21
Vin=36V
Vin=48V
Vin=75V
Output Voltage (volts)
Output Curent (amps)
0.4
0.8
1.2
1.6
2
2.4
2.8
0481216202428
Vin=36V
Vin=48V
Vin=75V
Output Voltage (volts)
Output Curent (amps)
0.4
0.8
1.2
1.6
2
2.4
2.8
0 8 16 24 32 40
Vin=36V
Vin=48V
Vin=75V
Typical Output Overcurrent Characteristics
AEH20G48N Typical Output Overcurrent Characteristics
AEH30G48N
Characteristic Curves
Characteristic Curves (at 25
(at 25 °C)
°C)
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-12-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Typical Input-Output Characteristics
AEH10G48N
Input Voltage (volts)
Input Current (amps)
0
0.2
0.4
0.6
0.8
1
020406080
Typical Input-Output Characteristics
AEH15G48N
0
0.3
0.6
0.9
1.2
1.5
Input Voltage (volts)
Input Current (amps)
020406080
Input Voltage (volts)
Input Current (amps)
0
0.4
0.8
1.2
1.6
2
020406080
Input Voltage (volts)
Input Current (amps)
020406080
0
0.6
1.2
1.8
2.4
3
Typical Input-Output Characteristics
AEH20G48N Typical Input-Output Characteristics
AEH30G48N
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-13-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
T
Transient response
ransient response (48V rated input voltage, full load, at 25 °C)
(48V rated input voltage, full load, at 25 °C)
Typical Transient Response to Step Load
Change from 25%-50%-25%Iomax
AEH10G48N
Typical Transient Response to Step Load
Change from 25%-50%-25%Iomax
AEH15G48N
Typical Transient Response to Step Load
Change from 25%-50%-25%Iomax
AEH20G48N
Typical Transient Response to Step Load
Change from 25%-50%-25%Iomax
AEH30G48N
T
Transient response
ransient response (48V rated input voltage, full load, at 25 °C)
(48V rated input voltage, full load, at 25 °C)
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-14-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Typical Transient Response to Step Load
Change from 50%-75%-50%Iomax
AEH10G48N
Typical Transient Response to Step Load
Change from 50%-75%-50%Iomax
AEH15G48N
Typical Transient Response to Step Load
Change from 50%-75%-50%Iomax
AEH20G48N
Typical Transient Response to Step Load
Change from 50%-75%-50%Iomax
AEH30G48N
Characteristic Curves
Characteristic Curves (48V rated input voltage, full load, at 25 °C)
(48V rated input voltage, full load, at 25 °C)
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-15-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Typical Start-Up from Power On
AEH10G48N Typical Start-Up from Power On
AEH15G48N
Typical Start-Up from Power On
AEH20G48N Typical Start-Up from Power On
AEH30G48N
Characteristic Curves
Characteristic Curves (48V rated input voltage, full load, at 25 °C)
(48V rated input voltage, full load, at 25 °C)
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-16-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Typical Shut-down from Power Off
AEH10G48N Typical Shut-down from Power Off
AEH15G48N
Typical Shut-down from Power Off
AEH20G48N Typical Shut-down from Power Off
AEH30G48N
Characteristic Curves
Characteristic Curves (48V rated input voltage, full load, at 25 °C)
(48V rated input voltage, full load, at 25 °C)
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-17-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Typical Start-Up Transient with CNT Control
AEH10G48N Typical Start-Up Transient with CNT Control
AEH15G48N
Typical Start-Up Transient with CNT Control
AEH20G48N Typical Start-Up Transient CNT Control
AEH30G48N
Characteristic Curves
Characteristic Curves (48V rated input voltage, full load, at 25 °C)
(48V rated input voltage, full load, at 25 °C)
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-18-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Typical Shut-down Transient with CNT Control
AEH10G48N Typical Shut-down Transient with CNT Control
AEH15G48N
Typical Shut-down Transient with CNT Control
AEH20G48N Typical Shut-down Transient with CNT Control
AEH30G48N
Characteristic Curves
Characteristic Curves (48V rated input voltage, full load, at 25 °C)
(48V rated input voltage, full load, at 25 °C)
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-19-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Typical Output Ripple Voltage
AEH10G48N Typical Output Ripple Voltage
AEH15G48N
Typical Output Ripple Voltage
AEH20G48N Typical Output Ripple Voltage
AEH30G48N
Characteristic Curves
Characteristic Curves (48V rated input voltage, full load, at 25 °C)
(48V rated input voltage, full load, at 25 °C)
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-20-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Overvoltage Protection
AEH10G48N Overvoltage Protection
AEH15G48N
Overvoltage Protection
AEH20G48N Overvoltage Protection
AEH30G48N
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-21-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Pins
Pins
The +Vin and -Vin input connection pins are
located as shown in Figure 1. AEH converters
have a 2:1 input voltage range and 2.5V output
converters can accept 36-75 Vdc.
Care should be taken to avoid applying
reverse polarity to the input which can dam-
age the converter.
Input Characteristic
Input Characteristic
Fusing
Fusing
The AEH power module has no internal
fuse. An external fuse must always be
employed! To meet international safety
requirements, a 250 Volt rated fuse should be
used. If one of the input lines is connected to
chassis ground, then the fuse must be placed in
the other input line.
T
Table 1
able 1
Standard safety agency regulations require
input fusing. Recommended fuse ratings for the
AEH Series are shown in Table 1.
Input Reverse V
Input Reverse Voltage Protection
oltage Protection
Under installation and cabling conditions where
reverse polarity across the input may occur,
reverse polarity protection is recommended.
Protection can easily be provided as shown in
Figure 2. In both cases the diode rating is deter-
mined by the power of the converter. Diodes
should be rated at 20A/100V for 150W,
10A/100V for 100W, 7.5A/100V for 75W, and
5A/100V for 50W.
Placing the diode across the inputs rather
than in-line with the input offers an advan-
tage in that the diode only conducts in a
reverse polarity condition, which increases
circuit efficiency and thermal performance.
Input Undervoltage Protection
Input Undervoltage Protection
The AEH is protected against undervoltage on
the input. If the input voltage drops below the
acceptable range, the converter will shut down.
It will automatically restart when the undervolt-
age condition is removed.
Input Filter
Input Filter
Input filters are included in the converters to
help achieve standard system emissions certifi-
cations. Some users however, may find that
additional input filtering is necessary. The AEH
2.5V output series has an internal switching fre-
quency of 180kHz so a high frequency capaci-
tor mounted close to the input terminals pro-
-Vin
Case
CNT
-Vout
-Sense
Trim
+Sense
+Vout
+Vin
Component-side footprint
Fig.1 Pin Location
+Vin
-Vin
+Vin
-Vin
Fig.2 Reverse Polarity Protection Circuits
Rated Pout Fuse Rating
50 Watt 5A
75 Watt 7.5A
100 Watt 10A
150Watt 20A
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-22-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
duces the best results. To reduce reflected
noise, a capacitor can be added across the
input as shown in Figure 3, forming a πfilter. A
47µF/100V electrolytic capacitor is recom-
mended for C1.
For conditions where EMI is a concern, a differ-
ent input filter can be used. Figure 4 shows an
input filter designed to reduce EMI effects. L1
is a 5mH common mode choke.
When a filter inductor is connected in series
with the power converter input, an input capac-
itor C1should be added. An input capacitor C1
should also be used when the input wiring is
long, since the wiring can act as an inductor.
Failure to use an input capacitor under these
conditions can produce large input voltage
spikes and an unstable output.
CNT Function
CNT Function
Two CNT options are available.
Negative logic applying a voltage less than
1.2V to the CNT pin will enable the output, and
applying a voltage greater than 3V will disable
it.
Positive logic applying a voltage larger than
3V to the CNT pin will enable the output, and
applying a voltage less than 1.2V will disable it.
Positive logic, device code suffix “ P “ .
Negative logic, device code suffix nothing is the
factory-preferred.
If the CNT pin is left open, the converter will
default to “ control off ” operation in nega-
tive logic, but default to “ control on ” in
positive logic.
The maximum voltage that can be applied to
the CNT pin is 15V.
Input-Output Characteristic
Input-Output Characteristic
Safety Consideration
Safety Consideration
For safety-agency approval of the system in
which the power module is used, the power
module must be installed in compliance with the
spacing and separation requirements of the
end-use safety agency standard, i.e., UL1950,
CSA C22.2 No. 950-95, and EN60950. The
+Vin
-Vin
C1
Fig.3 Ripple Rejection Input Filter
1uF
1uF
0.33uF
L
1
470u
0.33uF
Case
-Vin
1u 1000p
1000p
2200uF/16V
100pF
Fig.4 EMI Reduction Input Filter
-Vin
CNT
-Vin
CNT
-Vin
CNT
-Vin
CNT
Fig.8 Relay Control
Fig.5 Simple Control
Fig.6 Transistor Control
Fig.7 Isolated Control
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-23-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
input-to-output 1500VDC isolation is an opera-
tional insulation. The DC/DC power module
should be installed in end-use equipment, in
compliance with the requirements of the ulti-
mate application, and is intended to be supplied
by an isolated secondary circuit. When the sup-
ply to the DC/DC power module meets all the
requirements for SELV(<60Vdc), the output is
considered to remain within SELV limits (level
3). If connected to a 60Vdc power system, dou-
ble or reinforced insulation must be provided in
the power supply that isolates the input from
any hazardous voltages, including the ac
mains. One Vin pin and one Vout pin are to be
grounded or both the input and output pins are
to be kept floating. Single fault testing in the
power supply must be performed in combina-
tion with the DC/DC power module to demon-
strate that the output meets the requirement for
SELV. The input pins of the module are not
operator accessible.
Note: Do not ground either of the input pins of
the module, without grounding one of the output
pins. This may allow a non-SELV voltage to
appear between the output pin and ground.
Case Grounding
Case Grounding
For proper operation of the module, the case or
baseplate of the AEH module does not require
a connection to a chassis ground. If the AEH
module is not in a metallic enclosure in a sys-
tem, it may be advisable to directly ground the
case to reduce electric field emissions. Leaving
the case floating can help to reduce magnetic
field radiation from common mode noise cur-
rents. If the case has to be grounded for safety
or other reasons, an inductor can be connected
to chassis at DC and AC line frequencies, but
be left floating at switching frequencies. Under
this condition, the safety requirements are met
and the emissions are minimized.
Output Characteristics
Output Characteristics
Minimum Load Requirement
Minimum Load Requirement
There is no minimum load required for the AEH
series modules.
Remote Sensing
Remote Sensing
The AEH converter can remotely sense both
lines of its output which moves the effective out-
put voltage regulation point from the output of
the unit to the point of connection of the remote
sense pins. This feature automatically adjusts
the real output voltage of the AEH in order to
compensate for voltage drops in distribution
and maintain a regulated voltage at the point of
load.
When the converter is supporting loads far
away, or is used with undersized cabling, sig-
nificant voltage drop can occur at the load. The
best defense against such drops is to locate the
load close to the converter and to ensure ade-
quately sized cabling is used. When this is not
possible, the converter can compensate for a
drop of up to 0.5V, through use of the sense
leads.
When used, the + and - Sense leads should be
connected from the converter to the point of
load as shown in Figure 9 using twisted pair
wire. The converter will then regulate its output
voltage at the point where the leads are con-
nected. Care should be taken not to reverse the
sense leads. If reversed, the converter will trig-
ger OVP protection and turn off. When not
+Vout
-Vout
Load
+Sense
-Sense
Twisted Pair +S
-S
Fig.9 Sense Connections
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-24-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
used, the +Sense lead must be connected with
+Vo, and -Sense with -Vo. Also note that the
output voltage and the remote sense voltage
offset must be less than the minimum overvolt-
age trip point. Note that at elevated output
voltages the maximum power rating of the
module remains the same, and the output
current capability will decrease correspond-
ingly.
Output T
Output Trimming
rimming
Users can increase or decrease the output volt-
age set point of a module by connecting an
external resistor between the TRIM pin and
either the SENSE (+ ) or SENSE ( - ) pins. The
trim resistor should be positioned close to the
module. If not using the trim feature, leave
the TRIM pin open.
Trimming up by more than 10% of the nominal
output may damage the converter or trig the
OVP protection. Trimming down more than
10% can cause the converter to regulate
improperly. Trim down and trim up circuits and
the corresponding configuration are shown in
Figure 10 to Figure 13.
Note that at elevated output voltages the
maximum power rating of the module
remains the same, and the output current
capability will decrease correspondingly.
Output Over-Current Protection
Output Over-Current Protection
AEH series DC/DC converters feature foldback
current limiting as part of their Overcurrent
Protection (OCP) circuits. When output current
exceeds 110 to 140% of rated current, such as
during a short circuit condition, the output will
shutdown immediately, and can tolerate short
circuit conditions indefinitely. When the over-
current condition is removed, the converter will
automatically restart.
0
10
20
30
40
50
60
70
80
90
100
012345678910
% Change In Output Voltage (y)
Adjustment Resistor Value (k)
Vo(100+y)
Radj-up = (100+2y)
1.26y
y
-
+Vin
-Vin
CNT
Case
+Vout
-Vout
Sense(+)
Trim
Sense(–)
Radj-up RLOAD
Where y is the adjusting percentage of the voltage.
0 < y < 10
Radj-up is in k.
Fig.11 Resistor Selection for Trimming Up
2.5V Outputs
Fig.10 Circuit Configuration and Equation
to Trim Up Output Voltage
Radj-down =
where y is the adjusting percentage of the voltage.
0 < y < 10
Radj-down is in k.
R
adj-down
R
LOAD
100
y- 2
+Vin
-Vin
CNT
Case
+Vout
-Vout
Sense(+)
Trim
Sense()
% Change In Output Voltage (y)
Adjustment Resistor Value (k)
0
10
20
30
40
50
60
70
80
90
100
012345678910
Fig.13 Resistor Selection for Trimming
Down Output Voltage
Fig.12 Circuit Configuration and Equation
to Trim Down Output Voltage
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-25-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Output Filters
Output Filters
When the load is sensitive to ripple and noise,
an output filter can be added to minimize the
effects. A simple output filter to reduce output
ripple and noise can be made by connecting a
capacitor across the output as shown in Figure
14. The recommended value for the output
capacitor C1 is 2,200µF/10V.
Extra care should be taken when long leads or
traces are used to provide power to the load.
Long lead lengths increase the chance for
noise to appear on the lines. Under these con-
ditions C2 can be added across the load as
shown in Figure 15. The recommended compo-
nent for C2 is 2200µF/10V capacitor and con-
necting a 0.1µF ceramic capacitor C1 in paral-
lel generally.
Decoupling
Decoupling
Noise on the power distribution system is not
always created by the converter. High speed
analog or digital loads with dynamic power
demands can cause noise to cross the power
inductor back onto the input lines. Noise can be
reduced by decoupling the load. In most cases,
connecting a 10 µF tantalum capacitor in paral-
lel with a 0.1µF ceramic capacitor across the
load will decouple it. The capacitors should be
connected as close to the load as possible.
Ground Loops
Ground Loops
Ground loops occur when different circuits are
given multiple paths to common or earth
ground, as shown in Figure 16. Multiple ground
points can slightly different potential and cause
current flow through the circuit from one point to
another. This can result in additional noise in all
the circuits. To eliminate the problem, circuits
should be designed with a single ground con-
nection as shown in Figure 17.
Output Over-V
Output Over-Voltage Protection
oltage Protection
The over-voltage protection has a separate
feedback loop which activates when the output
voltage is between 120% and 140% of the
nominal output voltage. When an over-voltage
condition occurs, a “ turn off “ signal was sent
to the input of the module, and shut off the out-
put. The module will restart after power on
again.
+Vout
-Vout
Load
C1C2
Fig.15 Output Ripple Filter For a Distant
Load
+Vout
-Vout
Load
C1
Fig.14 Output Ripple Filter
+Vout
-Vout
Load Load
RLine
RLine RLine
RLine
RLine
RLine
Ground
Loop
Fig.16 Ground Loops
Fig.17 Single Point Ground
+Vout
-Vout
Load Load
RLine
RLine RLine
RLine
RLine
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-26-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Parallel Power Distribution
Parallel Power Distribution
Figure 18 shows a typical parallel power distri-
bution design. Such designs, sometimes called
daisy chains, can be used for very low output
currents, but are not normally recommended.
The voltage across loads far from the source
can vary greatly depending on the IR drops
along the leads and changes in the loads clos-
er to the source. Dynamic load conditions
increase the potential problems.
Radial Power Distribution
Radial Power Distribution
Radial power distribution is the preferred
method of providing power to the load. Figure
19 shows how individual loads are connected
directly to the power source. This arrangement
requires additional power leads, but it avoids
the voltage variation problems associated with
the parallel power distribution technique.
Mixed Distribution
Mixed Distribution
In the real world a combination of parallel and
radial power distribution is often used. Dynamic
and high current loads are connected using a
radial design, while static and low current loads
can be connected in parallel. This combined
approach minimizes the drawbacks of a parallel
design when a purely radial design is not feasi-
ble.
Redundant Operation
Redundant Operation
A common requirement in high reliability sys-
tems is to provide redundant power supplies.
The easiest way to do this is to place two con-
verters in parallel, providing fault tolerance but
not load sharing. Oring diodes should be used
to ensure that failure of one converter will not
cause failure of the second. Figure 21 shows
such an arrangement. Upon application of
power, one of the converters will provide a
slightly higher output voltage and will support
the full load demand. The second converter will
see a zero load condition and will “idle”. If the
first converter should fail, the second converter
will support the full load. When designing
redundant converter circuits, Shottky diodes
should be used to minimize the forward voltage
drop. The voltage drop across the Shottky
diodes must also be considered when deter-
mining load voltage requirements.
Load 1 Load 2 Load 3
+Vout
-Vout
RL1 RL2
RL3
RG1 RG2
RG3
RL = Lead Resistance
RG = Ground Lead Resistance
Fig.19 Radial Power Distribution
Load 1 Load 2 Load 3
+Vout
-Vout
RL1 RL2 RL3
RG1 RG2 RG3
I1 + I2 + I3I2 + I3I3
RL = Lead Resistance
RG = Ground Lead Resistance
Fig.18. Parallel Power Distribution
Load 1 Load 2 Load 3
+Vout
-Vout
RL1 RL2
RL3
RG1 RG2
RG3
RL = Lead Resistance
RG = Ground Lead Resistance
Load 4
RL4
RG4
Fig.20 Mixed Power Distribution
+Vout
-Vout
+Vout
-Vout
Load
Fig.21 Redundant Operation
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-27-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Thermal Management
Thermal Management
T
Technologies
echnologies
AEH Series 50 W to 150 W modules feature
high efficiency and the 2.5 V output units have
typical efficiency of 86% at full load. With less
heat dissipation and temperature-resistant
components such as ceramic capacitors, these
modules exhibit good behavior during pro-
longed exposure to high temperatures.
Maintaining the operating case temperature
(Tc) within the specified range help keep inter-
nal-component temperatures within their speci-
fications which in turn help keep MTBF from
falling below the specified rating. Proper cool-
ing of the power modules is also necessary for
reliable and consistent operation.
Basic Thermal Management
Basic Thermal Management
Measuring the case temperature of the module
(Tc) as the method shown in Figure 22 can ver-
ify the proper cooling. Figure 22 shows the
metal surface of the module and the pin loca-
tions. The module should work under 90°C for
the reliability of operation and TCmust not
exceed 100 °C while operating in the final sys-
tem configuration. The measurement can be
made with a surface probe after the module has
reached thermal equilibrium. If a heat sink is
mounted to the case, make the measurement
as close as possible to the indicated position. It
makes the assumption that the final system
configuration exists and can be used for a test
environment.
The following text and graphs show guidelines
to predict the thermal performance of the mod-
ule for typical configurations that include heat
sinks in natural or forced airflow environments.
Note that Tc of module must always be checked
in the final system configuration to verify proper
operational due to the variation in test condi-
tions.
Thermal management acts to transfer the heat
dissipated by the module to the surrounding
environment. The amount of power dissipated
by the module as heat (PD) is got by the equa-
tion below:
PD= PI˘ PO
where : PIis input power;
POis output power;
PD is dissipated power.
Also, module efficiency (η) is defined as the fol-
lowing equation:
η= PO / PI
If eliminating the input power term, from two
above equations can yield the equation below:
PD = PO(1-η )/η
The module power dissipation then can be cal-
culated through the equation.
Because each power module output voltage
has a different power dissipation curve, a plot of
power dissipation versus output current over
three different line voltages is given in each
module-specific data sheet. The typical power
dissipation curve of AEH series 2.5V output are
shown as figure 23 to figure 26.
29.0 (1.14)
30.5 (1.2)
CNT
Case
+Sense
Trim
– Sense
+Vin
MEASURE CASE
TEMPERATURE HERE
Base-plate side View
Dimensions: millimeters (inches)
-Vin
+Vout
-Vout
Fig.22 Case Temperature Measurement
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-28-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Module Derating
Module Derating
Experiment Setup
Experiment Setup
From the experimental set up shown in figure
27, the derating curves as figure 28 can be
drawn. Note that the PWB ( printed-wiring
board ) and the module must be mounted verti-
cally. The passage has a rectangular cross-
section. The clearance between the facing
PWB and the top of the module is kept 13 mm
(0.5 in.) constantly.
Output Current (A)
Power Dissipation (W)
2.5
4.5
6.5
8.5
10.5
12.5
14.5
16.5
0 3 6 9 12151821242730
Vin=36V
Vin=48V
Vin=75V
Fig.26 AEH30G48 Power Dissipation Curves
2
2.5
3
3.5
4
4.5
5
012345678910
Output Current (A)
Vin=36V
Vin=48V
Vin=75V
Power Dissipation (W)
Fig.23 AEH10G48 Power Dissipation Curves
2
3
4
5
6
7
8
9
Output Current (A)
Power Dissipation (W)
Vin=36V
Vin=48V
Vin=75V
0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15
Fig.24 AEH15G48 Power Dissipation Curves
Output Current (A)
Power Dissipation (W)
2
3
4
5
6
7
8
9
Vin=36V
Vin=48V
Vin=75V
0 2 4 6 8 10 12 14 16 18 20
Fig.25 AEH20G48 Power Dissipation Curves
010203040 100
0
21
Local Ambient Temperature, T
A
(°C)
Power Dissipation , P
D
(W)
15
12
6
90
80706050
4.0 m/s (800 ft./min.)
0.1 m/s (20 ft./min.)
Natural Convection
1.0 m/s (200 ft./min.)
2.0 m/s (400 ft./min.)
3.0 m/s (600 ft./min.)
3
9
18 1.5 m/s (300 ft./min.)
0.5 m/s (100 ft./min.)
Fig.28 Forced Convection Power Derating
without Heat Sink
Dimensions: millimeters (inches).
AIR VELOCITY
AND AMBIENT
TEMPERATURE
MEASURED
BELOW THE
MODULE
AIRFLOW
19 (0.75)
FACING PWB
MODULE
PWB
76 (3.00)
Fig.27 Experiment Set Up
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-29-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Convection W
Convection Without Heat Sinks
ithout Heat Sinks
Heat transfer can be enhanced by increasing
the airflow over the module. Figure 28 shows
the maximum power that can be dissipated by
the module.
In the test, natural convection airflow was mea-
sured at 0.05 m/s to 0.1 m/s (10 ft./min. to 20
ft./min.). The 0.5 m/s to 4.0 m/s (100 ft./min. to
800 ft./min.) curves are tested with externally
adjustable fans. The appropriate airflow for a
given operating condition can be determined
through figure 28.
Example 1. How to calculate the minimum
airflow required to maintain a desired Tc?
If a AEH30G48 module operates with a 48V
line voltage, a 30 A output current, and a 40 °C
maximum ambient temperature, What is the
minimum airflow necessary for the operating?
Determine PD( referenced Fig.26 ) with con-
dition:
Vin = 48 V
lO= 30 A
Get: PD= 13.5 W
And with TA= 40 °C
Determine airflow ( Fig.28. ):
v = 1.5 m/s (300 ft./min.)
Example 2. How to calculate the maximum
output power of a module in a certain con-
vection and a max. TA?
What is the maximum power output for a
AEH30G48 operating at following conditions:
Vin = 48 V
V = 1.5 m/s (300 ft./min.)
TA= 40 °C
Determine PD( Fig.28 )
PD= 14.5W
Determine IO( Fig.26 ):
IO= 30 A
Calculate PO:
PO= (VO) x (IO) = 2.5 x 30 = 75 W
Although the two examples above use 100 ° C
as the maximum case temperature, for
extremely high reliability applications, one may
design to a lower case temperature as shown in
Example 4.
Heat Sink Configuration
Heat Sink Configuration
Several standard heat sinks are available for
the AEH 50 W to 150 W modules as shown in
Figure 29 to Figure 31.
The heat sinks mount to the top surface of the
module with screws torqued to 0.56 N-m (5 in.-
57.9 (2.28)
61
(2.4)
1 IN. (WDL10040)
1 1/2 IN. (WDL15040)
1/4 IN. (WDL02540)
1/2 IN. (WDL05040)
Fig.30 Longitudinal Fins Heat Sink
1 IN. (WDT10040)
1 1/2 IN. (WDT15040)
61 (2.4)
1/4 IN. (WDT02540)
1/2 IN. (WDT05040)
57.9
(2.28)
Fig.31 Transverse Fins Heat Sink
89.1(3.51)
57.0
(2.24) 11.8
(0.465)
4.9(0.193)
Dimensions: millimeters (inches).
Fig.29 Non Standard Heatsink
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-30-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
lb). A thermally conductive dry pad or thermal
grease is placed between the case and the
heat sink to minimize contact resistance (typi-
cally 0.1°C/W to 0.3°C/W) and temperature dif-
ferential.
Nomenclature for heat sink configurations is as
follows:
WDxyyy40
where:
x = fin orientation: longitudinal (L) or trans
verse (T)
yyy = heat sink height (in 100ths of inch)
For example, WDT5040 is a heat sink that is
transverse mounted (see Figure 31) for a 61
mm x 57.9 mm (2.4 in.x 2.28 in.) module with a
heat sink height of 0.5 in.
Heatsink Mounting Advice
Heatsink Mounting Advice
A crucial part of the thermal design strategy is
the thermal interface between the baseplate of
the module and the heatsink. Inadequate mea-
sures taken here will quickly negate any other
attempts to control the baseplate temperature.
For example, using a conventional dry insulator
can result in a case-heatsink thermal imped-
ance of >0.5°C/W, while use one of the rec-
ommended interface methods (silicon grease
or thermal pads available from Astec) can
result in a case-heatsink thermal impedance
around 0.1°C/W.
Natural Convection with Heat Sink
Natural Convection with Heat Sink
The power derating for a module with the heat
sinks ( shown as figure 23 to figure 26) in nat-
ural convection is shown in figure 33. In this
test, natural convection generates airflow about
0.05 m/s to 0.1 m/s ( 10ft./min to 20ft./min ).
Figure 33 can be used for heat-sink selection in
natural convection environment.
Example 3. How to select a heat sink?
What heat sink would be appropriate for a
AEH30G48 in a natural convection environ-
ment at nominal line, 2/3 load, and maximum
ambient temperature of 40°C?
Determine PD( referenced Fig.26 ) with con-
dition:
Vin = 48 V
IO= 2/3 (30) = 20 A
TA= 40 °C
Get: PD= 7.5 W
Determine Heat Sink (Fig.33.):
no heat sink allows up to TA = 50 °C
1/4 in. allows up to TA = 60 °C
Fig.32 Heat Sink Mounting
010203040 90100
0
20
25
30
35
LOCAL AMBIENT TEMPERATURE, TA (°C)
POWER DISSIPATION, P
D
(W)
15
10
5
50 60 70 80
1 1/2 in.
1 in.
1/2 in.
1/4 in.
NONE
Fig.33 Heat Sink Power Derating Curves,
Natural Convection
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-31-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Basic Thermal Model
Basic Thermal Model
There is another approach to analyze module
thermal performance, to model the overall ther-
mal resistance of the module. This presentation
method is especially useful when considering
heat sinks. The following equation can be used
to calculate the total thermal resistance .
RCA =TC, max / PD
Where RCA is the module thermal resistance,
TC, max is the maximum case temperature
rise,
PD is the module power dissipation.
In this model, PD, TC, max, and RCA are equals
to current flow, voltage drop, and electrical
resistance, respectively, in Ohm's law, as
shown in Figure 34. Also, TC, max is defined as
the difference between the module case tem-
perature (TC) and the inlet ambient temperature
(TA).
TC, max = TC˘ TA
Where TCis the module case temperature;
TA is the inlet ambient temperature.
For AEH Series 50W to 150W 2.5V output con-
verters, the module's thermal resistance values
versus air velocity have been determined
experimentally and shown in figure 35. The
highest values on each curve represents the
point of natural convection.
Figure 35 is used for determining thermal per-
formance under various conditions of airflow
and heat sink configurations.
Example 4. How to determine the allowable
minimum airflow to heat sink combinations
necessary for a module under a desired Tc
and a certain condition?
Although the maximum case temperature for
the AEH Series converters is 100°C, you can
improve module reliability by limiting Tc,max to
a lower value. How to decide? For example,
what is the allowable minimum airflow for AEH
150W heat sink combinations at desired Tc of
80 °C?
The working condition is as following:
Vin = 48 V, IO= 30 A, TA= 40 °C
Determine PD( Fig.26 )
PD= 13.5 W
Then solve RCA::
RCA = TC, max / PD
RCA = (TCTA)/ PD
RCA = (80 40)/ 13.5 = 3°C/W
determine air velocity from figure 35:
If no heat sink:
v = 2.6 m/s (520 ft./min.)
If 1/4 in. heat sink:
v = 1.8 m/s (360 ft./min.)
If 1/2 in. heat sink:
v = 1.1 m/s (220 ft./min.)
If 1 in. heat sink:
v = 0.4 m/s (80 ft./min.)
BMPM
PD
= BMPM
THERMAL
RESISTANCE
Fig.34 Basic Thermal Resistance Model
0 0.5
(100) 1.0
(200) 1.5
(300) 2.0
(400) 2.5
(500) 3.0
(600)
0
1
5
6
7
8
Air Velocity m/s (ft./min.)
4
3
2
Case-Ambient Thermal Resistance
R
CA
(°C/W)
1 in. HEAT SINK
1/2 in. HEAT SINK
1/4 in. HEAT SINK
NO HEAT SINK
Fig.35. Case-to-Ambient Thermal
Resistance Curves; Either Orientation
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-32-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Example 5. How to determine case tempera-
ture ( Tc ) for the various heat sink configu-
rations at certain air velocity?
What is the allowable Tc for AEH 150W heat
sink configurations at desired air velocity of 2.0
m/s, and it is operating at a 48 V line voltage, a
30 A output current, a 40 °C maximum ambient
temperature?
Determine PD( Fig.26 ) with condition:
Vin = 48 V
IO= 30 A
TA= 40 °C
v = 2.0 m/s (400 ft./min.)
Get: PD= 13.5 W
Determine TC:TC= (RCA x PD) + TA
Determine the corresponding thermal resis-
tances ( RCA ) from Figure 35:
No heat sink: RCA = 3.8 °C/W
TC= (3.8 x 13.5) + 40 = 91 °C
1/4 in. heat sink: RCA = 2.8 °C/W
TC= (2.8 x 13.5) + 40 = 78 °C
1/2 in. heat sink: RCA = 2.0 °C/W
TC= (2.0 x 13.5) + 40 = 66 °C
1 in. heat sink: RCA = 1.2 °C/W
TC= (1.2 x 13.5) + 40 = 56 °C
In this configuration, the heat sink would not
need and the power module does not exceed
the maximum case temperature of 100°C.
AEH Series Mechanical
AEH Series Mechanical
Considerations
Considerations
Installation
Installation
Although AEH series converters can be mount-
ed in any orientation, free air-flowing must be
taken. Normally power components are always
put at the end of the airflow path or have the
separate airflow paths. This can keep other
system equipment cooler and increase compo-
nent life spans.
Soldering
Soldering
AEH series converters are compatible with
standard wave soldering techniques. When
wave soldering, the converter pins should be
preheated for 20-30 seconds at 110°C, and
wave soldered at 260°C for less than 10 sec-
onds.
When hand soldering, the iron temperature
should be maintained at 425°C and applied to
the converter pins for less than 5 seconds.
Longer exposure can cause internal damage to
the converter. Cleaning can be performed with
cleaning solvent IPA or with water.
MTBF
MTBF
The MTBF, calculated in accordance with
Bellcore TR-NWT-000332 is 2,080,000 hours.
Obtaining this MTBF in practice is entirely pos-
sible. If the ambient air temperature is expected
to exceed +25°C, then we also advise a
heatsink on the AEH, oriented for the best pos-
sible cooling in the air stream.
ASTEC can supply replacements for converters
from other manufacturers, or offer custom solu-
tions. Please contact the factory for details.
AA
AAEE
EEHH
HH
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
22
22..
..55
55VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
-33-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Recommend Hole Pattern
Recommend Hole Pattern
Base-plate side view
Dimensions are in millimeters and (inches).
10.16
(0.400)
10.16
(0.400)
12.7 (0.50)
48.3 (1.90)
48.26
(1.900)
4.8
(0.19)
Mounting Inserts
Module Outline
5.1 (0.20)
57
.
9
(2
.
28)
Max
17.78
(0.700)
25.40
(1.000)
35.56
(1.400)
25.40
(1.000)
50.8
(2.00)
35.56
(1.400)
61.0
(2.40)
-Vout
-Vin
–Sense
Trim
+Sense
Case
CNT
+Vin +Vout
Max
Mechanical Chart
Mechanical Chart
-Vin
Case
CNT
+Vin +Vout
+Sense
Trim
-Sense
-Vout
5.1 (0.2)
10.16 (0.4)
15.24 (0.6)
4.8 (0.19) 48.26 (1.9)
10.16 (0.4)
10.16 (0.4)
10.16 (0.4)
7.62 (0.3)
7.62 (0.3)
7.62 (0.3)
57.9 (2.28)
61.0 (2.4)
mm (inches)
7-
12.7 (0.5)
Mounting Inserts
M3 thru hole x4
2-
φ2.0 (0.08)
only +Vo and -Vo
φ1.0 (0.04)
all pins except +Vo and -Vo
Length optional
4.8 (0.189) default
Base-plate side view
Tolerances:
Inches Millimeters
.xx !0.020 .x !0.5
.xxx !0.010 .xx !0.25
Pins
>4mm !0.02inch ( !0.5mm)
<4mm !0.01inch ( !0.25mm)
Pin Length Option
4.80mm ! 0.5mm
0.189in. ! 0.020in.
3.80mm ! 0.25mm
0.150in. ! 0.010in.
5.80mm ! 0.5mm
0.228in. ! 0.02in.
2.80mm ! 0.25mm
0.110in. ! 0.010in.
Device Code Suffix
none (default) 
-6
-7
-8
PART NUMBER DESCRIPTION
ss pp
c
-0 iv L- xxx f yy h n -p-mx-Options
p = Pin Length
Omit this digit for Standard 5mm
6 = 3.8mm, 7= 5.8mm
iv = Input Voltage 8 = 2.8mm
05 = Range centered on 5V
12 = Range centered on 12V Enable Logic Polarity
24 = 18 to 36(2:1), 9 to 36V(4:1) Omit for Positive Enable Logic
36 = 20 to 60V N = Negative Enable
46 = 18V to 75V (4:1) Except: AK60C-20H, BK60C-30H
48 = Typ 36 to 75V Omit for Negative Logice
P = Positive Logic
c = Pinout compatability
A= Astec Footprint or "non Lucent" footprint H = High Efficiency (Synch rect.)
C= Ind Std, Exact Lucent drop in Omit H if Conventional Diode (low Eff)
yy = Output Current
pp = Package Type ie. 08 = 8 Amps
40 = 1" x 2" SMD
42 = 1.5" x 2" SMD f = # of Outputs
45 = 1.45" X 2.3" (1/4 Brk) F = Single Output
60 = 2.4" X 2.3" (1/2 Brk) D = Dual Output
80 = Full size 4.6" x 2.4"
72= 2.35" X 3.3 (3/4 Brk) xxx = Output Voltage
Format is XX.X (ie 1.8V = 018)
ss = Series
AA = 1/2brick Dual (Old designator)
AK = Ind Std sizes (1/4, 1/2, full) <150W mx = Options
AM/BM = Full size, astec pin out M1,M2 = .25" Height Heatsink
AL = Half size, astec pin-out M3,M4 = .5" height Heatsink
BK = Ind Std size =>150W or feature rich M5.M6 = 1.0" Height Heatsink
AV = Avansys Product
Note: For some products, they may not conform with the PART NUMBER DESCRIPTION above absolutely.
REVISION Q ATTACHMENT I Page 1 of 2
NEW PART NUMBER DESCRIPTION
Acs ii V1 V2 V3Vin -e t p Mx
Output Voltage
A = 5.0V E = 7.5V
F = 3.3V B = 12V, C = 15V
G = 2.5V L = 8V, H = 24V, R = 28V
D = 2.0V / 2.1V Omit V2 and V3 if Single Output
Y = 1.8V Omit V3 if Dual Output
M = 1.5V ie for Dual Output 5 and 3.3V
K = 1.2V V1 =A, V2 = F, V3 =Omit
J = 0.9V V1 =A, V2 = F, V3 =Omit
ii = Output Current Max
ie 60 = 60 Amps Vin = Input Voltage range
300 = 250V to 450V
S = Size 48 = 36V to 75V
F = Full Brick 24 = 18V to 36V
H = Half Brick 03 = 1.8V to 5.0V
Q = Quarter Brick 08 = 5.0V to 13.0V
S = 1 X 2 18 Pin SMT PFC: Power Factor Corrected
E = 1 X 2 Thru Hole
C = (.53X1.3X.33) SMT (Austin Lite drop in) E = Enable Logic for > 15W
V = Conventional Package (2X2.56") or ( Omit this digit for Positive enable
A = SIP N = Negative Logic
W = Convent pkg (Wide 2.5X3) E = Enable Logic for < 15W
R = 1 X 1 Thru Hole Omit this digit for no enable option
A = SIP 1 = Negative Logic
T = 1.6 X 2 4 = Positive Logic
c = Construction Trim for 1W to 15W
E = Enhanced Thermals (Baseplate or adapter plate) 9 = Trim Added
I = Integrated (Full Featured) Hong Kong models
L = Low Profile (Open Frame, No case - Isolated)
P = Open Frame (SIP or SMT) non-isolated P = Pin Length
Omit this digit for Standard 5mm
6 = 3.8mm
8 = 2.8mm
7 = 5.8 mm
Mx - Factory Options
customer Specific
Note: For some products, they may not conform with the NEW PART NUMBER DESCRIPTION above absolutely.
REVISION Q ATTACHMENT I Page 2 of 2