Products and specifications discussed herein are subject to change by Micron without notice.
2GB (x72, ECC, SR) 240-Pin DDR3 SDRAM VLP RDIMM
Features
PDF: 09005aef83244ee6/Source: 09005aef83244f69 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
JBF18C256x72PY.fm - Rev. B 6/08 EN 1©2008 Micron Technology, Inc. All rights reserved.
DDR3 SDRAM VLP RDIMM
MT18JBF25672P – 2GB
MT18JBZF25672P – 2GB
For component data sheets, refer to Micron’s Web site: www.micron.com
Features
DDR3 functionality and operations supported as
defined in the component data sheet
240-pin, very low profil e registered dual in-line
memory module (VLP RDIMM)
Compatible with AT CA form factors
Fast data transfer rates: PC3-10600, PC3-8500,
or PC3-6400
2GB (256 Meg x 72)
•V
DD = 1.5V ±0.075V
•V
DDSPD = +3.0V to +3.6V
S upports ECC error detection and correction
N ominal and dynamic on-die termination (ODT) for
data and strobe signals
Si n gle rank
•On-board I
2C temperature sensor with integrated
serial presence-detec t (SPD ) EEPROM
•8 internal device banks
Fixed burst chop (BC) of 4 and burst length (BL) of 8
via the mode register set (MRS)
Selectable BC4 or BL8 on-the-fly (OTF)
Gold edge contacts
•Pb-free
Fly-by topology
Terminated control, command, and address bus
Figure 1: 240-Pin VLP RDIMM
(ATCA Compatible R/C M)
Notes: 1. Contact Micron for industrial temperature
module offerings.
2. Not recommended for new designs.
Options Marking
Full module heat spreader Z
Operating temperature1
Commercial (0°C TA +70°C) None
Industrial (–40°C TA +85°C) I
•Package
240-pin DIMM Y
Frequency/CAS latency
1.5ns @ CL = 8 (DDR3-1333)2-1G5
1.5ns @ CL = 9 (DDR3-1333) -1G4
1.5ns @ CL = 10 (DDR3-1333)2-1G3
1.87ns @ CL = 7 (DDR3-1066) -1G1
1.87ns @ CL = 8 (DDR3-1066)2-1G0
2.5ns @ CL = 5 (DDR3-800)2-80C
2.5ns @ CL = 6 (DDR3-800)2-80B
PCB height: 17.9mm (0.705in)
Table 1: Key Timing Parameters
Speed
Grade Industry
Nomenclature
Data Rate (MT/s) tRCD
(ns) tRP
(ns) tRC
(ns)CL = 10 CL = 9 CL = 8 CL = 7 CL = 6 CL = 5
-1G5 PC3-10600 1333 1333 1333 1066 800 800 12 12 48
-1G4 PC3-10600 1333 1333 1066 1066 800 13.5 13.5 49.5
-1G3 PC3-10600 1333 1066 800 15 15 51
-1G1 PC3-8500 1066 1066 800 13.125 13.125 50.625
-1G0 PC3-8500 1066 800 15 15 52.5
-80C PC3-6400 800 800 12.5 12.5 50
-80B PC3-6400 800 15 15 52.5
PDF: 09005aef83244ee6/Source: 09005aef83244f69 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
JBF18C256x72PY.fm - Rev. B 6/08 EN 2©2008 Micron Technology, Inc. All rights reserved
2GB (x72, ECC, SR) 240-Pin DDR3 SDRAM VLP RDIMM
Features
Notes: 1. The data sheet for the base device can be found on Micron’s Web site.
2. All part numbers end with a two-place code (not shown) that designates component and
PCB revisions. Consult factory for current revision codes. Example: MT18JBF25672PY-1G1D1.
Table 2: Addressing
Parameter 2GB
Refresh count 8K
Row address 16K (A[13:0])
Device bank address 8 (BA[2:0])
Device configuration 1Gb (256 Meg x 4)
Column address 2K (A[11, 9:0])
Module rank address 1 (S0#)
Table 3: Part Numbers and Timing Parameters – 2GB Modules
Base device: MT41J256 M4,1 1Gb DDR3 SDRAM
Part Number2Module
Density Configuration Module
Bandwidth Memory Clock/
Data Rate Clock Cycles
(CL-tRCD-tRP)
MT18JBF25672P(I)Y-1G5__ 2GB 256 Meg x 72 10.6 GB/s 1.5ns/1333 MT /s 8-8 - 8
MT18JBF25672P(I)Y-1G4__ 2GB 256 Meg x 72 10.6 GB/s 1.5ns/1333 MT /s 9-9 - 9
MT18JBF25672P(I)Y-1G3__ 2GB 256 Meg x 72 10.6 GB/s 1.5ns/1333 MT/s 10-10-10
MT18JBF25672P(I)Y-1G1__ 2GB 256 Meg x 72 8.5 GB/s 1.87ns/1066 MT/s 7-7-7
MT18JBF25672P(I)Y-1G0__ 2GB 256 Meg x 72 8.5 GB/s 1.87ns/1066 MT/s 8-8-8
MT18JBF25672P(I)Y-80C__ 2GB 256 Meg x 72 6.4 GB/s 2.5ns/800 MT/s 5-5-5
MT18JBF25672P(I)Y-80B__ 2GB 256 Meg x 72 6.4 GB/s 2.5ns/800 MT/s 6-6-6
Table 4: Part Numbers and Timing Parameters – 2GB Modules With Heat Spreader
Base device: MT41J256 M4,1 1Gb DDR3 SDRAM
Part Number2Module
Density Configuration Module
Bandwidth Memory Clock/
Data Rate Clock Cycles
(CL-tRCD-tRP)
MT18JBZF25672P(I)Y-1G5__ 2GB 256 Meg x 72 10.6 GB/s 1.5ns/1333 MT/s 8-8-8
MT18JBZF25672P(I)Y-1G4__ 2GB 256 Meg x 72 10.6 GB/s 1.5ns/1333 MT/s 9-9-9
MT18JBZF25672P(I)Y- 1G3__ 2GB 256 Meg x 72 10.6 GB/s 1.5ns/1333 MT/s 10-10-10
MT18JBZF25672P(I)Y-1G1__ 2GB 256 Meg x 72 8.5 GB/s 1.87ns/1066 MT/s 7-7-7
MT18JBZF25672P(I)Y-1G0__ 2GB 256 Meg x 72 8.5 GB/s 1.87ns/1066 MT/s 8-8-8
MT18JBZF25672P(I)Y-80C__ 2GB 256 Meg x 72 6.4 GB/s 2.5ns/800 MT/s 5 -5 -5
MT18JBZF25672P(I)Y-80B__ 2GB 256 Meg x 72 6.4 GB/s 2.5ns/800 MT/s 6 -6 -6
PDF: 09005aef83244ee6/Source: 09005aef83244f69 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
JBF18C256x72PY.fm - Rev. B 6/08 EN 3©2008 Micron Technology, Inc. All rights reserved
2GB (x72, ECC, SR) 240-Pin DDR3 SDRAM VLP RDIMM
Pin Assignments and Descriptions
Pin Assignments and Descriptions
Table 5: Pin Assignments
240-Pin DDR3 VLP RDIMM Front 240-Pin DDR3 VLP RDIMM Back
Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol
1V
REFDQ 31 DQ25 61 A2 91 DQ41 121 VSS 151 VSS 181A1211VSS
2VSS 32 VSS 62 VDD 92 VSS 122 DQ4 152 DQS12 182 VDD 212 DQS14
3 DQ0 33 DQS3# 63 NC 93 DQS5# 123 DQ5 153 DQS12# 183 VDD 213 DQS14#
4 DQ1 34 DQS3 64 NC 94 DQS5 124 VSS 154 VSS 184 CK0 214 VSS
5VSS 35 VSS 65 VDD 95 VSS 125 DQS9 155 DQ30 185 CK0# 215 DQ46
6 DQS0# 36 DQ26 66 VDD 96 DQ42 126 DQS9# 156 DQ31 186 VDD 216 DQ47
7 DQS0 37 DQ27 67 VREFCA 97 DQ43 127 VSS 157 VSS 187 EVENT# 217 VSS
8VSS 38 VSS 68 PAR_IN98 VSS 128 DQ6 158 CB4 188 A0 218 DQ52
9DQ239CB069V
DD 99 DQ48 129 DQ7 159 CB5 189 VDD 219 DQ53
10 DQ3 40 CB1 70 A10 100 DQ49 130 VSS 160 VSS 190 BA1 220 VSS
11 VSS 41 VSS 71 BA0 101 VSS 131 DQ12 161 DQS17 191 VDD 221 DQS15
12 DQ8 42 DQS8# 72 VDD 102 DQS6# 132 DQ13 162 DQS17# 192 RAS# 222 DQS15#
13 DQ9 43 DQS8 73 WE# 103 DQS6 133 VSS 163 VSS 193 S0# 223 VSS
14 VSS 44 VSS 74 CAS# 104 VSS 134 DQS10 164 CB6 194 VDD 224 DQ54
15 DQS1# 45 CB2 75 VDD 105 DQ50 135 DQS10# 165 CB7 195 ODT0 225 DQ55
16 DQS1 46 CB3 76 NC 106 DQ51 136 VSS 166 VSS 196 A13 226 VSS
17 VSS 47 VSS 77 NC 107 VSS 137 DQ14 167 NC 197 VDD 227 DQ60
18 DQ10 48 VTT 78 VDD 108 DQ56 138 DQ15 168 RESET# 198 NC 228 DQ61
19 DQ11 49 VTT 79 NC 109 DQ57 139 VSS 169 NC 199 VSS 229 VSS
20 VSS 50 CKE0 80 VSS 110 VSS 140 DQ20 170 VDD 200 DQ36 230 DQS16
21 DQ16 51 VDD 81 DQ32 111 DQS7# 141 DQ21 171 A15 201 DQ37 231 DQS16#
22 DQ17 52 BA2 82 DQ33 112 DQS7 142 VSS 172 A14 202 VSS 232 VSS
23 VSS 53 ERR_OUT#83 VSS 113 VSS 143 DQS11 173 VDD 203 DQS13 233 DQ62
24 DQS2# 54 VDD 84 DQS4# 114 DQ58 144 DQS11# 174 A12 204 DQS13# 234 DQ63
25 DQS2 55 A11 85 DQS4 115 DQ59 145 VSS 175A9205VSS 235 VSS
26 VSS 56 A7 86 VSS 116 VSS 146 DQ22 176 VDD 206 DQ38 236 VDDSPD
27 DQ18 57 VDD 87 DQ34 117 SA0 147 DQ23# 177 A8 207 DQ39 237 SA1
28 DQ19 58 A5 88 DQ35 118 SCL 148 VSS 178A6208VSS 238 SDA
29 VSS 59 A4 89 VSS 119 SA2 149 DQ28 179 VDD 209 DQ44 239 VSS
30 DQ24 60 VDD 90 DQ40 120 VTT 150 DQ29 180 A3 210 DQ45 240 VTT
PDF: 09005aef83244ee6/Source: 09005aef83244f69 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
JBF18C256x72PY.fm - Rev. B 6/08 EN 4©2008 Micron Technology, Inc. All rights reserved
2GB (x72, ECC, SR) 240-Pin DDR3 SDRAM VLP RDIMM
Pin Assignments and Descriptions
Table 6: Pin Descriptions
Symbol Type Description
A[15:0] Input Address inpu ts : Provide the row address for ACTIVATE commands, and the column
address and auto precharge bit (A10) for READ/WRITE commands, to select one location
out of the memory array in the respective bank . A10 is sampled during a PRECHARGE
command to determine whether the PRECHARGE applies to one bank (A10 LOW, bank
selected by BA[2:0]) or all banks (A10 HIGH). If only one bank is to be precharged, the
bank is selected by BA. A12 is also used for BC4/BL8 identification as “BL on-the-fly”
during CAS commands. The address inputs also provide the op-code during the mode
register command set. A[13:0] address the 1Gb DDR3 devices. A[15:14] are needed to
calculate parity on the command/address bus.
BA[2:0] Input Bank address inputs: BA[2:0] define the device bank to which an ACTIVATE, READ,
WRITE, or PRECHARGE command is being applied. BA[2:0] define which mode register
(MR0, MR1, MR2, and MR3) is loaded during the LOAD MODE command. BA[1:0] are used
as part of the parity calculation.
CK0, CK0# Inp ut Clock: CK and CK# are differential clock inputs. All control, command, and address input
signals are sampled on the crossing of the positive edge of CK and the negative edge of
CK#.
CKE0 Input Clock enable: CKE enables (registered HIGH) and disables (registered LOW) internal
circuitry and clocks on the DRAM.
ODT0 Input On-die termination: ODT enables (registered HIGH) and disables (registered LOW)
termin a tion resistance internal to the DRAM. When enabled in normal operation, ODT is
only applied to the following pins: DQ, DQS, DQS#, an d DM. The ODT input will be
ignored if disabled via the LOAD MO DE co mmand .
PAR_INInput Parity input: Parity bit for the address, RAS#, CAS#, and WE#.
RAS#, CAS#,
WE# Input Command inputs: RAS#, CAS#, and WE# (along wit h S#) define the command bein g
entered.
RESET# Input
(LVCMOS) Reset: RESET# is an active LOW CMOS input referenced to VSS. The RESET# input receiver
is a CMOS input defined as a rail-to-rail signal with DC HIGH 0.8 × VDD and
DC LOW 0.2 × VDD. RESET# assertion and deassertion are asynchronous. System
applications will most likely be unterminated, heavily loaded, and have very slow slew
rates. A slow slew rate receiver design is recommended al on g with impl ementin g on -ch ip
noise filtering to prevent false triggering (RESET# assertion minimum pulse width is
100ns).
S0# Input Chip select: S# enables (registered LOW) and disables (registered HIGH) the command
decoder.
SA[2:0] Input Serial address inputs: These pins are used to configure the temperature sensor/SPD
EEPROM address range on the I2C bus.
SCL Input Serial clock for temperature sensor/SPD EEPROM: SCL is used to synchronize
communication to and from the temperature sensor/SPD EEPROM.
CB[7:0] I/O Check bits: Data used for ECC.
DQ[63:0] I/O Data input/output: Bidirectional data bus.
DQS[17:0],
DQS#[17:0] I/O Data strobe: DQS and DQS# are differential data strobes. Output with read data. Edge-
aligned with read data. Input with write data. Center-aligned with write data.
SDA I/O Serial data: SDA is a bidirectional pin used to transfer addresses and data into and out of
the temperature sensor/SPD EEPR OM on the module on the I2C bus.
ERR_OUT# Output
(open drain) Parity error output: Parity error found on the command and address bus.
EVENT# Output
(open drain) Temperature event: The EVENT# pin is asserted by the temperature sensor when critical
temperature thresholds have been exceeded.
PDF: 09005aef83244ee6/Source: 09005aef83244f69 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
JBF18C256x72PY.fm - Rev. B 6/08 EN 5©2008 Micron Technology, Inc. All rights reserved
2GB (x72, ECC, SR) 240-Pin DDR3 SDRAM VLP RDIMM
Pin Assignments and Descriptions
VDD Supply Power supply: 1.5V ±0.075V. The component VDD and VDDQ are connected to the
module VDD.
VDDSPD Supply Temperature sensor/SPD EEPROM power supply: +3.0V to +3.6V.
VREFCA Supply Reference voltage: Control, command, and address (VDD/2).
VREFDQ Supply Reference voltage: DQ, DM (VDD/2).
VSS Supply Ground.
VTT Supply Termination voltage: Used for control, command, and address (VDD/2).
NC No connect: These pins are not connected on the module.
NF No function: Connected withi n the module, but provides no functionality.
Table 6: Pin Descriptions (continued)
Symbol Type Description
PDF: 09005aef83244ee6/Source: 09005aef83244f69 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
JBF18C256x72PY.fm - Rev. B 6/08 EN 6©2008 Micron Technology, Inc. All rights reserved
2GB (x72, ECC, SR) 240-Pin DDR3 SDRAM VLP RDIMM
Functional Block Diagram
Functional Block Diagram
Figure 2: Functional Block Diagram
Notes: 1. The ZQ ball on each DDR3 component is connected to an external 240Ω ±1% resistor that is
tied to ground. It is used for the calibration of the component’s on-die termination and out-
put driver.
VREFCA
VSS
DDR3 SDRAM
DDR3 SDRAM
VDD
DDR3 SDRAM
VDDSPD Temperature sensor/SPD EEPROM
VTT
DDR3 SDRAM
DDR3 SDRAM
VREFDQ
DM CS# DQS DQS#
DQ
DQ
DQ
DQ
DQ0
DQ1
DQ2
DQ3
U1 DQ
DQ
DQ
DQ
DQ4
DQ5
DQ6
DQ7
U20
DQ
DQ
DQ
DQ
DQ8
DQ9
DQ10
DQ11
U2 DQ
DQ
DQ
DQ
DQ12
DQ13
DQ14
DQ15
U19
DQ
DQ
DQ
DQ
DQ16
DQ17
DQ18
DQ19
U3 DQ
DQ
DQ
DQ
DQ20
DQ21
DQ22
DQ23
U18
DQ
DQ
DQ
DQ
DQ24
DQ25
DQ26
DQ27
U4 DQ
DQ
DQ
DQ
DQ28
DQ29
DQ30
DQ31
U17
DQ
DQ
DQ
DQ
DQ32
DQ33
DQ34
DQ35
U7 DQ
DQ
DQ
DQ
DQ36
DQ37
DQ38
DQ39
U14
DQ
DQ
DQ
DQ
DQ40
DQ41
DQ42
DQ43
U8 DQ
DQ
DQ
DQ
DQ44
DQ45
DQ46
DQ47
U13
DQ
DQ
DQ
DQ
DQ48
DQ49
DQ50
DQ51
U9 DQ
DQ
DQ
DQ
DQ52
DQ53
DQ54
DQ55
U12
DQ
DQ
DQ
DQ
DQ56
DQ57
DQ58
DQ59
U10 DQ
DQ
DQ
DQ
DQ60
DQ61
DQ62
DQ63
U11
DQ
DQ
DQ
DQ
CB4
CB5
CB6
CB7
U16
DQ
DQ
DQ
DQ
CB0
CB1
CB2
CB3
U5
VSS
RS0# DQS0
DQS0#
DQS1
DQS1#
DQS2
DQS2#
DQS3
DQS3#
DQS4
DQS4#
DQS5
DQS5#
DQS6
DQS6#
DQS7
DQS7#
DQS8
DQS8#
DQS9
DQS9#
DQS10
DQS10#
DQS11
DQS11#
DQS12
DQS12#
DQS13
DQS13#
DQS14
DQS14#
DQS15
DQS15#
DQS16
DQS16#
DQS17
DQS17#
DM CS# DQS DQS#
DM CS# DQS DQS# DM CS# DQS DQS#
DM CS# DQS DQS# DM CS# DQS DQS#
DM CS# DQS DQS# DM CS# DQS DQS#
DM CS# DQS DQS# DM CS# DQS DQS#
DM CS# DQS DQS# DM CS# DQS DQS#
DM CS# DQS DQS# DM CS# DQS DQS#
DM CS# DQS DQS# DM CS# DQS DQS#
DM CS# DQS DQS# DM CS# DQS DQS#
ZQ
VSS
ZQ
ZQ ZQ
ZQ ZQ
ZQ ZQ
ZQ ZQ
ZQ ZQ
ZQ ZQ
ZQ ZQ
ZQ ZQ
R
e
g
i
s
t
e
r
a
n
d
P
L
L
S0#
BA[2:0]
A[15:0]
RAS#
CAS#
WE#
CKE0
ODT0
PAR_IN
RESET#
CK0
CK0#
RS0#: DDR3 SDRAM
RBA[2:0]: DDR3 SDRAM
RA[13:0]: DDR3 SDRAM
RRAS#: DDR3 SDRAM
RCAS#: DDR3 SDRAM
RWE#: DDR3 SDRAM
RCKE0: DDR3 SDRAM
RODT0: DDR3 SDRAM
ERR_OUT#
CK
CK#
DDR3 SDRAM
U6
VSS
VSS VSS
VSS VSS
VSS VSS
VSS VSS
VSS VSS
VSS VSS
VSS VSS
VSS VSS
RS#, RCKE, RA[13:0],
RRAS#, RCAS#, RWE#,
RODT, RBA[2:0]
CK
CK#
Clock, control, command, and address line terminations:
DDR3
SDRAM
VTT
DDR3
SDRAM
VDD
U15
A0
Temperature
sensor/
SPD EEPROM
A1 A2
SA0 SA1 SA2
SDA
SCL
EVT
EVENT#
DDR3 SDRAM
PDF: 09005aef83244ee6/Source: 09005aef83244f69 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
JBF18C256x72PY.fm - Rev. B 6/08 EN 7©2008 Micron Technology, Inc. All rights reserved
2GB (x72, ECC, SR) 240-Pin DDR3 SDRAM VLP RDIMM
General Description
General Description
The MT18JBF25672P and MT18JBZF25672P DDR3 SDRAM modules ar e high-speed,
CMOS dynamic random access 2GB memory modules organized in x72 config urations.
These DDR3 SDRAM modules use internally configured, 8-bank 1Gb DDR3 SDRAM
devices.
DDR3 SDRAM modules use double data ra te architecture to achieve high-speed opera-
tion. The double data rate ar c hitecture is essentially an 8n-prefetch architecture with an
interface designed to transfer two data words per clock cycle at the I/O pins. A single
read or write access for the DDR3 SDRAM module effectively consis ts of a single
8n-bit-wide, one-clock-cycle dat a transfer at the inte rnal DRAM core and eight corre-
sponding n-bit-wide, one-half-clock-cycle data transfers at the I/O pins.
The differential data strobe (DQS, DQS#) is transmitted ext ernally, along with data, for
use in data capture at the DDR3 SDRAM input receiver. DQS is center-aligned with data
for WRITEs. The read data is tr ansmitted by the DDR3 SDRAM and edge-aligned to the
data strobes.
DDR3 SDRAM modul es operate from a differential clock (CK and CK#); the crossing of
CK going HIGH and CK# going LOW will be referred to as the positive edge of CK.
Control, command, and ad dress signals ar e r egister ed at every positive edge of CK. Input
data is registered on both edges of DQS, and output data is referenced to both edges of
DQS, as well as to both edges of CK.
Fly-By Topology
These DDR3 modules use faster clock speeds than earlier DDR technologies, making
signal quality more important than ever. For improved signal quality, the clock, control,
command, and address buses have been routed in a fly-by topology, where each clock,
control, command, and address pin on each DRAM is connected to a single trace and
terminated (rather than a tree structure, where the termination is off the module near
the connector). Inherent to fly-by topology, the timing skew between the clock and DQS
signals can be easily accounted for by using the write leveling feature of DDR3.
Registering Clock Driver Operation
Registered DDR3 SDRAM modules use a registering clock driver consisting of a register
and a phase-lock loop (PLL) and comply with the JEDEC standard, “Definition of the
SSTE32882 Registering Clock Driver with Parity and Quad Chip Selects for DDR3
RDIMM Applications” (pending approval).
The register section of the registering clock driver latches command and ad dress input
signals on the rising clock edge. The PLL section of the registering clock driver receives
and redrives the differential clock signals (CK, CK#) to the DDR3 SDRAM devices. The
register(s) and PLL reduce clock, contro l, command, and address signals loading by
isolating DR A M from the system controller.
Parity Operations
The registering clock driv er can accept a parity bit from the systems memory controller,
providing even pari ty for th e c ontrol, command, and address bus. Parity errors are
flagged on the ERR_OUT# pin. Systems not using parity are expected to function without
issue if PAR_IN and ERR_OUT# are left as no connects to the system.
PDF: 09005aef83244ee6/Source: 09005aef83244f69 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
JBF18C256x72PY.fm - Rev. B 6/08 EN 8©2008 Micron Technology, Inc. All rights reserved
2GB (x72, ECC, SR) 240-Pin DDR3 SDRAM VLP RDIMM
General Description
Temperature Sensor with Serial Presence-Detect EEPROM
Thermal Sensor Operations
The temperature from the integrated thermal sensor is monitored and converted into a
digital word via the I2C bus. System designers can use the user-pr o grammable registers
to create a custom temperature-sensing solution based on system requir ements .
Progr amming and configuration details comply with JEDEC Standard No. 21-C, page
4.7-1, “Mobile Platform Memory Module Thermal Sensor C omponent Specification.
Serial Presence-Detect EEPROM Operation
DDR3 SDRAM modules incorporate ser i al presence -d etect. The SPD data is stored in a
256-b yte EEPROM. The first 128 b ytes ar e programmed b y M icron to comply with JEDEC
S tandar d JC-45 “Appendix X: Serial Presence-Detect (SPD) for DDR3 SDRAM Modules”
(pending approval). These bytes identify module-specific timing parameters, configura-
tion information, and physical attributes. User-specific information can be written into
the remaining 128 bytes of storage. System READ/WRITE operations between the
master (system logic) and the slave EEPROM device occur via a standard I2C bus using
the DIMM’s SCL (clock) and SDA (data) signal s, together with SA[2:0], which provide
eight unique DIMM/EEPROM addresses. Write protect (WP) is connected to VSS, perma-
nently disabling hardware write protect.
PDF: 09005aef83244ee6/Source: 09005aef83244f69 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
JBF18C256x72PY.fm - Rev. B 6/08 EN 9©2008 Micron Technology, Inc. All rights reserved
2GB (x72, ECC, SR) 240-Pin DDR3 SDRAM VLP RDIMM
Electrical Specifications
Electrical Specifications
S tresses greater than those listed in Table7 may cause permanent damage to the
module. This is a stre ss rating only, and functional operation of the module at these or
any other conditions outside those indicated in each devices data sheet is not implied.
Exposure to absolute maximum rating conditions for extended periods may adversely
affect reli ability.
Notes: 1. VTT termination voltage in excess of the stated limit will adversely affect the command and
address signals’ voltage margin and will reduce timing margins.
2. TA and TC are simultaneous requirements.
3. For further information, refer to technical note TN-00-08: “Thermal Applications,” available
on Micron’s Web site.
4. The refresh rate is required to double when 85°C < TC 95°C.
Table 7: Absolute Maximum Ratings
Symbol Parameter Min Max Units
VDD VDD supply voltage relative to VSS –0.4 +1.975 V
VIN, VOUT Voltage on any pin relative to VSS –0.4 +1.975 V
Table 8: Operating Condition s
Symbol Parameter Min Nom Max Units Notes
VDD VDD supply voltage 1.425 1.5 1.575 V
IVTT Termination reference current from VTT –600 +600 mA
VTT Termination reference voltage (DC)
command/address bus 0.49 × VDD - 20mV 0.5 × VDD 0.51 × VDD + 20mV V 1
IIInput leakage current ;
Any input 0V VIN VDD;
VREF input 0V VIN 0.95V
(All other pins not under
test = 0V)
Address
inputs,
RAS#, CAS#,
WE#, S#,
CKE, ODT,
BA, CK, CK#
TBD TBD TBD µA
IOZ Output leakage current;
0V VOUT VDD;
DQ and ODT are disabled;
ODT is HIGH
DQ, DQS,
DQS# –5 0 +5 µA
IVREF VREF supply leakage current;
VREFDQ = VDD/2 or VREFCA = VDD/2
(All other pins not un der test = 0V)
–18 0 +18 µA
TAModule ambient operating
temperature Commercial 0 +70 °C 2, 3
Industrial –40 +85 °C
TCDDR3 SDRAM component case
operating temperature Commercial 0 +95 °C 2, 3, 4
Industrial –40 +95 °C
PDF: 09005aef83244ee6/Source: 09005aef83244f69 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
JBF18C256x72PY.fm - Rev. B 6/08 EN 10 ©2008 Micron Technology, Inc. All rights reserved
2GB (x72, ECC, SR) 240-Pin DDR3 SDRAM VLP RDIMM
Electrical Specifications
DRAM Operating Conditions
Re commended AC operating conditions are given in the DDR3 component data sheets.
Component specifications are available on Microns Web site. Module speed grades
correlate with component speed grades, as shown in Table 9.
Design Considerations
Simulations
Micron memor y mod u le s are designed to optimize signal integrity through carefully
designed terminations, controlled board impedances, routing topologies, trace length
matching, and decoupling. However, good signal integrity starts at the system level.
Micron encourages designers to simulate the signal characteristics of the systems
memory bus to ensure adequate signal integrity of the entire memory system.
Power
Operating v oltages ar e specified at the DRAM, not at the edge connector of the module.
Designers must account for any system voltage drops at anticipated power levels to
ensure the required supply voltag e is maintained.
Table 9: Module and Component Speed Grades
DDR3 components may exce ed the listed module sp eed grades
Module Speed Grade Component Speed Grade
-1G5 -15F
-1G4 -15E
-1G3 -15
-1G1 -187E
-1G0 -187
-80C -25E
-80B -25
PDF: 09005aef83244ee6/Source: 09005aef83244f69 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
JBF18C256x72PY.fm - Rev. B 6/08 EN 11 ©2008 Micron Technology, Inc. All rights reserved
2GB (x72, ECC, SR) 240-Pin DDR3 SDRAM VLP RDIMM
Electrical Specifications
IDD Specifications
Table 10: DDR3 IDD Specifications and Conditions – 2GB
Values are for the MT41J256M4 DDR3 SDRAM only and are computed from values specified in the
1Gb (256 Meg x 4) component data sheet
Parameter Symbol 1333 1066 800 Units
Operating current 0: One bank ACTIVATE-to-PRECHARGE IDD0 1,530 1,350 1,170 mA
Operating current 1: One bank ACTIVATE-to-READ-to-PRECHARGE IDD1 1,890 1,710 1,530 mA
Precharge power-down current: Slow exit IDD2P 180 180 180 mA
Precharge power-down current: Fast exit IDD2P 450 450 450 mA
Precharge quiet standby current IDD2Q 900 810 720 mA
Precharge standby current IDD2N 990 900 810 mA
Active power-down current IDD3P 630 540 450 mA
Active standby current IDD3N 1,080 990 900 mA
Burst read operating current IDD4R 3,600 2,880 2,340 mA
Burst write operat ing current IDD4W 3,420 2,880 2,340 mA
Refresh current IDD5B 4,320 3,960 3,600 mA
Self refresh temperature current: MAX TC = 85°C IDD6 108 108 108 mA
Self refresh temperature current (SRT-enabled): MAX TC = 95°C IDD6ET 162 162 162 mA
All banks interleaved read current IDD7 5,670 4,500 4,140 mA
PDF: 09005aef83244ee6/Source: 09005aef83244f69 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
JBF18C256x72PY.fm - Rev. B 6/08 EN 12 ©2008 Micron Technology, Inc. All rights reserved
2GB (x72, ECC, SR) 240-Pin DDR3 SDRAM VLP RDIMM
Registering Clock Driver Specifications
Registering Clock Driver Specifications
Notes: 1. Timing and switching specifications for the register listed above are critical for proper oper-
ation of the DDR3 SDRAM RDIMMs. These are meant to be a subset of the parameters for
the specific device used on the module.
Table 11: Registering Clock Driver Electrical Characteristics
SSTE32882 devices or equivalent
Symbol Parameter Pins Min Nom Max Units
VDD DC supply voltage 1.425 1.5 1.575 V
VREF DC reference voltage 0.49 × VDD - 20mV 0.5 × VDD 0.51 × VDD + 20mV V
VTT DC termination voltage 0.49 × VDD - 20mV 0.5 × VDD 0.51 × VDD + 20mV V
VIH(AC) AC high-level input
voltage Control,
command, address VREF + 175mV VDD + 400mV V
VIL(AC) AC low-level input
voltage Control,
command, address –0.4 VREF - 175mV V
VIH(DC) DC high-level input
voltage Control,
command, address VREF + 100mV VDD + 0.4 V
VIL(DC) DC low-level input
voltage Control,
command, address –0.4 VREF - 100mV V
VIH (CMOS) High-level input voltage RESET#, MIRROR 0.65 × VDD – VDD V
VIL (CMOS) Low-level input voltage RESET#, MIRROR 0 0.35 × VDD V
VIX(AC) Differential input
crosspoint vo ltage range CK, CK#, FBIN,
FBIN# 0.5 × VDD - 175mV 0.5 × VDD 0.5 × VDD + 175mV V
VID(AC) Differential input voltage CK, CK# 350 VDD + TBD mV
IOH High-level output current ERR_OUT#– TBDmA
IOL Low-level output current ERR_OUT# TBD TBD mA
PDF: 09005aef83244ee6/Source: 09005aef83244f69 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
JBF18C256x72PY.fm - Rev. B 6/08 EN 13 ©2008 Micron Technology, Inc. All rights reserved
2GB (x72, ECC, SR) 240-Pin DDR3 SDRAM VLP RDIMM
Temperature Sensor with Serial Presence-Detect EEPROM
Temperature Sensor with Serial Presence-Detect EEPROM
The temperature sensor continuousl y monitors the modul es temperatur e and can be
read back at any time over the I2C bus shared with the SPD EEPROM.
EVENT# Pin
The temperature sensor also adds the EVENT# pin (open drain). Not used by the SPD
EEPR OM, EVENT# is a temperature sensor output used to flag critical events that can be
set up in the sensor’s configuration register.
EVENT# has thre e defined modes of operati o n: interrupt mode, compare mode , and
critical temperature mode. The open-drain output of EVENT# under the three separate
operating modes is illustrated in Figure 3 on page 14. Event thresholds are programmed
in the 0x01 register using a hysteresis. The alarm window provides a comparison
window, with upper and lower limits set in the alarm upper boundary register and the
alarm lower boundary register, respectively. When the alarm window is enabled,
EVENT# will trigger whenever the temperature is outside the MIN or MAX va lues set by
the user.
The interrupt mode enables software to reset EVENT# after a critical temperature
threshold has been detected. Threshold points ar e set in the configuration r egister b y the
user. This mode triggers the critical temper ature limit and both the MIN and MAX of the
temperature window.
Table 12: Temperature Sensor with Serial Presence-Detect EEPROM Operating Conditions
Parameter/Condition Symbol Min Max Units
Supply voltage VDDSPD +3.0 +3.6 V
Supply current: V DD = 3.3V IDD –+2.0mA
Input high voltage: Logic 1; SCL, SDA VIH +1.45 VDDSPD + 1 V
Input low voltage: Logic 0; SCL, SDA VIL –+0.55V
Output low voltage: IOUT = 2.1mA VOL –+0.4V
Input current IIN –5.0 +5.0 µA
Temperature sensing range –40 +125 °C
Temperature sensor accuracy (class B) –1.0 +1.0 °C
Table 13: Sensor and EEPROM Serial Interface Timing
Parameter/Condition Symbol Min Max Units
Time bus must be free before a new transition can start tBUF 4.7 µs
SDA fall time tF20300ns
SDA rise time tR 1,000 ns
Data hold time tHD:DAT 200 900 ns
Start condition hold time tH:STA 4.0 µs
Clock HIGH period tHIGH 4.0 50 µs
Clock LOW period tLOW 4.7 µs
SCL clock frequency fSCL 10 100 kHz
Data setup time tSU:DAT 250 ns
Start condition setup time tSU:STA 4.7 µs
Stop condition setup time tSU:STO 4.0 µs
PDF: 09005aef83244ee6/Source: 09005aef83244f69 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
JBF18C256x72PY.fm - Rev. B 6/08 EN 14 ©2008 Micron Technology, Inc. All rights reserved
2GB (x72, ECC, SR) 240-Pin DDR3 SDRAM VLP RDIMM
Temperature Sensor with Serial Presence-Detect EEPROM
The compar e mode is similar to the interrupt mode, except EVENT # cannot be reset by
the user and only returns to the logic HIGH state when the temperature falls below the
programmed thresholds.
Critical te m perature mode tr iggers EVENT# only when the te mperature has exceeded
the programmed critical trip point. When the critical trip point has bee n reached, the
temperature sensor goes into comparator mode, and the critical EVENT# cannot be
cleare d th rou gh software.
SM Bus Slave Subaddress Decoding
The temperature sensor’s physical address differs from the SPD EEPROM’s physical
address: 0011 for A0, A1, A2, and RW# in binary where A2, A1, and A0 are the three slave
subaddress pins and the R W# bit is the READ/WRITE flag.
If the slave base addr ess is fixed for the temper atur e sensor/SPD EEPR OM, then the pins
set the subaddr ess bits of the sl ave ad dr es s, e nabling the device s to be located anywhere
within the eight slave address locations. For example, they could be set from 30h to 3Eh.
Figure 3: EVENT# Pin Functionality
Time
Temperature
Critical
Alarm window (MAX)
Alarm window (MIN)
EVENT#
interrupt mode
EVENT#
comparator mode
EVENT#
critical temperature only mode
Clears event
Hysteresis affects
these trip points
PDF: 09005aef83244ee6/Source: 09005aef83244f69 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
JBF18C256x72PY.fm - Rev. B 6/08 EN 15 ©2008 Micron Technology, Inc. All rights reserved
2GB (x72, ECC, SR) 240-Pin DDR3 SDRAM VLP RDIMM
Temperature Sensor with Serial Presence-Detect EEPROM
Pointer Register
The pointer r eg ister selec ts which of the 16-bit registers is being accessed in subsequent
READ and WRITE operations. This register is a write-only register.
Table 14: Temperature Sensor Registers
Name Address Power-On Default
Pointer register Not applicable Undefined
Capability register 0x00 0x0001
Configuration register 0x01 0x0000
Alarm temperature upper boundary register 0x02 0x0000
Alarm temperature lower boundary register 0x03 0x0000
Critical temperature register 0x04 0x0000
Temperature register 0x05 Undefined
Table 15: Pointer Register Bits 0–7
Bit
76543210
0000Register
select Register
select Register
select Register
select
Table 16: Pointer Register Bits 0–2 Descriptions
Bit
Register210
0 0 0 Capability register
0 0 1 Configuration register
0 1 0 Alarm temperature upper boundary register
0 1 1 Alarm temperature lo wer boundary register
1 0 0 Critical temperature register
1 0 1 Temperature reg i s te r
PDF: 09005aef83244ee6/Source: 09005aef83244f69 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
JBF18C256x72PY.fm - Rev. B 6/08 EN 16 ©2008 Micron Technology, Inc. All rights reserved
2GB (x72, ECC, SR) 240-Pin DDR3 SDRAM VLP RDIMM
Temperature Sensor with Serial Presence-Detect EEPROM
Capability Register
The capability register indicates the features and functionality supported b y the temper-
ature sensor. This register is a read-only register.
Configuration Register
Table 17: Capability Register (Address: 0x00)
Bit
15 14 13 12 11 10 9 8
RFU RFU RFU RFU RFU RFU RFU RFU
Bit
765432 1 0
RFU RFU RFU Temperature resolution Wider range Precision Has alarm
and critic al
temperature
Table 18: Capability Register Bit Descriptions
Bit Description
0 Basic capability
1: Has alarm and critical trip point capabilities
1Accuracy
0: ±2°C over the active range and ±3°C over the monitor range
1: ±1°C over the active range and ±2°C over the monitor range
2 Wider range
0: Temperatures lower than 0°C are clamped to a binary value of 0
1: Temperatures below 0°C can be read
4:3 Temperature resolution
00: 0.5°C LSB
01: 0.25°C LSB
10: 0.125°C LSB
11: 0.0625°C LSB
15:5 0: Must be set to zero
Table 19: Configuration Register (Address: 0x01)
Bit
15 14 13 12 11 10 9 8
RFU RFU RFU RFU RFU Hysteresis Shutdown
mode
Bit
76543210
Critical lock
bit Alarm lock bit Clear event Event output
status Event output
control Critical event
only Event polarity Event mode
PDF: 09005aef83244ee6/Source: 09005aef83244f69 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
JBF18C256x72PY.fm - Rev. B 6/08 EN 17 ©2008 Micron Technology, Inc. All rights reserved
2GB (x72, ECC, SR) 240-Pin DDR3 SDRAM VLP RDIMM
Temperature Sensor with Serial Presence-Detect EEPROM
Table 20: Configuration Register Bit Descriptions
Bit Description Notes
0 Event mode
0: Comparator mode
1: Interrupt mode
Event mode cannot be c hanged if either of the lock bits
is set.
1 EVENT# polarity
0: Active LOW
1: Active HIGH
EVENT# polarity cannot be changed if either of the lock
bits is set.
2 Critical event only
0: EVENT# trips on alarm or critical temperature event
1: EVENT# trips only if critical temperature is re ached
3 Event output control
0: Event output disabled
1: Event output enabled
4Event status
0: EVENT# has not been asserted by this device
1: EVENT# is being asserted due to an alarm window or
critical temperature cond ition
This is a read-only field in the register. The event
causing the event can be determined from the read
temper a ture register.
5 Clear event
0: No effect
1: Clears the event when the temperature sensor is in
the interrupt mode
6 Alarm window lock bit
0: Alarm trips are not locked and can be changed
1: Alarm trips are locked and cannot be changed
7 Critical trip lock bit
0: Critical trip is not locked and can be changed
1: Critical trip is locked and cannot be changed
8 Shutdown mode
0: Enabled
1: Shutdown
The shutdo wn mode is a power-saving mode that
disables the temperature sensor.
10:9 Hysteres is enable
00: Disable
01: Enable at 1.5°C
10: Enable at 3°C
11: Enable at 6°C
When enabled, a hysteresis is applied to temperature
movement around the trip points. As an example, if the
hysteresis register is enabled to a delta of 6°C, the
preset trip points will toggle when the temperature
reaches th e programme d va lue. These values will reset
when the temperature drops below the trip points
minus the set hysteresis level. In this case, this would be
critical temperature minus 6°C.
The hysteresis is applied both to the above alarm
window and the below alarm window bits found in the
read-only temperature register. EVENT# is also affected
by this register.
PDF: 09005aef83244ee6/Source: 09005aef83244f69 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
JBF18C256x72PY.fm - Rev. B 6/08 EN 18 ©2008 Micron Technology, Inc. All rights reserved
2GB (x72, ECC, SR) 240-Pin DDR3 SDRAM VLP RDIMM
Temperature Sensor with Serial Presence-Detect EEPROM
Figure 4: Hysteresis
Notes: 1. TH is the value set in the alarm temperature upper boundary trip registe r.
2. TL is the value set in the alarm tempera ture lower boundary trip register.
3. Hyst is the value set in the hysteresis bits of th e configuration register.
Table 21: Hysteresis
Condition
Below Alarm Window Bit Above Alarm Window Bit
Temperature
Gradient Critical Temperature Temperature
Gradient Critical Temperature
Sets Falling TL - Hyst Rising TH
Clears Rising TLFalling TH - Hyst
TH
TL
TH - Hyst
TL - Hyst
Below window bit
Above window bit
1
2
3
PDF: 09005aef83244ee6/Source: 09005aef83244f69 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
JBF18C256x72PY.fm - Rev. B 6/08 EN 19 ©2008 Micron Technology, Inc. All rights reserved
2GB (x72, ECC, SR) 240-Pin DDR3 SDRAM VLP RDIMM
Temperature Sensor with Serial Presence-Detect EEPROM
Temperature Format
The temperature trip point registers and temper ature readout register use a
“2’s complement” format to enable negative numbers. The least significant bit (LSB) is
equal to 0.0625°C or 0.25°C depending on which register is referenced. As an example,
assuming an LSB of 0.0625°C:
A value of 0x018C would equal 24.75°C
A value of 0x06C0 would equal 108°C
A value of 0x1E74 would equal –24.75°C
Temperature Trip Point Registers
The upper and lower temperature boundary registe r s are used to set the maximum and
minimum values of the alarm window. LSB for these registers is 0.25°C. All RFU bits in
the register will always r eport zero.
Critical Temperature Register
The critical temperature register is used to set the maximum temperature above the
alarm window. The LSB for this register is 0.25°C. All RFU bits in the register will always
report zero.
Table 22: Alarm Temperature Lower Boundary Register (Address: 0x02)
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
000MSB LSB RFU RFU
Alarm window upper boundary temperature
Table 23: Alarm Temperature Lower Boundary Register (Address: 0x03)
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
000MSB LSB RFU RFU
Alarm window lower boundary temperature
Table 24: Critical Temperature Register (Address: 0x04)
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
000MSB LSB RFU RFU
Critical temperature trip point
PDF: 09005aef83244ee6/Source: 09005aef83244f69 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
JBF18C256x72PY.fm - Rev. B 6/08 EN 20 ©2008 Micron Technology, Inc. All rights reserved
2GB (x72, ECC, SR) 240-Pin DDR3 SDRAM VLP RDIMM
Temperature Sensor with Serial Presence-Detect EEPROM
Temperature Register
The temperature r egister is a read -only register that provides the current temperature
detected by the temperature sensor. The LSB for this register is 0.0625°C with a resolu-
tion of 0.0625°C. The most significant bit (MSB) is 128°C in the readout section of this
register.
The upper three bits of the register are used to monitor the trip points that are set in the
previous t hre e re gisters.
Serial Presence-Detect Data
For the latest serial presence-detect data, refer to Microns SPD page:
www.micron.com/SPD.
Table 25: Temperature Register (Address: 0x05)
Bit
15 14 13 12 11 10 9876543210
Above
critical
trip
Above
alarm
window
Below
alarm
window
MSB LSB
Temperature
Table 26: Temperature Register Bit Descriptions
Bit Description
13 Below alarm window
0: Temperature is equal to or above the lower boundary
1: Temperature is below alarm window
14 Above alarm window
0: Temperature is equal to or below the upper boun dary
1: Temperature is above alarm window
15 Above critical trip point
0: Temperature is below critical trip point
1: Temperature is above critical trip point
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
prodmktg@micron.com www.micron.com Customer Comment Line: 800-932-4992
Micron, the M logo, and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respec-
tive owners.
This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein. Although
considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.
2GB (x72, ECC, SR) 240-Pin DDR3 SDRAM VLP RDIMM
Module Dimensions
PDF: 09005aef83244ee6/Source: 09005aef83244f69 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
JBF18C256x72PY.fm - Rev. B 6/08 EN 21 ©2008 Micron Technology, Inc. All rights reserved.
Module Dimensions
Figure 5: 240-Pin DDR3 VLP RDIMM
Notes: 1. All dimensions are in millimeters (inches); MAX/MIN or typical (TYP) where noted.
2. The dimensional diagram is for reference only.
18.0 (0.709)
17.8 (0.701)
Pin 1
2.5 (0.098) D
(2X)
2.3 (0.091) TYP
5.0 (0.197) TYP
123.0 (4.84)
TYP
1.0 (0.039)
TYP 0.8 (0.031)
TYP
0.75 (0.03) R
(6X)
0.76 (0.03) R
Pin 120
Front view
133.50 (5.256)
133.20 (5.244)
47.0 (1.85)
TYP
71.0 (2.79)
TYP
9.5 (0.374)
TYP
Back view
Pin 240 Pin 121
1.37 (0.054)
1.17 (0.046)
4.0 (0.157)
MAX
2.2 (0.087) TYP
1.45 (0.057) TYP
3.05 (0.12) TYP
54.68 (2.15)
TYP
3.0 (0.118) 4X TYP
U1 U2 U3 U4 U5 U6 U7 U8 U9 U10
U11 U12 U13 U14 U15 U16 U17 U18 U19 U20
1.37 (0.054)
1.17 (0.046)
9.1 (0.358)
MAX
Module with heat spreader
U1
U1
U1
U6
U6
U6
U10
U10
U10
U11
U11
U11
U15
U15