BFR360L3 Low Noise Silicon Bipolar RF Transistor * Low voltage/ Low current operation * For low noise amplifiers * For Oscillators up to 3.5 GHz and Pout > 10 dBm * Low noise figure: 1.0 dB at 1.8 GHz * Pb-free (RoHS compliant) and halogen-free thin small leadless package * Qualification report according to AEC-Q101 available ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type BFR360L3 Marking FB Pin Configuration 1=B 2=E 3=C Package TSLP-3-1 Maximum Ratings at TA = 25 C, unless otherwise specified Parameter Symbol Value Unit Collector-emitter voltage VCEO 6 Collector-emitter voltage VCES 15 Collector-base voltage VCBO 15 Emitter-base voltage VEBO 2 Collector current IC 35 Base current IB 4 Total power dissipation1) Ptot 210 mW Junction temperature TJ 150 C Storage temperature TStg V mA TS 104C -55 ... 150 Thermal Resistance Parameter Symbol Junction - soldering point2) RthJS 1T S is 2For Value Unit 220 K/W measured on the collector lead at the soldering point to the pcb the definition of RthJS please refer to Application Note AN077 (Thermal Resistance Calculation) 1 2013-09-03 BFR360L3 Electrical Characteristics at T A = 25 C, unless otherwise specified Symbol Parameter Values Unit min. typ. max. V(BR)CEO 6 9 - V ICES - - 10 A ICBO - - 100 nA IEBO - - 1 A hFE 90 120 160 DC Characteristics Collector-emitter breakdown voltage IC = 1 mA, I B = 0 Collector-emitter cutoff current VCE = 15 V, VBE = 0 Collector-base cutoff current VCB = 5 V, IE = 0 Emitter-base cutoff current VEB = 1 V, IC = 0 DC current gain - IC = 15 mA, VCE = 3 V, pulse measured 2 2013-09-03 BFR360L3 Electrical Characteristics at TA = 25 C, unless otherwise specified Symbol Values Parameter Unit min. typ. max. 11 14 - Ccb - 0.26 0.4 Cce - 0.15 - Ceb - 0.42 - AC Characteristics (verified by random sampling) Transition frequency fT GHz IC = 15 mA, VCE = 3 V, f = 1 GHz Collector-base capacitance pF VCB = 5 V, f = 1 MHz, VBE = 0 , emitter grounded Collector emitter capacitance VCE = 5 V, f = 1 MHz, VBE = 0 , base grounded Emitter-base capacitance VEB = 0.5 V, f = 1 MHz, VCB = 0 , collector grounded Minimum noise figure dB NFmin IC = 3 mA, VCE = 3 V, ZS = ZSopt , f = 1.8 GHz - 1 - IC = 3 mA, VCE = 3 V, ZS = ZSopt , f = 3 GHz - 1.3 - - 16 - - 11.5 - Power gain, maximum available1) Gma IC = 15 mA, VCE = 3 V, ZS = ZSopt , ZL = ZLopt , f = 1.8 GHz IC = 15 mA, VCE = 3 V, ZS = ZSopt , ZL = ZLopt , f = 3 GHz |S21e|2 Transducer gain dB IC = 15 mA, VCE = 3 V, ZS = ZL = 50 , f = 1.8 GHz - 13.5 - f = 3 GHz - 9 - IP3 - 24 - P-1dB - 9 - Third order intercept point at output2) dBm VCE = 3 V, IC = 15 mA, ZS =ZL =50 , f = 1.8 GHz 1dB compression point at output IC = 15 mA, VCE = 3 V, ZS =ZL =50 , f = 1.8 GHz 1/2 ma = |S21e / S12e | (k-(k-1) ) 2IP3 value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50 from 0.1 MHz to 6 GHz 1G 3 2013-09-03 BFR360L3 Total power dissipation P tot = (TS) Permissible Pulse Load RthJS = (tp) 10 3 240 mW k/W RthJS Ptot 180 150 10 2 120 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0 90 60 30 0 0 15 30 45 60 75 90 105 120 C 10 1 -7 10 150 10 -6 10 -5 10 -4 10 -3 10 -2 TS s 10 0 tp Permissible Pulse Load Collector-base capacitance Ccb = (VCB ) Ptotmax/PtotDC = (tp ) f = 1MHz 10 1 0.8 P totmax/PtotDC pF 0.6 Ccb D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 0.5 0.4 0.3 0.2 0.1 10 0 -7 10 10 -6 10 -5 10 -4 10 -3 10 -2 s 10 0 0 0 tp 2 4 6 8 10 12 V 16 VCB 4 2013-09-03 BFR360L3 Third order Intercept Point IP3=(IC) Transition frequency fT= (IC) (Output, ZS=ZL=50) f = 1 GHz VCE = parameter, f = 1.8 GHz VCE = parameter 30 18 GHz dBm 14 5V 20 3V fT IP3 12 15 10 6V 4V 3V 2V 1V 10 5 2V 8 1V 6 0.7V 4 0 -5 0 2 5 10 15 20 25 mA 30 0 0 40 5 10 15 20 25 30 IC 40 IC Power gain Gma, Gms = (IC ) VCE = 3 V Power gain Gma, Gms = (IC) f = 1.8GHz f = parameter in GHz VCE = parameter 24 18 dB 0.9GHz dB 20 5V 18 3V 16 G G A 1.8GHz 14 2V 14 2.4GHz 12 12 3GHz 10 1V 4GHz 8 10 6 4 0 0.7V 5 10 15 20 25 30 35 dB 8 0 45 IC 5 10 15 20 25 30 mA 40 IC 5 2013-09-03 BFR360L3 Power Gain Gma, Gms = (f) Power Gain |S Valid upto (f)6GHz 21| = VCE = parameter VCE = parameter 50 40 dB dB Ic=15mA Ic = 15mA 40 30 30 |S21|2- G 35 5V 2V 1V 0.7V 25 5V 2V 1V 0.7V 25 20 20 15 15 10 10 5 5 0 0 1 2 3 4 GHz 0 0 6 f 1 2 3 4 GHz 6 f Power Gain Gma, Gms = (VCE ): f = parameter 24 dB Ic = 15mA 0.9GHz 20 G 18 1.8GHz 16 14 2.4GHz 12 3GHz 10 4GHz 8 6 4 0 1 2 3 4 V 6 VCE 6 2013-09-03 Package TSLP-3-1 7 BFR360L3 2013-09-03 BFR360L3 Edition 2009-11-16 Published by Infineon Technologies AG 81726 Munich, Germany 2009 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 8 2013-09-03