_______________________________________________________________ Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
General Description
The MAX2042 single, high-linearity upconversion/down-
conversion mixer provides +36dBm IIP3, 7.3dB noise fig-
ure, and 7.2dB conversion loss for 2000MHz to 3000MHz
WCS, LTE, WiMAXK, and MMDS wireless infrastructure
applications. With a wide LO frequency range of 1800MHz
to 2800MHz, this particular mixer is ideal for low-side LO
injection receiver and transmitter architectures. High-side
LO injection is supported by the MAX2042A, which is pin-
pin and functionally compatible with the MAX2042.
In addition to offering excellent linearity and noise
performance, the MAX2042 also yields a high level of
component integration. This device includes a double-
balanced passive mixer core, an LO buffer, and on-chip
baluns that allow for single-ended RF and LO inputs.
The MAX2042 requires a nominal LO drive of 0dBm,
and supply current is typically 138mA at VCC = +5.0V or
120mA at VCC = +3.3V.
The MAX2042 is pin compatible with the MAX2042A
2000MHz to 3900MHz mixer. The device is also pin simi-
lar with the MAX2029/MAX2031 650MHz to 1000MHz
mixers, the MAX2039/MAX2041 1700MHz to 3000MHz
mixers, and the MAX2044/MAX2044A 3000MHz to
4000MHz mixers, making this entire family of up/down-
converters ideal for applications where a common PCB
layout is used for multiple frequency bands.
The MAX2042 is available in a compact 20-pin thin QFN
(5mm x 5mm) package with an exposed pad. Electrical
performance is guaranteed over the extended -40NC to
+85NC temperature range.
Applications
2.3GHz WCS Base Stations
2.5GHz WiMAX and LTE Base Stations
2.7GHz MMDS Base Stations
Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Military Systems
Features
S 2000MHz to 3000MHz RF Frequency Range
S 1800MHz to 2800MHz LO Frequency Range
S 50MHz to 500MHz IF Frequency Range
S 7.2dB Conversion Loss
S 7.3dB Noise Figure
S +36dBm Typical IIP3
S +23.4dBm Typical Input 1dB Compression Point
S 70dBc Typical 2RF - 2LO Spurious Rejection at
PRF = -10dBm
S Integrated LO Buffer
S Integrated RF and LO Baluns for Single-Ended
Inputs
S Low -3dBm to +3dBm LO Drive
S Pin Compatible with the MAX2042A 2000MHz to
3900MHz High-Side LO Injection Mixer
S Pin Similar with the MAX2029/MAX2031 650MHz
to 1000MHz Mixers, MAX2039/MAX2041 1700MHz
to 3000MHz Mixers, and MAX2044/MAX2044A
3000MHz to 4000MHz Mixers
S Single +5.0V or +3.3V Supply
S External Current-Setting Resistor Provides Option
for Operating Device in Reduced-Power/Reduced-
Performance Mode
19-4679; Rev 0; 8/09
Pin Configuration/
Functional Diagram
WiMAX is a trademark of WiMAX Forum.
Ordering Information
+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
T = Tape and reel.
MAX2042
TOP VIEW
1920+18 17
76
*EXPOSED PAD
8
RF
GND
GND
9
VCC 1
2
4
5
15
14
12
11
LOBIAS
VCC
GND
GND
GND 313
16
10
VCC
VCC
GND
GND
LO
GND
IF+
IF-
GND
GND
GND
EP*
PART TEMP RANGE PIN-PACKAGE
MAX2042ETP+ -40NC to +85NC20 Thin QFN-EP*
MAX2042ETP+T -40NC to +85NC20 Thin QFN-EP*
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
2 ______________________________________________________________________________________
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
VCC to GND ..........................................................-0.3V to +5.5V
IF+, IF-, LOBIAS to GND .......................... -0.3V to (VCC + 0.3V)
RF, LO Input Power .......................................................+20dBm
RF, LO Current (RF and LO are DC shorted
to GND through a balun)................................... .............50mA
Continuous Power Dissipation (Note 1) .............................5.0W
BJA (Notes 2, 3) ............................................................ +38NC/W
BJC (Notes 1, 3) ............................................................ +13NC/W
Operating Case Temperature Range
(Note 4) ........................................................... -40NC to +85NC
Junction Temperature .....................................................+150NC
Storage Temperature Range ............................ -65NC to +150NC
Lead Temperature (soldering, 10s) ................................+300NC
+5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = +4.75V to +5.25V, no input AC signals. TC = -40NC to +85NC, unless otherwise noted. Typical
values are at VCC = +5.0V, TC = +25NC, all parameters are production tested.)
+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = +3.0V to +3.6V, no input AC signals. TC = -40NC to +85NC, unless otherwise noted. Typical values
are at VCC = +3.3V, TC = +25NC, all parameters are production tested.)
RECOMMENDED AC OPERATING CONDITIONS
ABSOLUTE MAXIMUM RATINGS
Note 1: Based on junction temperature TJ = TC + (BJC x VCC x ICC). This formula can be used when the temperature of the
exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details.
The junction temperature must not exceed +150NC.
Note 2: Junction temperature TJ = TA + (BJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150NC.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage VCC 4.75 5.0 5.25 V
Supply Current ICC 138 150 mA
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage VCC 3.0 3.3 3.6 V
Supply Current ICC 120 135 mA
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF Frequency Range
Typical Application Circuit with
C1 = 8.2pF, see Table 1 for details
(Notes 5, 6)
2000 3000 MHz
LO Frequency fLO (Notes 5, 6) 1800 2800 MHz
IF Frequency fIF
Using M/A-Com MABAES0029 1:1
transformer as defined in the Typical
Application Circuit, IF matching components
affect the IF frequency range (Notes 5, 6)
50 500 MHz
LO Drive PLO (Notes 5, 6) -3 0 +3 dBm
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
_______________________________________________________________________________________ 3
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50I
sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2000MHz to 2600MHz, fRF > fLO,
TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = +5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 2300MHz, fLO = 2300MHz,
fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Loss LCfRF = 2300MHz to 2900MHz, TC = +25NC
(Note 8) 6.7 7.2 8.1 dB
Loss Variation vs. Frequency DLC
fRF = 2305MHz to 2360MHz 0.15
dB
fRF = 2500MHz to 2570MHz 0.15
fRF = 2570MHz to 2620MHz 0.15
fRF = 2500MHz to 2690MHz 0.15
fRF = 2700MHz to 2900MHz 0.20
Conversion Loss Temperature
Coefficient TCCL TC = -40NC to +85NC0.0071 dB/NC
Single Sideband Noise Figure NFSSB No blockers present 7.3 dB
Noise Figure Temperature
Coefficient TCNF
fRF = 2300MHz to 2900MHz, single
sideband, no blockers present,
TC = -40NC to +85NC
0.019 dB/NC
Noise Figure Under Blocking NFB
+8dBm blocker tone applied to RF port,
fRF = 2600MHz, fLO = 2300MHz,
fBLOCKER = 2795MHz, PLO = 0dBm,
VCC = 5.0V, TC = +25NC (Notes 5, 9)
20.8 25 dB
Input 1dB Compression Point IP1dB TC = +25NC
(Notes 5, 10)
fRF = 2300MHz 22.5 23.4
dBmfRF = 2600MHz 20.6 22.1
fRF = 2900MHz 17.6 20.7
Third-Order Input Intercept Point IIP3
PRF1 = PRF2 =
0dBm/tone,
PLO = 0dBm,
TC = +25NC
fRF1 = 2300MHz,
fRF2 = 2301MHz,
fLO = 2000MHz (Note 5)
34 36
dBm
fRF1 = 2600MHz,
fRF2 = 2601MHz,
fLO = 2300MHz (Note 8)
31 34
fRF1 = 2900MHz,
fRF2 = 2901MHz,
fLO = 2600MHz (Note 5)
28 30
IIP3 Variation with TC
fRF = 2300MHz to 2900MHz,
fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = 0dBm/
tone, TC = -40NC to +85NC
Q0.5 dB
2RF - 2LO Spur Rejection 2 x 2 fSPUR = fLO +
150MHz (Note 5)
PRF = -10dBm 64 70 dBc
PRF = 0dBm 54 60
3RF - 3LO Spur Rejection 3 x 3 fSPUR = fLO +
100MHz (Note 5)
PRF = -10dBm 80 92 dBc
PRF = 0dBm 60 72
RF Input Return Loss RLRF LO on and IF terminated into a matched
impedance 17 dB
LO Input Return Loss RLLO RF and IF terminated into a matched
impedance 15 dB
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
4 ______________________________________________________________________________________
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION) (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50I
sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2000MHz to 2600MHz, fRF > fLO,
TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = +5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 2300MHz, fLO = 2300MHz,
fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7)
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values
are for TC = +25NC, VCC = +3.3V, PRF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2300MHz, fIF = 300MHz, unless otherwise
noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
IF Output Impedance ZIF Nominal differential impedance at the IC’s
IF outputs 50 I
IF Output Return Loss RLIF
RF terminated into 50I, LO driven by
50I source, IF transformed to 50I using
external components shown in the Typical
Application Circuit
18 dB
RF-to-IF Isolation PLO = +3dBm (Note 8) 30 37 dB
LO Leakage at RF Port fLO = 2000MHz to 2800MHz,
PLO = +3dBm (Note 8) -28 -22 dBm
2LO Leakage at RF Port PLO = +3dBm -36 dBm
LO Leakage at IF Port fLO = 2000MHz to 2800MHz,
PLO = +3dBm (Note 8) -24.2 -16 dBm
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Loss LC(Note 8) 7.2 dB
Loss Variation vs. Frequency DLCfRF = 2300MHz to 2900MHz, any 100MHz
band 0.2 dB
Conversion Loss Temperature
Coefficient TCCL TC = -40NC to +85NC0.008 dB/NC
Single Sideband Noise Figure NFSSB No blockers present 7.5 dB
Noise Figure Temperature
Coefficient TCNF Single sideband, no blockers present,
TC = -40NC to +85NC0.019 dB/NC
Input 1dB Compression Point IP1dB (Note 10) 20 dBm
Third-Order Input Intercept Point IIP3 fRF1 = 2600MHz, fRF2 = 2601MHz,
PRF1 = PRF2 = 0dBm/tone 31 dBm
IIP3 Variation with TC
fRF1 = 2600MHz, fRF2 = 2601MHz,
PRF1 = PRF2 = 0dBm/tone,
TC = -40NC to +85NC
Q0.25 dB
2RF - 2LO Spur Rejection 2 x 2 PRF = -10dBm, fSPUR = fLO + 150MHz 72 dBc
PRF = 0dBm, fSPUR = fLO + 150MHz 62
3RF - 3LO Spur Rejection 3 x 3 PRF = -10dBm, fSPUR = fLO + 100MHz 87 dBc
PRF = 0dBm, fSPUR = fLO + 100MHz 67
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
_______________________________________________________________________________________ 5
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION) (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values
are for TC = +25NC, VCC = +3.3V, PRF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2300MHz, fIF = 300MHz, unless otherwise
noted.) (Note 7)
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS
(UPCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50I
sources, PLO = -3dBm to +3dBm, PIF = 0dBm, fRF = 2300MHz to 2900MHz, fIF =200MHz, fLO = 2100MHz to 2700MHz, fRF > fLO,
TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = +5.0V, PIF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2400MHz,
fIF = 200MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF Input Return Loss RLRF LO on and IF terminated into a matched
impedance 15 dB
LO Input Return Loss RLLO RF and IF terminated into a matched
impedance 12 dB
IF Output Impedance ZIF Nominal differential impedance at the IC’s
IF outputs 50 I
IF Output Return Loss RLIF
RF terminated into 50I, LO driven by
50I source, IF transformed to 50I using
external components shown in the Typical
Application Circuit
18 dB
Minimum RF-to-IF Isolation fRF = 2300MHz to 2900MHz, PLO = +3dBm 36 dB
Maximum LO Leakage at RF Port fLO = 1800MHz to 2800MHz, PLO = +3dBm -24.5 dBm
Maximum 2LO Leakage at RF Port fLO = 1800MHz to 2800MHz, PLO = +3dBm -24 dBm
Maximum LO Leakage at IF Port fLO = 1800MHz to 2800MHz, PLO = +3dBm -20 dBm
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Loss LC(Note 8) 6.8 dB
Loss Variation vs. Frequency DLCfRF = 2300MHz to 2960MHz, any 100MHz
band 0.2 dB
Conversion Loss Temperature
Coefficient TCCL TC = -40NC to +85NC0.007 dB/NC
Input 1dB Compression Point IP1dB (Note 10) 22.7 dBm
Third-Order Input Intercept Point IIP3
fIF1 = 200MHz, fIF2 = 201MHz,
PIF1 = PIF2 = 0dBm/tone, fLO = 2400MHz,
PLO = 0dBm, TC = +25NC (Note 8)
30 32.4 dBm
IIP3 Variation with TC
fIF1 = 200MHz, fIF2 = 201MHz,
PIF1 = PIF2 = 0dBm/tone, fLO = 2400MHz,
PLO = 0dBm, TC = -40NC to +85NC
Q0.5 dB
LO Q 2IF Spur Rejection 1 x 2 LO - 2IF 70 dBc
LO + 2IF 67
LO Q 3IF Spur Rejection 1 x 3 LO - 3IF 82 dBc
LO + 3IF 77
Output Noise Floor POUT = 0dBm (Note 9) -163 dBm/Hz
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
6 ______________________________________________________________________________________
Note 5: Not production tested.
Note 6: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating
Characteristics.
Note 7: All limits reflect losses of external components, including a 0.5dB loss at fIF = 300MHz due to the 1:1 impedance trans-
former. Output measurements were taken at IF outputs of the Typical Application Circuit.
Note 8: 100% production tested for functional performance.
Note 9: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz. This specification reflects the effects
of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021: Specifications and
Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.
Note 10: Maximum reliable continuous input power applied to the RF port of this device is +20dBm from a 50I source.
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS
(UPCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50I sources. Typical values
are for TC = +25NC, VCC = +3.3V, PIF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2400MHz, fIF = 200MHz, unless otherwise
noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Loss LC6.8 dB
Loss Variation vs. Frequency DLCfRF = 2300MHz to 2900MHz, any 100MHz
band 0.15 dB
Conversion Loss Temperature
Coefficient TCCL TC = -40NC to +85NC0.008 dB/NC
Input 1dB Compression Point IP1dB (Note 10) 19 dBm
Third-Order Input Intercept Point IIP3 fIF1 = 200MHz, fIF2 = 201MHz,
PIF1 = PIF2 = 0dBm/tone 29.5 dBm
IIP3 Variation with TC
fIF1 = 200MHz, fIF2 = 201MHz,
PIF1 = PIF2 = 0dBm/tone, fLO = 2400MHz,
PLO = 0dBm, TC = -40NC to +85NC
Q0.75 dB
LO Q 2IF Spur Rejection 1 x 2 LO - 2IF 72 dBc
LO + 2IF 70
LO Q 3IF Spur Rejection 1 x 3 LO - 3IF 73 dBc
LO + 3IF 70
Output Noise Floor POUT = 0dBm (Note 9) -160 dBm/Hz
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
_______________________________________________________________________________________ 7
Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm,
TC = +25NC, unless otherwise noted.)
+5.0V Downconverter Curves
CONVERSION LOSS vs. RF FREQUENCY
MAX2042 toc01
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
2800260024002200
6
7
8
9
5
2000 3000
TC = +85NC
TC = +25NC
TC = -40NC
CONVERSION LOSS vs. RF FREQUENCY
MAX2042 toc02
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
2800260024002200
6
7
8
9
5
2000 3000
PLO = -3dBm, 0dBm, +3dBm
CONVERSION LOSS vs. RF FREQUENCY
MAX2042 toc03
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
2800260024002200
6
7
8
9
5
2000 3000
VCC = 4.75V, 5.0V, 5.25V
INPUT IP3 vs. RF FREQUENCY
MAX2042 toc04
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
2800260024002200
30
35
40
25
2000 3000
TC = -40NC
PRF = 0dBm/TONE
TC = +85NC
TC = +25NC
INPUT IP3 vs. RF FREQUENCY
MAX2042 toc05
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
2800260024002200
30
35
40
25
2000 3000
PLO = -3dBm, 0dBm, +3dBm
PRF = 0dBm/TONE
INPUT IP3 vs. RF FREQUENCY
MAX2042 toc06
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
2800260024002200
30
35
40
25
2000 3000
VCC = 5.25V
VCC = 4.75V
VCC = 5.0V
PRF = 0dBm/TONE
2RF - 2LO RESPONSE vs. RF FREQUENCY
MAX2042 toc07
RF FREQUENCY (MHz)
2RF - 2LO RESPONSE (dBc)
55
60
65
70
75
50
2000 2800260024002200 3000
TC = -40NC
TC = +25NC
TC = +85NCPRF = 0dBm
2RF - 2LO RESPONSE vs. RF FREQUENCY
MAX2042 toc08
RF FREQUENCY (MHz)
2RF - 2LO RESPONSE (dBc)
55
60
65
70
75
50
2000 2800260024002200 3000
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
PRF = 0dBm
2RF - 2LO RESPONSE vs. RF FREQUENCY
MAX2042 toc09
RF FREQUENCY (MHz)
2RF - 2LO RESPONSE (dBc)
55
60
65
70
75
50
2000 2800260024002200 3000
VCC = 4.75V, 5.0V, 5.25V
PRF = 0dBm
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
8 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm,
TC = +25NC, unless otherwise noted.)
+5.0V Downconverter Curves
3RF - 3LO RESPONSE vs. RF FREQUENCY
MAX2042 toc10
3RF - 3LO RESPONSE (dBc)
65
75
85
55
PRF = 0dBm
RF FREQUENCY (MHz)
2000 2800260024002200 3000
TC = -40NC, +25NC, +85NC
3RF - 3LO RESPONSE vs. RF FREQUENCY
MAX2042 toc11
3RF - 3LO RESPONSE (dBc)
65
75
85
55
PRF = 0dBm
RF FREQUENCY (MHz)
2000 2800260024002200 3000
PLO = -3dBm, 0dBm, +3dBm
3RF - 3LO RESPONSE vs. RF FREQUENCY
MAX2042 toc12
3RF - 3LO RESPONSE (dBc)
65
75
85
55
PRF = 0dBm
RF FREQUENCY (MHz)
2000 2800260024002200 3000
VCC = 4.75V, 5.0V, 5.25V
NOISE FIGURE vs. RF FREQUENCY
MAX2042 toc13
NOISE FIGURE (dB)
5
6
7
8
9
10
4
RF FREQUENCY (MHz)
2000 2800 3000260024002200
TC = +85NC
TC = +25NC
TC = -40NC
NOISE FIGURE vs. RF FREQUENCY
MAX2042 toc14
NOISE FIGURE (dB)
5
6
7
8
9
10
4
RF FREQUENCY (MHz)
2000 2800 3000260024002200
PLO = -3dBm, 0dBm, +3dBm
NOISE FIGURE vs. RF FREQUENCY
MAX2042 toc15
NOISE FIGURE (dB)
5
6
7
8
9
10
4
RF FREQUENCY (MHz)
2000 2800 3000260024002200
VCC = 4.75V, 5.0V, 5.25V
INPUT P1dB vs. RF FREQUENCY
MAX2042 toc16
RF FREQUENCY (MHz)
INPUT P1dB (dBm)
19
21
23
25
17
2000 2800 3000260024002200
TC = +85NC
TC = +25NC
TC = -40NC
INPUT P1dB vs. RF FREQUENCY
MAX2042 toc17
RF FREQUENCY (MHz)
INPUT P1dB (dBm)
19
21
23
25
17
2000 2800 3000260024002200
PLO = -3dBm, 0dBm, +3dBm
INPUT P1dB vs. RF FREQUENCY
MAX2042 toc18
RF FREQUENCY (MHz)
INPUT P1dB (dBm)
19
21
23
25
17
2000 2800 3000260024002200
VCC = 5.0V
VCC = 4.75V
VCC = 5.25V
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
_______________________________________________________________________________________ 9
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm,
TC = +25NC, unless otherwise noted.)
+5.0V Downconverter Curves
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2042 toc19
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
2500230021001900
-30
-20
-10
-40
1700 2700
TC = -40NC
TC = +85NCTC = +25NC
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2042 toc20
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
2500230021001900
-30
-20
-10
-40
1700 2700
PLO = -3dBm, 0dBm, +3dBm
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2042 toc21
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
2500230021001900
-30
-20
-10
-40
1700 2700
VCC = 4.75V, 5.0V, 5.25V
RF-TO-IF ISOLATION
vs. RF FREQUENCY
MAX2042 toc22
RF FREQENCY (MHz)
RF-TO-IF ISOLATION (dB)
30
40
50
60
20
2000 2800 3000260024002200
TC = +85NC
TC = +25NC
TC = -40NC
RF-TO-IF ISOLATION
vs. RF FREQUENCY
MAX2042 toc23
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
30
40
50
60
20
2000 2800 3000260024002200
PLO = -3dBm, 0dBm, +3dBm
RF-TO-IF ISOLATION
vs. RF FREQUENCY
MAX2042 toc24
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
30
40
50
60
20
2000 2800 3000260024002200
VCC = 4.75V, 5.0V, 5.25V
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2042 toc25
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
-35
-30
-25
-20
-40
1800 2600 2800240022002000
TC = -40NC, +25NC, +85NC
LO LEAKAGE AT RF PORT vs.
LO FREQUENCY
MAX2042 toc26
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
-35
-30
-25
-20
-40
1800 2600 2800240022002000
PLO = -3dBm, 0dBm, +3dBm
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2042 toc27
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
-35
-30
-25
-20
-40
1800 2600 2800240022002000
VCC = 4.75V, 5.0V, 5.25V
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
10 _____________________________________________________________________________________
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm,
TC = +25NC, unless otherwise noted.)
+5.0V Downconverter Curves
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2042 toc28
2LO LEAKAGE AT RF PORT (dBm)
-45
-40
-35
-30
-25
-20
-50
LO FREQUENCY (MHz)
1800 2600 2800240022002000
TC = +85NC
TC = +25NC
TC = -40NC
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2042 toc29
2LO LEAKAGE AT RF PORT (dBm)
-45
-40
-35
-30
-25
-20
-50
LO FREQUENCY (MHz)
1800 2600 2800240022002000
PLO = -3dBm, 0dBm, +3dBm
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2042 toc30
2LO LEAKAGE AT RF PORT (dBm)
-45
-40
-35
-30
-25
-20
-50
LO FREQUENCY (MHz)
1800 2600 2800240022002000
VCC = 4.75V, 5.0V, 5.25V
RF PORT RETURN LOSS
vs. RF FREQUENCY
MAX2042 toc31
RF PORT RETURN LOSS (dB)
25
20
15
10
5
0
30
PLO = -3dBm, 0dBm, +3dBm
fIF = 300MHz
RF FREQUENCY (MHz)
28002600240022002000 3000
IF PORT RETURN LOSS
vs. IF FREQUENCY
MAX2042 toc32
IF PORT RETURN LOSS (dB)
25
20
15
10
5
0
30
fLO = 2200MHz
IF FREQUENCY (MHz)
41032023014050 500
VCC = 4.75V, 5.0V, 5.25V
LO PORT RETURN LOSS
vs. LO FREQUENCY
MAX2042 toc33
LO FREQUENCY (MHz)
LO PORT RETURN LOSS (dB)
2500230021001900
20
10
0
30
1700 2700
PLO = -3dBm
PLO = +3dBm
PLO = 0dBm
SUPPLY CURRENT
vs. TEMPERATURE (TC)
MAX2042 toc34
TEMPERATURE (˚C)
SUPPLY CURRENT (mA)
603510-15
125
130
135
140
145
150
120
-40 85
VCC = 5.0V
VCC = 4.75V
VCC = 5.25V
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
______________________________________________________________________________________ 11
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +3.3V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm,
TC = +25NC, unless otherwise noted.)
+3.3V Downconverter Curves
CONVERSION LOSS vs. RF FREQUENCY
MAX2042 toc35
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
2800260024002200
6
7
8
9
5
2000 3000
TC = +85NC
TC = +25NC
TC = -40NC
CONVERSION LOSS vs. RF FREQUENCY
MAX2042 toc36
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
2800260024002200
6
7
8
9
5
2000 3000
PLO = -3dBm, 0dBm, +3dBm
CONVERSION LOSS vs. RF FREQUENCY
MAX2042 toc37
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
2800260024002200
6
7
8
9
5
2000 3000
VCC = 3.0V, 3.3V, 3.6V
INPUT IP3 vs. RF FREQUENCY
MAX2042 toc38
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
25
30
35
20
28002600240022002000 3000
TC = +85NC
TC = +25NC
TC = -40NC PRF = 0dBm/TONE
INPUT IP3 vs. RF FREQUENCY
MAX2042 toc39
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
25
30
35
20
28002600240022002000 3000
PRF = 0dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
INPUT IP3 vs. RF FREQUENCY
MAX2042 toc40
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
25
30
35
20
28002600240022002000 3000
PRF = 0dBm/TONE
VCC = 3.0V
VCC = 3.3V, 3.6V
2RF - 2LO RESPONSE vs. RF FREQUENCY
MAX2042 toc41
2RF - 2LO RESPONSE (dBc)
55
60
65
70
75
50
RF FREQUENCY (MHz)
28002600240022002000 3000
PRF = 0dBm
TC = +85NC
TC = +25NC
TC = -40NC
2RF - 2LO RESPONSE vs. RF FREQUENCY
MAX2042 toc42
2RF - 2LO RESPONSE (dBc)
55
60
65
70
75
50
RF FREQUENCY (MHz)
28002600240022002000 3000
PRF = 0dBm
PLO = +3dBm
PLO = -3dBm
PLO = 0dBm
2RF - 2LO RESPONSE vs. RF FREQUENCY
MAX2042 toc43
2RF - 2LO RESPONSE (dBc)
55
60
65
70
75
50
RF FREQUENCY (MHz)
28002600240022002000 3000
PRF = 0dBm
VCC = 3.3V
VCC = 3.0V
VCC = 3.6V
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
12 _____________________________________________________________________________________
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +3.3V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm,
TC = +25NC, unless otherwise noted.)
+3.3V Downconverter Curves
3RF - 3LO RESPONSE vs. RF FREQUENCY
MAX2042 toc44
3RF - 3LO RESPONSE (dBc)
60
70
80
50
RF FREQUENCY (MHz)
28002600240022002000 3000
TC = -40NC, +25NC, +85NC
PRF = 0dBm
3RF - 3LO RESPONSE vs. RF FREQUENCY
MAX2042 toc45
RF FREQUENCY (MHz)
3RF - 3LO RESPONSE (dBc)
2800260024002200
60
70
80
50
2000 3000
PRF = 0dBm
PLO = -3dBm, 0dBm, +3dBm
3RF - 3LO RESPONSE vs. RF FREQUENCY
MAX2042 toc46
RF FREQUENCY (MHz)
3RF - 3LO RESPONSE (dBc)
2800260024002200
60
70
80
50
2000 3000
PRF = 0dBm
VCC = 3.3V
VCC = 3.0V
VCC = 3.6V
NOISE FIGURE vs. RF FREQUENCY
MAX2042 toc47
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
2800260024002200
5
6
7
8
9
10
4
2000 3000
TC = +85°C
TC = +25°C
TC = -40°C
NOISE FIGURE vs. RF FREQUENCY
MAX2042 toc48
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
2800260024002200
5
6
7
8
9
10
4
2000 3000
PLO = -3dBm, 0dBm, +3dBm
NOISE FIGURE vs. RF FREQUENCY
MAX2042 toc49
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
2800260024002200
5
6
7
8
9
10
4
2000 3000
VCC = 3.0V
VCC = 3.3V
VCC = 3.6V
INPUT P1dB vs. RF FREQUENCY
MAX2042 toc50
RF FREQUENCY (MHz)
INPUT P1dB (dBm)
2800260024002200
18
20
22
24
16
2000 3000
TC = +25°C
TC = +85°C
TC = -40°C
INPUT P1dB vs. RF FREQUENCY
MAX2042 toc51
RF FREQUENCY (MHz)
INPUT P1dB (dBm)
2800260024002200
18
20
22
24
PLO = -3dBm, 0dBm, +3dBm
16
2000 3000
INPUT P1dB vs. RF FREQUENCY
MAX2042 toc52
RF FREQUENCY (MHz)
INPUT P1dB (dBm)
2800260024002200
18
20
22
24
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
16
2000 3000
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
______________________________________________________________________________________ 13
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +3.3V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm,
TC = +25NC, unless otherwise noted.)
+3.3V Downconverter Curves
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2042 toc53
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
2500230021001900
-30
-20
-10
-40
1700 2700
TC = -40NC
TC = +85NCTC = +25NC
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2042 toc54
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
2500230021001900
-30
-20
-10
-40
1700 2700
PLO = -3dBm, 0dBm, +3dBm
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2042 toc55
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
2500230021001900
-30
-20
-10
-40
1700 2700
VCC = 3.0V, 3.3V, 3.6V
MAX2042 toc56
RF-TO-IF ISOLATION
vs. RF FREQUENCY
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
2800260024002200
30
40
50
60
20
2000 3000
TC = +85NC
TC = -40NC
TC = +25NC
RF-TO-IF ISOLATION
vs. RF FREQUENCY
MAX2042 toc57
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
2800260024002200
30
40
50
60
PLO = -3dBm, 0dBm, +3dBm
20
2000 3000
RF-TO-IF ISOLATION
vs. RF FREQUENCY
MAX2042 toc58
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
2800260024002200
30
40
50
60
20
2000 3000
VCC = 3.0V, 3.3V, 3.6V
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2042 toc59
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
2600240022002000
-35
-30
-25
-20
-40
1800 2800
TC = -40NC, +25NC, +85NC
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2042 toc60
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
2600240022002000
-35
-30
-25
-20
-40
1800 2800
PLO = -3dBm, 0dBm, +3dBm
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2042 toc61
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
2600240022002000
-35
-30
-25
-20
-40
1800 2800
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
14 _____________________________________________________________________________________
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +3.3V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm,
TC = +25NC, unless otherwise noted.)
+3.3V Downconverter Curves
MAX2042 toc62
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
2600240022002000
-45
-40
-35
-30
-25
-20
-50
1800 2800
TC = -40NC
TC = +85NC
TC = +25NC
MAX2042 toc63
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
2600240022002000
-45
-40
-35
-30
-25
-20
-50
1800 2800
PLO = -3dBm, 0dBm, +3dBm
MAX2042 toc64
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
2600240022002000
-45
-40
-35
-30
-25
-20
-50
1800 2800
VCC = 3.0V, 3.3V, 3.6V
MAX2042 toc65
RF FREQUENCY (MHz)
RF PORT RETURN LOSS (dB)
RF PORT RETURN LOSS
vs. RF FREQUENCY
2800260024002200
25
20
15
10
5
0
30
2000 3000
PLO = -3dBm, 0dBm, +3dBm
fIF = 300MHz
MAX2042 toc66
IF FREQUENCY (MHz)
IF PORT RETURN LOSS (dB)
IF PORT RETURN LOSS
vs. IF FREQUENCY
410320230140
25
20
15
10
5
0
30
50 500
fLO = 2200MHz
VCC = 3.0V, 3.3V, 3.6V
LO PORT RETURN LOSS
vs. LO FREQUENCY
MAX2042 toc67
LO FREQUENCY (MHz)
LO PORT RETURN LOSS (dB)
2500230021001900
20
10
0
30
1700 2700
PLO = -3dBm
PLO = +3dBm
PLO = 0dBm
MAX2042 toc68
SUPPLY CURRENT
vs. TEMPERATURE
TEMPERATURE (NC)
SUPPLY CURRENT (mA)
603510-15
115
120
125
130
110
-40 85
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
______________________________________________________________________________________ 15
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO =
0dBm, TC = +25NC, unless otherwise noted.)
+5.0V Upconverter Curves
CONVERSION LOSS vs. RF FREQUENCY
MAX2042 toc69
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
2800260024002200
6
7
8
9
5
2000 3000
TC = +85°C
TC = +25°C
TC = -40°C
CONVERSION LOSS vs. RF FREQUENCY
MAX2042 toc70
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
2800260024002200
6
7
8
9
5
2000 3000
PLO = -3dBm, 0dBm, +3dBm
CONVERSION LOSS vs. RF FREQUENCY
MAX2042 toc71
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
2800260024002200
6
7
8
9
5
2000 3000
VCC = 4.75V, 5.0V, 5.25V
INPUT IP3 vs. RF FREQUENCY
MAX2042 toc72
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
2800260024002200
30
32
34
36
38
40
28
2000 3000
TC = -40°C
TC = +25°C
TC = +85°C
PIF = 0dBm/TONE
INPUT IP3 vs. RF FREQUENCY
MAX2042 toc73
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
2800260024002200
30
32
34
36
38
40
28
2000 3000
PIF = 0dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
INPUT IP3 vs. RF FREQUENCY
MAX2042 toc74
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
2800260024002200
30
32
34
36
38
40
28
2000 3000
VCC = 4.75V
VCC = 5.0V
VCC = 5.25V
PIF = 0dBm/TONE
LO - 2IF RESPONSE vs. RF FREQUENCY
MAX2042 toc75
RF FREQUENCY (MHz)
LO - 2IF RESPONSE (dBc)
2800260024002200
55
65
75
85
45
2000 3000
TC = +85°C
TC = +25°C
TC = -40°C
PIF = 0dBm
LO - 2IF RESPONSE vs. RF FREQUENCY
MAX2042 toc76
RF FREQUENCY (MHz)
LO - 2IF RESPONSE (dBc)
2800260024002200
55
65
75
85
45
2000 3000
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
PIF = 0dBm
LO - 2IF RESPONSE vs. RF FREQUENCY
MAX2042 toc77
RF FREQUENCY (MHz)
LO - 2IF RESPONSE (dBc)
2800260024002200
55
65
75
85
45
2000 3000
PIF = 0dBm
VCC = 4.75V, 5.0V, 5.25V
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
16 _____________________________________________________________________________________
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO =
0dBm, TC = +25NC, unless otherwise noted.)
+5.0V Upconverter Curves
LO + 2IF RESPONSE vs. RF FREQUENCY
MAX2042 toc78
RF FREQUENCY (MHz)
LO + 2IF RESPONSE (dBc)
2800260024002200
55
65
75
85
45
2000 3000
PIF = 0dBm
TC = +85°C
TC = +25°C
TC = -40°C
LO + 2IF RESPONSE vs. RF FREQUENCY
MAX2042 toc79
RF FREQUENCY (MHz)
LO + 2IF RESPONSE (dBc)
2800260024002200
55
65
75
85
45
2000 3000
PIF = 0dBm
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
LO + 2IF RESPONSE vs. RF FREQUENCY
MAX2042 toc80
RF FREQUENCY (MHz)
LO + 2IF RESPONSE (dBc)
2800260024002200
55
65
75
85
45
2000 3000
PIF = 0dBm
VCC = 4.75V, 5.0V, 5.25V
LO - 3IF RESPONSE vs. RF FREQUENCY
MAX2042 toc81
RF FREQUENCY (MHz)
LO - 3IF RESPONSE (dBc)
2800260024002200
70
80
90
100
60
2000 3000
PIF = 0dBm
TC = +85°C
TC = -40°C
TC = +25°C
LO - 3IF RESPONSE vs. RF FREQUENCY
MAX2042 toc82
RF FREQUENCY (MHz)
LO - 3IF RESPONSE (dBc)
2800260024002200
70
80
90
100
60
2000 3000
PIF = 0dBm
PLO = -3dBm, 0dBm, +3dBm
LO - 3IF RESPONSE vs. RF FREQUENCY
MAX2042 toc83
RF FREQUENCY (MHz)
LO - 3IF RESPONSE (dBc)
2800260024002200
70
80
90
100
60
2000 3000
PIF = 0dBm
VCC = 5.25V VCC = 5.0V
VCC = 4.75V
LO + 3IF RESPONSE vs. RF FREQUENCY
MAX2042 toc84
RF FREQUENCY (MHz)
LO + 3IF RESPONSE (dBc)
2800260024002200
70
80
90
100
60
2000 3000
PIF = 0dBm
TC = -40°C
TC = +25°C
TC = +85°C
LO + 3IF RESPONSE vs. RF FREQUENCY
MAX2042 toc85
RF FREQUENCY (MHz)
LO + 3IF RESPONSE (dBc)
2800260024002200
70
80
90
100
60
2000 3000
PIF = 0dBm
PLO = -3dBm, 0dBm, +3dBm
LO + 3IF RESPONSE vs. RF FREQUENCY
MAX2042 toc86
RF FREQUENCY (MHz)
LO + 3IF RESPONSE (dBc)
2800260024002200
70
80
90
100
60
2000 3000
PIF = 0dBm
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
______________________________________________________________________________________ 17
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO =
0dBm, TC = +25NC, unless otherwise noted.)
+5.0V Upconverter Curves
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2042 toc87
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
2600240022002000
-30
-25
-20
-35
1800 2800
TC = -40°C, +25°C, +85°C
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2042 toc88
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
2600240022002000
-30
-25
-20
-35
1800 2800
PLO = -3dBm, 0dBm, +3dBm
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2042 toc89
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
2600240022002000
-30
-25
-20
-35
1800 2800
VCC = 4.75V, 5.0V, 5.25V
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2042 toc90
LO FREQUENCY (MHz)
IF LEAKAGE AT RF PORT (dBm)
2600240022002000
-80
-70
-60
-50
-40
-90
1800 2800
TC = -40°C
TC = +25°C
TC = +85°C
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2042 toc91
LO FREQUENCY (MHz)
IF LEAKAGE AT RF PORT (dBm)
2600240022002000
-80
-70
-60
-50
-40
-90
1800 2800
PLO = -3dBm, 0dBm, +3dBm
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2042 toc92
LO FREQUENCY (MHz)
IF LEAKAGE AT RF PORT (dBm)
2600240022002000
-80
-70
-60
-50
-40
-90
1800 2800
VCC = 5.0V, 5.25V
VCC = 4.75V
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
18 _____________________________________________________________________________________
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO =
0dBm, TC = +25NC, unless otherwise noted.)
+5.0V Upconverter Curves
RF PORT RETURN LOSS
vs. RF FREQUENCY
MAX2042 toc93
RF FREQUENCY (MHz)
RF PORT RETURN LOSS (dB)
2800260024002200
25
20
15
10
5
0
30
2000 3000
fIF = 300MHz
PLO = -3dBm, 0dBm, +3dBm
IF PORT RETURN LOSS
vs. IF FREQUENCY
MAX2042 toc94
IF FREQUENCY (MHz)
IF PORT RETURN LOSS (dB)
410320230140
25
20
15
10
5
0
30
50 500
fLO = 2200MHz
VCC = 4.75V, 5.0V, 5.25V
LO PORT RETURN LOSS
vs. LO FREQUENCY
MAX2042 toc95
LO FREQUENCY (MHz)
LO PORT RETURN LOSS (dB)
2500230021001900
25
20
15
10
5
0
30
1700 2700
PLO = -3dBm
PLO = +3dBm
PLO = 0dBm
SUPPLY CURRENT
vs. TEMPERATURE (TC)
MAX2042 toc96
TEMPERATURE (°C)
SUPPLY CURRENT (mA)
603510-15
125
130
135
140
145
150
120
-40 85
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
______________________________________________________________________________________ 19
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO =
0dBm, TC = +25NC, unless otherwise noted.)
+3.3V Upconverter Curves
INPUT IP3 vs. RF FREQUENCY
MAX2042 toc100
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
2800260024002200
24
26
28
30
32
34
22
2000 3000
TC = -40°C
PIF = 0dBm/TONE
TC = +25°C
TC = +85°C
INPUT IP3 vs. RF FREQUENCY
MAX2042 toc101
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
2800260024002200
24
26
28
30
32
34
22
2000 3000
PLO = -3dBm
PIF = 0dBm/TONE
PLO = 0dBm
PLO = +3dBm
INPUT IP3 vs. RF FREQUENCY
MAX2042 toc102
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
2800260024002200
24
26
28
30
32
34
22
2000 3000
VCC = 3.6V
PIF = 0dBm/TONE
VCC = 3.0V
VCC = 3.3V
LO - 2IF RESPONSE vs. RF FREQUENCY
MAX2042 toc103
RF FREQUENCY (MHz)
LO - 2IF RESPONSE (dBc)
2800260024002200
55
65
75
85
45
2000 3000
TC = +85°C
TC = -40°C
TC = +25°C
PIF = 0dBm
LO - 2IF RESPONSE vs. RF FREQUENCY
MAX2042 toc104
RF FREQUENCY (MHz)
LO - 2IF RESPONSE (dBc)
2800260024002200
55
65
75
85
45
2000 3000
PLO = +3dBm
PLO = -3dBm
PLO = 0dBm
PIF = 0dBm
LO - 2IF RESPONSE vs. RF FREQUENCY
MAX2042 toc105
RF FREQUENCY (MHz)
LO - 2IF RESPONSE (dBc)
2800260024002200
55
65
75
85
45
2000 3000
PIF = 0dBm
VCC = 3.0V, 3.3V, 3.6V
CONVERSION LOSS vs. RF FREQUENCY
MAX2042 toc97
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
2800260024002200
6
7
8
9
5
2000 3000
TC = +85°C
TC = +25°C
TC = -40°C
CONVERSION LOSS vs. RF FREQUENCY
MAX2042 toc98
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
2800260024002200
6
7
8
9
5
2000 3000
PLO = -3dBm, 0dBm, +3dBm
CONVERSION LOSS vs. RF FREQUENCY
MAX2042 toc99
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
2800260024002200
6
7
8
9
5
2000 3000
VCC = 3.0V, 3.3V, 3.6V
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
20 _____________________________________________________________________________________
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO =
0dBm, TC = +25NC, unless otherwise noted.)
+3.3V Upconverter Curves
LO + 2IF RESPONSE vs. RF FREQUENCY
MAX2042 toc106
RF FREQUENCY (MHz)
LO + 2IF RESPONSE (dBc)
2800260024002200
55
65
75
85
45
2000 3000
PIF = 0dBm
TC = +25°C
TC = +85°C
TC = -40°C
LO + 2IF RESPONSE vs. RF FREQUENCY
MAX2042 toc107
RF FREQUENCY (MHz)
LO + 2IF RESPONSE (dBc)
2800260024002200
55
65
75
85
45
2000 3000
PIF = 0dBm
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
LO + 2IF RESPONSE vs. RF FREQUENCY
MAX2042 toc108
RF FREQUENCY (MHz)
LO + 2IF RESPONSE (dBc)
2800260024002200
55
65
75
85
45
2000 3000
PIF = 0dBm
VCC = 3.0V, 3.3V, 3.6V
LO - 3IF RESPONSE vs. RF FREQUENCY
MAX2042 toc109
RF FREQUENCY (MHz)
LO - 3IF RESPONSE (dBc)
2800260024002200
60
70
80
90
50
2000 3000
PIF = 0dBm
TC = +25°C
TC = -40°C
TC = +85°C
LO - 3IF RESPONSE vs. RF FREQUENCY
MAX2042 toc110
RF FREQUENCY (MHz)
LO - 3IF RESPONSE (dBc)
2800260024002200
60
70
80
90
50
2000 3000
PIF = 0dBm
PLO = -3dBm, 0dBm, +3dBm
LO - 3IF RESPONSE vs. RF FREQUENCY
MAX2042 toc111
RF FREQUENCY (MHz)
LO - 3IF RESPONSE (dBc)
2800260024002200
60
70
80
90
50
2000 3000
PIF = 0dBm
VCC = 3.6V
VCC = 3.0V
VCC = 3.3V
LO + 3IF RESPONSE vs. RF FREQUENCY
MAX2042 toc112
RF FREQUENCY (MHz)
LO + 3IF RESPONSE (dBc)
2800260024002200
50
60
70
80
90
40
2000 3000
TC = +25°C
TC = +85°C
TC = -40°C
PIF = 0dBm
LO + 3IF RESPONSE vs. RF FREQUENCY
MAX2042 toc113
RF FREQUENCY (MHz)
LO + 3IF RESPONSE (dBc)
2800260024002200
50
60
70
80
90
40
2000 3000
PLO = -3dBm, 0dBm, +3dBm
PIF = 0dBm
LO + 3IF RESPONSE vs. RF FREQUENCY
MAX2042 toc114
RF FREQUENCY (MHz)
LO + 3IF RESPONSE (dBc)
2800260024002200
50
60
70
80
90
40
2000 3000
PIF = 0dBm
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
______________________________________________________________________________________ 21
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO =
0dBm, TC = +25NC, unless otherwise noted.)
+3.3V Upconverter Curves
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2042 toc115
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
2600240022002000
-30
-25
-20
-35
1800 2800
TC = -40°C, +25°C, +85°C
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2042 toc116
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
2600240022002000
-30
-25
-20
-35
1800 2800
PLO = -3dBm, 0dBm, +3dBm
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2042 toc117
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
2600240022002000
-30
-25
-20
-35
1800 2800
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2042 toc118
LO FREQUENCY (MHz)
IF LEAKAGE AT RF PORT (dBm)
2600240022002000
-80
-70
-60
-50
-40
-90
1800 2800
TC = -40°C
TC = +25°C
TC = +85°C
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2042 toc119
LO FREQUENCY (MHz)
IF LEAKAGE AT RF PORT (dBm)
2600240022002000
-80
-70
-60
-50
-40
-90
1800 2800
PLO = -3dBm, 0dBm, +3dBm
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2042 toc120
LO FREQUENCY (MHz)
IF LEAKAGE AT RF PORT (dBm)
2600240022002000
-80
-70
-60
-50
-40
-90
1800 2800
VCC = 3.3V
VCC = 3.6V
VCC = 3.0V
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
22 _____________________________________________________________________________________
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO =
0dBm, TC = +25NC, unless otherwise noted.)
+3.3V Upconverter Curves
RF PORT RETURN LOSS
vs. RF FREQUENCY
MAX2042 toc121
RF FREQUENCY (MHz)
RF PORT RETURN LOSS (dB)
2800260024002200
25
20
15
10
5
0
30
2000 3000
fIF = 300MHz
PLO = -3dBm, 0dBm, +3dBm
IF PORT RETURN LOSS
vs. IF FREQUENCY
MAX2042 toc122
IF FREQUENCY (MHz)
IF PORT RETURN LOSS (dB)
410320230140
25
20
15
10
5
0
30
50 500
fLO = 2200MHz
VCC = 3.0V, 3.3V, 3.6V
LO PORT RETURN LOSS
vs. LO FREQUENCY
MAX2042 toc123
LO FREQUENCY (MHz)
LO PORT RETURN LOSS (dB)
2500230021001900
25
20
15
10
5
0
30
1700 2700
PLO = 0dBm PLO = +3dBm
PLO = -3dBm
SUPPLY CURRENT
vs. TEMPERATURE (TC)
MAX2042 toc124
TEMPERATURE (°C)
SUPPLY CURRENT (mA)
603510-15
115
120
125
130
110
-40 85
VCC = 3.0V
VCC = 3.6V
VCC = 3.3V
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
______________________________________________________________________________________ 23
Pin Description
PIN NAME FUNCTION
1, 6, 8, 14 VCC Power Supply. Bypass to GND with 0.01FF capacitors as close as possible to the pin.
2 RF Single-Ended 50I RF Input/Output. Internally matched and DC shorted to GND through a balun.
Provide a DC-blocking capacitor if required. Capacitor also provides some RF match tuning.
3, 4, 5, 10,
12, 13, 17 GND Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad
(EP) together.
7 LOBIAS LO Amplifier Bias Control. Output bias resistor for the LO buffer. Connect a 698I Q1% resistor (nomi-
nal bias condition) from LOBIAS to ground. The maximum current seen by this resistor is 3mA.
9, 15 GND Ground. Not internally connected. Ground these pins or leave unconnected.
11 LO Local Oscillator Input. This input is internally matched to 50I. Requires an input DC-blocking
capacitor. Capacitor also provides some LO match tuning.
16, 20 GND Ground. Connect all ground pins and the exposed pad (EP) together.
18, 19 IF-, IF+ Mixer Differential IF Output/Input
EP
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses
multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These
multiple via grounds are also required to achieve the noted RF performance.
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
24 _____________________________________________________________________________________
Detailed Description
When used as a low-side LO injection mixer in the
2300MHz to 2900MHz band, the MAX2042 provides
+36dBm of IIP3, with typical noise figure and conver-
sion loss values of only 7.3dB and 7.2dB, respectively.
The integrated baluns and matching circuitry allow for
50I single-ended interfaces to the RF and the LO ports.
The integrated LO buffer provides a high drive level to
the mixer core, reducing the LO drive required at the
MAX2042’s input to a -3dBm to +3dBm range. The IF
port incorporates a differential interface, which is ideal
for providing enhanced 2RF - 2LO performance.
Specifications are guaranteed over broad frequency
ranges to allow for use in WCS, LTE, WiMAX, and MMDS
base stations. The MAX2042 is specified to operate over
an RF input range of 2000MHz to 3000MHz, an LO range
of 1800MHz to 2800MHz, and an IF range of 50MHz to
500MHz. The external IF transformer sets the lower fre-
quency range (see the Typical Operating Characteristics
for details). Operation beyond these ranges is possible
(see the Typical Operating Characteristics for additional
information).
RF Interface and Balun
The MAX2042 RF input provides a 50I match when
combined with a series DC-blocking capacitor. This
DC-blocking capacitor required as the input is internally
DC shorted to ground through the on-chip balun. When
using an 8.2pF DC-blocking capacitor, the RF port input
return loss is typically 15dB over the RF frequency range
of 2500MHz to 2900MHz.
LO Inputs, Buffer, and Balun
The MAX2042 is optimized for low-side LO injection
applications with an 1800MHz to 2800MHz LO frequency
range. The LO input is internally matched to 50I, requir-
ing only a 2pF DC-blocking capacitor. A two-stage
internal LO buffer allows for a -3dBm to +3dBm LO input
power range. The on-chip low-loss balun, along with an
LO buffer, drives the double-balanced mixer. All interfac-
ing and matching components from the LO inputs to the
IF outputs are integrated on-chip.
High-Linearity Mixer
The core of the MAX2042 is a double-balanced, high-
performance passive mixer. Exceptional linearity is pro-
vided by the large LO swing from the on-chip LO buffer.
IIP3, 2RF - 2LO rejection, and noise-figure performance
are typically +36dBm, 70dBc, and 7.3dB, respectively.
Differential IF Interface
The MAX2042 has an IF frequency range of 50MHz to
500MHz, where the low-end frequency depends on the
frequency response of the external IF components.
The MAX2042’s differential ports are ideal for providing
enhanced 2RF - 2LO performance. The user can use
a differential IF amplifier or SAW filter on the mixer IF
port, but a DC block is required on both IF+/IF- ports to
keep external DC from entering the IF ports of the mixer.
Typical applications typically use a 1:1 transformer such
as the MABAES0029 to transform the 50I differential
interface to a 50I single-ended interface. The loss of
this transformer is included in the data presented in this
data sheet. In addition, the IF interface directly supports
single-ended AC-coupled signals into or out of IF+ by
shorting IF- to ground, and a 1kI resistor from IF+ to
ground.
Applications Information
Input and Output Matching
The RF input provides a 50I match when combined with
a series DC-blocking capacitor. Use an 8.2pF capaci-
tor value for RF frequencies ranging from 2000MHz to
3000MHz. The LO input is internally matched to 50I;
use a 2pF DC-blocking capacitor to cover operations
spanning the 1800MHz to 2800MHz range. The IF output
impedance is 50I (differential). For evaluation, an exter-
nal low-loss 1:1 (impedance ratio) balun transforms this
impedance down to a 50I single-ended output (see the
Typical Application Circuit).
Reduced-Power Mode
The MAX2042 has one pin (LOBIAS) that allows an exter-
nal resistor to set the internal bias current. A nominal
value for this resistor is shown in Tables 1 and 2. Larger
value resistors can be used to reduce power dissipa-
tion at the expense of some performance loss. See the
Typical Operating Characteristics to evaluate the power
vs. performance tradeoff. If Q1% resistors are not readily
available, substitute with Q5% resistors.
Significant reductions in power consumption can also be
realized by operating the mixer with an optional supply
voltage of +3.3V. Doing so reduces the overall power
consumption by up to 43%. See the +3.3V Supply AC
Electrical Characteristics table and the relevant +3.3V
curves in the Typical Operating Characteristics section
to evaluate the power vs. performance tradeoffs.
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
______________________________________________________________________________________ 25
Table 1. Downconverter Mode Component Values
Table 2. Upconverter Mode Component Values
Layout Considerations
A properly designed PCB is an essential part of any
RF/microwave circuit. Keep RF signal lines as short as
possible to reduce losses, radiation, and inductance.
For the best performance, route the ground pin traces
directly to the exposed pad under the package. The PCB
exposed pad MUST be connected to the ground plane
of the PCB. It is suggested that multiple vias be used to
connect this pad to the lower-level ground planes. This
method provides a good RF/thermal conduction path for
the device. Solder the exposed pad on the bottom of the
device package to the PCB.
Power-Supply Bypassing
Proper voltage-supply bypassing is essential for high-
frequency circuit stability. Bypass each VCC pin with the
capacitors shown in the Typical Application Circuit and
see Tables 1 and 2.
Exposed Pad RF/Thermal Considerations
The exposed pad (EP) of the MAX2042’s 20-pin thin QFN
package provides a low thermal-resistance path to the
die. It is important that the PCB on which the MAX2042
is mounted be designed to conduct heat from the EP. In
addition, provide the EP with a low-inductance path to
electrical ground. The EP MUST be soldered to a ground
plane on the PCB, either directly or through an array of
plated via holes.
DESIGNATION QTY DESCRIPTION COMPONENT SUPPLIER
C1 1 8.2pF microwave capacitor (0402) Murata Electronics North America, Inc.
C2, C6, C8, C11 4 0.01FF microwave capacitors (0402) Murata Electronics North America, Inc.
C3, C9 0 Not installed, capacitors
C5 0 Not installed, capacitor
C10 1 2pF microwave capacitor (0402) Murata Electronics North America, Inc.
R1 1 698I Q1% resistor (0402) Digi-Key Corp.
T1 1 1:1 IF balun MABAES0029 M/A-Com, Inc.
U1 1 MAX2042 IC (20 TQFN) Maxim Integrated Products, Inc.
DESIGNATION QTY DESCRIPTION COMPONENT SUPPLIER
C1 1 8.2pF microwave capacitor (0402) Murata Electronics North America, Inc.
C2, C6, C8, C11 4 0.01FF microwave capacitors (0402) Murata Electronics North America, Inc.
C3, C9 0 Not installed, capacitors
C5 0 Not installed, capacitor
C10 1 2pF microwave capacitor (0402) Murata Electronics North America, Inc.
R1 1 698I Q1% resistor (0402) Digi-Key Corp.
T1 1 1:1 IF balun MABAES0029 M/A-Com, Inc.
U1 1 MAX2042 IC (20 TQFN) Maxim Integrated Products, Inc.
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
26 _____________________________________________________________________________________
Typical Application Circuit
NOTE: PINS 3, 4, 5, 10, 12, 13, AND 17 ARE ALL INTERNALLY
CONNECTED TO THE EXPOSED GROUND PAD. CONNECT
THESE PINS TO GROUND TO IMPROVE ISOLATION.
PINS 9 AND 15 HAVE NO INTERNAL CONNECTION BUT CAN BE
EXTERNALLY GROUNDED TO IMPROVE ISOLATION.
1920 18 17
76 8
RF
GND
GND
9
VCC 1
2
4
5
15
14
12
11
LOBIAS
VCC
VCC
GND
GND
GND 313
16
10
VCC
GND
GND
LO
GND
IF+
IF-
GND
GND
GND
R1
C10
C8
C9
C11
LO
INPUT
C6
C1
RF
VCC
VCC
1:1
C5
IF
T1
5
41
2
N.C.
3
C3 C2
VCC
MAX2042
EP
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2042
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.
Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 27
© 2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.
Package Information
For the latest package outline information and land patterns, go
to www.maxim-ic.com/packages.
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.
20 TQFN-EP T2055+3 21-0140
Chip Information
PROCESS: SiGe BiCMOS
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Maxim Integrated:
MAX2042ETP+ MAX2042ETP+T