Rev.2.4_00 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series The S-817 is an ultra compact 3-Pin positive voltage regulator developed using CMOS technology. Housing into a miniaturized 2.0 x 2.1 mm SC-82AB package, the S-817 offers key advantages for small, portable applications. The S-817 allows many types of output capacitors including ceramic capacitors and ensures highlystable operations at light load as low as 1 A. Features * Ultra-low current consumption: * Output voltage: * Output voltage accuracy: * Output current: Operating current: Typ. 1.2 A, Max. 2.5 A 1.1 to 6.0 V, selectable in 0.1 V steps. 2.0% *1 50 mA capable (3.0 V output product, VIN=5 V) *1 75 mA capable (5.0 V output product, VIN=7 V) * Dropout voltage: Typ. 160 mV (VOUT = 5.0 V, IOUT = 10 mA) * Low ESR capacitor (e.g., a ceramic capacitor of 0.1 F or more) can be used as an output capacitor. * Short circuit protection for: Series A * Excellent Line Regulation: Stable operation at light load of 1 A *1. Attention should be paid to the power dissipation of the package when the output current is large. Applications * Power source for battery-powered devices * Power source for personal communication devices * Power source for home electric/electronic appliances Package Package name SC-82AB SOT-23-5 SOT-89-3 TO-92 (Bulk) TO-92 (Tape and reel) TO-92 (Tape and ammo) Package NP004-A MP005-A UP003-A YS003-B YF003-A YF003-A Drawing code Tape Reel NP004-A NP004-A MP005-A MP005-A UP003-A UP003-A YF003-A YF003-A YZ003-C Seiko Instruments Inc. Zigzag YZ003-C 1 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.2.4_00 Block Diagrams 1. S-817A Series *1 VIN VOUT + - Short circuit *2 protection Reference voltage VSS *1. Parasitic diode Figure 1 2. S-817B Series *1 VIN VOUT + - Reference voltage VSS *1. Parasitic diode Figure 2 2 Seiko Instruments Inc. Rev.2.4_00 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Product Code Structure 1. Product name 1.1 Package SC-82A, SOT-23-5 & SOT-89-3 S-817x xx Axx - xxx - T2 IC direction in tape specifications*1 Product name (abbreviation) Package name (abbreviation)*2 NB: SC-82AB MC: SOT-23-5 UA: SOT-89-3 Output voltage 11 to 60 (E.g., when the output voltage is 1.5 V, it is expressed 15) Short circuit protection A = Yes B = No *1. Refer to the specifications at the end of this book. *2. Refer to the "Product name list". 1.2 Package TO-92 S-817x xx AY - x Product name (abbreviation) B: Bulk Z: Tape and ammo T: Tape and Reel Package name (abbreviation)*1 Y: TO-92 Output voltage 11 to 60 (E.g., when the output voltage is 1.5 V, it is expressed 15) Short circuit protection A = Yes B = No *1. Refer to the "Product name list". Seiko Instruments Inc. 3 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.2.4_00 2. Product name list 2.1 S-817A series Output voltage 1.1 V 2.0 % 1.2 V 2.0 % 1.3 V 2.0 % 1.4 V 2.0 % 1.5 V 2.0 % 1.6 V 2.0 % 1.7 V 2.0 % 1.8 V 2.0 % 1.9 V 2.0 % 2.0 V 2.0 % 2.1 V 2.0 % 2.2 V 2.0 % 2.4 V 2.0 % 2.5 V 2.0 % 2.6 V 2.0 % 2.7 V 2.0 % 2.8 V 2.0 % 2.9 V 2.0 % 3.0 V 2.0 % 3.2 V 2.0 % 3.3 V 2.0 % 3.4 V 2.0 % 3.5 V 2.0 % 3.6 V 2.0 % 3.7 V 2.0 % 3.8 V 2.0 % 4.0 V 2.0 % 4.2 V 2.0 % 4.3 V 2.0 % 4.5 V 2.0 % 4.8 V 2.0 % 5.0 V 2.0 % 5.2 V 2.0 % 5.3 V 2.0 % 5.6 V 2.0 % 6.0 V 2.0 % Table 1 SC-82AB S-817A11ANB-CUA-T2 S-817A12ANB-CUB-T2 S-817A13ANB-CUC-T2 S-817A14ANB-CUD-T2 S-817A15ANB-CUE-T2 S-817A16ANB-CUF-T2 S-817A18ANB-CUH-T2 S-817A19ANB-CUI-T2 S-817A20ANB-CUJ-T2 S-817A21ANB-CUK-T2 S-817A22ANB-CUL-T2 S-817A24ANB-CUN-T2 S-817A25ANB-CUO-T2 S-817A26ANB-CUP-T2 S-817A27ANB-CUQ-T2 S-817A28ANB-CUR-T2 S-817A29ANB-CUS-T2 S-817A30ANB-CUT-T2 S-817A32ANB-CUV-T2 S-817A33ANB-CUW-T2 S-817A35ANB-CUY-T2 S-817A36ANB-CUZ-T2 S-817A37ANB-CVA-T2 S-817A40ANB-CVD-T2 S-817A42ANB-CVF-T2 S-817A43ANB-CVG-T2 S-817A45ANB-CVI-T2 S-817A48ANB-CVL-T2 S-817A50ANB-CVN-T2 S-817A56ANB-CVT-T2 SOT-23-5 S-817A14AMC-T2 S-817A16AMC-T2 Remark Please contact the SII marketing department for products with an output voltage over than those specified above. 4 Seiko Instruments Inc. Rev.2.4_00 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series 2.2 S-817B series Output voltage 1.1 V2.0 % 1.2 V2.0 % 1.3 V2.0 % 1.5 V2.0 % 1.6 V2.0 % 1.7 V2.0 % 1.8 V2.0 % 1.9 V2.0 % 2.0 V2.0 % 2.2 V2.0 % 2.5 V2.0 % 2.7 V2.0 % 2.8 V2.0 % 3.0 V2.0 % 3.3 V2.0 % 3.5 V2.0 % 3.6 V2.0 % 3.7 V2.0 % 3.8 V2.0 % 4.0 V2.0 % 4.2 V2.0 % 4.3 V2.0 % 4.5 V2.0 % 5.0 V2.0 % 5.2 V2.0 % 5.3 V2.0 % 5.6 V2.0 % 6.0 V2.0 % Table 2 SOT-23-5 S-817B11AMC-CWA-T2 S-817B12AMC-CWB-T2 S-817B13AMC-CWC-T2 S-817B15AMC-CWE-T2 S-817B16AMC-CWF-T2 S-817B17AMC-CWG-T2 S-817B18AMC-CWH-T2 S-817B20AMC-CWJ-T2 S-817B22AMC-CWL-T2 S-817B25AMC-CWO-T2 S-817B28AMC-CWR-T2 S-817B30AMC-CWT-T2 S-817B33AMC-CWW-T2 S-817B35AMC-CWY-T2 S-817B37AMC-CXA-T2 S-817B38AMC-CXB-T2 S-817B40AMC-CXD-T2 S-817B42AMC-CXF-T2 S-817B50AMC-CXN-T2 SOT-89-3 S-817B11AUA-CWA-T2 S-817B12AUA-CWB-T2 S-817B15AUA-CWE-T2 S-817B16AUA-CWF-T2 S-817B18AUA-CWH-T2 S-817B19AUA-CWI-T2 S-817B20AUA-CWJ-T2 S-817B25AUA-CWO-T2 S-817B27AUA-CWQ-T2 S-817B30AUA-CWT-T2 S-817B33AUA-CWW-T2 S-817B35AUA-CWY-T2 S-817B36AUA-CWZ-T2 S-817B37AUA-CXA-T2 S-817B38AUA-CXB-T2 S-817B40AUA-CXD-T2 S-817B43AUA-CXG-T2 S-817B45AUA-CXI-T2 S-817B50AUA-CXN-T2 S-817B52AUA-CXP-T2 S-817B53AUA-CXQ-T2 S-817B56AUA-CXT-T2 S-817B60AUA-CXX-T2 *1 TO-92 S-817B11AY-x S-817B15AY-x S-817B25AY-x S-817B30AY-x S-817B33AY-x S-817B37AY-x S-817B40AY-x S-817B50AY-x S-817B52AY-x S-817B60AY-x *1. X changes according to the packing form in TO-92. Standard forms are B; Bulk and Z; Zigzag (tape and ammo). Remark Please contact the SII marketing department for products with an output voltage over than those specified above. Seiko Instruments Inc. 5 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.2.4_00 Pin Configuration SC-82AB Top view 4 3 1 Table 3 Pin No. Symbol Description 1 VSS GND pin 2 VIN Input voltage pin 3 VOUT Output voltage pin *1 No connection NC 4 *1. The NC pin is electrically open. The NC pin can be connected to VIN or VSS, 2 Figure 3 SOT-23-5 Top view 5 4 1 2 Table 4 Pin No. Symbol Description 1 VSS GND pin 2 VIN Input voltage pin 3 VOUT Output voltage pin *1 4 NC No connection *1 5 NC No connection *1. The NC pin is electrically open. The NC pin can be connected to VIN or VSS, 3 Figure 4 SOT-89-3 Top view 1 2 Pin No. 1 2 3 Table 5 Symbol VSS VIN VOUT Description GND pin Input voltage pin Output voltage pin Pin No. 1 2 3 Table 6 Symbol VSS VIN VOUT Description GND pin Input voltage pin Output voltage pin 3 Figure 5 TO-92 Bottom view 1 2 3 Figure 6 6 Seiko Instruments Inc. Rev.2.4_00 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Absolute Maximum Ratings Table 7 (Ta=25C unless otherwise specified) Absolute Maximum Rating Units V VSS-0.3 to VSS+12 VSS-0.3 to VIN+0.3 SC-82AB 150 SOT-23-5 250 Power dissipation PD mW SOT-89-3 500 TO-92 400 Operating temperature range Topr -40 to +85 C Storage temperature range Tstg -40 to +125 Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions. Item Input voltage Output voltage Symbol VIN VOUT Seiko Instruments Inc. 7 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.2.4_00 Electrical Characteristics 1. S-817A series Item Table 8 Symbol Output voltage *1 VOUT(E) Output current *2 IOUT Dropout voltage *3 Line regulation 1 Line regulation 2 Load regulation Output voltage temperature coefficient *4 Current consumption Input voltage Short current limit Vdrop VOUT1 VOUT2 VOUT3 VOUT Ta * VOUT ISS VIN IOS Conditions (Ta=25C unless otherwise specified) Min. Typ. Max. VIN=VOUT(S)+2 V, IOUT=10 mA VOUT(S) VOUT(S) VOUT(S) x 0.98 x 1.02 VOUT(S)+2 V 1.1 V VOUT(S) 1.9 V 20 - - 35 2.0 V VOUT(S) 2.9 V VIN10 V - - 3.0 V VOUT(S) 3.9 V 50 - - 4.0 V VOUT(S) 4.9 V 65 - - 5.0 V VOUT(S) 6.0 V 75 - - 0.92 1.58 IOUT = 10 mA 1.1 V VOUT(S) 1.4 V - 0.58 0.99 1.5 V VOUT(S) 1.9 V - 0.40 0.67 2.0 V VOUT(S) 2.4 V - 0.31 0.51 2.5 V VOUT(S) 2.9 V - 0.25 0.41 3.0 V VOUT(S) 3.4 V - 0.22 0.35 3.5 V VOUT(S) 3.9 V - 0.19 0.30 4.0 V VOUT(S) 4.4 V - 0.18 0.27 4.5 V VOUT(S) 4.9 V - 0.16 0.25 5.0 V VOUT(S) 5.4 V - 0.15 0.23 5.5 V VOUT(S) 6.0 V - VOUT(S) + 1 V VIN 10 V, IOUT = 1 mA 5 20 - VOUT(S) + 1 V VIN 10 V, IOUT = 1 A 5 20 - VIN=VOUT(S)+ 2 V 1.1 V VOUT(S) 1.9 V, 5 20 - 1 A IOUT 10 mA 2.0 V VOUT(S) 2.9 V, 10 30 - 1 A IOUT 20 mA 3.0 V VOUT(S) 3.9 V, 20 45 - 1 A IOUT 30 mA 4.0 V VOUT(S) 4.9 V, 25 65 - 1 A IOUT 40 mA 5.0 V VOUT(S) 6.0 V, 35 80 - 1 A IOUT 50 mA VIN = VOUT(S) + 1 V, IOUT = 10 mA - 100 - -40C Ta 85C VIN = VOUT(S) + 2 V, no load 1.2 2.5 - 10 - - - VIN = VOUT(S) + 2 V, 40 - - VOUT pin = 0 V V Test circuits 1 mA 3 V 1 Units mV ppm /C A V mA *1. VOUT(S)=Specified output voltage VOUT(E)=Effective output voltage, i.e., the output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)+2.0 V. *2. Output current at which output voltage becomes 95% of VOUT(E) after gradually increasing output current. *3. Vdrop = VIN1-(VOUT(E) x 0.98), where VIN1 is the Input voltage at which output voltage becomes 98% of VOUT(E) after gradually decreasing input voltage. *4. Temperature change ratio for the output voltage [mV/C] is calculated using the following equation. VOUT [mV/ C] = VOUT(S)[V ]x VOUT [ppm/ C] / 1000 Ta * VOUT Ta Temperature change ratio for output voltage 8 Specified output voltage Seiko Instruments Inc. Output voltage temperature coefficient 2 1 3 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.2.4_00 2. S-817B series Item Table 9 Symbol Output voltage *1 VOUT(E) Output current *2 IOUT Dropout voltage *3 Line regulation 1 Line regulation 2 Load regulation Vdrop VOUT1 VOUT2 VOUT3 (Ta=25C unless otherwise specified) Conditions Min. VIN=VOUT(S)+2 V, IOUT=10 mA 1.1 V VOUT(S) 1.9 V 2.0 V VOUT(S) 2.9 V 3.0 V VOUT(S) 3.9 V 4.0 V VOUT(S) 4.9 V 5.0 V VOUT(S) 6.0 V IOUT = 10 mA 1.1 V VOUT(S) 1.4 V 1.5 V VOUT(S) 1.9 V 2.0 V VOUT(S) 2.4 V 2.5 V VOUT(S) 2.9 V 3.0 V VOUT(S) 3.4 V 3.5 V VOUT(S) 3.9 V 4.0 V VOUT(S) 4.4 V 4.5 V VOUT(S) 4.9 V 5.0 V VOUT(S) 5.4 V 5.5 V VOUT(S) 6.0 V VOUT(S) + 1 V VIN 10 V, IOUT = 1 mA VOUT(S) + 1 V VIN 10 V, IOUT = 1 A VIN=VOUT(S)+ 2 V 1.1 V VOUT(S) 1.9 V, 1 A IOUT 10 mA 2.0 V VOUT(S) 2.9 V, 1 A IOUT 20 mA 3.0 V VOUT(S) 3.9 V, 1 A IOUT 30 mA 4.0 V VOUT(S) 4.9 V, 1 A IOUT 40 mA 5.0 V VOUT(S) 6.0 V, 1 A IOUT 50 mA VIN = VOUT(S) + 1 V, IOUT = 10 mA -40C Ta 85C VIN = VOUT(S) + 2 V, no load - VOUT(S)+2 V VIN10 V Typ. Max. VOUT(S) VOUT(S) VOUT(S) x 0.98 x 1.02 20 - - 35 - - 50 - - 65 - - 75 - - 0.92 1.58 - 0.58 0.99 - 0.40 0.67 - 0.31 0.51 - 0.25 0.41 - 0.22 0.35 - 0.19 0.30 - 0.18 0.27 - 0.16 0.25 - 0.15 0.23 - 5 20 - 5 20 - 5 20 - - 10 30 - 20 45 - 25 65 - 35 80 V Test circuits 1 mA 3 V 1 Units mV Output voltage ppm VOUT - 100 - *4 temperature coefficient /C Ta * VOUT Current consumption ISS 1.2 2.5 2 - A Input voltage VIN 10 V 1 - - *1. VOUT(S)=Specified output voltage VOUT(E)=Effective output voltage, i.e., the output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)+2.0 V. *2. Output current at which output voltage becomes 95% of VOUT(E) after gradually increasing output current. *3. Vdrop = VIN1-(VOUT(E) x 0.98), where VIN1 is the Input voltage at which output voltage becomes 98% of VOUT(E) after gradually decreasing input voltage. *4. Temperature change ratio for the output voltage [mV/C] is calculated using the following equation. VOUT [mV/ C] = VOUT(S)[V ]x VOUT [ppm/ C] / 1000 Ta Ta * VOUT Temperature change ratio for output voltage Specified output voltage Output voltage temperature coefficient Seiko Instruments Inc. 9 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.2.4_00 Test Circuits 1. VIN + VOUT V VSS A + Figure 7 2. A VIN VOUT VSS Figure 8 3. + VOUT VIN A V VSS + Figure 9 Standard Circuit INPUT OUTPUT VIN CIN VOUT *1 *2 VSS Single GND CL GND *1. CIN is a capacitor used to stabilize input. *2. A ceramic capacitor of 0.1 F or more can be used for CL. Figure 10 Caution The above connection diagram and constant will not guarantee successful operation. Perform through evaluation using the actual application to set the constant. 10 Seiko Instruments Inc. Rev.2.4_00 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Technical Terms 1. Low ESR ESR is the abbreviation for Equivalent Series Resistance. Low ESR output capacitors (CL) can be used in the S-817 Series. 2. Output voltage (VOUT) The accuracy of the output voltage is 2.0% guaranteed under the specified conditions for input voltage, which differs depending upon the product items, output current, and temperature. Caution If the above conditions change, the output voltage value may vary and go out of the accuracy range of the output voltage. See the electrical characteristics and characteristics data for details. 3. Line regulations 1 and 2 ( VOUT1, VOUT2) Indicate the input voltage dependencies of output voltage. That is, the values show how much the output voltage changes due to a change in the input voltage with the output current remained unchanged. 4. Load regulation ( VOUT3) Indicates the output current dependencies of output voltage. That is, the values show how much the output voltage changes due to a change in the output current with the input voltage remained unchanged. 5. Dropout voltage (Vdrop) Indicates a difference between input voltage (VIN1) and output voltage when output voltage falls by 98% of VOUT(E) by gradually decreasing the input voltage (VIN). Vdrop = VIN1-[VOUT(E) x 0.98] Seiko Instruments Inc. 11 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.2.4_00 VOUT 6. Temperature coefficient of output voltage Ta * VOUT The output voltage lies in the shaded area in the whole operating temperature shown in Figure 11 when the temperature coefficient of the output voltage is 100 ppm/C. Ex. S-817A15A Typ. VOUT [V] +0.15mV/C VOUT(E)*1 -0.15mV/C -40 25 85 Ta [C] *1. VOUT(E) is the value of the output voltage measured at 25C. Figure 11 Temperature change ratio for output voltage [mV/C] is calculated by using the following equation. VOUT [mV/ C] = VOUT(S)[V ]x VOUT [ppm/ C] / 1000 Ta Ta * VOUT Specified output voltage Temperatures change ratio for output voltage 12 Output voltage temperature coefficient Seiko Instruments Inc. SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.2.4_00 Operation 1. Basic Operation VIN *1 Current sauce Error amplifier VOUT - Vref Rf + Reference voltage circuit RS VSS *1. Parasitic diode Figure 12 Figure 12 shows the block diagram of the S-817 series. he error amplifier compares a reference voltage Vref with a part of the output voltage divided by the feedback resistors Rs and Rf, and supplies the gate voltage to the output transistor, necessary to ensure certain output voltage independent from change of input voltage and temperature. 2. Output Transistor The S-817 series uses a P-channel MOS FET as the output transistor. Be sure that VOUT does not exceed VIN+0.3 V to prevent the voltage regulator from being damaged due to inverse current flowing from VOUT pin through a parastic diode to VIN pin. 3. Short Circuit Protection The S-817A series incorporates a short circuit protection to protect the output transistor against short circuit between VOUT pin and VSS pin. Installation of the short-circuit protection which protects the output transistor against short-circuit between VOUT and VSS can be selected in the S-812C series. The short-circuit protection controls output current as shown in the typical characteristics, (1) Output Voltage versus Output Current, and suppresses output current at about 40 mA even if VOUT and VSS pins are short-circuited. The short-circuit protection can not be a thermal protection at the same time. Attention should be paid to the Input voltage and the load current under the actual condition so as not to exceed the power dissipation of the package including the case for short-circuit. When the output current is large and the difference between input and output voltage is large even if not shorted, the short-circuit protection may work and the output current is suppressed to the specified value. Products without short-circuit protection can provide comparatively large current by removing a shortcircuit protection. Seiko Instruments Inc. 13 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.2.4_00 Selection of Output Capacitor (CL) To stabilize operation against variation in output load, a capacitor (CL) must be mounted between VOUT and VSS in the S-817 series because the phase is compensated with the help of the internal phase compensation circuit and the ESR of the output capacitor. When selecting a ceramic or an OS capacitor, capacitance should be 0.1 F or more, and when selecting a tantalum or an aluminum electrolytic capacitor, capacitance should be 0.1 F or more and ESR 30 or less. When an aluminum electrolytic capacitor is used attention should be especially paid to since the ESR of the aluminum electrolytic capacitor increases at low temperature and possibility of oscillation becomes large. Sufficient evaluation including temperature characteristics is indispensable. Overshoot and undershoot characteristics differ depending upon the type of the output capacitor. Refer to CL dependencies in "Transient Response Characteristics". Applied Circuits 1. Output Current Boosting Circuit Tr1 VIN R1 CIN VIN S-817 series VSS VOUT VOUT R2 CL GND Figure 13 As shown in Figure 13, the output current can be boosted by externally attaching a PNP transistor. The base current of the PNP transistor is controlled so that output voltage VOUT goes the voltage specified in the S-817 when base-emitter voltage VBE necessary to turn on the PNP transistor is obtained between input voltage VIN and S-817 power source pin VIN. The following are tips and hints for selecting and ensuring optimum use of external parts * PNP transistor Tr1: 1. Set hFE to approx. 100 to 400. 2. Confirm that no problem occurs due to power dissipation under normal operation conditions. * Resistor R1: Generally set R1 to 1 k / VOUT (S) (the voltage specified in the S-817 Series) or more. Output capacitor CL: Output capacitor CL is effective in minimizing output fluctuation at powering on or due to power or load fluctuation, but oscillation might occur. Always connect resistor R2 in series to output capacitor CL. * Resistor R2: Set R2 to 2 x VOUT(S) or more. * DO NOT attach a capacitor between the S-817 power source VIN and GND pins or between base and emitter of the PNP transistor to avoid oscillation. * To improve transient response characteristics of the output current boosting circuit shown in Figure 13, check that no problem occurs due to output fluctuation at powering on or due to power or load fluctuation under normal operating conditions. * Pay attention to the short current limit circuit incorporated into the S-817 Series because it does not function as a shortcircuiting protection circuit for this boosting circuit. 14 Seiko Instruments Inc. SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.2.4_00 The following graphs show the examples of input-output voltage characteristics (Ta=25C, typ.) in the output current boosting circuit: (1) S-817A11ANB/S-817B11AMC (2) S-817A50ANB/S-817B50AMC Tr1 : 2SA1213Y, R1 : 1 k, CL : 10 F, R2 : 2 Tr1 : 2SA1213Y, R1 : 200 , CL : 10 F, R2 : 10 1.20 5.20 100 mA 1.10 5.10 50 mA 0.90 5.00 10 mA 1 mA VOUT(V) VOUT(V) 1.00 800 mA 600 mA 0.80 4.90 10 mA 4.80 800 mA 600 mA 5 mA 400 mA 0.70 1.5 1.6 1.7 1.8 1.9 2 2.1 400 mA 4.70 200 mA 0.60 1.4 100 mA 50 mA 200 mA 2.2 2.3 4.60 2.4 5.2 5.3 5.4 VIN(V) 5.5 5.6 5.7 5.8 5.9 VIN(V) 2. Constant Current Circuit (1) Constant Current Circuit VIN VIN S-817 VOUT Series RL VSS V0 IO CIN VO GND Figure 14 (2) Constant Current Boosting Circuit Tr1 VIN S-817 R1 VOUT Series VSS RL V0 IO CIN VO GND Figure 15 Seiko Instruments Inc. 15 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.2.4_00 The S-817 Series can be configured as a constant current circuit. See Figure 14 & 15. Constant amperage IO is calculated using the following equation (VOUT(E): Effective output voltage): IO = (VOUT(E) / RL) +ISS. Please note that it is impossible to set constant amperage IO in case of circuit (1) of Figure 14 to the value exceeding the drive ability of the S-817. However, circuit (2) of Figure 15 is an example to set constant amperage to the value exceeding the drive ability of the S-817. Circuit (2) incorporates a current boosting circuit. The maximum input voltage of the constant current circuit is the value obtained by adding 10 V to voltage VO of the device. It is not recommended to attach a capacitor between the S-817 power source VIN and VSS pins or between output VOUT and VSS pins because rush current flows at powering on. An example of input voltage between VIN and VO in circuit (2) vs. IO current characteristics VIN, VO pins, Input voltage - IO current S-817A11ANB, S-817B11AMC, Tr : 2SK1213Y, R1 : 1 k, VO=2 V 0.60 RL=1.83 0.50 2.2 IO(A) 0.40 2.75 3.67 0.30 0.20 5.5 11 0.10 0.00 1.4 1.6 1.8 2 VIN-VO(V) 16 Seiko Instruments Inc. 2.2 2.4 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.2.4_00 3. Output Voltage Adjustment Circuit V IN VIN S-817 V0 VOUT Series R1 VSS CL C IN C1 R2 GND Figure 16 The output voltage can be boosted by using the configuration shown in Figure 16. The output Voltage VO can be calculated using the following equation (VOUT(E):Effective output voltage): VO = VOUT(E) x (R1 + R2) / R1 + R2 x ISS Set R1 and R2 to high values of resistance so as not to be affected by current consumption ISS. Capacitor C1 is effective in minimizing output fluctuation at powering on or due to power or load fluctuation. Determine the optimum value on your actual device. But it is not also recommended to attach a capacitor between the S-817 power source VIN and VSS pins or between output VOUT and VSS pins because output fluctuation or oscillation at powering on might occur. As shown in figure 16, a capacitor must be mounted between VIN and GND, and between VOUT and GND. Precautions * Design wiring patterns for VIN, VOUT and GND pins to hold low impedance. When mounting an output capacitor between the VOUT and VSS pins (CL) and a capacitor for stabilizing the input between VIN and VSS pins (CIN), the distance from the capacitor to the VOUT pin and to the VSS pin should be as short as possible. * Note that output voltage may be increased at low load current of less than 1 A. * To prevent oscillation, it is recommended to use the external parts under the following conditions. Output capacitor (CL): 0.1 F or more Equivalent Series Resistance (ESR): 30 or less Input series resistance (RIN): 10 or less * A voltage regulator may oscillate when power source impedance is high and input capacitor is low or not connected. * The application condition for input voltage and load current should not exceed the package power dissipation. * SII claims no responsibility for any and all disputes arising out of or in connection with any infringement of the products including this IC upon patents owned by a third party. * Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit. Seiko Instruments Inc. 17 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.2.4_00 Typical Operating Characteristics (1) Output Voltage vs. Output Current (when load current increases) (a) S-817A Series S-817A11A(Ta=25C) S-817A20A(Ta=25C) 1.2 2.5 8V 0.9 VIN= 1.5V 0.6 V OUT (V) 0.3 10V 2.0 3.1V 3V 1.5 4.1V 2.1V V OUT (V) 1.0 4V 0.5 VIN= 2.4V 0.0 0.0 0 20 40 60 IOUT (mA) 0 80 S-817A30A(Ta=25C) 2.5 4V 1.0 0.0 0 90 120 10V 4.0 6V 6V 8V V OUT 3.0 (V) 2.0 10V VIN= 3.4V 0.5 60 IOUT (mA) 5.0 5V 2.0 30 S-817A50A(Ta=25C) 3.0 V OUT 1.5 (V) 5V VIN=5.4V 7V 1.0 30 60 90 IOUT(mA) 120 0.0 150 0 40 80 120 IOUT(mA) 160 200 (b) S-817B series S-817B11A(Ta=25C) S-817B20A(Ta=25C) 2.5 1.2 8V 0.9 4.1V VOUT (V) 0.6 1.5 3.1V VOUT (V) 2.1V 0.3 VIN= 1.5V 0.0 3V 4V 0.5 50 100 150 IOUT(mA) 200 250 S-817B30A(Ta=25C) 0 50 100 150 200 250 IOUT(mA) 5.0 3.0 2.5 10V 2.0 5V 1.0 VIN= 3.4V 0.5 10V 4.0 4V 1.5 300 S-817B50A(Ta=25C) 3.5 7V 3.0 VOUT (V) 2.0 6V 8V 6V VIN=5.4V 1.0 0.0 0.0 0 18 5V 1.0 0.0 0 VOUT (V) 10V VIN=2.4V 2.0 50 100 150 200 IOUT(mA) 250 300 Seiko Instruments Inc. 0 50 100 150 IOUT(mA) 200 250 300 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.2.4_00 (2) Output Voltage vs. Input Voltage S-817A11A/S-817B11A(Ta=25C) S-817A20A/S-817B20A(Ta=25C) 2.5 1.5 IOUT =1A IOUT =1A 2.0 1.0 50mA 1.5 V OUT (V) 0.5 V OUT (V) 1.0 1mA 10mA 20mA 10mA 0.5 20mA 1mA 0.0 0.0 0 2 4 VIN (V) 6 8 S-817A30A/S-817B30A(Ta=25C) 4.0 50mA 10mA V OUT 2.0 (V) 1.5 0 2 6 8 10 4 VIN (V) 8 10 20mA 1mA 1.0 IOUT =1A 0.0 VIN (V) IOUT =1A 0.0 6 8 10 50mA 10mA V OUT 3.0 (V) 2.0 1mA 1.0 0.5 4 5.0 20mA 2.5 2 S-817A50A/S-817B50A(Ta=25C) 3.5 3.0 0 10 0 Seiko Instruments Inc. 2 4 VIN (V) 6 19 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.2.4_00 (3) Maximum Output Current vs. Input Voltage (a) S-817A Series S-817A11A S-817A20A 100 120 25C Ta=-40C 80 Ta=-40C 100 80 60 I OUT max.(mA) 40 I OUT max.(mA) 60 85C 25C 40 20 20 0 0 0 2 4 VIN (V) 6 8 85C 1 10 3 5 7 VIN (V) 9 S-817A50A S-817A30A 250 180 25C 150 Ta=-40C 120 25C 200 I OUT 90 max.(mA) 85C 60 Ta=-40C I OUT 150 max.(mA)100 85C 50 30 0 0 2 4 6 8 VIN (V) 4 10 6 8 VIN (V) 10 (b) S-817B Series S-817B11A S-817B20A 300 300 250 IOUT 250 Ta=-40C 200 200 25C 150 25C IOUT 150 max.(mA) max.(mA) 100 100 85C 50 85C 50 0 0 0 2 4 VIN(V) 6 8 0 10 S-817B30A 2 4 VIN(V) 6 8 10 S-817B50A 300 300 250 IOUT 25C IOUT 150 max.(mA) Ta=-40C 250 Ta=-40C 200 25C 200 150 max.(mA) 100 85C 100 85C 50 50 0 0 2 20 Ta=-40C 4 6 VIN(V) 8 10 Seiko Instruments Inc. 4 6 VIN(V) 8 10 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.2.4_00 (4) Dropout Voltage vs. Output Current S-817A11A/S-817B11A S-817A20A/S-817B20A 2000 2000 25C 1000 500 Ta=-40C 5 10 15 IOUT(mA) 85C 1000 500 Ta=-40C 0 0 25C 1500 85C Vdrop(mV) Vdrop(mV) 1500 0 20 S-817A30A/S-817B30A 0 10 20 IOUT(mA) 30 40 S-817A50A/S-817B50A 1600 85C 800 25C Vdrop(mV) Vdrop(mV) 1000 85C 1200 800 400 Ta=-40C 0 25C 600 400 200 Ta=-40C 0 0 10 20 30 IOUT(mA) 40 50 0 10 20 30 IOUT(mA) 40 50 (5) Output Voltage vs. Ambient Temperature VIN=3.1V,IOUT=10mA S-817A20A/S-817B20A 1.12 2.04 1.11 2.02 VOUT (V) VOUT (V) S-817A11A/S-817B11A 1.10 1.98 1.08 1.96 0 S-817A30A/S-817B30A Ta(C) 50 -50 100 VIN=5V,IOUT=10mA 3.06 0 S-817A50A/S-817B50A Ta(C) 50 100 VIN=7V,IOUT=10mA 5.10 3.03 5.05 VOUT (V) VOUT (V) 2.00 1.09 -50 VIN=4V,IOUT=10mA 3.00 5.00 4.95 2.97 4.90 2.94 -50 0 Ta(C) 50 100 -50 Seiko Instruments Inc. 0 Ta(C) 50 100 21 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series (6) Line Regulation 1 vs. Ambient Temperature S-817A11/20/30/50A S-817B11/20/30/50A 30 VIN=VOUT(S)+1V10V,IOUT=1mA 20 15 10 2V VOUT=1.1V 3V (7) Line Regulation 2 vs. Ambient Temperature S-817A11/20/30/50A S-817B11/20/30/50A 30 VOUT2(mV) VOUT1(mV) 25 5V VIN=VOUT(S)+1V10V,IOUT=1A 25 20 15 VOUT=1.1V 10 5 2V 3V 5V 5 0 0 -50 -25 0 25 50 75 100 -50 -25 0 25 Ta(C) Ta(C) (8) Load Regulation vs. Ambient Temperature VOUT3(mV) S-817A11/20/30/50A VIN=VOUT(S)+2V,IOUT=1AIOUT S-817B11/20/30/50A 80 VOUT=1.1V(IOUT=10mA) 70 2V(IOUT=20mA) 60 3V(IOUT=30mA) 50 5V(IOUT=50mA) 40 30 20 10 0 -50 -25 0 25 50 75 100 Ta(C) 22 Rev.2.4_00 Seiko Instruments Inc. 50 75 100 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.2.4_00 (9) Current Consumption vs. Input Voltage S-817A11A/S-817B11A S-817A20A/S-817B20A 1.6 1.6 85C 25C 0.8 Ta=-40C 25C 0.8 Ta=-40C 0.4 0.4 0 0 0 2 4 VIN(V) 6 8 0 10 2 4 6 8 10 VIN(V) S-817A30A/S-817B30A S-817A50A/S-817B50A 1.6 1.6 85C 85C 1.2 1.2 25C ISS1(uA) ISS1(A) 85C 1.2 ISS1(A) ISS1(A) 1.2 0.8 Ta=-40C 0.4 25C 0.8 Ta=-40C 0.4 0 0 0 2 4 6 8 10 0 2 4 6 8 10 VIN(V) VIN(V) Seiko Instruments Inc. 23 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.2.4_00 REFERENCE DATA Transient Response Charcteristics (Typical data:Ta= =25 C) In p u t v o lta g e or L o a d c u rre n t O v e rs h o o t O u tp u t v o lta g e U n d e rs h o o t (1) At powering on S-817A30A (when using a ceramic capacitor, CL=1 F) VIN=0 V10 V, IOUT=10 mA, CL=1 F 10 V 0V 3V VOUT (0.5 V/div) TIME(100 s/div) Load dependencies of overshoot at powering on VOUT=0 VVOUT(S)+2 V, CL=1 F 0.05 VIN=0 VVOUT(S)+2 V, IOUT=10 mA 0.05 0.04 0.04 5V 0.03 Over Shoot(V) Over Shoot(V) CL dependencies of overshoot at powering on 3V 2V 0.02 0.01 2V 0.03 3V 0.02 5V 0.01 0 0 0.01 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 0.1 VDD dependencies of overshoot at powering on "Ta" dependencies of overshoot at powering on VIN=0 VVDD, IOUT=10 mA, CL=1 F 0.05 VIN=0 VVOUT(S)+2 V, IOUT=10 mA, CL=1 F 0.05 0.04 5V 0.03 Over Shoot(V) Over Shoot(V) 10 CL(F) IOUT(A) 3V 0.02 2V 0.01 0.04 0.03 5V 0.02 3V 2V 0.01 0 0 0 2 4 6 8 10 -50 0 50 Ta(C) VDD(V) 24 1 Seiko Instruments Inc. 100 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.2.4_00 (2) At powering on S-817B30A (when using a ceramic capacitor, CL=1 F) VIN=0 V10 V, IOUT=10 mA, CL=1 F 10 V 0V 3V VOUT (0.5 V/div) TIME(100 s/div) Load dependencies of overshoot at powering on VIN=0 VVOUT(S)+2 V, CL=1 F 0.05 0.04 0.04 5V 0.03 0.02 2V 3V 0.01 VIN=0 VVOUT(S)+2 V, IOUT=10 mA 0.05 Over Shoot(V) Over Shoot(V) CL dependencies of overshoot at powering on 0.03 3V 0.02 5V 0.01 0 0 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 0.01 0.1 VDD dependencies of overshoot at powering on Over Shoot(V) 0.04 Over Shoot(V) VIN=0 VVOUT(S)+2 V, IOUT=10 mA, CL=1 F 0.05 0.03 5V 3V 2V 0.01 10 "Ta" dependencies of overshoot at powering on VIN=0 VVDD, IOUT=10 mA, CL=1 F 0.02 1 CL(F) IOUT(A) 0.05 2V 0.04 0.03 2V 0.02 3V 5V 0.01 0 0 0 2 4 6 8 10 -50 0 50 100 Ta(C) VDD(V) Seiko Instruments Inc. 25 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.2.4_00 (3) Power fluctuation S-817A30A (when using a ceramic capacitor, CL=1 F) VIN=4 V10 V,IOUT=1 mA, CL=1 F 10 V 4V V OUT (0.2 V/div) 3V TIME(200 s/div) Load dependencies of overshoot at power fluctuation VIN=VOUT(S)+1 V VOUT(S)+2 V, CL=1 F 0.4 2V 0.3 5V 3V 0.2 VIN=VOUT(S)+1 VVOUT(S)+2 V, IOUT=1 mA 1 Over Shoot(V) 0.5 Over Shoot(V) CL dependencies of overshoot at power fluctuation 0.1 2V 0.8 3V 5V 0.6 0.4 0.2 0 0 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 0.01 0.1 IOUT(A) VDD dependencies of overshoot at power fluctuation 1 5V 0.6 Over Shoot(V) Over Shoot(V) 0.8 3V 0.4 2V 0.2 VIN=VOUT(S)+1 VVOUT(S)+2 V, IOUT=1 mA, CL=1 F 0.8 0.6 5V 0.4 3V 2V 0.2 0 0 0 2 4 6 8 10 -50 0 50 Ta(C) VDD(V) 26 10 "Ta" dependencies of overshoot at power fluctuation VIN=VOUT(S)+1 VVDD, IOUT=1 mA, CL=1 F 1 1 CL(F) Seiko Instruments Inc. 100 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.2.4_00 VIN=10 V4 V,IOUT=1 mA, CL=1 F 10 V 4V VOUT 3 V (0.02 V/div) TIME(50 s/div) Load dependencies of undershoot at power fluctuation VIN=VOUT(S)+2 VVOUT(S)1 V, CL=1 F 0.5 0.4 5V 0.3 3V 2V 0.2 VIN=VOUT(S)+2 VVOUT(S)+1 V, IOUT=1 mA 1 Under Shoot(V) Under Shoot(V) CL dependencies of undershoot at power fluctuation 0.1 2V 0.8 3V 5V 0.6 0.4 0.2 0 0 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 0.01 0.1 IOUT(A) VDD dependencies of undershoot at power fluctuation 0.08 5V 0.06 Under Shoot(V) Under Shoot(V) 10 "Ta" dependencies of undershoot at power fluctuation VIN=VDDVOUT(S)+1 V, IOUT=1 mA, CL=1 F 0.1 1 CL(F) 3V 0.04 2V 0.02 VIN=VOUT(S)+2 VVOUT(S)+1 V, IOUT=1 mA, CL=1 F 0.1 2V 0.08 3V 0.06 0.04 5V 0.02 0 0 0 2 4 6 8 10 -50 0 50 100 Ta(C) VDD(V) Seiko Instruments Inc. 27 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.2.4_00 (4) Load fluctuation S-817A30A/S-817B30A (when using a ceramic capacitor, CL=1 F) IOUT=30 mA10 A,V IN=5 V, CL=1 F 30 mA 10 A V OUT (0.2 V/div) 3V TIME(20 ms/div) Load current dependencies of overshoot at load fluctuation CL dependencies of overshoot at load fluctuation VIN=VOUT(S)+2 V, IOUT=IL 10 A, CL=1 F 2 2V 3V 0.5 0 1.E-05 2V 0.8 Over Shoot(V) Over Shoot(V) 5V 1.5 1 VIN=VOUT(S)+2 V, IOUT=10 mA10 A 1 3V 0.6 5V 0.4 0.2 0 1.E-04 1.E-03 1.E-02 1.E-01 0.01 1.E+00 0.1 IOUT(A) VDD dependencies of overshoot at load fluctuation 0.2 0.15 Over Shoot(V) Over Shoot(V) 5V 0.1 3V 2V 0.05 VIN=VOUT(S)+2 V, IOUT=10 mA10 A, CL=1 F 2V 5V 0.15 0.1 3V 0.05 0 0 0 2 4 6 8 10 -50 0 50 Ta(C) VDD(V) 28 10 "Ta" dependencies of overshoot at load fluctuation VIN=VDD, IOUT=10 mA,10 A, CL=1 F 0.2 1 CL(F) Seiko Instruments Inc. 100 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.2.4_00 IOUT=10 A30mA, VIN=5V, CL=1 F 30mA 10A 3V VOUT (0.2V/div) TIME(50 ms/div) Load current dependencies of undershoot at load fluctuation VIN=VOUT(S)+2 V, IOUT=10 AIL, CL=1 A 2 1 3V 0.5 2V 0 1.E-05 3V 1.2 5V 1.5 VIN=VOUT(S)+2 V, IOUT=10 A10 mA 1.4 Under Shoot(V) Under Shoot(V) CL dependencies of undershoot at load fluctuation 5V 1 0.8 0.6 2V 0.4 0.2 0 1.E-04 1.E-03 1.E-02 1.E-01 0.01 1.E+00 0.1 IOUT(A) 10 CL(F) VDD dependencies of undershoot at load fluctuation "Ta" dependencies of undershoot at load fluctuation VIN=VDD, IOUT=10 A10 mA, CL=1 F 0.5 0.5 0.4 5V 3V 0.3 Under Shoot(V) Under Shoot(V) 1 0.2 2V 0.1 VIN=VOUT(S)+2 V, IOUT=10 A 10 mA, CL=1 F 0.4 3V 5V 0.3 0.2 2V 0.1 0 0 0 2 4 6 8 10 -50 0 50 100 Ta(C) VDD(V) Seiko Instruments Inc. 29 2.00.2 1.30.2 4 3 0.05 0.3 +0.1 -0.05 0.16 2 1 0.4 +0.1 -0.06 +0.1 -0.05 No. NP004-A-P-SD-1.1 TITLE SC82AB-A-PKG Dimensions NP004-A-P-SD-1.1 No. SCALE UNIT mm Seiko Instruments Inc. 1.5 +0.1 -0.05 4.00.1 2.00.05 1.10.1 4.00.1 0.20.05 1.050.1 (0.7) 2.20.2 Feed direction No. NP004-A-C-SD-2.1 TITLE SC82AB-A-Carrier Tape No. NP004-A-C-SD-2.1 SCALE UNIT mm Seiko Instruments Inc. 12.5max. 9.00.3 Enlarged drawing in the central part o130.2 (60) (60) No. NP004-A-R-SD-1.1 TITLE SC82AB-A-Reel No. NP004-A-R-SD-1.1 QTY. SCALE UNIT mm Seiko Instruments Inc. 3,000 2.90.2 1.90.2 4 5 1 2 +0.1 0.16 -0.06 3 0.950.1 0.40.1 No. MP005-A-P-SD-1.2 TITLE No. SOT235-A-PKG Dimensions MP005-A-P-SD-1.2 SCALE UNIT mm Seiko Instruments Inc. 4.00.1(10 pitches:40.00.2) +0.1 o1.5 -0 2.00.05 +0.2 o1.0 -0 0.250.1 4.00.1 1.40.2 3.20.2 3 2 1 4 5 Feed direction No. MP005-A-C-SD-2.1 TITLE SOT235-A-Carrier Tape No. MP005-A-C-SD-2.1 SCALE UNIT mm Seiko Instruments Inc. 12.5max. 9.00.3 Enlarged drawing in the central part o130.2 (60) (60) No. MP005-A-R-SD-1.1 SOT235-A-Reel TITLE No. MP005-A-R-SD-1.1 SCALE QTY. UNIT mm Seiko Instruments Inc. 3,000 4.50.1 1.50.1 1.60.2 1 2 3 1.50.1 1.50.1 0.40.05 45 0.40.1 0.40.1 0.450.1 No. UP003-A-P-SD-1.1 TITLE SOT893-A-PKG Dimensions No. UP003-A-P-SD-1.1 SCALE UNIT mm Seiko Instruments Inc. +0.1 o1.5 -0 4.00.1(10 pitches : 40.00.2) 2.00.05 o1.5 +0.1 -0 5 max. 0.30.05 8.00.1 2.00.1 4.750.1 Feed direction No. UP003-A-C-SD-1.1 TITLE SOT893-A-Carrier Tape No. UP003-A-C-SD-1.1 SCALE UNIT mm Seiko Instruments Inc. 16.5max. 13.00.3 Enlarged drawing in the central part (60) (60) No. UP003-A-R-SD-1.1 SOT893-A-Reel TITLE No. UP003-A-R-SD-1.1 SCALE UNIT QTY. mm Seiko Instruments Inc. 1,000 5.2max. 4.2max. Marked side 0.6max. 0.450.1 0.450.1 1.27 No. YS003-B-P-SD-1.1 TITLE No. TO92-B-PKG Dimensions YS003-B-P-SD-1.1 SCALE UNIT mm Seiko Instruments Inc. 4.2max. 5.2max. Marked side 0.6max. 0.450.1 0.450.1 +0.4 2.5 -0.1 1.27 No. YF003-A-P-SD-1.1 TITLE TO92-A-PKG Dimensions YF003-A-P-SD-1.1 No. SCALE UNIT mm Seiko Instruments Inc. 12.71.0 1.0max. 0.5max. 1.0max. Marked side 1#pin 3#pin 1.45max. 0.70.2 6.350.4 o4.00.2 12.70.3(20 pitches : 254.01.0) Feed direction Marked side Feed direction No. YF003-A-C-SD-4.1 TITLE No. TO92-A-Radial Tape YF003-A-C-SD-4.1 SCALE UNIT mm Seiko Instruments Inc. 20.5 50.5 430.5 o3582 530.5 No. YF003-A-R-SD-2.1 TO92-A-Reel TITLE No. YF003-A-R-SD-2.1 SCALE UNIT QTY. mm Seiko Instruments Inc. 2,000 4.2max. 5.2max. Marked side 0.6max. 0.450.1 0.450.1 +0.4 2.5 -0.1 1.27 No. YF003-A-P-SD-1.1 TITLE TO92-A-PKG Dimensions YF003-A-P-SD-1.1 No. SCALE UNIT mm Seiko Instruments Inc. 12.71.0 1.0max. 0.5max. 1.0max. Marked side 1#pin 3#pin 1.45max. 0.70.2 6.350.4 o4.00.2 12.70.3(20 pitches : 254.01.0) Feed direction No. YZ003-C-C-SD-3.1 TITLE TO92-C-Radial Tape No. YZ003-C-C-SD-3.1 SCALE UNIT mm Seiko Instruments Inc. Spacer 60 320 40 Side spacer placed in front side 165 320 Space more than 4 strokes 262 330 47 No. YZ003-C-Z-SD-2.1 TO92-C-Ammo Packing TITLE YZ003-C-Z-SD-2.1 No. SCALE UNIT QTY. mm Seiko Instruments Inc. 2,500 * * * * * * The information described herein is subject to change without notice. Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design. When the products described herein are regulated products subject to the Wassenaar Arrangement or other agreements, they may not be exported without authorization from the appropriate governmental authority. Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Seiko Instruments Inc. is strictly prohibited. The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc. Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.