© 2007 QuickLogic Corporation
www.quicklogic.com
1
• • • • • •
Device Highlights
Flexible Programmable Logic
0.25 µ, 5 layer metal CMOS process
2.5 V Vcc, 2.5/3.3 V dive capable I/O
Up to 4032 logic cells
Up to 583,000 max system gates
Up to 347 I/O
Embedded Dual Port SRAM
Up to thirty-six 2,304-bit dual port SRAM blocks
Up to 82,900 RAM bits
RAM/ROM/FIFO Wizard for automatic
configuration
Configurable and cascadable
Applications
Signal processing operators
Signal processing functions
Networking/communications for VoIP
Speech/voice processing
Channel coding
Programmable I/O
High performance: <3.2 ns Tco
Programmable slew rate control
Programmable I/O standards:
LVTTL, LVCMOS, PCI, GTL+, SSTL2,
and SSTL3
Eight independent I/O banks
Three register configurations: input, output and
output enable
Advanced Clock Network
Nine global clock networks
One dedicated
Eight programmable
Sixteen I/O (high-drive) networks
Twenty quad-net networks: five per quadrant
Figure 1: Eclipse Block Diagram
Embedded RAM BlocksPLL PLL
Fabric
Embedded RAM BlocksPLL PLL
Combining Performance, Density, and Embedded RAM
Eclipse Family Data Sheet
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
2
QuickWorks Design Software
The QuickWorks® package provides the most complete ESP and FPGA software solution from design entry
to logic synthesis, to place and route to simulation. The packages provide a solution for designers who use
third party tools from Cadence, Mentor, OrCAD, Synopsys, Viewlogic and other third-party tools for design
entry, synthesis, or simulation.
Process Data
Eclipse is fabricated on a 0.25 μm five-layer metal CMOS process. The core voltage is 2.5 V VCC supply and
3.3 V tolerant I/O with the addition of 3.3 V VCCIO. Eclipse is available in commercial, industrial, and military
temperature grades.
Programmable Logic Architectural Overview
The Eclipse logic cell structure is presented in Figure 2. This architectural feature addresses current register-
intensive designs.
Table 1: Eclipse Product Family Members
QL6250 QL6325 QL6500 QL6600
Max Gates 248,160 320,640 488,064 583,008
Logic Array 40x24 48x32 64x48 72x56
Logic Cells 960 1,536 3,072 4,032
Max Flip-Flops 2,670 4,002 7,185 9,105
Max I/O 250 310 347 347
RAM Modules 20 24 32 36
RAM bits 46,100 55,300 73,700 82,900
Packages
PQFP 208 208 - -
PBGA (1.27 mm) - - 516 516
FPBGA (1.0 mm) 484 484 484 484
LFBGA (0.8 mm) 280 280 280 280
Table 2: Max I/O per Device /Package Combination
Device 208 PQFP 280 FPBGA 484 PBGA 516 PBGA
QL6250 99 163 250 -
QL6325 99 163 310 -
QL6500 - 163 327 347
QL6600 -163 327 347
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
3
Figure 2: Eclipse Logic Cell
The second register has a two-to-one multiplexer controlling its input. The register can be loaded from the NZ
output or directly from a dedicated input.
NOTE: The input “PP” is not an “input” in the classical sense. It can only be tied high or low using default
links only and is used to select which path “NZ” or “PS” is used as an input to the register. All other inputs
can be connected not only to “tiehi” and “tielo” but to multiple routing channels as well.
The complete logic cell consists of 2 six-input AND gates, 4 two-input AND gates, 7 two-to-one multiplexers,
and 2 D flip-flop with asynchronous SET and RESET controls. The cell has a fan-in of 30 (including register
control lines) and fits a wide range of functions with up to 17 simultaneous inputs. It has 6 outputs;
4 combinatorial and 2 registered. The high logic capacity and fan-in of the logic cell accommodate many user
functions with a single level of logic delay while other architectures require two or more levels of delay.
Table 3: Performance Standards
Function Description Slowest Speed Grade Fastest Speed Grade
Multiplexer 16:1 5 ns 2.8 ns
Parity Tree 24 6 ns 3.4 ns
36 6 ns 3.4 ns
Counter 16 bit 250 MHz 450 MHz
32 bit 250 MHz 450 MHz
FIFO
128 x 32 155 MHz 280 MHz
256 x 16 155 MHz 280 MHz
128 x 64 155 MHz 280 MHz
Clock to Out 4.5 ns 2.5 ns
System
clock 200 MHz 400 MHz
QS
A1
A2
A3
A4
A5
A6
OS
OP
B1
B2
C1
C2
MS
D1
E1
N
P
E2
D2
N
S
F1
F3
F5
F6
F2
F4
PS
PP
MP
AZ
OZ
QZ
N
Z
FZ
Q2Z
QC
QR
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
4
RAM Modules
The Eclipse Family includes multiple dual-port 2,304-bit RAM modules for implementing RAM, ROM and
FIFO functions. Each module is user-configurable into four different block organizations. Modules can also be
cascaded horizontally to increase their effective width or vertically to increase their effective depth as shown
in Figure 3. The RAM can also be configured as a modified Harvard Architecture, similar to those found in
DSPs.
Figure 3: 2,304-bit Eclipse RAM Module
The number of RAM modules varies from 20 to 36 blocks within the Eclipse family, for a total of 46.1 to 82.9
K bits of RAM. Using two “mode” pins, designers can configure each module into 128 x 18 (Mode 0), 256 x
9 (Mode 1), 512 x 4 (Mode 2), or 1024 x 2 blocks (Mode 3). The blocks are also easily cascadable to increase
their effective width and/or depth. See Figure 4.
Figure 4: Cascaded RAM Modules
The RAM modules are dual-port, with completely independent READ and WRITE ports and separate READ
and WRITE clocks. The READ ports support asynchronous and synchronous operation, while the WRITE
ports support synchronous operation. Each port has 18 data lines and 10 address lines, allowing word lengths
of up to 18 bits and address spaces of up to 1024 words. Depending on the mode selected, however, some
higher order data or address lines may not be used.
MODE[1:0]
WA[9:0]
WD[17:0]
WE
WCLK
A
SYNCRD
RA[9:0]
RD[17:0]
RE
RCLK
WDATA
RDATA
RDATA
WADDR
WDATA
RADDR
RAM
Module
(2,304 bits)
RAM
Module
(2,304 bits)
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
5
The Write Enable (WE) line acts as a clock enable for synchronous write operation. The Read Enable (RE) acts
as a clock enable for synchronous READ operation (ASYNCRD input low), or as a flow-through enable for
asynchronous READ operation (ASYNCRD input high).
Designers can cascade multiple RAM modules to increase the depth or width allowed in single modules by
connecting corresponding address lines together and dividing the words between modules.
A similar technique can be used to create depths greater than 512 words. In this case address signals higher
than the ninth bit are encoded onto the write enable (WE) input for WRITE operations. The READ data outputs
are multiplexed together using encoded higher READ address bits for the multiplexer SELECT signals.
The RAM blocks can be loaded with data generated internally (typically for RAM or FIFO functions) or with
data from an external PROM (typically for ROM functions).
Phase Locked Loops (PLLs)
Instead of requiring extra components, designers simply need to instantiate one of the pre-configured models
described in this section and listed in Table 4. The QuickLogic built-in PLLs support a wider range of
frequencies than many other PLLs. Also, QuickLogic PLLs can be cascaded to support different ranges of
frequency multiplications or divisions, driving the device at a faster or slower rate than the incoming clock
frequency. Most importantly, they achieve a very short clock-to-out time—generally less than 3 ns. This low
clock-to-out time is achieved by the PLL subtracting the clock tree delay through the feedback path, effectively
making the clock tree delay zero.
Figure 5 illustrates a typical QuickLogic ESP PLL.
Figure 5: PLL Block
vco
Filter
FIN
FOUT
+
-
1st Quadrant
2nd Quadrant
3rd Quadrant
4th Quadrant
Clock
Tree
Frequency Divide
Frequency Multiply
1
.
_
.
2
.
_
.
4
.
_
.
4
.
_
.
2
.
_
.
1
.
.
_
PLL Bypass
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
6
Fin represents a very stable high-frequency input clock and produces an accurate signal reference. This signal
can either bypass the PLL entirely, thus entering the clock tree directly, or it can pass through the PLL itself.
Within the PLL, a voltage-controlled oscillator (VCO) is added to the circuit. The external Fin signal and the
local VCO form a control loop. The VCO is multiplied or divided down to the reference frequency, so that a
phase detector (the crossed circle in Figure 5) can compare the two signals. If the phases of the external and
local signals are not within the tolerance required, the phase detector sends a signal through the charge pump
and loop filter (Figure 5). The charge pump generates an error voltage to bring the VCO back into alignment
and the loop filter removes any high frequency noise before the error voltage enters the VCO. This new VCO
signal enters the clock tree to drive the chip's circuitry.
Fout represents the clock signal that emerges from the output pad (the output signal PLLPAD_OUT is explained
in Table 5). This clock signal is meaningful only when the PLL is configured for external use; otherwise, it
remains in high Z state, as shown in the post-simulation waveform.
Most QuickLogic products contain four PLLs, one to be used in each quadrant. The PLL presented in
Figure 5 controls the clock tree in the fourth Quadrant of its ESP. As previously mentioned, QuickLogic PLLs
compensate for the additional delay created by the clock tree itself by subtracting the clock tree delay through
the feedback path.
For more specific information on the Phase Locked Loops, refer to Application Note 58 at
http://www.quicklogic.com/images/appnote58.pdf.
PLL Modes of Operation
QuickLogic PLLs have eight modes of operation, based on the input frequency and desired output frequency—
Table 4 indicates the features of each mode.
Table 4: PLL Mode Frequencies
PLL Model Output Frequency Input Frequency Rangea
a. The input frequency can range from 12.5 MHz to 500 MHz, while output frequency ranges from 25 MHz to 250 MHz. When you
add PLLs to your top-level design, be sure that the PLL mode matches your desired input and output frequencies.
Output Frequency Range
PLL_HFb
b. HF stands for high frequency and LF stands for low frequency.
Same as input frequency 66 MHz–150 MHz 66 MHz–150 MHz
PLL_LF Same as input frequency 25 MHz–133 MHz 25 MHz–133 MHz
PLL_MULT2HF 2 × input frequency 50 MHz–125 MHz 100 MHz–250 MHz
PLL_MULT2LF 2 × input frequency 16 MHz–50 MHz 32 MHz–100 MHz
PLL_DIV2HF 1/2 × input frequency 100 MHz–250 MHz 50 MHz–125 MHz
PLL_DIV2LF 1/2 × input frequency 50 MHz–100 MHz 25 MHz–50 MHz
PLL_MULT4 4 × input frequency 16 MHz–40 MHz 64 MHz–160 MHz
PLL_DIV4 1/4 × input frequency 100 MHz–300 MHz 25 MHz–75 MHz
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
7
PLL Signals
Table 5 summarizes the key signals in QuickLogic PLLs.
NOTE: For PLL AC specifications, contact the factory.
Table 5: PLL Signals
Signal Name Description
PLLCLK_INa
a. Because PLLCLK_IN and PLLRST signals have INPAD, and PLLPAD_OUT has OUTPAD, you do not have to add additional pads
to your design.
Input clock signal
PLLRST Active High Reset If PLLRST is asserted, then CLKNET_OUT and PLLPAD_OUT are reset to 0.
This signal must be asserted and then released in order for the LOCK_DETECT to work.
ONn_OFFCHIP
PLL output This signal selects whether the PLL will drive the internal clock network or be used off-
chip. This is a static signal, not a dynamic signal.
Tied to GND = outgoing signal drives internal gates.
Tied to VCC = outgoing signal used off-chip.
CLKNET_OUT Out to internal gates This signal bypasses the PLL logic before driving the internal gates. Note that
this signal cannot be used in the same quadrant where the PLL signal is used (PLLCLK_OUT).
PLLCLK_OUT Out from PLL to internal gates This signal can drive the internal gates after going through the PLL.
For this to work, ONn_OFFCHIP must be tied to GND.
PLLPAD_OUT Out to off-chip This outgoing signal is used off-chip. For this to work, ONn_OFFCHIP signal must
be tied to VCC.
LOCK_DETECT
Active High Lock detection signal NOTE: For simulation purposes, this signal gets asserted after
10 clock cycles. However, it can take a maximum of 200 clock cycles to sync with the input clock
upon release of the RESET signal.
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
8
I/O Cell Structure
Eclipse features a variety of distinct I/O pins to maximize performance, functionality, and flexibility with bi-
directional I/O pins and input-only pins. All I/O pins are 2.5 V and 3.3 V tolerant and comply with the specific
I/O standard selected. All dedicated input pins are 2.5 V tolerant and comply with the LVCMOS2 standard.For
single ended I/O standards, VCCIO specifies the input tolerance and the output drive. For voltage referenced
I/O standards (e.g., SSTL), the voltage supplied to the INREF pins in each bank specifies the input switch
point. For example, the VCCIO pins must be tied to a 3.3 V supply to provide 3.3 V compliance. Eclipse can
also support the LVDS and LVPECL I/O standards with the use of external resistors (see Table 6).
As designs become more complex and requirements more stringent, several application-specific I/O standards
have emerged for specific applications. I/O standards for processors, memories, and a variety of bus
applications have become commonplace and a requirement for many systems. In addition, I/O timing has
become a greater issue with specific requirements for setup, hold, clock to out, and switching times. Eclipse
has addressed these new system requirements and now includes a completely new I/O cell which consists of
programmable I/Os as well as a new cell structure consisting of three registers—Input, Output, and Output
Enable (OE).
Eclipse offers banks of programmable I/Os that address many of the bus standards that are popular today. As
shown in Figure 6 each bi-directional I/O pin is associated with an I/O cell which features an input register,
an input buffer, an output register, a three-state output buffer, an output enable register, and 2 two-to-one
output multiplexers.
Table 6: I/O Standards and Applications
I/O
Standard
INREF Reference
Voltage Output Voltage Application
LVTTL n/a 3.3 General Purpose
LVC MO S2 n/a 2.5 General Purpose
PCI n/a 3.3 PCI Bus Applications
GTL+ 1.0 n/a Backplane
SSTL3 1.5 3.3 SDRAM
SSTL2 1.25 2.5 SDRAM
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
9
Figure 6: Eclipse I/O Cell
The bi-directional I/O pin options can be programmed for input, output, or bi-directional operation. As shown
in Figure 6, each bi-directional I/O pin is associated with an I/O cell which features an input register, an input
buffer, an output register, a three-state output buffer, an output enable register, and 2 two-to-one multiplexers.
The select lines of the two-to-one multiplexers are static and must be connected to either VCC or GND.
For input functions, I/O pins can provide combinatorial, registered data, or both options simultaneously to the
logic array. For combinatorial input operation, data is routed from I/O pins through the input buffer to the
array logic. For registered input operation, I/O pins drive the D input of input cell registers, allowing data to
be captured with fast set-up times without consuming internal logic cell resources. The comparator and
multiplexor in the input path allows for native support of I/O standards with reference points offset from
traditional ground.
For output functions, I/O pins can receive combinatorial or registered data from the logic array. For
combinatorial output operation, data is routed from the logic array through a multiplexer to the I/O pin. For
registered output operation, the array logic drives the D input of the output cell register which in turn drives
the I/O pin through a multiplexer. The multiplexer allows either a combinatorial or a registered signal to be
driven to the I/O pin. The addition of an output register will also decrease the Tco. Since the output register
does not need to drive the routing the length of the output path is also reduced.
The three-state output buffer controls the flow of data from the array logic to the I/O pin and allows the I/O
pin to act as an input and/or output. The buffer's output enable can be individually controlled by the logic cell
array or any pin (through the regular routing resources), or it can be bank-controlled through one of the global
networks. The signal can also be either combinatorial or registered. This is identical to that of the flow for the
output cell. For combinatorial control operation data is routed from the logic array through a multiplexer to
the three-state control. The IOCTRL pins can directly drive the OE and CLK signals for all I/O cells within the
same bank.
E
R
Q
D
R
Q
E
R
Q
D
+
-
PAD
OUTPUT ENABLE
REGISTER
OUTPUT
REGISTER
INPUT
REGISTER
D
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
10
For registered control operation, the array logic drives the D input of the OE cell register which in turn drives
the three-state control through a multiplexer. The multiplexer allows either a combinatorial or a registered
signal to be driven to the three-state control.
When I/O pins are unused, the OE controls can be permanently disabled, allowing the output cell register to
be used for registered feedback into the logic array.
I/O cell registers are controlled by clock, clock enable, and reset signals, which can come from the regular
routing resources, from one of the global networks, or from two IOCTRL input pins per bank of I/Os. The
CLK and RESET signals share common lines, while the clock enables for each register can be independently
controlled. I/O interface support is programmable on a per bank basis. Figure 7 illustrates the I/O bank
configurations.
Each I/O bank is independent of other I/O banks and each I/O bank has its own VCCIO and INREF supply
inputs. A mixture of different I/O standards can be used on the device; however, there is a limitation as to
which I/O standards can be supported within a given bank. Only standards that share a common VCCIO and
INREF can be shared within the same bank (e.g., PCI and LVTTL).
Figure 7: Multiple I/O Banks
Embedded RAM BlocksPLL PLL
Fabric
Embedded RAM BlocksPLL PLL
VCCIO 0 INREF 0 VCCIO 1 INREF 1
VCCIO 2
INREF 2
VCCIO 3
INREF 3
INREF 4VCCIO 4
INREF 5
VCCIO 5
INREF 6
VCCIO 6
INREF 7
VCCIO 7
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
11
Programmable Slew Rate
Each I/O has programmable slew rate capability. The rate is programmable to one of two slew rates either
fast or slow. The slower rate can be used to reduce ground bounce noise.
Programmable Weak Pull-Down
Programmable weak-pull down resistor is available on each I/O. The I/O Weak Pull-Down eliminates the need
for external pull down resistor for used I/O. The spec for pull-down current is maximum of 150 µA under
worst case condition.
Figure 8: Programmable I/O Weak Pull-Down
I/O Output Logic PA D
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
12
Clock Networks
Global Clocks
There are eight global clock networks in the Eclipse device family. Global clocks can drive logic cell, I/O, and
RAM blocks in the device. Five global clocks have access to a Quad Net (local clock network) connection with
a programmable connection to the register inputs. Global clock pins are 2.5 V, LVCMOS2, compliant.
Figure 9: Global Clock Methodology
Quad Net
CLK Pin
Global Clock Net
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
13
Quad-Net Network
There are five Quad-Net local clock networks in each quadrant for a total of 20 in a device. Each Quad-Net is
local to a quadrant. Before driving the columns clock buffers, the quad-net is driven by the output of a mux
which selects between the CLK input and an internally generated clock source (see Figure 10).
Figure 10: Global Clock Structure Schematic
Dedicated Clock
There is one dedicated clock each device of the Eclipse Family (QL6250, QL6325, QL6500, and QL6600).
This clock connects to the clock input of the Logic Cell and I/O registers, and RAM blocks through a hardwired
connection and is multiplexed with the programmable clock input. The dedicated clock provides a fast global
network with low skew. Users have the ability to select either the dedicated clock or the programmable clock
(Figure 11). The dedicated clock is 2.5 V, LVCMOS2, compliant.
Figure 11: Dedicated Clock Circuitry within Logic Cell
NOTE: For more information on the clocking capabilities of Eclipse FPGAs, refer to the QuickLogic
Application Note 68 at http://www.quicklogic.com/images/appnote68.pdf.
I/O Control and Local Hi-Drives
Each bank of I/Os has two input-only pins that can be programmed to drive the RST, CLK and EN inputs of
I/Os in that bank. These input only pins also serve as high drive inputs to a quadrant. As an I/O control or
high drive, these buffers can be driven by the internal logic. I/O control pins, called IOCTRL in the pin tables,
are 2.5 V, LVCMOS2, compliant.
tPGCK tBGCK
Internally generated clock, or
clock from general routing network
Global Clock
(CLK) Input
Global Clock Network
FF
Global Clock Buffer
Programmable Clock or
General Routing
Dedicated Clock CLK
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
14
Programmable Logic Routing
Eclipse devices are delivered with six types of routing resources as follows: short (sometimes called segmented)
wires, dual wires, quad wires, express wires, distributed networks, and default wires. Short wires span the
length of one logic cell, always in the vertical direction. Dual wires run horizontally and span the length of two
logic cells. Short and dual wires are predominantly used for local connections. Default wires supply VCC and
GND (Logic ‘1’ and Logic ‘0’) to each column of logic cells.
Quad wires have passive link interconnect elements every fourth logic cell. As a result, these wires are typically
used to implement intermediate length or medium fan-out nets.
Express lines run the length of the programmable logic uninterrupted. Each of these lines has a higher
capacitance than a quad, dual, or short wire, but less capacitance than shorter wires connected to run the
length of the device. The resistance is lower because the express wires do not require the use of “pass” links.
Express wires provide higher performance for long routes or high fan-out nets.
Distributed networks are described in the clock/control section. These wires span the programmable logic and
are driven by “column clock” buffers. All clock network pin buffers (Dedicated and Global) are hard wired to
individual sets of column clock buffers.
Global POR (Power-On Reset)
The Eclipse family of devices features a global power-on reset. This reset is hardwired to all registers and resets
them to Logic ‘0’ upon power-up of the device. In QuickLogic devices, the asynchronous Reset input to flip-
flops has priority over the Set input. Therefore, the Global POR resets all flip-flops during power-up. If you
want to set the flip-flops to Logic ‘1’, you must assert the “Set” signal after the Global POR signal has been
deasserted.
Figure 12: Power-On Reset
VCC
Power-on
Reset
QXXXXXXX 0
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
15
Joint Test Access Group (JTAG)
Figure 13: JTAG Block Diagram
Microprocessors and Application Specific Integrated Circuits (ASICs) pose many design challenges, not in the
least of which concerns the accessibility of test points. The Joint Test Access Group (JTAG) formed in response
to this challenge, resulting in IEEE standard 1149.1, the Standard Test Access Port and Boundary Scan
Architecture.
The JTAG boundary scan test methodology allows complete observation and control of the boundary pins of
a JTAG-compatible device through JTAG software. A Test Access Port (TAP) controller works in concert with
the Instruction Register (IR), which allow users to run three required tests along with several user-defined tests.
JTAG tests allow users to reduce system debug time, reuse test platforms and tools, and reuse subsystem tests
for fuller verification of higher level system elements.
The 1149.1 standard requires the following three tests:
Extest Instruction. The Extest instruction performs a PCB interconnect test. This test places a device into
an external boundary test mode, selecting the boundary scan register to be connected between the TAP's
Test Data In (TDI) and Test Data Out (TDO) pins. Boundary scan cells are preloaded with test patterns (via
the Sample/Preload Instruction), and input boundary cells capture the input data for analysis.
Sample/Preload Instruction. This instruction allows a device to remain in its functional mode, while
selecting the boundary scan register to be connected between the TDI and TDO pins. For this test, the
boundary scan register can be accessed via a data scan operation, allowing users to sample the functional
data entering and leaving the device.
TCK
TMS
TRSTB
RDI TDO
Instruction Decode
&
Control Logic
TAp Controller
State Machine
(16 States)
Instruction Register
Boundary-Scan Register
(Data Register)
Mux
Bypass
Register
Mux
Internal
Register I/O Registers
User Defined Data Register
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
16
Bypass Instruction. The Bypass instruction allows data to skip a device's boundary scan entirely, so the
data passes through the bypass register. The Bypass instruction allows users to test a device without passing
through other devices. The bypass register is connected between the TDI and TDO pins, allowing serial data
to be transferred through a device without affecting the operation of the device.
JTAG BSDL Support
BSDL-Boundary Scan Description Language
Machine-readable data for test equipment to generate testing vectors and software
BSDL files available for all device/package combinations from QuickLogic
Extensive industry support available and Automatic Test-vector Generation (ATG)
Security Fuses
There are two security links: one to disable reading logic from the array, and the second to disable JTAG access
to the device. Programming these optional links completely disables access to the device from the outside
world and provides an extra level of design security not possible in SRAM-based FPGAs. The option to
program these fuses is selectable via QuickWorks in the Tools/Options/Device Programming window in
SpDE.
Flexibility Fuse
The flexibility link enables Power-Up loading of the Embedded RAM blocks. If the link is programmed, the
Power Up Loading state machine is activated during power-up of the device. The state machine communicates
with an external EPROM via the JTAG pins to download memory contents into the on-chip RAM. If the link
is not programmed, Power-Up Loading is not enabled and the JTAG pins function as they normally would.
The option to program this bit is selectable via QuickWorks in the Tools/Options/Device Programming
window in SpDE. For more information on Power-Up Loading refer to QuickLogic Application Note 55 at
http://www.quicklogic.com/images/appnote55.pdf.
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
17
JTAG Pin Descriptions
NOTE: All JTAG inputs are clamped to the VCC rail, not the VCCIO. Therefore, these pins can only be driven
up to VCC + 0.3 V. These input pins are LVCMOS2 compliant only (2.5 V). All JTAG outputs are driven by the
VCC rail, not VCCIO. Therefore, these output pins can only drive up to VCC + 0.3 V. These output pins are
LVCMOS2 compliant only (2.5 V).
Table 7: JTAG Pin Descriptions
Pin Function Description
TDI/RSI Test Data In for JTAG/RAM init.
Serial Data In
Hold HIGH during normal operation. Connects to serial PROM
data in for RAM initialization. Connect to VCC if unused
TRSTB/RRO Active low Reset for JTAG/RAM
init. reset out
Hold LOW during normal operation. Connects to serial PROM
reset for RAM initialization. Connect to GND if unused
TMS Test Mode Select for JTAG Hold HIGH during normal operation. Connect to VCC if not used for
JTAG
TCK Test Clock for JTAG Hold HIGH or LOW during normal operation. Connect to VCC or
ground if not used for JTAG
TDO/RCO Test data out for JTAG/RAM init.
clock out
Connect to serial PROM clock for RAM initialization. Must be left
unconnected if not used for JTAG or RAM initialization
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
18
Electrical Specifications
DC Characteristics
The DC Specifications are provided in Table 8 through Table 12.
Table 8: Absolute Maximum Ratings
Parameter Value Parameter Value
VCC Voltage -0.5 V to 3.6 V DC Input Current ±20 mA
VCCIO Voltage -0.5 V to 4.6 V ESD Pad Protection ±2000 V
INREF Voltage 2.7 V Leaded Package
Storage Temperature -65° C to + 150° C
Input Voltagea
a. All dedicated inputs including the CLK, DEDCLK, PLLIN, PLLRST, and IOCTRL pins, are clamped to the VCC rail, not the VCCIO.
Therefore, these pins can only be driven up to VCC + 0.3 V. These input pins are LVCMOS2 compliant only (2.5 V).
-0.5 V to VCCIO +0.5 V Laminate Package (BGA)
Storage Temperature -55° C to + 125° C
Latch-up Immunity ±100 mA
Table 9: Operating Range
Symbol Parameter Military Industrial Commercial Unit
Min. Max. Min. Max. Min. Max.
VCC Supply Voltage 2.3 2.7 2.3 2.7 2.3 2.7 V
VCCIO I/O Input Tolerance Voltage 2.3 3.6 2.3 3.6 2.3 3.6 V
TA Ambient Temperature -55 -40 85 0 70 °C
TC Case Temperature -125 - - - - °C
KDelay
Factor
-4 Speed Grade 0.42 2.3 0.43 2.16 0.47 2.11 n/a
-5 Speed Grade 0.42 1.92 0.43 1.80 0.46 1.76 n/a
-6 Speed Grade 0.42 1.35 0.43 1.26 0.46 1.23 n/a
-7 Speed Grade 0.42 1.27 0.43 1.19 0.46 1.16 n/a
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
19
NOTE: If PLLs are not used, the VCCPLL and PLLRST pins may be grounded to the lower ICC for the device.
NOTE: The data provided in Table 12 are JEDEC and PCI Specifications. QuickLogic devices either meet
or exceed these requirements.
NOTE: All dedicated inputs including the CLK, DEDCLK, PLLIN, PLLRST, and IOCTRL pins, are clamped
to the VCC rail, not the VCCIO. Therefore, these pins can only be driven up to VCC + 0.3 V. These input pins
are LVCMOS2 compliant only (2.5 V).
Table 10: DC Characteristics
Symbol Parameter Conditions Min. Max. Unit
III or I/O Input Leakage Current VI = VCCIO or GND -10 10 µA
IOZ 3-State Output Leakage Current VI = VCCIO or GND -10 10 µA
CIInput Capacitancea
a. Capacitance is sample tested only. Clock pins are 12 pF maximum.
--8pF
IOS Output Short Circuit Currentb
b. Only one output at a time. Duration should not exceed 30 seconds.
Vo = GND
Vo = VCC
-15
40
-180
210
mA
mA
ICC D.C. Supply Currentc
c. For -4/-5/-6/-7 commercial grade devices only. See Table 11 for more details on ICC characteristics.
VI,Vo = VCCIO or GND 0.50 (typ) 2 mA
ICCIO D.C. Supply Current on VCCIO - 0 2 mA
ICCIO(DIF) D.C. Supply Current on VCCIO
for Differential I/O ---mA
IREF D.C. Supply Current on INREF --10 10 µA
IPD Pad Pull-down (programmable) VCCIO = 3.6 V - 150 µA
Table 11: ICC Characteristics
Characteristic Condition Temperature
Commercial Industrial Military
ICC
VCCPLL = GND 2 mA (max) 3 mA (max) 5 mA (max)
VCCPLL = VCC 3.25 mA (max) 5 mA (max) 10 mA (max)
Table 12: DC Input and Output Levels
INREF VIL VIH VOL VOH IOL IOH
VMIN VMAX VMIN VMAX VMIN VMAX VMAX VMIN mA mA
LVTTL n/a n/a -0.3 0.8 2.0 VCCIO + 0.3 0.4 2.4 2.0 -2.0
LVC MO S2 n/a n/a -0.3 0.7 1.7 VCCIO + 0.3 0.7 1.7 2.0 -2.0
GTL+ 0.88 1.12 -0.3 INREF - 0.2 INREF + 0.2 VCCIO + 0.3 0.6 n/a 40 n/a
PCI n/a n/a -0.3 0.3 x VCCIO 0.5 x VCCIO VCCIO + 0.5 0.1 x VCCIO 0.9 x VCCIO 1.5 -0.5
SSTL2 1.15 1.35 -0.3 INREF - 0.18 INREF + 0.18 VCCIO + 0.3 0.74 1.76 7.6 -7.6
SSTL3 1.3 1.7 -0.3 INREF - 0.2 INREF + 0.2 VCCIO + 0.3 1.10 1.90 8-8
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
20
I/O Characteristics
Figure 14: IOL vs. VOL
Figure 15: IOH vs. VOH
IOL vsVOL
0
20
40
60
80
100
120
140
160
180
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00
Supply voltage (V)
Current (mA)
Vccio = 3.6V
Vccio = 3.3V
Vccio = 3.0V
Vccio = 2.7V
Vccio = 2.5V
Vccio = 2.3V
-120
-100
-80
-60
-40
-20
0
20
0.00
0.10
0.30
0.50
0.70
0.90
1.10
1.30
1.50
1.70
1.90
2.10
2.30
2.50
2.70
2.90
3.00
3.10
3.30
3.50
3.60
Supply voltage (V)
Current (mA)
VccI/O = 2.3V
VccI/O = 2.5V
VccI/O = 2.7V
VccI/O = 3.3V
VccI/O = 3.6V
VccI/0 = 3.0V
IOH vsVOH
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
21
AC Characteristics at VCC = 2.5 V, TA = 25° C (K = 1.00)
The AC Specifications are provided from Table 13 to Table 21. Logic Cell diagrams and waveforms are
provided from Figure 16 to Figure 21.
Figure 16: Eclipse Logic Cell
Table 13: Logic Cells
Symbol Parameter Value
Min. Max.
tPD
Combinatorial Delay of the longest path: time taken by the combinatorial
circuit to output 0.205 ns 1.01 ns
tSU
Setup time: time the synchronous input of the flip flop must be stable before the
active clock edge 0.231 ns -
tHL
Hold time: time the synchronous input of the flip flop must be stable after the
active clock edge 0 ns -
tCO
Clock to out delay: the amount of time taken by the flip flop to output after the
active clock edge. -0.427 ns
tCWHI Clock High Time: required minimum time the clock stays high 0.46 ns -
tCWLO Clock Low Time: required minimum time that the clock stays low 0.46 ns -
tSET
Set Delay: time between when the flip flop is “set” (high) and when the output is
consequently “set” (high) - 0.585 ns
tRESET
Reset Delay: time between when the flip flop is “reset” (low) and when the output
is consequently “reset” (low) -0.658 ns
tSW Set Width: time that the SET signal remains high/low 0.3 ns -
tRW Reset Width: time that the RESET signal remains high/low 0.3 ns -
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
22
Figure 17: Logic Cell Flip Flop
Figure 18: Logic Cell Flip Flop Timings - First Waveform
Figure 19: Logic Cell Flip Flop Timings - Second Waveform
SET
D
CLK
RESET
Q
SET
RESET
Q
CLK
t
CWHI
(min) t
CWLO
(min)
t
RESET
t
RW
t
SET
t
SW
CLK
D
Q
tSU tHL
tCO
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
23
Figure 20: Eclipse Global Clock Structure
Figure 21: Global Clock Structure Schematic
Table 14: Eclipse Global Clock Tree Delays
Clock Segment Parameter Value
Max. Rise Max. Fall
tPGCK Global clock pin delay to quad net 0.990 ns 1.386 ns
tBGCK Global clock buffer delay (quad net to flip flop) 0.534 ns 1.865 ns
Quad net
Programmable Clock
External Clock
Global Clock Buffer
Global Clock
tPGCK tBGCK
Clock
Select
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
24
Figure 22: RAM Module
Table 15: RAM Cell Synchronous Write Timing
Symbol Parameter Value
Min. Max.
RAM Cell Synchronous Write Timing
tSWA
WA setup time to WCLK: time the WRITE ADDRESS must be stable before the
active edge of the WRITE CLOCK 0.675 ns -
tHWA
WA hold time to WCLK: time the WRITE ADDRESS must be stable after the
active edge of the WRITE CLOCK 0 ns -
tSWD
WD setup time to WCLK: time the WRITE DATA must be stable before the
active edge of the WRITE CLOCK 0.654 ns -
tHWD
WD hold time to WCLK: time the WRITE DATA must be stable after the active
edge of the WRITE CLOCK 0 ns -
tSWE
WE setup time to WCLK: time the WRITE ENABLE must be stable before the
active edge of the WRITE CLOCK 0.276 ns -
tHWE
WE hold time to WCLK: time the WRITE ENABLE must be stable after the
active edge of the WRITE CLOCK 0 ns -
tWCRD
WCLK to RD (WA = RA): time between the active WRITE CLOCK edge and the
time when the data is available at RD - 2.796 ns
WA
WD
WE
WCLK
RE
RCLK
RA
RD
RAM Mod ule
[9:0]
[17:0]
[9:0]
[17:0]
ASYNCRD
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
25
Figure 23: RAM Cell Synchronous Write Timing
Table 16: RAM Cell Synchronous and Asynchronous Read Timing
Symbol Parameter Value
Min. Max.
RAM Cell Synchronous Read Timing
tSRA
RA setup time to RCLK: time the READ ADDRESS must be stable before the
active edge of the READ CLOCK 0.686 ns -
tHRA
RA hold time to RCLK: time the READ ADDRESS must be stable after the active
edge of the READ CLOCK 0 ns -
tSRE
RE setup time to WCLK: time the READ ENABLE must be stable before the active
edge of the READ CLOCK 0.243 ns -
tHRE
RE hold time to WCLK: time the READ ENABLE must be stable after the active
edge of the READ CLOCK 0 ns -
tRCRD
RCLK to RD: time between the active READ CLOCK edge and the time when the
data is available at RD - 2.225 ns
RAM Cell Asynchronous Read Timing
rPDRD
RA to RD: time between when the READ ADDRESS is input and when the DATA
is output - 2.405 ns
tSWA
tSWD
tSWE
tHWA
tHWD
tHWE
tWCRD
old data new data
WCLK
WA
WD
WE
RD
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
26
Figure 24: RAM Cell Synchronous and Asynchronous Read Timing
Figure 25: Eclipse Cell I/O
t
SRA
t
HRA
RCLK
RA
t
SRE
t
HRE
t
RCRD
old data new data
RE
RD
r
PDRD
E
R
Q
D
R
Q
E
R
Q
D
+
-
PAD
OUTPUT ENABLE
REGISTER
OUTPUT
REGISTER
INPUT
REGISTER
D
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
27
Figure 26: Eclipse Input Register Cell
Table 17: Input Register Cell
Symbol Parameter Value
Min. Max.
tISU
Input register setup time: time the synchronous input of the pin must be stable
before the active clock edge 3.308 ns 3.526 ns
tIHL
Input register hold time: time the synchronous input of the flip-flop must be
stable after the active clock edge 0 ns -
tICO
Input register clock to out: time taken by the flip-flop to output after the active
clock edge - 0.494 ns
tIRST
Input register reset delay: time between when the flip-flop is “reset” (low) and
when the output is consequently “reset” (low) -0.464 ns
tIESU
Input register clock enable setup time: time “enable” must be stable before the
active clock edge 0.830 ns 0.987 ns
tIEH
Input register clock enable hold time: time “enable” must be stable after the
active clock edge 0 ns -
PAD
tIN,t
INI
tICLK
tISU
tSID
+
-
QE
D
R
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
28
Figure 27: Eclipse Input Register Cell Timing
Table 18: Standard Input Delays
Symbol Parameter Value
To get the total input delay add this delay to tISU Min. Max.
tSID (LVTTL) LVTTL input delay: Low Voltage TTL for 3.3 V applications - 0.34 ns
tSID (LVCMOS2) LVCMOS2 input delay: Low Voltage CMOS for 2.5 V and lower applications -0.42 ns
tSID (GTL+) GTL+ input delay: Gunning Transceiver Logic - 0.68 ns
tSID (SSTL3) SSTL3 input delay: Stub Series Terminated Logic for 3.3 V -0.55 ns
tSID (SSTL2) SSTL2 input delay: Stub Series Terminated Logic for 2.5 V - 0.61 ns
R
CLK
D
Q
t
ISU tIHL
tICO
tIESU tIEH
tIRST
E
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
29
Figure 28: Eclipse Output Register Cell
Table 19: Eclipse Output Register Cell
Symbol Parameter Value
Output Register Cell Only Min. Max.
tOUTLH Output Delay low to high (90% of H) - 2.594 ns
tOUTHL Output Delay high to low (10% of L) -2.163 ns
tPZH Output Delay tri-state to high (90% of H) - 3.056 ns
tPZL Output Delay tri-state to low (10% of L) -2.709 ns
tPHZ Output Delay high to tri-State - 3.434 ns
tPLZ Output Delay low to tri-State -3.318 ns
tCOP Clock to out delay (does not include clock tree delays) - 2.667 ns (fast slew)
8.999 ns (slow slew)
PAD
OUTPUT
REGISTER
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
30
Figure 29: Eclipse Output Register Cell Timing
NOTE: For tips to minimize ground bounce, refer to Application Note 66 at
http://www.quicklogic.com/images/appnote66.pdf.
Table 20: Output Slew Rates @ VCCIO = 3.3 V
Fast Slew Slow Slew
Rising Edge 2.8 V/ns 1.0 V/ns
Falling Edge 2.86 V/ns 1.0 V/ns
Table 21: Output Slew Rates @ VCCIO = 2.5 V
Fast Slew Slow Slew
Rising Edge 1.7 V/ns 0.6 V/ns
Falling Edge 1.9 V/ns 0.6 V/ns
L
H
L
H
tOUTLH
tOUTHL
L
H
Z
tPZH L
H
Z
tPZL
L
H
Z
tPLZ
L
H
Z
tPHZ
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
31
Package Thermal Characteristics
Thermal Resistance Equations:
θJC = (TJ - TC)/P
θJA = (TJ - TA)/P
PMAX = (TJMAX - TAMAX)/ θJA
Parameter Description:
θJC: Junction-to-case thermal resistance
θJA: Junction-to-ambient thermal resistance
TJ: Junction temperature
TA: Ambient temperature
P: Power dissipated by the device while operating
PMAX: The maximum power dissipation for the device
TJMAX: Maximum junction temperature
TAMAX: Maximum ambient temperature
NOTE: Maximum junction temperature (TJMAX) is 150°C. To calculate the maximum power dissipation
for a device package look up θJA from Table 22, pick an appropriate TAMAX and use:
PMAX = (150ºC - TAMAX)/ θJA
Table 22: Package Thermal Characteristics
Package Description θJA (º C/W) @ various flow rates (m/sec) θJC (º C/W)
Pin
Count
Package
Type 00.5 12
516 PBGA 20.0 19.0 17.5 16.0 7.0
484 PBGA 28.0 26.0 25.0 23.0 9.0
280 LFBGA 18.5 17.0 15.5 14.0 7.0
208 PQFP 26.0 24.5 23.0 22.0 11.0
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
32
Kv and Kt Graphs
Figure 30: Voltage Factor vs. Supply Voltage
Figure 31: Temperature Factor vs. Operating Temperature
Voltage Factor vs. Supply Voltage
0.9200
0.9400
0.9600
0.9800
1.0000
1.0200
1.0400
1.0600
1.0800
1.1000
2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75
Supply Voltage (V)
Kv
Temperature Factor vs. Operating Temperature
0.85
0.90
0.95
1.00
1.05
1.10
1.15
-60 -40 -20 0 20 40 60 80
Junction Temperature C
Kt
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
33
Power vs. Operating Frequency
The basic power equation which best models power consumption is given below:
PTOTAL = 0.350 + f[0.0031 ηLC + 0.0948 ηCKBF + 0.01 ηCLBF+ 0.0263 ηCKLD+ 0.543 ηRAM +
0.20 ηPLL+ 0.0035 ηINP + 0.0257 ηOUTP] (mW)
Where:
ηLC is the total number of logic cells in the design
ηCKBF = # of clock buffers
ηCLBF = # of column clock buffers
ηCKLD = # of loads connected to the column clock buffers
ηRAM = # of RAM blocks
ηPLL = # of PLLs
ηINP is the number of input pins
ηOUTP is the number of output pins
Figure 32 exhibits the power consumption in an Eclipse device. The chip was filled with (300) 8-bit counters
(approximately 76% logic cell utilization).
Figure 32: Power Consumption
Power vs Freq. (Counter_300)
0
0.5
1
1.5
2
2.5
0 20 40 60 80 100 120 140
Frequency (Mhz)
Power (W)
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
34
Figure 33 illustrates the theoretical worst-case scenarios for 50%, 70%, and 90% utilizations of the QL6600-
516 package. The resources of the device are divided exactly in half; meaning, for 50% utilization, exactly
50% of the I/Os, Logic Cells, RAM blocks, clock network, etc. are utilized. These situations may never occur
in a real design, but they do provide a very rough quantitative measure of power consumption when talking in
terms of 50% or 70% utilization of an Eclipse device.
Figure 33: Power vs. Frequency (Absolute 50%, 70%, and 90% of the Available Resources on Chip)
To learn more about power consumption, refer to Application Note 60 which is located at
http://www.quicklogic.com/images/appnote60.pdf.
Power vs. Frequency
Frequency (Mhz)
50% 70% 90%
Power (mW)
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
35
Power-Up Sequencing
Figure 34: Power-Up Requirements/Recommendations
When powering up a device, the VCC/VCCIO rails must take 400 µs or longer to reach the maximum value
(refer to Figure 34).
NOTE: Ramping VCC/VCCIO to the maximum voltage faster than 400 µs can cause the device to behave
improperly.
For users with a limited power budget, keep (VCCIO -VCC)MAX
500 mV when ramping up the power supply.
Voltage
VCCIO
VCC
(VCCIO -VCC)MAX
400 us
VCC
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
36
Pin Descriptions
Table 23 describes the pins/balls of all Eclipse devices.
Table 23: Dedicated Pin Descriptions
Pin Direction Function Description
CLKa
a. All dedicated inputs including the CLK, DEDCLK, PLLIN, PLLRST, and IOCTRL pins, are clamped to the VCC rail, not the VCCIO.
Therefore, these pins can only be driven up to VCC + 0.3 V. These input pins are LVCMOS2 compliant only (2.5 V).
IGlobal clock
network driver
Low skew global clock. This pin provides access to a dedicated,
distributed network capable of driving the CLOCK, SET, RESET, F1, and
A2 inputs to the Logic Cell, READ and WRITE CLOCKS, Read and Write
Enables of the Embedded RAM Blocks, and Output Enables of the I/Os.
I/O(A) I/O Input/Output
pin
The I/O pin is a bi-directional pin, configurable to either an input-only,
output-only, or bi-directional pin. The A inside the parenthesis means that
the I/O is located in Bank A. If an I/O is not used, SpDE (QuickWorks Tool)
provides the option of tying that pin to GND, VCC, or TriState during
programming.
VCC IPower supply
pin Connect to 2.5 V supply.
VCCIO(A) I Input voltage
tolerance pin
This pin provides the flexibility to interface the device with either a 3.3 V
device or a 2.5 V device. The A inside the parenthesis means that VCCIO is
located in BANK A. Every I/O pin in Bank A will be tolerant of VCCIO input
signals and will output VCCIO level signals. This pin must be connected to
either 3.3 V or VCC.
VCCPLLb
b. All PLLOUT output pins are driven by the VCC rail, not the VCCIO rail. These output pins are LVCMOS2 compliant only (2.5 V).
I
Phase locked
loop power
supply pin
Connect to 2.5 V supply. VCCPLL should be connected to 2.5 V supply if
the PLLs are used. If the PLLs are not used, VCCPLL can be connected to
2.5 V supply or GND. See Table 11 for ICC differences when VCCPLL is
connected to 2.5 V or GND.
GND I Ground pin Connect to ground.
PLLINaI PLL clock input Clock input for PLL.
DEDCLKaIDedicated
clock pin
Low skew global clock. This pin provides access to a dedicated,
distributed clock network capable of driving the CLOCK inputs of all
sequential elements of the device (e.g., RAM and flip-flops).
GNDPLL I Ground pin for
PLL Connect to GND.
INREF(A) I
Differential
reference
voltage
The INREF is the reference voltage pin for GTL+, SSTL2, and STTL3
standards. Follow the recommendations provided in Table 18 for the
appropriate standard. The A inside the parenthesis means that INREF is
located in BANK A. This pin should be tied to GND if not needed.
PLLOUTbO PLL output pin Dedicated PLL output pin. Otherwise may be left unconnected.
PLLRSTaIReset input pin
for PLL
Reset input for PLL. If PLLs are not used, PLLRST should be connected
to the same voltage as VCCPLL (e.g., VCC or GND).
IOCTRL(A)aI Highdrive input
This pin provides fast RESET, SET, CLOCK, and ENABLE access to the
I/O cell flip-flops, providing fast clock-to-out and fast I/O response times.
This pin can also double as a high-drive pin to the internal logic cells. The
A inside the parenthesis means that IOCTRL is located in Bank A. This pin
should be tied to GND or VCC if it is not used.
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
37
Figure 35: I/O Banks with Relevant Pins
Recommended Unused Pin Terminations for the Eclipse Devices
All unused, general purpose I/O pins can be tied to VCC, GND, or HIZ (high impedance) internally using the
Configuration Editor. This option is given in the bottom-right corner of the placement window. To use the
Placement Editor, choose ConstraintÆFix Placement in the Option pull-down menu of SpDE.
The rest of the pins should be terminated at the board level in the manner presented in Table 24.
NOTE: x -> number, y -> alphabetical character.
Table 24: Recommended Unused Pin Terminations
Signal Name Recommended Termination
PLLOUT<x>
For low power unused PLL output pins can be connected to VCC or GND so that their associated
input buffer never floats, otherwise PLL output pins can be left unconnected. Utilized PLL output
pins that route the PLL clock outside of the chip should not be tied to either VCC or GND.
IOCTRL<y> Any unused pins of this type must be connected to either VCC or GND.
CLK/PLLIN<x> Any unused clock pins should be connected to VCC or GND.
PLLRST<x>
If a PLL module is not used, then the associated PLLRST<x> must be connected to VCC; under
normal operation, use it as needed. If PLLs are not used, the associated PLLRST pin must be
connected to the same voltage as VCCPLL (2.5 V or GND).
INREF<y> If an I/O bank does not require the use of INREF signal the pin should be connected to GND.
IO BANK A IO BANK B
VCCIO(A)
INREF(A)
IOCTRL(A)
IO(A)
VCCIO (A)
INREF(A)
IOCTRL(A)
IO(A)
IO BANK C IO BANK D
VCCIO (C)
INREF(C)
IOCTRL(C)
IO(C)
VCCIO(D)
INREF(D)
IOCTRL(D)
IO(D)
IO BANK F IO BANK E
VCCIO (F)
INREF(F)
IOCTRL(F)
IO(F)
VCCIO(E)
INREF(E)
IOCTRL(E)
IO(E)
IO BANK HIO BANK G
(H)
INREF(H)
IOCTRL(H)
IO(H)
VCCIO
VCCIO
(G)
INREF(G)
IOCTRL(G)
IO(G)
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
38
QL6250 - 208 PQFP Pinout Diagram
Eclipse
QL6250-4PQ208C
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
39
QL6250 - 208 PQFP Pinout Table
Table 25: 208 PQFP Pinout Table
Pin Function Pin Function Pin Function Pin Function Pin Function
1PLLRST(3) 43 IO(B) 85 IO(D) 127 CLK(5)/PLLIN(3) 169 IOCTRL(G)
2VCCPLL(3) 44 VCCIO(B) 86 VCC 128 CLK(6) 170 INREF(G)
3GND 45 IO(B) 87 IO(D) 129 VCC 171 IOCTRL(G)
4GND 46 VCC 88 IO(D) 130 CLK(7) 172 IO(G)
5IO(A) 47 IO(B) 89 VCC 131 VCC 173 IO(G)
6IO(A) 48 IO(B) 90 IO(D) 132 CLK(8) 174 IO(G)
7IO(A) 49 GND 91 IO(D) 133 TMS 175 VCC
8VCCIO(A) 50 TDO 92 IOCTRL(D) 134 IO(F) 176 IO(G)
9IO(A) 51 PLLOUT(1) 93 INREF(D) 135 IO(F) 177 VCCIO(G)
10 IO(A) 52 GNDPLL(2) 94 IOCTRL(D) 136 IO(F) 178 GND
11 IOCTRL(A) 53 GND 95 IO(D) 137 GND 179 IO(G)
12 VCC 54 VCCPLL(2) 96 IO(D) 138 VCCIO(F) 180 IO(G)
13 INREF(A) 55 PLLRST(2) 97 IO(D) 139 IO(F) 181 IO(G)
14 IOCTRL(A) 56 VCC 98 VCCIO(D) 140 IO(F) 182 VCC
15 IO(A) 57 IO(C) 99 IO(D) 141 IO(F) 183 TCK
16 IO(A) 58 GND 100 IO(D) 142 IO(F) 184 VCC
17 IO(A) 59 IO(C) 101 GND 143 IO(F) 185 IO(H)
18 IO(A) 60 VCCIO(C) 102 PLLOUT(0) 144 IOCTRL(F) 186 IO(H)
19 VCCIO(A) 61 IO(C) 103 GND 145 INREF(F) 187 IO(H)
20 IO(A) 62 IO(C) 104 GNDPLL(1) 146 VCC 188 GND
21 GND 63 IO(C) 105 PLLRST(1) 147 IOCTRL(F) 189 VCCIO(H)
22 IO(A) 64 IO(C) 106 VCCPLL(1) 148 IO(F) 190 IO(H)
23 TDI 65 IO(C) 107 IO(E) 149 IO(F) 191 IO(H)
24 CLK(0) 66 IO(C) 108 GND 150 VCCIO(F) 192 IOCTRL(H)
25 CLK(1) 67 IOCTRL(C) 109 IO(E) 151 IO(F) 193 IO(H)
26 VCC 68 INREF(C) 110 IO(E) 152 IO(F) 194 INREF(H)
27 CLK(2)/PLLIN(2) 69 IOCTRL(C) 111 VCCIO(E) 153 GND 195 VCC
28 CLK(3)/PLLIN(1) 70 IO(C) 112 IO(E) 154 IO(F) 196 IOCTRL(H)
29 VCC 71 IO(C) 113 VCC 155 PLLOUT(3) 197 IO(H)
30 CLK(4)/
DEDCLK/PLLIN(0) 72 VCCIO(C) 114 IO(E) 156 GNDPLL(0) 198 IO(H)
31 IO(B) 73 IO(C) 115 IO(E) 157 GND 199 IO(H)
32 IO(B) 74 IO(C) 116 IO(E) 158 VCCPLL(0) 200 IO(H)
33 GND 75 GND 117 IOCTRL(E) 159 PLLRST(0) 201 IO(H)
34 VCCIO(B) 76 VCC 118 INREF(E) 160 GND 202 IO(H)
35 IO(B) 77 IO(C) 119 IOCTRL(E) 161 IO(G) 203 VCCIO(H)
36 IO(B) 78 TRSTB 120 IO(E) 162 VCCIO(G) 204 GND
37 IO(B) 79 VCC 121 IO(E) 163 IO(G) 205 IO(H)
38 IO(B) 80 IO(D) 122 VCCIO(E) 164 IO(G) 206 PLLOUT(2)
39 IOCTRL(B) 81 IO(D) 123 GND 165 VCC 207 GND
40 INREF(B) 82 IO(D) 124 IO(E) 166 IO(G) 208 GNDPLL(3)
41 IOCTRL(B) 83 GND 125 IO(E) 167 IO(G)
42 IO(B) 84 VCCIO(D) 126 IO(E) 168 IO(G)
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
40
QL6250 - 280 LFBGA Pinout Diagram
Top
Bottom
Eclipse
QL6250-4PT280C
Pin A1
Corner
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
41
QL6250 - 280 LFBGA Pinout Table
Table 26: 280 LFBGA Pinout Table
Ball Function Ball Function Ball Function Ball Function Ball Function Ball Function
A1 PLLOUT(3) C10 CLK(5)/
PLLIN(3) E19 IOCTRL(D) K16 I/O(C) R4 I/O(H) U13 I/O(B)
A2 GNDPLL(0) C11 VCCIO(E) F1 INREF(G) K17 I/O(D) R5 GND U14 IOCTRL(B)
A3 I/O(F) C12 I/O(E) F2 IOCTRL(G) K18 I/O(C) R6 GND U15 VCCIO(B)
A4 I/O(F) C13 I/O(E) F3 I/O(G) K19 TRSTB R7 VCC U16 I/O(B)
A5 I/O(F) C14 I/O(E) F4 I/O(G) L1 I/O(H) R8 VCC U17 TDO
A6 IOCTRL(F) C15 VCCIO(E) F5 GND L2 I/O(H) R9 GND U18 PLLRST(2)
A7 I/O(F) C16 I/O(E) F15 VCC L3 VCCIO(H) R10 GND U19 I/O(B)
A8 I/O(F) C17 I/O(E) F16 IOCTRL(D) L4 I/O(H) R11 VCC V1 PLLOUT(2)
A9 I/O(F) C18 I/O(E) F17 I/O(D) L5 VCC R12 VCC V2 GNDPLL(3)
A10 CLK(7) C19 I/O(E) F18 I/O(D) L15 GND R13 VCC V3 GND
A11 I/O(E) D1 I/O(G) F19 I/O(D) L16 I/O(C) R14 VCC V4 I/O(A)
A12 I/O(E) D2 I/O(G) G1 I/O(G) L17 VCCIO(C) R15 GND V5 I/O(A)
A13 I/O(E) D3 I/O(F) G2 I/O(G) L18 I/O(C) R16 I/O(C) V6 IOCTRL(A)
A14 IOCTRL(E) D4 I/O(F) G3 IOCTRL(G) L19 I/O(C) R17 VCCIO(C) V7 I/O(A)
A15 I/O(E) D5 I/O(F) G4 I/O(G) M1 I/O(H) R18 I/O(C) V8 I/O(A)
A16 I/O(E) D6 I/O(F) G5 VCC M2 I/O(H) R19 I/O(C) V9 I/O(A)
A17 I/O(E) D7 I/O(F) G15 VCC M3 I/O(H) T1 I/O(H) V10 CLK(1)
A18 PLLRST(1) D8 I/O(F) G16 I/O(D) M4 I/O(H) T2 I/O(H) V11
CLK(4)/
DEDCLK/
PLLIN(0)
A19 GND D9 CLK(8) G17 I/O(D) M5 VCC T3 I/O(A) V12 I/O(B)
B1 PLLRST(0) D10 I/O(E) G18 I/O(D) M15 VCC T4 I/O(A) V13 I/O(B)
B2 GND D11 I/O(E) G19 I/O(D) M16 INREF(C) T5 I/O(A) V14 INREF(B)
B3 I/O(F) D12 I/O(E) H1 I/O(G) M17 I/O(C) T6 IOCTRL(A) V15 I/O(B)
B4 I/O(F) D13 INREF(E) H2 I/O(G) M18 I/O(C) T7 I/O(A) V16 I/O(B)
B5 I/O(F) D14 I/O(E) H3 I/O(G) M19 I/O(C) T8 I/O(A) V17 I/O(B)
B6 INREF(F) D15 I/O(E) H4 I/O(G) N1 IOCTRL(H) T9 I/O(A) V18 GNDPLL(2)
B7 I/O(F) D16 I/O(D) H5 VCC N2 I/O(H) T10 I/O(A) V19 GND
B8 I/O(F) D17 I/O(D) H15 VCC N3 I/O(H) T11 CLK(3)/
PLLIN(1) W1 GND
B9 TMS D18 I/O(D) H16 VCC N4 I/O(H) T12 I/O(B) W2 PLLRST(3)
B10 CLK(6) D19 I/O(D) H17 I/O(D) N5 VCC T13 I/O(B) W3 I/O(A)
B11 I/O(E) E1 I/O(G) H18 I/O(D) N15 VCC T14 I/O(B) W4 I/O(A)
B12 I/O(E) E2 I/O(G) H19 I/O(D) N16 I/O(C) T15 I/O(B) W5 I/O(A)
B13 IOCTRL(E) E3 VCCIO(G) J1 I/O(G) N17 I/O(C) T16 I/O(B) W6 I/O(A)
B14 I/O(E) E4 I/O(F) J2 I/O(G) N18 IOCTRL(C) T17 VCCPLL(2) W7 I/O(A)
B15 I/O(E) E5 GND J3 VCCIO(G) N19 IOCTRL(C) T18 I/O(B) W8 I/O(A)
B16 I/O(E) E6 VCC J4 I/O(G) P1 I/O(H) T19 I/O(B) W9 TDI
B17 VCCPLL(1) E7 VCC J5 GND P2 I/O(H) U1 I/O(A) W10 CLK(2)/
PLLIN(2)
B18 GNDPLL(1) E8 VCC J15 VCC P3 IOCTRL(H) U2 I/O(A) W11 I/O(B)
B19 PLLOUT(0) E9 VCC J16 I/O(C) P4 INREF(H) U3 VCCPLL(3) W12 I/O(B)
C1 I/O(F) E10 GND J17 VCCIO(D) P5 VCC U4 I/O(A) W13 I/O(B)
C2 VCCPLL(0) E11 GND J18 I/O(D) P15 GND U5 VCCIO(A) W14 IOCTRL(B)
C3 I/O(F) E12 VCC J19 I/O(D) P16 I/O(C) U6 INREF(A) W15 I/O(B)
C4 I/O(F) E13 VCC K1 VCC P17 I/O(C) U7 I/O(A) W16 I/O(B)
C5 VCCIO(F) E14 GND K2 TCK P18 I/O(C) U8 I/O(A) W17 I/O(B)
C6 IOCTRL(F) E15 GND K3 I/O(G) P19 I/O(C) U9 VCCIO(A) W18 I/O(B)
C7 I/O(F) E16 I/O(D) K4 I/O(G) R1 I/O(H) U10 CLK(0) W19 PLLOUT(1)
C8 I/O(F) E17 VCCIO(D) K5 GND R2 I/O(H) U11 VCCIO(B)
C9 VCCIO(F) E18 INREF(D) K15 GND R3 VCCIO(H) U12 I/O(B)
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
42
QL6250 - 484 PBGA Pinout Diagram
Top
Bottom
Eclipse
QL6250-4PS484C
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
E
D
F
G
H
K
J
L
M
N
R
P
T
U
V
Y
W
22 21
A
B
AA
Pin A1
Corner
Pin A1
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
43
QL6250 - 484 PBGA Pinout Table
Table 27: 484 PBGA Pinout Table
Ball Function Ball Function Ball Function Ball Function Ball Function Ball Function
A1 NC C1 NC E1 IOCTRL(A) G1 NC J1 I/O(A) L1
CLK(4)/
DEDCLK/
PLLIN(0)
A2 PLLRST(3) C2 I/O(A) E2 I/O(A) G2 NC J2 I/O(A) L2 CLK(0)
A3 I/O(A) C3 VCCPLL(3) E3 I/O(A) G3 I/O(A) J3 I/O(A) L3 CLK(2)/PLLIN(2)
A4 I/O(A) C4 PLLOUT(2) E4 I/O(A) G4 I/O(A) J4 I/O(A) L4 I/O(A)
A5 I/O(A) C5 I/O(A) E5 NC G5 I/O(A) J5 I/O(A) L5 I/O(A)
A6 NC C6 NC E6 I/O(H) G6 I/O(A) J6 I/O(A) L6 I/O(A)
A7 I/O(H) C7 I/O(H) E7 NC G7 GND J7 I/O(A) L7 GND
A8 IOCTRL(H) C8 NC E8 I/O(H) G8 I/O(H) J8 VCC L8 GND
A9 I/O(H) C9 IOCTRL(H) E9 I/O(H) G9 I/O(H) J9 GND L9 GND
A10 NC C10 NC E10 I/O(H) G10 NC J10 VCC L10 GND
A11 NC C11 I/O(H) E11 VDED2 G11 I/O(G) J11 VCC L11 GND
A12 TCK C12 NC E12 I/O(G) G12 GND J12 GND L12 GND
A13 I/O(G) C13 I/O(G) E13 I/O(G) G13 NC J13 VCC L13 GND
A14 I/O(G) C14 NC E14 NC G14 NC J14 GND L14 VCC
A15 I/O(G) C15 I/O(G) E15 IOCTRL(G) G15 I/O(G) J15 VCC L15 VCC
A16 NC C16 I/O(G) E16 I/O(G) G16 GND J16 I/O(F) L16 CLK(6)
A17 I/O(G) C17 NC E17 INREF(G) G17 VCCIO(F) J17 VCCIO(F) L17 VCCIO(F)
A18 I/O(G) C18 I/O(G) E18 NC G18 I/O(F) J18 I/O(F) L18 I/O(F)
A19 I/O(F) C19 I/O(F) E19 I/O(F) G19 I/O(F) J19 I/O(F) L19 CLK(8)
A20 GND C20 GNDPLL(0) E20 I/O(F) G20 I/O(F) J20 I/O(F) L20 I/O(F)
A21 PLLOUT(3) C21 I/O(F) E21 NC G21 INREF(F) J21 I/O(F) L21 NC
A22 I/O(F) C22 I/O(F) E22 I/O(F) G22 I/O(F) J22 I/O(F) L22 I/O(F)
B1 I/O(A) D1 I/O(A) F1 I/O(A) H1 I/O(A) K1 TDI M1 I/O(B)
B2 GND D2 I/O(A) F2 INREF(A) H2 I/O(A) K2 I/O(A) M2 I/O(B)
B3 GNDPLL(3) D3 I/O(A) F3 NC H3 I/O(A) K3 I/O(A) M3 I/O(B)
B4 GND D4 I/O(A) F4 I/O(A) H4 I/O(A) K4 I/O(A) M4 CLK(3)/PLLIN(1)
B5 I/O(A) D5 I/O(A) F5 I/O(A) H5 IOCTRL(A) K5 I/O(A) M5 NC
B6 I/O(H) D6 I/O(H) F6 VCCIO(A) H6 VCCIO(A) K6 VCCIO(A) M6 VCCIO(B)
B7 I/O(H) D7 NC F7 VCCIO(H) H7 I/O(H) K7 NC M7 CLK(1)
B8 INREF(H) D8 I/O(H) F8 I/O(H) H8 GND K8 VCC M8 VCC
B9 I/O(H) D9 NC F9 VCCIO(H) H9 VCC K9 VCC M9 VCC
B10 I/O(H) D10 I/O(H) F10 I/O(H) H10 VCC K10 GND M10 GND
B11 I/O(H) D11 I/O(H) F11 VCCIO(H) H11 VDED K11 GND M11 GND
B12 NC D12 I/O(G) F12 VCCIO(G) H12 GND K12 GND M12 GND
B13 NC D13 I/O(G) F13 I/O(G) H13 VCC K13 GND M13 GND
B14 NC D14 I/O(G) F14 VCCIO(G) H14 VCC K14 VCC M14 GND
B15 NC D15 IOCTRL(G) F15 NC H15 GND K15 VCC M15 GND
B16 I/O(G) D16 I/O(G) F16 VCCIO(G) H16 I/O(F) K16 NC M16 GND
B17 I/O(G) D17 I/O(G) F17 NC H17 I/O(F) K17 I/O(F) M17 I/O(E)
B18 I/O(G) D18 I/O(F) F18 I/O(F) H18 NC K18 I/O(F) M18 I/O(E)
B19 PLLRST(0) D19 VCCPLL(0) F19 I/O(F) H19 I/O(F) K19 NC M19 I/O(E)
B20 I/O(F) D20 I/O(F) F20 IOCTRL(F) H20 I/O(F) K20 I/O(F) M20 CLK(7)
B21 I/O(F) D21 I/O(F) F21 I/O(F) H21 I/O(F) K21 I/O(F) M21 CLK(5)/PLLIN(3)
B22 I/O(F) D22 I/O(F) F22 IOCTRL(F) H22 NC K22 NC M22 TMS
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
44
N1 NC P16 I/O(E) T9 NC V2 I/O(B) W17 NC AA10 I/O(C)
N2 I/O(B) P17 NC T10 TRSTB V3 I/O(B) W18 I/O(E) AA11 I/O(C)
N3 I/O(B) P18 I/O(E) T11 GND V4 I/O(B) W19 NC AA12 I/O(D)
N4 NC P19 NC T12 NC V5 I/O(B) W20 I/O(E) AA13 I/O(D)
N5 I/O(B) P20 I/O(E) T13 I/O(D) V6 NC W21 NC AA14 I/O(D)
N6 NC P21 I/O(E) T14 NC V7 I/O(C) W22 I/O(E) AA15 I/O(D)
N7 NC P22 I/O(E) T15 I/O(D) V8 I/O(C) Y1 I/O(B) AA16 NC
N8 VCC R1 I/O(B) T16 GND V9 NC Y2 I/O(B) AA17 NC
N9 VCC R2 INREF(B) T17 I/O(E) V10 I/O(C) Y3 VCCPLL(2) AA18 I/O(D)
N10 GND R3 I/O(B) T18 I/O(E) V11 NC Y4 I/O(C) AA19 I/O(E)
N11 GND R4 I/O(B) T19 NC V12 VDED2 Y5 I/O(C) AA20 GNDPLL(1)
N12 GND R5 I/O(B) T20 NC V13 NC Y6 I/O(C) AA21 I/O(E)
N13 GND R6 NC T21 IOCTRL(E) V14 I/O(D) Y7 I/O(C) AA22 I/O(E)
N14 VCC R7 I/O(B) T22 I/O(E) V15 I/O(D) Y8 IOCTRL(C) AB1 I/O(B)
N15 VCC R8 GND U1 IOCTRL(B) V16 INREF(D) Y9 I/O(C) AB2 GNDPLL(2)
N16 I/O(E) R9 VCC U2 I/O(B) V17 I/O(D) Y10 I/O(C) AB3 PLLRST(2)
N17 VCCIO(E) R10 VCC U3 IOCTRL(B) V18 I/O(E) Y11 I/O(D) AB4 I/O(B)
N18 I/O(E) R11 GND U4 I/O(B) V19 I/O(E) Y12 NC AB5 I/O(B)
N19 I/O(E) R12 VDED U5 I/O(B) V20 I/O(E) Y13 NC AB6 I/O(C)
N20 I/O(E) R13 VCC U6 I/O(C) V21 I/O(E) Y14 I/O(D) AB7 I/O(C)
N21 I/O(E) R14 VCC U7 VCCIO(C) V22 I/O(E) Y15 IOCTRL(D) AB8 IOCTRL(C)
N22 I/O(E) R15 GND U8 NC W1 I/O(B) Y16 I/O(D) AB9 I/O(C)
P1 NC R16 I/O(D) U9 VCCIO(C) W2 I/O(B) Y17 I/O(D) AB10 I/O(C)
P2 I/O(B) R17 VCCIO(E) U10 I/O(C) W3 I/O(B) Y18 I/O(E) AB11 NC
P3 I/O(B) R18 I/O(E) U11 VCCIO(C) W4 I/O(B) Y19 PLLOUT(0) AB12 I/O(D)
P4 I/O(B) R19 I/O(E) U12 VCCIO(D) W5 I/O(B) Y20 PLLRST(1) AB13 I/O(D)
P5 I/O(B) R20 I/O(E) U13 I/O(D) W6 I/O(C) Y21 I/O(E) AB14 NC
P6 VCCIO(B) R21 I/O(E) U14 VCCIO(D) W7 NC Y22 I/O(E) AB15 I/O(D)
P7 I/O(B) R22 I/O(E) U15 NC W8 NC AA1 TDO AB16 IOCTRL(D)
P8 VCC T1 I/O(B) U16 VCCIO(D) W9 NC AA2 PLLOUT(1) AB17 I/O(D)
P9 GND T2 I/O(B) U17 VCCIO(E) W10 NC AA3 GND AB18 I/O(D)
P10 VCC T3 I/O(B) U18 I/O(E) W11 I/O(C) AA4 I/O(B) AB19 I/O(E)
P11 GND T4 I/O(B) U19 I/O(E) W12 NC AA5 I/O(C) AB20 GND
P12 VCC T5 I/O(B) U20 IOCTRL(E) W13 I/O(D) AA6 I/O(C) AB21 VCCPLL(1)
P13 VCC T6 VCCIO(B) U21 NC W14 NC AA7 NC AB22 I/O(E)
P14 GND T7 GND U22 INREF(E) W15 I/O(D) AA8 INREF(C)
P15 VDED T8 I/O(C) V1 I/O(B) W16 NC AA9 NC
Table 27: 484 PBGA Pinout Table (Continued)
Ball Function Ball Function Ball Function Ball Function Ball Function Ball Function
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
45
QL6325 - 208 PQFP Pinout Diagram
Eclipse
QL6325-4PQ208C
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
46
QL6325 - 208 PQFP Pinout Table
Table 28: 208 PQFP Pinout Table
Pin Function Pin Function Pin Function Pin Function Pin Function
1PLLRST(3) 43 IO(B) 85 IO(D) 127 CLK(5)/PLLIN(3) 169 IOCTRL(G)
2VCCPLL(3) 44 VCCIO(B) 86 VCC 128 CLK(6) 170 INREF(G)
3GND 45 IO(B) 87 IO(D) 129 VCC 171 IOCTRL(G)
4GND 46 VCC 88 IO(D) 130 CLK(7) 172 IO(G)
5IO(A) 47 IO(B) 89 VCC 131 VCC 173 IO(G)
6IO(A) 48 IO(B) 90 IO(D) 132 CLK(8) 174 IO(G)
7IO(A) 49 GND 91 IO(D) 133 TMS 175 VCC
8VCCIO(A) 50 TDO 92 IOCTRL(D) 134 IO(F) 176 IO(G)
9IO(A) 51 PLLOUT(1) 93 INREF(D) 135 IO(F) 177 VCCIO(G)
10 IO(A) 52 GNDPLL(2) 94 IOCTRL(D) 136 IO(F) 178 GND
11 IOCTRL(A) 53 GND 95 IO(D) 137 GND 179 IO(G)
12 VCC 54 VCCPLL(2) 96 IO(D) 138 VCCIO(F) 180 IO(G)
13 INREF(A) 55 PLLRST(2) 97 IO(D) 139 IO(F) 181 IO(G)
14 IOCTRL(A) 56 VCC 98 VCCIO(D) 140 IO(F) 182 VCC
15 IO(A) 57 IO(C) 99 IO(D) 141 IO(F) 183 TCK
16 IO(A) 58 GND 100 IO(D) 142 IO(F) 184 VCC
17 IO(A) 59 IO(C) 101 GND 143 IO(F) 185 IO(H)
18 IO(A) 60 VCCIO(C) 102 PLLOUT(0) 144 IOCTRL(F) 186 IO(H)
19 VCCIO(A) 61 IO(C) 103 GND 145 INREF(F) 187 IO(H)
20 IO(A) 62 IO(C) 104 GNDPLL(1) 146 VCC 188 GND
21 GND 63 IO(C) 105 PLLRST(1) 147 IOCTRL(F) 189 VCCIO(H)
22 IO(A) 64 IO(C) 106 VCCPLL(1) 148 IO(F) 190 IO(H)
23 TDI 65 IO(C) 107 IO(E) 149 IO(F) 191 IO(H)
24 CLK(0) 66 IO(C) 108 GND 150 VCCIO(F) 192 IOCTRL(H)
25 CLK(1) 67 IOCTRL(C) 109 IO(E) 151 IO(F) 193 IO(H)
26 VCC 68 INREF(C) 110 IO(E) 152 IO(F) 194 INREF(H)
27 CLK(2)/PLLIN(2) 69 IOCTRL(C) 111 VCCIO(E) 153 GND 195 VCC
28 CLK(3)/PLLIN(1) 70 IO(C) 112 IO(E) 154 IO(F) 196 IOCTRL(H)
29 VCC 71 IO(C) 113 VCC 155 PLLOUT(3) 197 IO(H)
30 CLK(4)/
DEDCLK/PLLIN(0) 72 VCCIO(C) 114 IO(E) 156 GNDPLL(0) 198 IO(H)
31 IO(B) 73 IO(C) 115 IO(E) 157 GND 199 IO(H)
32 IO(B) 74 IO(C) 116 IO(E) 158 VCCPLL(0) 200 IO(H)
33 GND 75 GND 117 IOCTRL(E) 159 PLLRST(0) 201 IO(H)
34 VCCIO(B) 76 VCC 118 INREF(E) 160 GND 202 IO(H)
35 IO(B) 77 IO(C) 119 IOCTRL(E) 161 IO(G) 203 VCCIO(H)
36 IO(B) 78 TRSTB 120 IO(E) 162 VCCIO(G) 204 GND
37 IO(B) 79 VCC 121 IO(E) 163 IO(G) 205 IO(H)
38 IO(B) 80 IO(D) 122 VCCIO(E) 164 IO(G) 206 PLLOUT(2)
39 IOCTRL(B) 81 IO(D) 123 GND 165 VCC 207 GND
40 INREF(B) 82 IO(D) 124 IO(E) 166 IO(G) 208 GNDPLL(3)
41 IOCTRL(B) 83 GND 125 IO(E) 167 IO(G)
42 IO(B) 84 VCCIO(D) 126 IO(E) 168 IO(G)
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
47
QL6325 - 280 LFBGA Pinout Diagram
Top
Bottom
Eclipse
QL6325-4PT280C
Pin A1
Corner
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
48
QL6325 - 280 LFBGA Pinout Table
Table 29: 280 LFBGA Pinout Table
Ball Function Ball Function Ball Function Ball Function Ball Function Ball Function
A1 PLLOUT(3) C10 CLK(5)/
PLLIN(3) E19 IOCTRL(D) K16 I/O(C) R4 I/O(H) U13 I/O(B)
A2 GNDPLL(0) C11 VCCIO(E) F1 INREF(G) K17 I/O(D) R5 GND U14 IOCTRL(B)
A3 I/O(F) C12 I/O(E) F2 IOCTRL(G) K18 I/O(C) R6 GND U15 VCCIO(B)
A4 I/O(F) C13 I/O(E) F3 I/O(G) K19 TRSTB R7 VCC U16 I/O(B)
A5 I/O(F) C14 I/O(E) F4 I/O(G) L1 I/O(H) R8 VCC U17 TDO
A6 IOCTRL(F) C15 VCCIO(E) F5 GND L2 I/O(H) R9 GND U18 PLLRST(2)
A7 I/O(F) C16 I/O(E) F15 VCC L3 VCCIO(H) R10 GND U19 I/O(B)
A8 I/O(F) C17 I/O(E) F16 IOCTRL(D) L4 I/O(H) R11 VCC V1 PLLOUT(2)
A9 I/O(F) C18 I/O(E) F17 I/O(D) L5 VCC R12 VCC V2 GNDPLL(3)
A10 CLK(7) C19 I/O(E) F18 I/O(D) L15 GND R13 VCC V3 GND
A11 I/O(E) D1 I/O(G) F19 I/O(D) L16 I/O(C) R14 VCC V4 I/O(A)
A12 I/O(E) D2 I/O(G) G1 I/O(G) L17 VCCIO(C) R15 GND V5 I/O(A)
A13 I/O(E) D3 I/O(F) G2 I/O(G) L18 I/O(C) R16 I/O(C) V6 IOCTRL(A)
A14 IOCTRL(E) D4 I/O(F) G3 IOCTRL(G) L19 I/O(C) R17 VCCIO(C) V7 I/O(A)
A15 I/O(E) D5 I/O(F) G4 I/O(G) M1 I/O(H) R18 I/O(C) V8 I/O(A)
A16 I/O(E) D6 I/O(F) G5 VCC M2 I/O(H) R19 I/O(C) V9 I/O(A)
A17 I/O(E) D7 I/O(F) G15 VCC M3 I/O(H) T1 I/O(H) V10 CLK(1)
A18 PLLRST(1) D8 I/O(F) G16 I/O(D) M4 I/O(H) T2 I/O(H) V11
CLK(4)/
DEDCLK/
PLLIN(0)
A19 GND D9 CLK(8) G17 I/O(D) M5 VCC T3 I/O(A) V12 I/O(B)
B1 PLLRST(0) D10 I/O(E) G18 I/O(D) M15 VCC T4 I/O(A) V13 I/O(B)
B2 GND D11 I/O(E) G19 I/O(D) M16 INREF(C) T5 I/O(A) V14 INREF(B)
B3 I/O(F) D12 I/O(E) H1 I/O(G) M17 I/O(C) T6 IOCTRL(A) V15 I/O(B)
B4 I/O(F) D13 INREF(E) H2 I/O(G) M18 I/O(C) T7 I/O(A) V16 I/O(B)
B5 I/O(F) D14 I/O(E) H3 I/O(G) M19 I/O(C) T8 I/O(A) V17 I/O(B)
B6 INREF(F) D15 I/O(E) H4 I/O(G) N1 IOCTRL(H) T9 I/O(A) V18 GNDPLL(2)
B7 I/O(F) D16 I/O(D) H5 VCC N2 I/O(H) T10 I/O(A) V19 GND
B8 I/O(F) D17 I/O(D) H15 VCC N3 I/O(H) T11 CLK(3)/
PLLIN(1) W1 GND
B9 TMS D18 I/O(D) H16 VCC N4 I/O(H) T12 I/O(B) W2 PLLRST(3)
B10 CLK(6) D19 I/O(D) H17 I/O(D) N5 VCC T13 I/O(B) W3 I/O(A)
B11 I/O(E) E1 I/O(G) H18 I/O(D) N15 VCC T14 I/O(B) W4 I/O(A)
B12 I/O(E) E2 I/O(G) H19 I/O(D) N16 I/O(C) T15 I/O(B) W5 I/O(A)
B13 IOCTRL(E) E3 VCCIO(G) J1 I/O(G) N17 I/O(C) T16 I/O(B) W6 I/O(A)
B14 I/O(E) E4 I/O(F) J2 I/O(G) N18 IOCTRL(C) T17 VCCPLL(2) W7 I/O(A)
B15 I/O(E) E5 GND J3 VCCIO(G) N19 IOCTRL(C) T18 I/O(B) W8 I/O(A)
B16 I/O(E) E6 VCC J4 I/O(G) P1 I/O(H) T19 I/O(B) W9 TDI
B17 VCCPLL(1) E7 VCC J5 GND P2 I/O(H) U1 I/O(A) W10 CLK(2)/
PLLIN(2)
B18 GNDPLL(1) E8 VCC J15 VCC P3 IOCTRL(H) U2 I/O(A) W11 I/O(B)
B19 PLLOUT(0) E9 VCC J16 I/O(C) P4 INREF(H) U3 VCCPLL(3) W12 I/O(B)
C1 I/O(F) E10 GND J17 VCCIO(D) P5 VCC U4 I/O(A) W13 I/O(B)
C2 VCCPLL(0) E11 GND J18 I/O(D) P15 GND U5 VCCIO(A) W14 IOCTRL(B)
C3 I/O(F) E12 VCC J19 I/O(D) P16 I/O(C) U6 INREF(A) W15 I/O(B)
C4 I/O(F) E13 VCC K1 VCC P17 I/O(C) U7 I/O(A) W16 I/O(B)
C5 VCCIO(F) E14 GND K2 TCK P18 I/O(C) U8 I/O(A) W17 I/O(B)
C6 IOCTRL(F) E15 GND K3 I/O(G) P19 I/O(C) U9 VCCIO(A) W18 I/O(B)
C7 I/O(F) E16 I/O(D) K4 I/O(G) R1 I/O(H) U10 CLK(0) W19 PLLOUT(1)
C8 I/O(F) E17 VCCIO(D) K5 GND R2 I/O(H) U11 VCCIO(B)
C9 VCCIO(F) E18 INREF(D) K15 GND R3 VCCIO(H) U12 I/O(B)
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
49
QL6325 - 484 PBGA Pinout Diagram
Top
Bottom
Eclipse
QL6325-4PS484C
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
E
D
F
G
H
K
J
L
M
N
R
P
T
U
V
Y
W
22 21
A
B
AA
Pin A1
Corner
Pin A1
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
50
QL6325 - 484 PBGA Pinout Table
Table 30: 484 PBGA Pinout Table
Ball Function Ball Function Ball Function Ball Function Ball Function Ball Function
A1 I/O(A) C1 I/O(A) E1 IOCTRL(A) G1 I/O(A) J1 I/O(A) L1
CLK(4)/
DEDCLK/
PLLIN(0)
A2 PLLRST(3) C2 I/O(A) E2 I/O(A) G2 I/O(A) J2 I/O(A) L2 CLK(0)
A3 I/O(A) C3 VCCPLL(3) E3 I/O(A) G3 I/O(A) J3 I/O(A) L3 CLK(2)/PLLIN(2)
A4 I/O(A) C4 PLLOUT(2) E4 I/O(A) G4 I/O(A) J4 I/O(A) L4 I/O(A)
A5 I/O(A) C5 I/O(A) E5 I/O(A) G5 I/O(A) J5 I/O(A) L5 I/O(A)
A6 I/O(H) C6 I/O(H) E6 I/O(H) G6 I/O(A) J6 I/O(A) L6 I/O(A)
A7 I/O(H) C7 I/O(H) E7 NC G7 GND J7 I/O(A) L7 GND
A8 IOCTRL(H) C8 I/O(H) E8 I/O(H) G8 I/O(H) J8 VCC L8 GND
A9 I/O(H) C9 IOCTRL(H) E9 I/O(H) G9 I/O(H) J9 GND L9 GND
A10 NC C10 I/O(H) E10 I/O(H) G10 I/O(H) J10 VCC L10 GND
A11 NC C11 I/O(H) E11 VDED2 G11 I/O(G) J11 VCC L11 GND
A12 TCK C12 I/O(H) E12 I/O(G) G12 GND J12 GND L12 GND
A13 I/O(G) C13 I/O(G) E13 I/O(G) G13 I/O(G) J13 VCC L13 GND
A14 I/O(G) C14 I/O(G) E14 I/O(G) G14 I/O(G) J14 GND L14 VCC
A15 I/O(G) C15 I/O(G) E15 IOCTRL(G) G15 I/O(G) J15 VCC L15 VCC
A16 I/O(G) C16 I/O(G) E16 I/O(G) G16 GND J16 I/O(F) L16 CLK(6)
A17 I/O(G) C17 I/O(G) E17 INREF(G) G17 VCCIO(F) J17 VCCIO(F) L17 VCCIO(F)
A18 I/O(G) C18 I/O(G) E18 I/O(G) G18 I/O(F) J18 I/O(F) L18 I/O(F)
A19 I/O(F) C19 I/O(F) E19 I/O(F) G19 I/O(F) J19 I/O(F) L19 CLK(8)
A20 GND C20 GNDPLL(0) E20 I/O(F) G20 I/O(F) J20 I/O(F) L20 I/O(F)
A21 PLLOUT(3) C21 I/O(F) E21 I/O(F) G21 INREF(F) J21 I/O(F) L21 I/O(F)
A22 I/O(F) C22 I/O(F) E22 I/O(F) G22 I/O(F) J22 I/O(F) L22 I/O(F)
B1 I/O(A) D1 I/O(A) F1 I/O(A) H1 I/O(A) K1 TDI M1 I/O(B)
B2 GND D2 I/O(A) F2 INREF(A) H2 I/O(A) K2 I/O(A) M2 I/O(B)
B3 GNDPLL(3) D3 I/O(A) F3 I/O(A) H3 I/O(A) K3 I/O(A) M3 I/O(B)
B4 GND D4 I/O(A) F4 I/O(A) H4 I/O(A) K4 I/O(A) M4 CLK(3)/PLLIN(1)
B5 I/O(A) D5 I/O(A) F5 I/O(A) H5 IOCTRL(A) K5 I/O(A) M5 I/O(B)
B6 I/O(H) D6 I/O(H) F6 VCCIO(A) H6 VCCIO(A) K6 VCCIO(A) M6 VCCIO(B)
B7 I/O(H) D7 I/O(H) F7 VCCIO(H) H7 I/O(H) K7 I/O(A) M7 CLK(1)
B8 INREF(H) D8 I/O(H) F8 I/O(H) H8 GND K8 VCC M8 VCC
B9 I/O(H) D9 I/O(H) F9 VCCIO(H) H9 VCC K9 VCC M9 VCC
B10 I/O(H) D10 I/O(H) F10 I/O(H) H10 VCC K10 GND M10 GND
B11 I/O(H) D11 I/O(H) F11 VCCIO(H) H11 VDED K11 GND M11 GND
B12 NC D12 I/O(G) F12 VCCIO(G) H12 GND K12 GND M12 GND
B13 NC D13 I/O(G) F13 I/O(G) H13 VCC K13 GND M13 GND
B14 NC D14 I/O(G) F14 VCCIO(G) H14 VCC K14 VCC M14 GND
B15 I/O(G) D15 IOCTRL(G) F15 NC H15 GND K15 VCC M15 GND
B16 I/O(G) D16 I/O(G) F16 VCCIO(G) H16 I/O(F) K16 I/O(F) M16 GND
B17 I/O(G) D17 I/O(G) F17 NC H17 I/O(F) K17 I/O(F) M17 I/O(E)
B18 I/O(G) D18 I/O(F) F18 I/O(F) H18 I/O(F) K18 I/O(F) M18 I/O(E)
B19 PLLRST(0) D19 VCCPLL(0) F19 I/O(F) H19 I/O(F) K19 I/O(F) M19 I/O(E)
B20 I/O(F) D20 I/O(F) F20 IOCTRL(F) H20 I/O(F) K20 I/O(F) M20 CLK(7)
B21 I/O(F) D21 I/O(F) F21 I/O(F) H21 I/O(F) K21 I/O(F) M21 CLK(5)/PLLIN(3)
B22 I/O(F) D22 I/O(F) F22 IOCTRL(F) H22 I/O(F) K22 I/O(F) M22 TMS
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
51
N1 I/O(B) P16 I/O(E) T9 NC V2 I/O(B) W17 I/O(D) AA10 I/O(C)
N2 I/O(B) P17 I/O(E) T10 TRSTB V3 I/O(B) W18 I/O(E) AA11 I/O(C)
N3 I/O(B) P18 I/O(E) T11 GND V4 I/O(B) W19 I/O(E) AA12 I/O(D)
N4 I/O(B) P19 I/O(E) T12 NC V5 I/O(B) W20 I/O(E) AA13 I/O(D)
N5 I/O(B) P20 I/O(E) T13 I/O(D) V6 I/O(C) W21 I/O(E) AA14 I/O(D)
N6 I/O(B) P21 I/O(E) T14 NC V7 I/O(C) W22 I/O(E) AA15 I/O(D)
N7 I/O(B) P22 I/O(E) T15 I/O(D) V8 I/O(C) Y1 I/O(B) AA16 I/O(D)
N8 VCC R1 I/O(B) T16 GND V9 NC Y2 I/O(B) AA17 I/O(D)
N9 VCC R2 INREF(B) T17 I/O(E) V10 I/O(C) Y3 VCCPLL(2) AA18 I/O(D)
N10 GND R3 I/O(B) T18 I/O(E) V11 I/O(C) Y4 I/O(C) AA19 I/O(E)
N11 GND R4 I/O(B) T19 I/O(E) V12 VDED2 Y5 I/O(C) AA20 GNDPLL(1)
N12 GND R5 I/O(B) T20 I/O(E) V13 NC Y6 I/O(C) AA21 I/O(E)
N13 GND R6 I/O(B) T21 IOCTRL(E) V14 I/O(D) Y7 I/O(C) AA22 I/O(E)
N14 VCC R7 I/O(B) T22 I/O(E) V15 I/O(D) Y8 IOCTRL(C) AB1 I/O(B)
N15 VCC R8 GND U1 IOCTRL(B) V16 INREF(D) Y9 I/O(C) AB2 GNDPLL(2)
N16 I/O(E) R9 VCC U2 I/O(B) V17 I/O(D) Y10 I/O(C) AB3 PLLRST(2)
N17 VCCIO(E) R10 VCC U3 IOCTRL(B) V18 I/O(E) Y11 I/O(D) AB4 I/O(B)
N18 I/O(E) R11 GND U4 I/O(B) V19 I/O(E) Y12 I/O(D) AB5 I/O(B)
N19 I/O(E) R12 VDED U5 I/O(B) V20 I/O(E) Y13 I/O(D) AB6 I/O(C)
N20 I/O(E) R13 VCC U6 I/O(C) V21 I/O(E) Y14 I/O(D) AB7 I/O(C)
N21 I/O(E) R14 VCC U7 VCCIO(C) V22 I/O(E) Y15 IOCTRL(D) AB8 IOCTRL(C)
N22 I/O(E) R15 GND U8 NC W1 I/O(B) Y16 I/O(D) AB9 I/O(C)
P1 I/O(B) R16 I/O(D) U9 VCCIO(C) W2 I/O(B) Y17 I/O(D) AB10 I/O(C)
P2 I/O(B) R17 VCCIO(E) U10 I/O(C) W3 I/O(B) Y18 I/O(E) AB11 I/O(C)
P3 I/O(B) R18 I/O(E) U11 VCCIO(C) W4 I/O(B) Y19 PLLOUT(0) AB12 I/O(D)
P4 I/O(B) R19 I/O(E) U12 VCCIO(D) W5 I/O(B) Y20 PLLRST(1) AB13 I/O(D)
P5 I/O(B) R20 I/O(E) U13 I/O(D) W6 I/O(C) Y21 I/O(E) AB14 I/O(D)
P6 VCCIO(B) R21 I/O(E) U14 VCCIO(D) W7 NC Y22 I/O(E) AB15 I/O(D)
P7 I/O(B) R22 I/O(E) U15 NC W8 I/O(C) AA1 TDO AB16 IOCTRL(D)
P8 VCC T1 I/O(B) U16 VCCIO(D) W9 I/O(C) AA2 PLLOUT(1) AB17 I/O(D)
P9 GND T2 I/O(B) U17 VCCIO(E) W10 I/O(C) AA3 GND AB18 I/O(D)
P10 VCC T3 I/O(B) U18 I/O(E) W11 I/O(C) AA4 I/O(B) AB19 I/O(E)
P11 GND T4 I/O(B) U19 I/O(E) W12 I/O(D) AA5 I/O(C) AB20 GND
P12 VCC T5 I/O(B) U20 IOCTRL(E) W13 I/O(D) AA6 I/O(C) AB21 VCCPLL(1)
P13 VCC T6 VCCIO(B) U21 I/O(E) W14 I/O(D) AA7 I/O(C) AB22 I/O(E)
P14 GND T7 GND U22 INREF(E) W15 I/O(D) AA8 INREF(C)
P15 VDED T8 I/O(C) V1 I/O(B) W16 NC AA9 I/O(C)
Table 30: 484 PBGA Pinout Table (Continued)
Ball Function Ball Function Ball Function Ball Function Ball Function Ball Function
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
52
QL6500 - 280 LFBGA Pinout Diagram
Top
Bottom
Eclipse
QL6500-4PT280C
Pin A1
Corner
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
53
QL6500 - 280 LFBGA Pinout Table
Table 31: 280 LFBGA Pinout Table
Ball Function Ball Function Ball Function Ball Function Ball Function Ball Function
A1 PLLOUT(3) C10 CLK(5)/
PLLIN(3) E19 IOCTRL(D) K16 I/O(C) R4 I/O(H) U13 I/O(B)
A2 GNDPLL(0) C11 VCCIO(E) F1 INREF(G) K17 I/O(D) R5 GND U14 IOCTRL(B)
A3 I/O(F) C12 I/O(E) F2 IOCTRL(G) K18 I/O(C) R6 GND U15 VCCIO(B)
A4 I/O(F) C13 I/O(E) F3 I/O(G) K19 TRSTB R7 VCC U16 I/O(B)
A5 I/O(F) C14 I/O(E) F4 I/O(G) L1 I/O(H) R8 VCC U17 TDO
A6 IOCTRL(F) C15 VCCIO(E) F5 GND L2 I/O(H) R9 GND U18 PLLRST(2)
A7 I/O(F) C16 I/O(E) F15 VCC L3 VCCIO(H) R10 GND U19 I/O(B)
A8 I/O(F) C17 I/O(E) F16 IOCTRL(D) L4 I/O(H) R11 VCC V1 PLLOUT(2)
A9 I/O(F) C18 I/O(E) F17 I/O(D) L5 VCC R12 VCC V2 GNDPLL(3)
A10 CLK(7) C19 I/O(E) F18 I/O(D) L15 GND R13 VCC V3 GND
A11 I/O(E) D1 I/O(G) F19 I/O(D) L16 I/O(C) R14 VCC V4 I/O(A)
A12 I/O(E) D2 I/O(G) G1 I/O(G) L17 VCCIO(C) R15 GND V5 I/O(A)
A13 I/O(E) D3 I/O(F) G2 I/O(G) L18 I/O(C) R16 I/O(C) V6 IOCTRL(A)
A14 IOCTRL(E) D4 I/O(F) G3 IOCTRL(G) L19 I/O(C) R17 VCCIO(C) V7 I/O(A)
A15 I/O(E) D5 I/O(F) G4 I/O(G) M1 I/O(H) R18 I/O(C) V8 I/O(A)
A16 I/O(E) D6 I/O(F) G5 VCC M2 I/O(H) R19 I/O(C) V9 I/O(A)
A17 I/O(E) D7 I/O(F) G15 VCC M3 I/O(H) T1 I/O(H) V10 CLK(1)
A18 PLLRST(1) D8 I/O(F) G16 I/O(D) M4 I/O(H) T2 I/O(H) V11
CLK(4)/
DEDCLK/
PLLIN(0)
A19 GND D9 CLK(8) G17 I/O(D) M5 VCC T3 I/O(A) V12 I/O(B)
B1 PLLRST(0) D10 I/O(E) G18 I/O(D) M15 VCC T4 I/O(A) V13 I/O(B)
B2 GND D11 I/O(E) G19 I/O(D) M16 INREF(C) T5 I/O(A) V14 INREF(B)
B3 I/O(F) D12 I/O(E) H1 I/O(G) M17 I/O(C) T6 IOCTRL(A) V15 I/O(B)
B4 I/O(F) D13 INREF(E) H2 I/O(G) M18 I/O(C) T7 I/O(A) V16 I/O(B)
B5 I/O(F) D14 I/O(E) H3 I/O(G) M19 I/O(C) T8 I/O(A) V17 I/O(B)
B6 INREF(F) D15 I/O(E) H4 I/O(G) N1 IOCTRL(H) T9 I/O(A) V18 GNDPLL(2)
B7 I/O(F) D16 I/O(D) H5 VCC N2 I/O(H) T10 I/O(A) V19 GND
B8 I/O(F) D17 I/O(D) H15 VCC N3 I/O(H) T11 CLK(3)/
PLLIN(1) W1 GND
B9 TMS D18 I/O(D) H16 VCC N4 I/O(H) T12 I/O(B) W2 PLLRST(3)
B10 CLK(6) D19 I/O(D) H17 I/O(D) N5 VCC T13 I/O(B) W3 I/O(A)
B11 I/O(E) E1 I/O(G) H18 I/O(D) N15 VCC T14 I/O(B) W4 I/O(A)
B12 I/O(E) E2 I/O(G) H19 I/O(D) N16 I/O(C) T15 I/O(B) W5 I/O(A)
B13 IOCTRL(E) E3 VCCIO(G) J1 I/O(G) N17 I/O(C) T16 I/O(B) W6 I/O(A)
B14 I/O(E) E4 I/O(F) J2 I/O(G) N18 IOCTRL(C) T17 VCCPLL(2) W7 I/O(A)
B15 I/O(E) E5 GND J3 VCCIO(G) N19 IOCTRL(C) T18 I/O(B) W8 I/O(A)
B16 I/O(E) E6 VCC J4 I/O(G) P1 I/O(H) T19 I/O(B) W9 TDI
B17 VCCPLL(1) E7 VCC J5 GND P2 I/O(H) U1 I/O(A) W10 CLK(2)/
PLLIN(2)
B18 GNDPLL(1) E8 VCC J15 VCC P3 IOCTRL(H) U2 I/O(A) W11 I/O(B)
B19 PLLOUT(0) E9 VCC J16 I/O(C) P4 INREF(H) U3 VCCPLL(3) W12 I/O(B)
C1 I/O(F) E10 GND J17 VCCIO(D) P5 VCC U4 I/O(A) W13 I/O(B)
C2 VCCPLL(0) E11 GND J18 I/O(D) P15 GND U5 VCCIO(A) W14 IOCTRL(B)
C3 I/O(F) E12 VCC J19 I/O(D) P16 I/O(C) U6 INREF(A) W15 I/O(B)
C4 I/O(F) E13 VCC K1 VCC P17 I/O(C) U7 I/O(A) W16 I/O(B)
C5 VCCIO(F) E14 GND K2 TCK P18 I/O(C) U8 I/O(A) W17 I/O(B)
C6 IOCTRL(F) E15 GND K3 I/O(G) P19 I/O(C) U9 VCCIO(A) W18 I/O(B)
C7 I/O(F) E16 I/O(D) K4 I/O(G) R1 I/O(H) U10 CLK(0) W19 PLLOUT(1)
C8 I/O(F) E17 VCCIO(D) K5 GND R2 I/O(H) U11 VCCIO(B)
C9 VCCIO(F) E18 INREF(D) K15 GND R3 VCCIO(H) U12 I/O(B)
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
54
QL6500 - 484 PBGA Pinout Diagram
Top
Bottom
Eclipse
QL6500-4PS484C
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
E
D
F
G
H
K
J
L
M
N
R
P
T
U
V
Y
W
22 21
A
B
AA
Pin A1
Corner
Pin A1
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
55
QL6500 - 484 PBGA Pinout Table
Table 32: 484 PBGA Pinout Table
Ball Function Ball Function Ball Function Ball Function Ball Function Ball Function
A1 I/O(A) C1 I/O(A) E1 IOCTRL(A) G1 I/O(A) J1 I/O(A) L1
CLK(4)/
DEDCLK/
PLLIN(0)
A2 PLLRST(3) C2 I/O(A) E2 I/O(A) G2 I/O(A) J2 I/O(A) L2 CLK(0)
A3 I/O(A) C3 VCCPLL(3) E3 I/O(A) G3 I/O(A) J3 I/O(A) L3 CLK(2)/PLLIN(2)
A4 I/O(A) C4 PLLOUT(2) E4 I/O(A) G4 I/O(A) J4 I/O(A) L4 I/O(A)
A5 I/O(A) C5 I/O(A) E5 I/O(A) G5 I/O(A) J5 I/O(A) L5 I/O(A)
A6 I/O(H) C6 I/O(H) E6 I/O(H) G6 I/O(A) J6 I/O(A) L6 I/O(A)
A7 I/O(H) C7 I/O(H) E7 I/O(H) G7 GND J7 I/O(A) L7 GND
A8 IOCTRL(H) C8 I/O(H) E8 I/O(H) G8 I/O(H) J8 VCC L8 GND
A9 I/O(H) C9 IOCTRL(H) E9 I/O(H) G9 I/O(H) J9 GND L9 GND
A10 I/O(H) C10 I/O(H) E10 I/O(H) G10 I/O(H) J10 VCC L10 GND
A11 I/O(H) C11 I/O(H) E11 VDED2 G11 I/O(G) J11 VCC L11 GND
A12 TCK C12 I/O(H) E12 I/O(G) G12 GND J12 GND L12 GND
A13 I/O(G) C13 I/O(G) E13 I/O(G) G13 I/O(G) J13 VCC L13 GND
A14 I/O(G) C14 I/O(G) E14 I/O(G) G14 I/O(G) J14 GND L14 VCC
A15 I/O(G) C15 I/O(G) E15 IOCTRL(G) G15 I/O(G) J15 VCC L15 VCC
A16 I/O(G) C16 I/O(G) E16 I/O(G) G16 GND J16 I/O(F) L16 CLK(6)
A17 I/O(G) C17 I/O(G) E17 INREF(G) G17 VCCIO(F) J17 VCCIO(F) L17 VCCIO(F)
A18 I/O(G) C18 I/O(G) E18 I/O(G) G18 I/O(F) J18 I/O(F) L18 I/O(F)
A19 I/O(F) C19 I/O(F) E19 I/O(F) G19 I/O(F) J19 I/O(F) L19 CLK(8)
A20 GND C20 GNDPLL(0) E20 I/O(F) G20 I/O(F) J20 I/O(F) L20 I/O(F)
A21 PLLOUT(3) C21 I/O(F) E21 I/O(F) G21 INREF(F) J21 I/O(F) L21 I/O(F)
A22 I/O(F) C22 I/O(F) E22 I/O(F) G22 I/O(F) J22 I/O(F) L22 I/O(F)
B1 I/O(A) D1 I/O(A) F1 I/O(A) H1 I/O(A) K1 TDI M1 I/O(B)
B2 GND D2 I/O(A) F2 INREF(A) H2 I/O(A) K2 I/O(A) M2 I/O(B)
B3 GNDPLL(3) D3 I/O(A) F3 I/O(A) H3 I/O(A) K3 I/O(A) M3 I/O(B)
B4 GND D4 I/O(A) F4 I/O(A) H4 I/O(A) K4 I/O(A) M4 CLK(3)/PLLIN(1)
B5 I/O(A) D5 I/O(A) F5 I/O(A) H5 IOCTRL(A) K5 I/O(A) M5 I/O(B)
B6 I/O(H) D6 I/O(H) F6 VCCIO(A) H6 VCCIO(A) K6 VCCIO(A) M6 VCCIO(B)
B7 I/O(H) D7 I/O(H) F7 VCCIO(H) H7 I/O(H) K7 I/O(A) M7 CLK(1)
B8 INREF(H) D8 I/O(H) F8 I/O(H) H8 GND K8 VCC M8 VCC
B9 I/O(H) D9 I/O(H) F9 VCCIO(H) H9 VCC K9 VCC M9 VCC
B10 I/O(H) D10 I/O(H) F10 I/O(H) H10 VCC K10 GND M10 GND
B11 I/O(H) D11 I/O(H) F11 VCCIO(H) H11 VDED K11 GND M11 GND
B12 I/O(G) D12 I/O(G) F12 VCCIO(G) H12 GND K12 GND M12 GND
B13 I/O(G) D13 I/O(G) F13 I/O(G) H13 VCC K13 GND M13 GND
B14 I/O(G) D14 I/O(G) F14 VCCIO(G) H14 VCC K14 VCC M14 GND
B15 I/O(G) D15 IOCTRL(G) F15 I/O(G) H15 GND K15 VCC M15 GND
B16 I/O(G) D16 I/O(G) F16 VCCIO(G) H16 I/O(F) K16 I/O(F) M16 GND
B17 I/O(G) D17 I/O(G) F17 I/O(G) H17 I/O(F) K17 I/O(F) M17 I/O(E)
B18 I/O(G) D18 I/O(F) F18 I/O(F) H18 I/O(F) K18 I/O(F) M18 I/O(E)
B19 PLLRST(0) D19 VCCPLL(0) F19 I/O(F) H19 I/O(F) K19 I/O(F) M19 I/O(E)
B20 I/O(F) D20 I/O(F) F20 IOCTRL(F) H20 I/O(F) K20 I/O(F) M20 CLK(7)
B21 I/O(F) D21 I/O(F) F21 I/O(F) H21 I/O(F) K21 I/O(F) M21 CLK(5)/PLLIN(3)
B22 I/O(F) D22 I/O(F) F22 IOCTRL(F) H22 I/O(F) K22 I/O(F) M22 TMS
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
56
N1 I/O(B) P16 I/O(E) T9 I/O(C) V2 I/O(B) W17 I/O(D) AA10 I/O(C)
N2 I/O(B) P17 I/O(E) T10 TRSTB V3 I/O(B) W18 I/O(E) AA11 I/O(C)
N3 I/O(B) P18 I/O(E) T11 GND V4 I/O(B) W19 I/O(E) AA12 I/O(D)
N4 I/O(B) P19 I/O(E) T12 I/O(C) V5 I/O(B) W20 I/O(E) AA13 I/O(D)
N5 I/O(B) P20 I/O(E) T13 I/O(D) V6 I/O(C) W21 I/O(E) AA14 I/O(D)
N6 I/O(B) P21 I/O(E) T14 I/O(D) V7 I/O(C) W22 I/O(E) AA15 I/O(D)
N7 I/O(B) P22 I/O(E) T15 I/O(D) V8 I/O(C) Y1 I/O(B) AA16 I/O(D)
N8 VCC R1 I/O(B) T16 GND V9 I/O(C) Y2 I/O(B) AA17 I/O(D)
N9 VCC R2 INREF(B) T17 I/O(E) V10 I/O(C) Y3 VCCPLL(2) AA18 I/O(D)
N10 GND R3 I/O(B) T18 I/O(E) V11 I/O(C) Y4 I/O(C) AA19 I/O(E)
N11 GND R4 I/O(B) T19 I/O(E) V12 VDED2 Y5 I/O(C) AA20 GNDPLL(1)
N12 GND R5 I/O(B) T20 I/O(E) V13 I/O(D) Y6 I/O(C) AA21 I/O(E)
N13 GND R6 I/O(B) T21 IOCTRL(E) V14 I/O(D) Y7 I/O(C) AA22 I/O(E)
N14 VCC R7 I/O(B) T22 I/O(E) V15 I/O(D) Y8 IOCTRL(C) AB1 I/O(B)
N15 VCC R8 GND U1 IOCTRL(B) V16 INREF(D) Y9 I/O(C) AB2 GNDPLL(2)
N16 I/O(E) R9 VCC U2 I/O(B) V17 I/O(D) Y10 I/O(C) AB3 PLLRST(2)
N17 VCCIO(E) R10 VCC U3 IOCTRL(B) V18 I/O(E) Y11 I/O(D) AB4 I/O(B)
N18 I/O(E) R11 GND U4 I/O(B) V19 I/O(E) Y12 I/O(D) AB5 I/O(B)
N19 I/O(E) R12 VDED U5 I/O(B) V20 I/O(E) Y13 I/O(D) AB6 I/O(C)
N20 I/O(E) R13 VCC U6 I/O(C) V21 I/O(E) Y14 I/O(D) AB7 I/O(C)
N21 I/O(E) R14 VCC U7 VCCIO(C) V22 I/O(E) Y15 IOCTRL(D) AB8 IOCTRL(C)
N22 I/O(E) R15 GND U8 I/O(C) W1 I/O(B) Y16 I/O(D) AB9 I/O(C)
P1 I/O(B) R16 I/O(D) U9 VCCIO(C) W2 I/O(B) Y17 I/O(D) AB10 I/O(C)
P2 I/O(B) R17 VCCIO(E) U10 I/O(C) W3 I/O(B) Y18 I/O(E) AB11 I/O(C)
P3 I/O(B) R18 I/O(E) U11 VCCIO(C) W4 I/O(B) Y19 PLLOUT(0) AB12 I/O(D)
P4 I/O(B) R19 I/O(E) U12 VCCIO(D) W5 I/O(B) Y20 PLLRST(1) AB13 I/O(D)
P5 I/O(B) R20 I/O(E) U13 I/O(D) W6 I/O(C) Y21 I/O(E) AB14 I/O(D)
P6 VCCIO(B) R21 I/O(E) U14 VCCIO(D) W7 I/O(C) Y22 I/O(E) AB15 I/O(D)
P7 I/O(B) R22 I/O(E) U15 I/O(D) W8 I/O(C) AA1 TDO AB16 IOCTRL(D)
P8 VCC T1 I/O(B) U16 VCCIO(D) W9 I/O(C) AA2 PLLOUT(1) AB17 I/O(D)
P9 GND T2 I/O(B) U17 VCCIO(E) W10 I/O(C) AA3 GND AB18 I/O(D)
P10 VCC T3 I/O(B) U18 I/O(E) W11 I/O(C) AA4 I/O(B) AB19 I/O(E)
P11 GND T4 I/O(B) U19 I/O(E) W12 I/O(D) AA5 I/O(C) AB20 GND
P12 VCC T5 I/O(B) U20 IOCTRL(E) W13 I/O(D) AA6 I/O(C) AB21 VCCPLL(1)
P13 VCC T6 VCCIO(B) U21 I/O(E) W14 I/O(D) AA7 I/O(C) AB22 I/O(E)
P14 GND T7 GND U22 INREF(E) W15 I/O(D) AA8 INREF(C)
P15 VDED T8 I/O(C) V1 I/O(B) W16 I/O(D) AA9 I/O(C)
Table 32: 484 PBGA Pinout Table (Continued)
Ball Function Ball Function Ball Function Ball Function Ball Function Ball Function
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
57
QL6500 - 516 PBGA Pinout Diagram
Top
Bottom
Eclipse
QL6500-4PB516C
PIN A1
CORNER
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
58
QL6500 - 516 PBGA Pinout Table
Table 33: 516 PBGA Pinout Table
Ball Function Ball Function Ball Function Ball Function Ball Function Ball Function
A1 GND C1 I/O(F) E1 I/O(G) G1 I/O(G) L5 VCC P3 I/O(H)
A2 I/O(F) C2 I/O(F) E2 I/O(G) G2 INREF(G) L6 VCC P4 VCC
A3 I/O(F) C3 I/O(F) E3 I/O(G) G3 I/O(G) L11 GND P5 I/O(H)
A4 I/O(F) C4 PLLOUT(3) E4 VCCPLL(0) G4 I/O(G) L12 GND P6 VCCIO(H)
A5 I/O(F) C5 I/O(F) E5 I/O(F) G5 I/O(G) L13 GND P11 GND
A6 I/O(F) C6 I/O(F) E6 I/O(F) G6 VCCIO(G) L14 GND P12 GND
A7 IOCTRL(F) C7 I/O(F) E7 I/O(F) G21 VCCIO(D) L15 GND P13 GND
A8 I/O(F) C8 INREF(F) E8 VCC G22 I/O(D) L16 GND P14 GND
A9 I/O(F) C9 I/O(F) E9 I/O(F) G23 I/O(D) L21 VCC P15 GND
A10 I/O(F) C10 I/O(F) E10 I/O(F) G24 I/O(D) L22 I/O(D) P16 GND
A11 I/O(F) C11 I/O(F) E11 I/O(F) G25 I/O(D) L23 I/O(D) P21 VCCIO(C)
A12 I/O(F) C12 I/O(F) E12 VCC G26 INREF(D) L24 I/O(D) P22 I/O(C)
A13 I/O(E) C13 CLK(7) E13 I/O(F) H1 I/O(G) L25 I/O(D) P23 VCC
A14 I/O(E) C14 I/O(E) E14 I/O(F) H2 I/O(G) L26 I/O(D) P24 I/O(C)
A15 I/O(E) C15 I/O(E) E15 I/O(E) H3 IOCTRL(G) M1 I/O(G) P25 I/O(C)
A16 I/O(E) C16 I/O(E) E16 VCC H4 I/O(G) M2 I/O(G) P26 TRSTB
A17 I/O(E) C17 I/O(E) E17 CLK(6) H5 I/O(G) M3 I/O(G) R1 I/O(H)
A18 IOCTRL(E) C18 I/O(E) E18 I/O(E) H6 VCC M4 I/O(G) R2 I/O(H)
A19 IOCTRL(E) C19 I/O(E) E19 I/O(E) H21 VCC M5 I/O(G) R3 I/O(H)
A20 I/O(E) C20 I/O(E) E20 I/O(E) H22 VCC M6 VCCIO(G) R4 I/O(H)
A21 I/O(E) C21 I/O(E) E21 I/O(E) H23 I/O(D) M11 GND R5 VCC
A22 I/O(E) C22 I/O(E) E22 I/O(E) H24 IOCTRL(D) M12 GND R6 VCC
A23 I/O(E) C23 I/O(E) E23 GNDPLL(1) H25 IOCTRL(D) M13 GND R11 GND
A24 I/O(E) C24 I/O(E) E24 I/O(E) H26 I/O(D) M14 GND R12 GND
A25 PLLRST(1) C25 I/O(E) E25 I/O(D) J1 I/O(G) M15 GND R13 GND
A26 GND C26 I/O(E) E26 I/O(D) J2 I/O(G) M16 GND R14 GND
B1 I/O(F) D1 I/O(G) F1 IOCTRL(G) J3 I/O(G) M21 VCCIO(D) R15 GND
B2 PLLRST(0) D2 I/O(G) F2 I/O(G) J4 I/O(G) M22 VCC R16 GND
B3 I/O(F) D3 I/O(F) F3 I/O(G) J5 I/O(G) M23 I/O(D) R21 VCC
B4 I/O(F) D4 I/O(F) F4 I/O(G) J6 VCCIO(G) M24 I/O(D) R22 I/O(C)
B5 I/O(F) D5 GNDPLL(0) F5 I/O(F) J21 VCCIO(D) M25 I/O(D) R23 I/O(C)
B6 I/O(F) D6 I/O(F) F6 GND J22 I/O(D) M26 I/O(D) R24 I/O(C)
B7 IOCTRL(F) D7 I/O(F) F7 VCCIO(F) J23 I/O(D) N1 TCK R25 I/O(C)
B8 I/O(F) D8 I/O(F) F8 VCC J24 I/O(D) N2 I/O(H) R26 I/O(C)
B9 I/O(F) D9 I/O(F) F9 VCCIO(F) J25 I/O(D) N3 I/O(G) T1 I/O(H)
B10 I/O(F) D10 I/O(F) F10 GND J26 I/O(D) N4 I/O(G) T2 I/O(H)
B11 I/O(F) D11 I/O(F) F11 VCC K1 I/O(G) N5 I/O(G) T3 I/O(H)
B12 I/O(F) D12 I/O(F) F12 VCCIO(F) K2 I/O(G) N6 GND T4 I/O(H)
B13 CLK(5)/
PLLIN(3) D13 TMS F13 GND K3 I/O(G) N11 GND T5 I/O(H)
B14 I/O(E) D14 I/O(E) F14 VCCIO(E) K4 I/O(G) N12 GND T6 VCC
B15 I/O(E) D15 I/O(E) F15 VCC K5 I/O(G) N13 GND T11 GND
B16 I/O(E) D16 I/O(F) F16 VCC K6 GND N14 GND T12 GND
B17 I/O(E) D17 I/O(E) F17 GND K21 GND N15 GND T13 GND
B18 INREF(E) D18 I/O(F) F18 VCCIO(E) K22 I/O(D) N16 GND T14 GND
B19 I/O(E) D19 CLK(8) F19 VCC K23 I/O(D) N21 GND T15 GND
B20 I/O(E) D20 I/O(E) F20 VCCIO(E) K24 I/O(D) N22 I/O(D) T16 GND
B21 I/O(E) D21 I/O(E) F21 GND K25 I/O(D) N23 I/O(D) T21 VCC
B22 I/O(E) D22 I/O(E) F22 I/O(E) K26 I/O(D) N24 I/O(D) T22 VCC
B23 I/O(E) D23 VCCPLL(1) F23 I/O(D) L1 I/O(G) N25 I/O(D) T23 I/O(C)
B24 I/O(E) D24 I/O(E) F24 I/O(D) L2 I/O(G) N26 I/O(D) T24 I/O(C)
B25 I/O(E) D25 I/O(E) F25 I/O(D) L3 I/O(G) P1 I/O(H) T25 I/O(C)
B26 PLLOUT(0) D26 I/O(D) F26 I/O(D) L4 I/O(G) P2 I/O(H) T26 I/O(C)
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
59
U1 I/O(H) W25 INREF(C) AA21 GND AC3 I/O(A) AD11 I/O(A) AE19 I/O(B)
U2 I/O(H) W26 I/O(C) AA22 VCCPLL(2) AC4 I/O(A) AD12 TDI AE20 I/O(B)
U3 I/O(H) Y1 I/O(H) AA23 I/O(C) AC5 I/O(A) AD13
CLK(4)
DEDCLK/
PLLIN(0)
AE21 I/O(B)
U4 I/O(H) Y2 I/O(H) AA24 I/O(C) AC6 I/O(A) AD14 I/O(A) AE22 I/O(B)
U5 I/O(H) Y3 I/O(H) AA25 I/O(C) AC7 I/O(A) AD15 I/O(B) AE23 I/O(B)
U6 GND Y4 I/O(H) AA26 I/O(C) AC8 I/O(A) AD16 I/O(B) AE24 I/O(B)
U21 GND Y5 I/O(H) AB1 I/O(H) AC9 I/O(A) AD17 I/O(B) AE25 PLLRST(2)
U22 I/O(C) Y6 VCCIO(H) AB2 I/O(H) AC10 I/O(A) AD18 INREF(B) AE26 I/O(B)
U23 I/O(C) Y21 VCCIO(C) AB3 I/O(A) AC11 I/O(A) AD19 I/O(B) AF1 I/O(A)
U24 I/O(C) Y22 I/O(C) AB4 GNDPLL(3) AC12 I/O(A) AD20 I/O(B) AF2 I/O(A)
U25 I/O(C) Y23 I/O(C) AB5 VCCPLL(3) AC13 I/O(A) AD21 I/O(B) AF3 I/O(A)
U26 I/O(C) Y24 I/O(C) AB6 I/O(A) AC14 CLK(1) AD22 I/O(B) AF4 I/O(A)
V1 I/O(H) Y25 I/O(C) AB7 I/O(A) AC15 I/O(B) AD23 I/O(B) AF5 I/O(A)
V2 IOCTRL(H) Y26 IOCTRL(C) AB8 I/O(A) AC16 I/O(B) AD24 GND AF6 IOCTRL(A)
V3 IOCTRL(H) AA1 I/O(H) AB9 I/O(A) AC17 I/O(B) AD25 I/O(B) AF7 I/O(A)
V4 I/O(H) AA2 I/O(H) AB10 I/O(A) AC18 I/O(B) AD26 I/O(B) AF8 I/O(A)
V5 I/O(H) AA3 I/O(H) AB11 VCC AC19 I/O(B) AE1 GND AF9 I/O(A)
V6 VCCIO(H) AA4 I/O(A) AB12 I/O(A) AC20 I/O(B) AE2 GND AF10 I/O(A)
V21 VCCIO(C) AA5 I/O(A) AB13 I/O(A) AC21 I/O(B) AE3 I/O(A) AF11 I/O(A)
V22 I/O(C) AA6 GND AB14 CLK(3)/
PLLIN(1) AC22 TDO AE4 I/O(A) AF12 CLK(2)/
PLLIN(2)
V23 I/O(C) AA7 VCCIO(A) AB15 VCC AC23 PLLOUT(1) AE5 I/O(A) AF13 I/O(B)
V24 IOCTRL(C) AA8 VCC AB16 I/O(B) AC24 I/O(B) AE6 I/O(A) AF14 I/O(B)
V25 I/O(C) AA9 VCCIO(A) AB17 I/O(B) AC25 I/O(B) AE7 INREF(A) AF15 I/O(B)
V26 I/O(C) AA10 GND AB18 I/O(B) AC26 I/O(C) AE8 I/O(A) AF16 I/O(B)
W1 INREF(H) AA11 VCC AB19 VCC AD1 I/O(A) AE9 I/O(A) AF17 I/O(B)
W2 I/O(H) AA12 VCCIO(A) AB20 I/O(B) AD2 PLLOUT(2) AE10 I/O(A) AF18 I/O(B)
W3 I/O(H) AA13 GND AB21 I/O(B) AD3 PLLRST(3) AE11 I/O(A) AF19 IOCTRL(B)
W4 I/O(H) AA14 VCCIO(B) AB22 GNDPLL(2) AD4 I/O(A) AE12 CLK(0) AF20 IOCTRL(B)
W5 VCC AA15 VCC AB23 I/O(B) AD5 I/O(A) AE13 I/O(B) AF21 I/O(B)
W6 VCC AA16 VCC AB24 I/O(C) AD6 I/O(A) AE14 I/O(B) AF22 I/O(B)
W21 VCC AA17 GND AB25 I/O(C) AD7 I/O(A) AE15 I/O(B) AF23 I/O(B)
W22 I/O(C) AA18 VCCIO(B) AB26 I/O(C) AD8 IOCTRL(A) AE16 I/O(B) AF24 I/O(B)
W23 I/O(C) AA19 VCC AC1 I/O(A) AD9 I/O(A) AE17 I/O(B) AF25 I/O(B)
W24 I/O(C) AA20 VCCIO(B) AC2 I/O(A) AD10 I/O(A) AE18 I/O(B) AF26 I/O(B)
Table 33: 516 PBGA Pinout Table (Continued)
Ball Function Ball Function Ball Function Ball Function Ball Function Ball Function
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
60
QL6600 - 280 LFBGA Pinout Diagram
Top
Bottom
Eclipse
QL6600-4PT280C
Pin A1
Corner
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
61
QL6600 - 280 LFBGA Pinout Table
Table 34: 280 LFBGA Pinout Table
Ball Function Ball Function Ball Function Ball Function Ball Function Ball Function
A1 PLLOUT(3) C10 CLK(5)/
PLLIN(3) E19 IOCTRL(D) K16 I/O(C) R4 I/O(H) U13 I/O(B)
A2 GNDPLL(0) C11 VCCIO(E) F1 INREF(G) K17 I/O(D) R5 GND U14 IOCTRL(B)
A3 I/O(F) C12 I/O(E) F2 IOCTRL(G) K18 I/O(C) R6 GND U15 VCCIO(B)
A4 I/O(F) C13 I/O(E) F3 I/O(G) K19 TRSTB R7 VCC U16 I/O(B)
A5 I/O(F) C14 I/O(E) F4 I/O(G) L1 I/O(H) R8 VCC U17 TDO
A6 IOCTRL(F) C15 VCCIO(E) F5 GND L2 I/O(H) R9 GND U18 PLLRST(2)
A7 I/O(F) C16 I/O(E) F15 VCC L3 VCCIO(H) R10 GND U19 I/O(B)
A8 I/O(F) C17 I/O(E) F16 IOCTRL(D) L4 I/O(H) R11 VCC V1 PLLOUT(2)
A9 I/O(F) C18 I/O(E) F17 I/O(D) L5 VCC R12 VCC V2 GNDPLL(3)
A10 CLK(7) C19 I/O(E) F18 I/O(D) L15 GND R13 VCC V3 GND
A11 I/O(E) D1 I/O(G) F19 I/O(D) L16 I/O(C) R14 VCC V4 I/O(A)
A12 I/O(E) D2 I/O(G) G1 I/O(G) L17 VCCIO(C) R15 GND V5 I/O(A)
A13 I/O(E) D3 I/O(F) G2 I/O(G) L18 I/O(C) R16 I/O(C) V6 IOCTRL(A)
A14 IOCTRL(E) D4 I/O(F) G3 IOCTRL(G) L19 I/O(C) R17 VCCIO(C) V7 I/O(A)
A15 I/O(E) D5 I/O(F) G4 I/O(G) M1 I/O(H) R18 I/O(C) V8 I/O(A)
A16 I/O(E) D6 I/O(F) G5 VCC M2 I/O(H) R19 I/O(C) V9 I/O(A)
A17 I/O(E) D7 I/O(F) G15 VCC M3 I/O(H) T1 I/O(H) V10 CLK(1)
A18 PLLRST(1) D8 I/O(F) G16 I/O(D) M4 I/O(H) T2 I/O(H) V11
CLK(4)/
DEDCLK/
PLLIN(0)
A19 GND D9 CLK(8) G17 I/O(D) M5 VCC T3 I/O(A) V12 I/O(B)
B1 PLLRST(0) D10 I/O(E) G18 I/O(D) M15 VCC T4 I/O(A) V13 I/O(B)
B2 GND D11 I/O(E) G19 I/O(D) M16 INREF(C) T5 I/O(A) V14 INREF(B)
B3 I/O(F) D12 I/O(E) H1 I/O(G) M17 I/O(C) T6 IOCTRL(A) V15 I/O(B)
B4 I/O(F) D13 INREF(E) H2 I/O(G) M18 I/O(C) T7 I/O(A) V16 I/O(B)
B5 I/O(F) D14 I/O(E) H3 I/O(G) M19 I/O(C) T8 I/O(A) V17 I/O(B)
B6 INREF(F) D15 I/O(E) H4 I/O(G) N1 IOCTRL(H) T9 I/O(A) V18 GNDPLL(2)
B7 I/O(F) D16 I/O(D) H5 VCC N2 I/O(H) T10 I/O(A) V19 GND
B8 I/O(F) D17 I/O(D) H15 VCC N3 I/O(H) T11 CLK(3)/
PLLIN(1) W1 GND
B9 TMS D18 I/O(D) H16 VCC N4 I/O(H) T12 I/O(B) W2 PLLRST(3)
B10 CLK(6) D19 I/O(D) H17 I/O(D) N5 VCC T13 I/O(B) W3 I/O(A)
B11 I/O(E) E1 I/O(G) H18 I/O(D) N15 VCC T14 I/O(B) W4 I/O(A)
B12 I/O(E) E2 I/O(G) H19 I/O(D) N16 I/O(C) T15 I/O(B) W5 I/O(A)
B13 IOCTRL(E) E3 VCCIO(G) J1 I/O(G) N17 I/O(C) T16 I/O(B) W6 I/O(A)
B14 I/O(E) E4 I/O(F) J2 I/O(G) N18 IOCTRL(C) T17 VCCPLL(2) W7 I/O(A)
B15 I/O(E) E5 GND J3 VCCIO(G) N19 IOCTRL(C) T18 I/O(B) W8 I/O(A)
B16 I/O(E) E6 VCC J4 I/O(G) P1 I/O(H) T19 I/O(B) W9 TDI
B17 VCCPLL(1) E7 VCC J5 GND P2 I/O(H) U1 I/O(A) W10 CLK(2)/
PLLIN(2)
B18 GNDPLL(1) E8 VCC J15 VCC P3 IOCTRL(H) U2 I/O(A) W11 I/O(B)
B19 PLLOUT(0) E9 VCC J16 I/O(C) P4 INREF(H) U3 VCCPLL(3) W12 I/O(B)
C1 I/O(F) E10 GND J17 VCCIO(D) P5 VCC U4 I/O(A) W13 I/O(B)
C2 VCCPLL(0) E11 GND J18 I/O(D) P15 GND U5 VCCIO(A) W14 IOCTRL(B)
C3 I/O(F) E12 VCC J19 I/O(D) P16 I/O(C) U6 INREF(A) W15 I/O(B)
C4 I/O(F) E13 VCC K1 VCC P17 I/O(C) U7 I/O(A) W16 I/O(B)
C5 VCCIO(F) E14 GND K2 TCK P18 I/O(C) U8 I/O(A) W17 I/O(B)
C6 IOCTRL(F) E15 GND K3 I/O(G) P19 I/O(C) U9 VCCIO(A) W18 I/O(B)
C7 I/O(F) E16 I/O(D) K4 I/O(G) R1 I/O(H) U10 CLK(0) W19 PLLOUT(1)
C8 I/O(F) E17 VCCIO(D) K5 GND R2 I/O(H) U11 VCCIO(B)
C9 VCCIO(F) E18 INREF(D) K15 GND R3 VCCIO(H) U12 I/O(B)
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
62
QL6600 - 484 PBGA Pinout Diagram
Top
Bottom
Eclipse
QL6600-4PS484C
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
E
D
F
G
H
K
J
L
M
N
R
P
T
U
V
Y
W
22 21
A
B
AA
Pin A1
Corner
Pin A1
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
63
QL6600 - 484 PBGA Pinout Table
Table 35: 484 PBGA Pinout Table
Ball Function Ball Function Ball Function Ball Function Ball Function Ball Function
A1 I/O(A) C1 I/O(A) E1 IOCTRL(A) G1 I/O(A) J1 I/O(A) L1
CLK(4)/
DEDCLK/
PLLIN(0)
A2 PLLRST(3) C2 I/O(A) E2 I/O(A) G2 I/O(A) J2 I/O(A) L2 CLK(0)
A3 I/O(A) C3 VCCPLL(3) E3 I/O(A) G3 I/O(A) J3 I/O(A) L3 CLK(2)/PLLIN(2)
A4 I/O(A) C4 PLLOUT(2) E4 I/O(A) G4 I/O(A) J4 I/O(A) L4 I/O(A)
A5 I/O(A) C5 I/O(A) E5 I/O(A) G5 I/O(A) J5 I/O(A) L5 I/O(A)
A6 I/O(H) C6 I/O(H) E6 I/O(H) G6 I/O(A) J6 I/O(A) L6 I/O(A)
A7 I/O(H) C7 I/O(H) E7 I/O(H) G7 GND J7 I/O(A) L7 GND
A8 IOCTRL(H) C8 I/O(H) E8 I/O(H) G8 I/O(H) J8 VCC L8 GND
A9 I/O(H) C9 IOCTRL(H) E9 I/O(H) G9 I/O(H) J9 GND L9 GND
A10 I/O(H) C10 I/O(H) E10 I/O(H) G10 I/O(H) J10 VCC L10 GND
A11 I/O(H) C11 I/O(H) E11 VDED2 G11 I/O(G) J11 VCC L11 GND
A12 TCK C12 I/O(H) E12 I/O(G) G12 GND J12 GND L12 GND
A13 I/O(G) C13 I/O(G) E13 I/O(G) G13 I/O(G) J13 VCC L13 GND
A14 I/O(G) C14 I/O(G) E14 I/O(G) G14 I/O(G) J14 GND L14 VCC
A15 I/O(G) C15 I/O(G) E15 IOCTRL(G) G15 I/O(G) J15 VCC L15 VCC
A16 I/O(G) C16 I/O(G) E16 I/O(G) G16 GND J16 I/O(F) L16 CLK(6)
A17 I/O(G) C17 I/O(G) E17 INREF(G) G17 VCCIO(F) J17 VCCIO(F) L17 VCCIO(F)
A18 I/O(G) C18 I/O(G) E18 I/O(G) G18 I/O(F) J18 I/O(F) L18 I/O(F)
A19 I/O(F) C19 I/O(F) E19 I/O(F) G19 I/O(F) J19 I/O(F) L19 CLK(8)
A20 GND C20 GNDPLL(0) E20 I/O(F) G20 I/O(F) J20 I/O(F) L20 I/O(F)
A21 PLLOUT(3) C21 I/O(F) E21 I/O(F) G21 INREF(F) J21 I/O(F) L21 I/O(F)
A22 I/O(F) C22 I/O(F) E22 I/O(F) G22 I/O(F) J22 I/O(F) L22 I/O(F)
B1 I/O(A) D1 I/O(A) F1 I/O(A) H1 I/O(A) K1 TDI M1 I/O(B)
B2 GND D2 I/O(A) F2 INREF(A) H2 I/O(A) K2 I/O(A) M2 I/O(B)
B3 GNDPLL(3) D3 I/O(A) F3 I/O(A) H3 I/O(A) K3 I/O(A) M3 I/O(B)
B4 GND D4 I/O(A) F4 I/O(A) H4 I/O(A) K4 I/O(A) M4 CLK(3)/PLLIN(1)
B5 I/O(A) D5 I/O(A) F5 I/O(A) H5 IOCTRL(A) K5 I/O(A) M5 I/O(B)
B6 I/O(H) D6 I/O(H) F6 VCCIO(A) H6 VCCIO(A) K6 VCCIO(A) M6 VCCIO(B)
B7 I/O(H) D7 I/O(H) F7 VCCIO(H) H7 I/O(H) K7 I/O(A) M7 CLK(1)
B8 INREF(H) D8 I/O(H) F8 I/O(H) H8 GND K8 VCC M8 VCC
B9 I/O(H) D9 I/O(H) F9 VCCIO(H) H9 VCC K9 VCC M9 VCC
B10 I/O(H) D10 I/O(H) F10 I/O(H) H10 VCC K10 GND M10 GND
B11 I/O(H) D11 I/O(H) F11 VCCIO(H) H11 VDED K11 GND M11 GND
B12 I/O(G) D12 I/O(G) F12 VCCIO(G) H12 GND K12 GND M12 GND
B13 I/O(G) D13 I/O(G) F13 I/O(G) H13 VCC K13 GND M13 GND
B14 I/O(G) D14 I/O(G) F14 VCCIO(G) H14 VCC K14 VCC M14 GND
B15 I/O(G) D15 IOCTRL(G) F15 I/O(G) H15 GND K15 VCC M15 GND
B16 I/O(G) D16 I/O(G) F16 VCCIO(G) H16 I/O(F) K16 I/O(F) M16 GND
B17 I/O(G) D17 I/O(G) F17 I/O(G) H17 I/O(F) K17 I/O(F) M17 I/O(E)
B18 I/O(G) D18 I/O(F) F18 I/O(F) H18 I/O(F) K18 I/O(F) M18 I/O(E)
B19 PLLRST(0) D19 VCCPLL(0) F19 I/O(F) H19 I/O(F) K19 I/O(F) M19 I/O(E)
B20 I/O(F) D20 I/O(F) F20 IOCTRL(F) H20 I/O(F) K20 I/O(F) M20 CLK(7)
B21 I/O(F) D21 I/O(F) F21 I/O(F) H21 I/O(F) K21 I/O(F) M21 CLK(5)/PLLIN(3)
B22 I/O(F) D22 I/O(F) F22 IOCTRL(F) H22 I/O(F) K22 I/O(F) M22 TMS
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
64
N1 I/O(B) P16 I/O(E) T9 I/O(C) V2 I/O(B) W17 I/O(D) AA10 I/O(C)
N2 I/O(B) P17 I/O(E) T10 TRSTB V3 I/O(B) W18 I/O(E) AA11 I/O(C)
N3 I/O(B) P18 I/O(E) T11 GND V4 I/O(B) W19 I/O(E) AA12 I/O(D)
N4 I/O(B) P19 I/O(E) T12 I/O(C) V5 I/O(B) W20 I/O(E) AA13 I/O(D)
N5 I/O(B) P20 I/O(E) T13 I/O(D) V6 I/O(C) W21 I/O(E) AA14 I/O(D)
N6 I/O(B) P21 I/O(E) T14 I/O(D) V7 I/O(C) W22 I/O(E) AA15 I/O(D)
N7 I/O(B) P22 I/O(E) T15 I/O(D) V8 I/O(C) Y1 I/O(B) AA16 I/O(D)
N8 VCC R1 I/O(B) T16 GND V9 I/O(C) Y2 I/O(B) AA17 I/O(D)
N9 VCC R2 INREF(B) T17 I/O(E) V10 I/O(C) Y3 VCCPLL(2) AA18 I/O(D)
N10 GND R3 I/O(B) T18 I/O(E) V11 I/O(C) Y4 I/O(C) AA19 I/O(E)
N11 GND R4 I/O(B) T19 I/O(E) V12 VDED2 Y5 I/O(C) AA20 GNDPLL(1)
N12 GND R5 I/O(B) T20 I/O(E) V13 I/O(D) Y6 I/O(C) AA21 I/O(E)
N13 GND R6 I/O(B) T21 IOCTRL(E) V14 I/O(D) Y7 I/O(C) AA22 I/O(E)
N14 VCC R7 I/O(B) T22 I/O(E) V15 I/O(D) Y8 IOCTRL(C) AB1 I/O(B)
N15 VCC R8 GND U1 IOCTRL(B) V16 INREF(D) Y9 I/O(C) AB2 GNDPLL(2)
N16 I/O(E) R9 VCC U2 I/O(B) V17 I/O(D) Y10 I/O(C) AB3 PLLRST(2)
N17 VCCIO(E) R10 VCC U3 IOCTRL(B) V18 I/O(E) Y11 I/O(D) AB4 I/O(B)
N18 I/O(E) R11 GND U4 I/O(B) V19 I/O(E) Y12 I/O(D) AB5 I/O(B)
N19 I/O(E) R12 VDED U5 I/O(B) V20 I/O(E) Y13 I/O(D) AB6 I/O(C)
N20 I/O(E) R13 VCC U6 I/O(C) V21 I/O(E) Y14 I/O(D) AB7 I/O(C)
N21 I/O(E) R14 VCC U7 VCCIO(C) V22 I/O(E) Y15 IOCTRL(D) AB8 IOCTRL(C)
N22 I/O(E) R15 GND U8 I/O(C) W1 I/O(B) Y16 I/O(D) AB9 I/O(C)
P1 I/O(B) R16 I/O(D) U9 VCCIO(C) W2 I/O(B) Y17 I/O(D) AB10 I/O(C)
P2 I/O(B) R17 VCCIO(E) U10 I/O(C) W3 I/O(B) Y18 I/O(E) AB11 I/O(C)
P3 I/O(B) R18 I/O(E) U11 VCCIO(C) W4 I/O(B) Y19 PLLOUT(0) AB12 I/O(D)
P4 I/O(B) R19 I/O(E) U12 VCCIO(D) W5 I/O(B) Y20 PLLRST(1) AB13 I/O(D)
P5 I/O(B) R20 I/O(E) U13 I/O(D) W6 I/O(C) Y21 I/O(E) AB14 I/O(D)
P6 VCCIO(B) R21 I/O(E) U14 VCCIO(D) W7 I/O(C) Y22 I/O(E) AB15 I/O(D)
P7 I/O(B) R22 I/O(E) U15 I/O(D) W8 I/O(C) AA1 TDO AB16 IOCTRL(D)
P8 VCC T1 I/O(B) U16 VCCIO(D) W9 I/O(C) AA2 PLLOUT(1) AB17 I/O(D)
P9 GND T2 I/O(B) U17 VCCIO(E) W10 I/O(C) AA3 GND AB18 I/O(D)
P10 VCC T3 I/O(B) U18 I/O(E) W11 I/O(C) AA4 I/O(B) AB19 I/O(E)
P11 GND T4 I/O(B) U19 I/O(E) W12 I/O(D) AA5 I/O(C) AB20 GND
P12 VCC T5 I/O(B) U20 IOCTRL(E) W13 I/O(D) AA6 I/O(C) AB21 VCCPLL(1)
P13 VCC T6 VCCIO(B) U21 I/O(E) W14 I/O(D) AA7 I/O(C) AB22 I/O(E)
P14 GND T7 GND U22 INREF(E) W15 I/O(D) AA8 INREF(C)
P15 VDED T8 I/O(C) V1 I/O(B) W16 I/O(D) AA9 I/O(C)
Table 35: 484 PBGA Pinout Table (Continued)
Ball Function Ball Function Ball Function Ball Function Ball Function Ball Function
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
65
QL6600 - 516 PBGA Pinout Diagram
Top
Bottom
Eclipse
QL6600-4PB516C
PIN A1
CORNER
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
66
QL6600 - 516 PBGA Pinout Table
Table 36: 516 PBGA Pinout Table
Ball Function Ball Function Ball Function Ball Function Ball Function Ball Function
A1 GND C1 I/O(F) E1 I/O(G) G1 I/O(G) L5 VCC P3 I/O(H)
A2 I/O(F) C2 I/O(F) E2 I/O(G) G2 INREF(G) L6 VCC P4 VCC
A3 I/O(F) C3 I/O(F) E3 I/O(G) G3 I/O(G) L11 GND P5 I/O(H)
A4 I/O(F) C4 PLLOUT(3) E4 VCCPLL(0) G4 I/O(G) L12 GND P6 VCCIO(H)
A5 I/O(F) C5 I/O(F) E5 I/O(F) G5 I/O(G) L13 GND P11 GND
A6 I/O(F) C6 I/O(F) E6 I/O(F) G6 VCCIO(G) L14 GND P12 GND
A7 IOCTRL(F) C7 I/O(F) E7 I/O(F) G21 VCCIO(D) L15 GND P13 GND
A8 I/O(F) C8 INREF(F) E8 VCC G22 I/O(D) L16 GND P14 GND
A9 I/O(F) C9 I/O(F) E9 I/O(F) G23 I/O(D) L21 VCC P15 GND
A10 I/O(F) C10 I/O(F) E10 I/O(F) G24 I/O(D) L22 I/O(D) P16 GND
A11 I/O(F) C11 I/O(F) E11 I/O(F) G25 I/O(D) L23 I/O(D) P21 VCCIO(C)
A12 I/O(F) C12 I/O(F) E12 VCC G26 INREF(D) L24 I/O(D) P22 I/O(C)
A13 I/O(E) C13 CLK(7) E13 I/O(F) H1 I/O(G) L25 I/O(D) P23 VCC
A14 I/O(E) C14 I/O(E) E14 I/O(F) H2 I/O(G) L26 I/O(D) P24 I/O(C)
A15 I/O(E) C15 I/O(E) E15 I/O(E) H3 IOCTRL(G) M1 I/O(G) P25 I/O(C)
A16 I/O(E) C16 I/O(E) E16 VCC H4 I/O(G) M2 I/O(G) P26 TRSTB
A17 I/O(E) C17 I/O(E) E17 CLK(6) H5 I/O(G) M3 I/O(G) R1 I/O(H)
A18 IOCTRL(E) C18 I/O(E) E18 I/O(E) H6 VCC M4 I/O(G) R2 I/O(H)
A19 IOCTRL(E) C19 I/O(E) E19 I/O(E) H21 VCC M5 I/O(G) R3 I/O(H)
A20 I/O(E) C20 I/O(E) E20 I/O(E) H22 VCC M6 VCCIO(G) R4 I/O(H)
A21 I/O(E) C21 I/O(E) E21 I/O(E) H23 I/O(D) M11 GND R5 VCC
A22 I/O(E) C22 I/O(E) E22 I/O(E) H24 IOCTRL(D) M12 GND R6 VCC
A23 I/O(E) C23 I/O(E) E23 GNDPLL(1) H25 IOCTRL(D) M13 GND R11 GND
A24 I/O(E) C24 I/O(E) E24 I/O(E) H26 I/O(D) M14 GND R12 GND
A25 PLLRST(1) C25 I/O(E) E25 I/O(D) J1 I/O(G) M15 GND R13 GND
A26 GND C26 I/O(E) E26 I/O(D) J2 I/O(G) M16 GND R14 GND
B1 I/O(F) D1 I/O(G) F1 IOCTRL(G) J3 I/O(G) M21 VCCIO(D) R15 GND
B2 PLLRST(0) D2 I/O(G) F2 I/O(G) J4 I/O(G) M22 VCC R16 GND
B3 I/O(F) D3 I/O(F) F3 I/O(G) J5 I/O(G) M23 I/O(D) R21 VCC
B4 I/O(F) D4 I/O(F) F4 I/O(G) J6 VCCIO(G) M24 I/O(D) R22 I/O(C)
B5 I/O(F) D5 GNDPLL(0) F5 I/O(F) J21 VCCIO(D) M25 I/O(D) R23 I/O(C)
B6 I/O(F) D6 I/O(F) F6 GND J22 I/O(D) M26 I/O(D) R24 I/O(C)
B7 IOCTRL(F) D7 I/O(F) F7 VCCIO(F) J23 I/O(D) N1 TCK R25 I/O(C)
B8 I/O(F) D8 I/O(F) F8 VCC J24 I/O(D) N2 I/O(H) R26 I/O(C)
B9 I/O(F) D9 I/O(F) F9 VCCIO(F) J25 I/O(D) N3 I/O(G) T1 I/O(H)
B10 I/O(F) D10 I/O(F) F10 GND J26 I/O(D) N4 I/O(G) T2 I/O(H)
B11 I/O(F) D11 I/O(F) F11 VCC K1 I/O(G) N5 I/O(G) T3 I/O(H)
B12 I/O(F) D12 I/O(F) F12 VCCIO(F) K2 I/O(G) N6 GND T4 I/O(H)
B13 CLK(5)/
PLLIN(3) D13 TMS F13 GND K3 I/O(G) N11 GND T5 I/O(H)
B14 I/O(E) D14 I/O(E) F14 VCCIO(E) K4 I/O(G) N12 GND T6 VCC
B15 I/O(E) D15 I/O(E) F15 VCC K5 I/O(G) N13 GND T11 GND
B16 I/O(E) D16 I/O(F) F16 VCC K6 GND N14 GND T12 GND
B17 I/O(E) D17 I/O(E) F17 GND K21 GND N15 GND T13 GND
B18 INREF(E) D18 I/O(F) F18 VCCIO(E) K22 I/O(D) N16 GND T14 GND
B19 I/O(E) D19 CLK(8) F19 VCC K23 I/O(D) N21 GND T15 GND
B20 I/O(E) D20 I/O(E) F20 VCCIO(E) K24 I/O(D) N22 I/O(D) T16 GND
B21 I/O(E) D21 I/O(E) F21 GND K25 I/O(D) N23 I/O(D) T21 VCC
B22 I/O(E) D22 I/O(E) F22 I/O(E) K26 I/O(D) N24 I/O(D) T22 VCC
B23 I/O(E) D23 VCCPLL(1) F23 I/O(D) L1 I/O(G) N25 I/O(D) T23 I/O(C)
B24 I/O(E) D24 I/O(E) F24 I/O(D) L2 I/O(G) N26 I/O(D) T24 I/O(C)
B25 I/O(E) D25 I/O(E) F25 I/O(D) L3 I/O(G) P1 I/O(H) T25 I/O(C)
B26 PLLOUT(0) D26 I/O(D) F26 I/O(D) L4 I/O(G) P2 I/O(H) T26 I/O(C)
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
67
U1 I/O(H) W25 INREF(C) AA21 GND AC3 I/O(A) AD11 I/O(A) AE19 I/O(B)
U2 I/O(H) W26 I/O(C) AA22 VCCPLL(2) AC4 I/O(A) AD12 TDI AE20 I/O(B)
U3 I/O(H) Y1 I/O(H) AA23 I/O(C) AC5 I/O(A) AD13
CLK(4)
DEDCLK/
PLLIN(0)
AE21 I/O(B)
U4 I/O(H) Y2 I/O(H) AA24 I/O(C) AC6 I/O(A) AD14 I/O(A) AE22 I/O(B)
U5 I/O(H) Y3 I/O(H) AA25 I/O(C) AC7 I/O(A) AD15 I/O(B) AE23 I/O(B)
U6 GND Y4 I/O(H) AA26 I/O(C) AC8 I/O(A) AD16 I/O(B) AE24 I/O(B)
U21 GND Y5 I/O(H) AB1 I/O(H) AC9 I/O(A) AD17 I/O(B) AE25 PLLRST(2)
U22 I/O(C) Y6 VCCIO(H) AB2 I/O(H) AC10 I/O(A) AD18 INREF(B) AE26 I/O(B)
U23 I/O(C) Y21 VCCIO(C) AB3 I/O(A) AC11 I/O(A) AD19 I/O(B) AF1 I/O(A)
U24 I/O(C) Y22 I/O(C) AB4 GNDPLL(3) AC12 I/O(A) AD20 I/O(B) AF2 I/O(A)
U25 I/O(C) Y23 I/O(C) AB5 VCCPLL(3) AC13 I/O(A) AD21 I/O(B) AF3 I/O(A)
U26 I/O(C) Y24 I/O(C) AB6 I/O(A) AC14 CLK(1) AD22 I/O(B) AF4 I/O(A)
V1 I/O(H) Y25 I/O(C) AB7 I/O(A) AC15 I/O(B) AD23 I/O(B) AF5 I/O(A)
V2 IOCTRL(H) Y26 IOCTRL(C) AB8 I/O(A) AC16 I/O(B) AD24 GND AF6 IOCTRL(A)
V3 IOCTRL(H) AA1 I/O(H) AB9 I/O(A) AC17 I/O(B) AD25 I/O(B) AF7 I/O(A)
V4 I/O(H) AA2 I/O(H) AB10 I/O(A) AC18 I/O(B) AD26 I/O(B) AF8 I/O(A)
V5 I/O(H) AA3 I/O(H) AB11 VCC AC19 I/O(B) AE1 GND AF9 I/O(A)
V6 VCCIO(H) AA4 I/O(A) AB12 I/O(A) AC20 I/O(B) AE2 GND AF10 I/O(A)
V21 VCCIO(C) AA5 I/O(A) AB13 I/O(A) AC21 I/O(B) AE3 I/O(A) AF11 I/O(A)
V22 I/O(C) AA6 GND AB14 CLK(3)/
PLLIN(1) AC22 TDO AE4 I/O(A) AF12 CLK(2)/
PLLIN(2)
V23 I/O(C) AA7 VCCIO(A) AB15 VCC AC23 PLLOUT(1) AE5 I/O(A) AF13 I/O(B)
V24 IOCTRL(C) AA8 VCC AB16 I/O(B) AC24 I/O(B) AE6 I/O(A) AF14 I/O(B)
V25 I/O(C) AA9 VCCIO(A) AB17 I/O(B) AC25 I/O(B) AE7 INREF(A) AF15 I/O(B)
V26 I/O(C) AA10 GND AB18 I/O(B) AC26 I/O(C) AE8 I/O(A) AF16 I/O(B)
W1 INREF(H) AA11 VCC AB19 VCC AD1 I/O(A) AE9 I/O(A) AF17 I/O(B)
W2 I/O(H) AA12 VCCIO(A) AB20 I/O(B) AD2 PLLOUT(2) AE10 I/O(A) AF18 I/O(B)
W3 I/O(H) AA13 GND AB21 I/O(B) AD3 PLLRST(3) AE11 I/O(A) AF19 IOCTRL(B)
W4 I/O(H) AA14 VCCIO(B) AB22 GNDPLL(2) AD4 I/O(A) AE12 CLK(0) AF20 IOCTRL(B)
W5 VCC AA15 VCC AB23 I/O(B) AD5 I/O(A) AE13 I/O(B) AF21 I/O(B)
W6 VCC AA16 VCC AB24 I/O(C) AD6 I/O(A) AE14 I/O(B) AF22 I/O(B)
W21 VCC AA17 GND AB25 I/O(C) AD7 I/O(A) AE15 I/O(B) AF23 I/O(B)
W22 I/O(C) AA18 VCCIO(B) AB26 I/O(C) AD8 IOCTRL(A) AE16 I/O(B) AF24 I/O(B)
W23 I/O(C) AA19 VCC AC1 I/O(A) AD9 I/O(A) AE17 I/O(B) AF25 I/O(B)
W24 I/O(C) AA20 VCCIO(B) AC2 I/O(A) AD10 I/O(A) AE18 I/O(B) AF26 I/O(B)
Table 36: 516 PBGA Pinout Table (Continued)
Ball Function Ball Function Ball Function Ball Function Ball Function Ball Function
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
68
Package Mechanical Drawings
208 PQFP Packaging Drawing
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
69
280 LFBGA Packaging Drawing
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
70
484 PBGA Packaging Drawing
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
71
516 PBGA Packaging Drawing
www.quicklogic.com
© 2007 QuickLogic Corporation
Eclipse Family Data Sheet Rev. F
72
Packaging Information
Eclipse product is offered in the following packages. All packages support commercial, industrial, and military
temperature ranges. The Eclipse product family packaging information is presented in Table 37.
Ordering Information
Contact Information
Phone: (408) 990-4000 (US)
(905) 940-4149 (Canada)
+(44) 1932 57 9011 (Europe)
+(86) 21 6867 0273 (Asia except Japan)
+(81) 45 470 5525 (Japan)
E-mail: info@quicklogic.com
Sales: www.quicklogic.com/sales
Support: www.quicklogic.com/support
Internet: www.quicklogic.com
Table 37: Packaging Options
Device Information QL6250 and QL6325 QL6500 and QL6600
Pin/Ball Pitch Pin/Ball Pitch
Package Definitionsa
a. PQFP = Plastic Quad Flat Pack
LFBGA = Low Profile Fine Pitch Ball Grid Array
PBGA = Plastic Ball Grid Array
208 PQFP 0.50 mm 280 LFBGA 0.80 mm
280 LFBGA 0.80 mm 484 PBGA 1.0 mm
484 PBGA 1.0 mm 516 PBGA 1.27 mm
QL 6250 - 7 PQ208 C
QuickLogic Device
Eclipse Device
Part Number
6250, 6325, 6500, and 6600
Speed Grade
4 = Quick
5 = Fast
6 = Faster
7 = Fastest
Operating Range
C = Commercial
I = Industrial
M = Military
Package
PQ208
(PQN208)*
= 208-pin PQFP
PT280 (PTN280)* = 280-ball LFBGA (0.8 mm)
PS484 (PSN484)* = 484-ball FPBGA (1.0 mm)
PB516 (PBN516)* = 516-ball PBGA (1.27 mm)
* Lead-free packaging is available, contact QuickLogic regarding availability
(see Contact Information).
© 2007 QuickLogic Corporation
www.quicklogic.com
Eclipse Family Data Sheet Rev. F
73
Revision History
Copyright Information
Copyright © 2007 QuickLogic Corporation. All Rights Reserved.
The information contained in this document and is protected by copyright. All rights are reserved by QuickLogic Corporation. QuickLogic
Corporation reserves the right to modify this document without any obligation to notify any person or entity of such revision. Copying,
duplicating, selling, or otherwise distributing any part of this product without the prior written consent of an authorized representative of
QuickLogic is prohibited.
QuickLogic and the QuickLogic logo, pASIC, QuickWorks are registered trademarks of QuickLogic Corporation; Eclipse, is a trademark
of QuickLogic Corporation.
Revision Date Comments
A Jan 2002 First release.
BApril 2003 Brian Faith and Kathleen Murchek
C May 2003 Brian Faith and Kathleen Murchek
DSeptember 2005
Brian Faith, Mehul Kochar, and Kathleen Murchek
Combined previous Eclipse Family data sheet with QL6250, QL6325,
QL6500, and QL6600 data sheets to create one complete Eclipse Family
Data Sheet.
E March 2007 Jason Lew and Kathleen Murchek
Changed pin G16 from VPUMP to GND in all PS484 pinout tables.
FSeptember 2007
Kathleen Murchek
Updated packaging information to include lead-free parts.
Updated banner and logo.