2013-09-03
1
BFR360L3
Low Noise Silicon Bipolar RF Transistor
Low voltage/ Low current operation
For low noise amplifiers
For Oscillators up to 3.5 GHz and Pout > 10 dBm
Low noise figure: 1.0 dB at 1.8 GHz
Pb-free (RoHS compliant) and halogen-free thin small
leadless package
Qualification report according to AEC-Q101 available
ESD (Electrostatic discharge) sensitive device, observe handling precaution!
Type Marking Pin Configuration Package
BFR360L3 FB 1 = B 2 = E 3 = C TSLP-3-1
Maximum Ratings at T
A
= 25 °C, unless otherwise specified
Parameter Symbol Value Unit
Collector-emitter voltage VCEO 6 V
Collector-emitter voltage VCES 15
Collector-base voltage VCBO 15
Emitter-base voltage VEBO 2
Collector current IC35 mA
Base current IB4
Total power dissipation1)
TS 104°C
Ptot 210 mW
Junction temperature TJ150 °C
Storage temperature TSt
g
-55 ... 150
Thermal Resistance
Parameter Symbol Value Unit
Junction - soldering point2) RthJS 220 K/W
1TS is measured on the collector lead at the soldering point to the pcb
2For the definition of RthJS please refer to Application Note AN077 (Thermal Resistance Calculation)
2013-09-03
2
BFR360L3
Electrical Characteristics at TA = 25 °C, unless otherwise specified
Parameter Symbol Values Unit
min. typ. max.
DC Characteristics
Collector-emitter breakdown voltage
IC = 1 mA, IB = 0
V(BR)CEO 6 9 - V
Collector-emitter cutoff current
VCE = 15 V, VBE = 0
ICES - - 10 µA
Collector-base cutoff current
VCB = 5 V, IE = 0
ICBO - - 100 nA
Emitter-base cutoff current
VEB = 1 V, IC = 0
IEBO - - 1 µA
DC current gain
IC = 15 mA, VCE = 3 V, pulse measured
hFE 90 120 160 -
2013-09-03
3
BFR360L3
Electrical Characteristics at T
A
= 25 °C, unless otherwise specified
Parameter Symbol Values Unit
min. typ. max.
AC Characteristics (verified by random sampling)
Transition frequency
IC = 15 mA, VCE = 3 V, f = 1 GHz
fT11 14 - GHz
Collector-base capacitance
VCB = 5 V, f = 1 MHz, VBE = 0 ,
emitter grounded
Ccb - 0.26 0.4 pF
Collector emitter capacitance
VCE = 5 V, f = 1 MHz, VBE = 0 ,
base grounded
Cce - 0.15 -
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz, VCB = 0 ,
collector grounded
Ceb - 0.42 -
Minimum noise figure
IC = 3 mA, VCE = 3 V, ZS = ZSopt, f = 1.8 GHz
IC = 3 mA, VCE = 3 V, ZS = ZSopt, f = 3 GHz
NFmin
-
-
1
1.3
-
-
dB
Power gain, maximum available1)
IC = 15 mA, VCE = 3 V, ZS = ZSopt ,
ZL = ZLopt , f = 1.8 GHz
IC = 15 mA, VCE = 3 V, ZS = ZSopt ,
ZL = ZLopt , f = 3 GHz
Gma
-
-
16
11.5
-
-
Transducer gain
IC = 15 mA, VCE = 3 V, ZS = ZL = 50 ,
f = 1.8 GHz
f = 3 GHz
|S21e|2
-
-
13.5
9
-
-
dB
Third order intercept point at output2)
VCE = 3 V, IC = 15 mA, ZS=ZL=50 , f = 1.8 GHz
IP3 - 24 - dBm
1dB compression point at output
IC = 15 mA, VCE = 3 V, ZS=ZL=50 , f = 1.8 GHz
P-1dB - 9 -
1Gma = |S21e / S12e| (k-(k²-1)1/2)
2IP3 value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50 from 0.1 MHz to 6 GHz
2013-09-03
4
BFR360L3
Total power dissipation Ptot = ƒ(TS)
0 15 30 45 60 75 90 105 120 °C 150
TS
0
30
60
90
120
150
180
mW
240
Ptot
Permissible Pulse Load RthJS = ƒ(tp)
10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 0
s
tp
1
10
2
10
3
10
k/W
RthJS
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0
Permissible Pulse Load
Ptotmax/PtotDC = ƒ(tp)
10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 0
s
tp
0
10
1
10
Ptotmax/PtotDC
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
Collector-base capacitance Ccb= ƒ(VCB)
f = 1MHz
0 2 4 6 8 10 12 V16
VCB
0
0.1
0.2
0.3
0.4
0.5
0.6
pF
0.8
Ccb
2013-09-03
5
BFR360L3
Third order Intercept Point IP3=ƒ(IC)
(Output, ZS=ZL=50)
VCE = parameter, f = 1.8 GHz
0 5 10 15 20 25 30 mA 40
IC
-5
0
5
10
15
20
dBm
30
IP3
6V
4V
3V
2V
1V
Transition frequency fT= ƒ(IC)
f = 1 GHz
VCE = parameter
0 5 10 15 20 25 30 A40
IC
0
2
4
6
8
10
12
14
GHz
18
fT
5V
3V
2V
1V
0.7V
Power gain Gma, Gms = ƒ(IC)
VCE = 3 V
f = parameter in GHz
0 5 10 15 20 25 30 35 dB 45
IC
4
6
8
10
12
14
16
18
20
dB
24
G
0.9GHz
1.8GHz
2.4GHz
3GHz
4GHz
Power gain Gma, Gms = ƒ(IC)
f = 1.8GHz
VCE = parameter
0 5 10 15 20 25 30 mA 40
IC
8
10
12
14
dB
18
G
5V
3V
2V
1V
0.7V
2013-09-03
6
BFR360L3
Power Gain Gma, Gms = ƒ(f)
VCE = parameter
01234GHz 6
f
0
5
10
15
20
25
30
35
40
dB
50
G
Ic=15mA
5V
2V
1V
0.7V
Power Gain |S21|² = ƒ(f)
VCE = parameter
01234GHz 6
f
0
5
10
15
20
25
30
dB
40
|S21| -
2
Ic = 15mA
5V
2V
1V
0.7V
Power Gain Gma, Gms = ƒ(VCE):
f = parameter
01234V6
VCE
4
6
8
10
12
14
16
18
20
dB
24
G
0.9GHz
1.8GHz
2.4GHz
3GHz
4GHz
Ic = 15mA
Valid up to 6GHz
2013-09-03
7
BFR360L3
Package TSLP-3-1
2013-09-03
8
BFR360L3
Edition 2009-11-16
Published by
Infineon Technologies AG
81726 Munich, Germany
2009 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee
of conditions or characteristics. With respect to any examples or hints given herein,
any typical values stated herein and/or any information regarding the application of
the device, Infineon Technologies hereby disclaims any and all warranties and
liabilities of any kind, including without limitation, warranties of non-infringement of
intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices,
please contact the nearest Infineon Technologies Office (<www.infineon.com>).
Warnings
Due to technical requirements, components may contain dangerous substances.
For information on the types in question, please contact the nearest Infineon
Technologies Office.
Infineon Technologies components may be used in life-support devices or systems
only with the express written approval of Infineon Technologies, if a failure of such
components can reasonably be expected to cause the failure of that life-support
device or system or to affect the safety or effectiveness of that device or system.
Life support devices or systems are intended to be implanted in the human body or
to support and/or maintain and sustain and/or protect human life. If they fail, it is
reasonable to assume that the health of the user or other persons may be
endangered.