© 2009 Microchip Technology Inc.Page 2-10-DS01146B
PIC
®
Microcontroller Low Power Tips ‘n Tricks
Static Power Reduction Tips n’ Tricks
The following tips and tricks will help reduce
the power consumption of a device while it is
asleep. These tips allow an application to stay
asleep longer and to consume less current
while sleeping.
TIP #16 Deep Sleep Mode
In Deep Sleep mode, the CPU and all
peripherals except RTCC, DSWDT and
LCD (on LCD devices) are not powered.
Additionally, Deep Sleep powers down the
Flash, SRAM, and voltage supervisory circuits.
This allows Deep Sleep mode to have lower
power consumption than any other operating
mode. Typical Deep Sleep current is less than
50 nA on most devices. Four bytes of data are
retained in the DSGPRx registers that can be
used to save some critical data required for the
application. While in Deep Sleep mode, the
states of I/O pins and 32 kHz crystal oscillator
(Timer1/SOSC) are maintained so that Deep
Sleep mode does not interrupt the operation of
the application. The RTCC interrupt, Ultra Low
Power Wake-up, DSWDT time-out, External
Interrupt 0 (INT0), MCLR or POR can wake-up
the device from Deep Sleep. Upon wake-up the
device resumes operation at the reset vector.
Deep Sleep allows for the lowest possible
static power in a device. The trade-off is that
the rmware must re-initialize after wake-
up. Therefore, Deep Sleep is best used in
applications that require long battery life and
have long sleep times. Refer to the device
datasheets and Family Reference Manuals for
more information on Deep Sleep and how it is
used.
TIP #17 Extended WDT and Deep
Sleep WDT
A commonly used source to wake-up from
Sleep or Deep Sleep is the Watchdog Timer
(WDT) or Deep Sleep Watchdog Timer
(DSWDT). The longer the PIC MCU stays
in Sleep or Deep Sleep, the less power
consumed. Therefore, it is appropriate to use
as long a timeout period for the WDT as the
application will allow.
The WDT runs in all modes except for Deep
Sleep. In Deep Sleep, the DSWDT is used
instead. The DSWDT uses less current and
has a longer timeout period than the WDT. The
timeout period for the WDT varies by device,
but typically can vary from a few milliseconds to
up to 2 minutes. The DSWDT time-out period
can be programmed from 2.1ms to 25.7days
TIP #18 Low Power Timer1 Oscillator
and RTCC
nanoWatt XLP microcontrollers all have a
robust Timer1 oscillator (SOSC on PIC24)
which draws less than 800 nA. nanoWatt
technology devices offer a low power Timer1
oscillator which draws 2-3 uA. Some devices
offer a selectable oscillator which can be used
in either a low-power or high-drive strength
mode to suit both low power or higher noise
applications. The Timer1 counter and oscillator
can be used to generate interrupts for periodic
wakes from Sleep and other power managed
modes, and can be used as the basis for a real-
time clock. Timer1/SOSC wake-up options vary
by device. Many nanoWatt XLP devices have a
built-in hardware Real-Time Clock and Calendar
(RTCC), which can be congured for wake-up
periods from 1 second to many years.
Some nanoWatt devices and all nanoWatt
XLP devices can also use the Timer1/SOSC
oscillator as the system clock source in place
of the main oscillator on the OSC1/OSC2 pins.
By reducing execution speed, total current
consumption can be reduced.