MMBT5401W High Voltage Transistor PNP Silicon Features * NSV Prefix for Automotive and Other Applications Requiring * www.onsemi.com Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant COLLECTOR 3 1 BASE MAXIMUM RATINGS Rating Symbol Value Unit Collector -Emitter Voltage VCEO -150 Vdc Collector -Base Voltage VCBO -160 Vdc Emitter -Base Voltage VEBO -5.0 Vdc IC -500 mAdc Collector Current - Continuous 2 EMITTER SC-70 (SOT-323) CASE 419 STYLE 3 Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. THERMAL CHARACTERISTICS Characteristic Symbol Max Unit Total Device Dissipation FR- 5 Board (Note 2) TA = 25C Derate Above 25C PD 400 mW 3.2 mW/C Thermal Resistance, Junction-to-Ambient RqJA 312 C/W TJ, Tstg -55 to +150 C Junction and Storage Temperature 1. FR-5 @ 100 mm2, 0.5 oz. copper traces, still air. 2. FR- 5 = 1.0 0.75 0.062 in. MARKING DIAGRAM 4W MG G 1 4W M G = Specific Device Code = Date Code* = Pb-Free Package (Note: Microdot may be in either location) *Date Code orientation and/or overbar may vary depending upon manufacturing location. ORDERING INFORMATION Device Package MMBT5401WT1G, SC-70 NSVMMBT5401WT1G (Pb-Free) Shipping 3000 / Tape & Reel For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. (c) Semiconductor Components Industries, LLC, 2015 December, 2017 - Rev. 3 1 Publication Order Number: MMBT5401W/D MMBT5401W ELECTRICAL CHARACTERISTICS (TA = 25C unless otherwise noted) Symbol Characteristic Min Max -150 - -160 - -5.0 - - - -50 -50 50 60 50 - 240 - - - -0.2 -0.5 - - -1.0 -1.0 100 300 - 6.0 40 200 - 8.0 Unit OFF CHARACTERISTICS Collector -Emitter Breakdown Voltage (IC = -1.0 mAdc, IB = 0) V(BR)CEO Collector -Base Breakdown Voltage (IC = -100 mAdc, IE = 0) V(BR)CBO Emitter -Base Breakdown Voltage (IE = -10 mAdc, IC = 0) V(BR)EBO Collector-Base Cutoff Current (VCB = -120 Vdc, IE = 0) (VCB = -120 Vdc, IE = 0, TA = 100C) Vdc Vdc Vdc ICBO nAdc mAdc ON CHARACTERISTICS DC Current Gain (IC = -1.0 mAdc, VCE = -5.0 Vdc) (IC = -10 mAdc, VCE = -5.0 Vdc) (IC = -50 mAdc, VCE = -5.0 Vdc) hFE Collector -Emitter Saturation Voltage (IC = -10 mAdc, IB = -1.0 mAdc) (IC = -50 mAdc, IB = -5.0 mAdc) VCE(sat) Base -Emitter Saturation Voltage (IC = -10 mAdc, IB = -1.0 mAdc) (IC = -50 mAdc, IB = -5.0 mAdc) VBE(sat) - Vdc Vdc SMALL- SIGNAL CHARACTERISTICS Current -Gain -- Bandwidth Product (IC = -10 mAdc, VCE = -10 Vdc, f = 100 MHz) fT Output Capacitance (VCB = -10 Vdc, IE = 0, f = 1.0 MHz) MHz Cobo Small Signal Current Gain (IC = -1.0 mAdc, VCE = -10 Vdc, f = 1.0 kHz) hfe Noise Figure (IC = -200 mAdc, VCE = -5.0 Vdc, RS = 10 W, f = 1.0 kHz) NF pF - dB Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. www.onsemi.com 2 MMBT5401W 1000 hFE, CURRENT GAIN VCE = 5 V TJ = 150C TJ = 25C 100 TJ = -55C 10 0.1 1 10 100 IC, COLLECTOR CURRENT (mA) 1.0 0.9 0.8 0.7 0.6 IC = 1.0 mA 0.5 10 mA 30 mA 100 mA 0.4 0.3 0.2 0.1 0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0 IB, BASE CURRENT (mA) 2.0 5.0 Figure 2. Collector Saturation Region 103 IC, COLLECTOR CURRENT (A) VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS) Figure 1. DC Current Gain 102 VCE = 30 V IC = ICES 101 TJ = 125C 100 75C 10-1 10-2 REVERSE 25C 10-3 0.3 0.2 FORWARD 0.1 0 0.1 0.2 0.3 0.4 0.5 VBE, BASE-EMITTER VOLTAGE (VOLTS) Figure 3. Collector Cut-Off Region www.onsemi.com 3 0.6 0.7 10 20 50 MMBT5401W 1.0 IC/IB = 10 0.18 IC/IB = 10 VBE(sat), BASE-EMITTER SATURATION VOLTAGE (V) VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE (V) 0.20 0.15 0.13 150C 0.10 25C 0.08 0.05 -55C 0.03 0.8 25C 0.7 150C 0.6 0.5 0.4 0.3 0.2 0 0.0001 0.001 0.01 0.0001 0.1 IC, COLLECTOR CURRENT (A) V, TEMPERATURE COEFFICIENT (mV/ C) VBE(on), BASE-EMITTER VOLTAGE (V) VCE = 10 V -55C 0.8 0.7 25C 0.6 0.5 150C 0.4 0.3 0.2 0.0001 0.001 0.01 2.5 1.5 1.0 0.5 -0.5 -1.0 -1.5 qVB for VBE(sat) -2.0 -2.5 0.1 0.1 qVC for VCE(sat) 0 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 30 IC, COLLECTOR CURRENT (mA) Figure 6. Base Emitter Voltage vs. Collector Current 100 70 50 C, CAPACITANCE (pF) VCC -30 V 100 10 ms INPUT PULSE tr, tf 10 ns DUTY CYCLE = 1.0% 0.25 mF 3.0 k RC Vout RB 5.1 k Vin 100 50 100 Figure 7. Temperature Coefficients 10.2 V Vin 0.1 TJ = - 55C to 135C 2.0 IC, COLLECTOR CURRENT (A) VBB +8.8 V 0.01 Figure 5. Base Emitter Saturation Voltage vs. Collector Current 1.1 0.9 0.001 IC, COLLECTOR CURRENT (A) Figure 4. Collector Emitter Saturation Voltage vs. Collector Current 1.0 -55C 0.9 TJ = 25C 30 Cibo 20 10 7.0 5.0 Cobo 3.0 1N914 2.0 1.0 0.2 Values Shown are for IC @ 10 mA Figure 8. Switching Time Test Circuit 0.3 2.0 3.0 5.0 7.0 0.5 0.7 1.0 VR, REVERSE VOLTAGE (VOLTS) Figure 9. Capacitances www.onsemi.com 4 10 20 MMBT5401W 1000 700 500 2000 IC/IB = 10 TJ = 25C tr @ VCC = 120 V tr @ VCC = 30 V 200 t, TIME (ns) t, TIME (ns) 300 1000 700 500 100 70 50 td @ VBE(off) = 1.0 V VCC = 120 V 10 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 30 tf @ VCC = 30 V 300 200 ts @ VCC = 120 V 30 50 100 20 0.2 0.3 0.5 200 1.0 2.0 3.0 5.0 10 20 30 IC, COLLECTOR CURRENT (mA) IC, COLLECTOR CURRENT (mA) Figure 10. Turn-On Time Figure 11. Turn-Off Time 50 100 200 1 1000 VCE = 1 V TA = 25C IC, COLLECTOR CURRENT (A) fT, CURRENT-GAIN-BANDWIDTH PRODUCT (MHz) tf @ VCC = 120 V 100 70 50 30 20 IC/IB = 10 TJ = 25C 100 10 0.1 10 mSec 0.1 1 Sec 0.01 0.001 1 10 1 100 IC, COLLECTOR CURRENT (A) 10 100 VCE, COLLECTOR EMITTER VOLTAGE (V) Figure 12. Current Gain Bandwidth Product Figure 13. Safe Operating Area www.onsemi.com 5 1000 MMBT5401W PACKAGE DIMENSIONS SC-70 (SOT-323) CASE 419-04 ISSUE N NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. D e1 DIM A A1 A2 b c D E e e1 L HE 3 E HE 1 2 b e A 0.05 (0.002) 0.30 0.10 1.80 1.15 1.20 0.20 2.00 MILLIMETERS NOM MAX 0.90 1.00 0.05 0.10 0.70 REF 0.35 0.40 0.18 0.25 2.10 2.20 1.24 1.35 1.30 1.40 0.65 BSC 0.38 0.56 2.10 2.40 MIN 0.032 0.000 0.012 0.004 0.071 0.045 0.047 0.008 0.079 INCHES NOM 0.035 0.002 0.028 REF 0.014 0.007 0.083 0.049 0.051 0.026 BSC 0.015 0.083 MAX 0.040 0.004 0.016 0.010 0.087 0.053 0.055 0.022 0.095 STYLE 3: PIN 1. BASE 2. EMITTER 3. COLLECTOR c A2 MIN 0.80 0.00 L A1 SOLDERING FOOTPRINT* 0.65 0.025 0.65 0.025 1.9 0.075 0.9 0.035 0.7 0.028 SCALE 10:1 mm inches *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 www.onsemi.com 6 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MMBT5401W/D