1C3M0030090K Rev. 4, 01-2021
C3M0030090K
Silicon Carbide Power MOSFET
C3MTM MOSFET Technology
N-Channel Enhancement Mode
Features
C3MTM SiC MOSFET technology
Optimized package with separate driver source pin
8mm of creepage distance between drain and source
High blocking voltage with low on-resistance
High-speed switching with low capacitances
Fast intrinsic diode with low reverse recovery (Qrr)
Halogen free, RoHS compliant
Benets
Reduce switching losses and minimize gate ringing
Higher system efciency
Reduce cooling requirements
Increase power density
Increase system switching frequency
Applications
Solar inverters
EV battery chargers
High voltage DC/DC converters
Switch Mode Power Supplies
Package
Part Number Package Marking
C3M0030090K TO 247-4 C3M0030090K
V
DS
900 V
I
D
@
25˚C
73 A
R
DS(on)
30 m
Maximum Ratings (TC = 25 ˚C unless otherwise specied)
Symbol Parameter Value Unit Test Conditions Note
VDSmax Drain - Source Voltage 900 V VGS = 0 V, ID = 100 μA
VGSmax Gate - Source Voltage (dynamic) -8/+19 V AC (f >1 Hz) Note: 1
VGSop Gate - Source Voltage (static) -4/+15 V Static Note: 2
ID Continuous Drain Current
73
AVGS = 15 V, TC = 25˚C Fig. 19
48 VGS = 15 V, TC = 100˚C
ID(pulse) Pulsed Drain Current 200 A Pulse width tP limited by Tjmax Fig. 22
PDPower Dissipation 240 W TC=25˚C, TJ = 150 ˚C Fig. 20
TJ , Tstg Operating Junction and Storage Temperature -40 to
+150 ˚C
TLSolder Temperature 260 ˚C 1.6mm (0.063”) from case for 10s
MdMounting Torque, (M3 or 6-32 screw) 1
8.8
Nm
lbf-in
Note (1): When using MOSFET Body Diode VGSmax = -4V/+19V
Note (2): MOSFET can also safely operate at 0/+15 V
Drain
(Pin 1, TAB)
Power
Source
(Pin 2)
Driver
Source
(Pin 3)
Gate
(Pin 4)
2C3M0030090K Rev. 4, 01-2021
Electrical Characteristics (TC = 25˚C unless otherwise specied)
Symbol Parameter Min. Typ. Max. Unit Test Conditions Note
V(BR)DSS Drain-Source Breakdown Voltage 900 V VGS = 0 V, ID = 100 μA
VGS(th) Gate Threshold Voltage 1.7 2.4 3.5 VVDS = VGS, ID = 11 mA Fig. 11
2.1 VVDS = VGS, ID = 11 mA, TJ = 150ºC
IDSS Zero Gate Voltage Drain Current 1 100 μA VDS = 900 V, VGS = 0 V
IGSS Gate-Source Leakage Current 10 250 nA VGS = 15 V, VDS = 0 V
RDS(on) Drain-Source On-State Resistance 30 39 mVGS = 15 V, ID = 35 A Fig. 4,
5, 6
41 VGS = 15 V, ID = 35 A, TJ = 150ºC
gfs Transconductance 23 SVDS= 20 V, IDS= 35 A Fig. 7
22 VDS= 20 V, IDS= 35 A, TJ = 150ºC
Ciss Input Capacitance 1503
pF VGS = 0 V, VDS = 600 V
f = 1 MHz
VAC = 25 mV
Fig. 17,
18
Coss Output Capacitance 144
Crss Reverse Transfer Capacitance 5
Eoss Coss Stored Energy 30 μJ Fig. 16
EON Turn-On Switching Energy (SiC Diode FWD) 133
μJ VDS = 600 V, VGS = -4 V/15 V, ID = 35 A,
RG(ext) = 2.5Ω, L= 59 μH, TJ = 150ºC
Fig. 26,
29b
EOFF Turn Off Switching Energy (SiC Diode FWD) 111
EON Turn-On Switching Energy (Body Diode FWD) 246
μJ VDS = 600 V, VGS = -4 V/15 V, ID = 35 A,
RG(ext) = 2.5Ω, L= 59 μH, TJ = 150ºC
Fig. 26,
29a
EOFF Turn Off Switching Energy (Body Diode FWD) 99
td(on) Turn-On Delay Time 9
ns
VDD = 600 V, VGS = -4 V/15 V
ID = 35 A, RG(ext) = 2.5 Ω,
Timing relative to VDS
Inductive load
Fig. 27
trRise Time 15
td(off) Turn-Off Delay Time 24
tfFall Time 9
RG(int) Internal Gate Resistance 3 f = 1 MHz, VAC = 25 mV
Qgs Gate to Source Charge 20
nC
VDS = 600 V, VGS = -4 V/15 V
ID = 35 A
Per IEC60747-8-4 pg 21
Fig. 12
Qgd Gate to Drain Charge 26
QgTotal Gate Charge 74
Reverse Diode Characteristics (TC = 25˚C unless otherwise specied)
Symbol Parameter Typ. Max. Unit Test Conditions Note
VSD Diode Forward Voltage
4.5 V VGS = -4 V, ISD = 17.5 A Fig. 8,
9, 10
4.0 V VGS = -4 V, ISD = 17.5 A, TJ = 150 °C
ISContinuous Diode Forward Current 48 A VGS = -4 V, TC = 25 °C Note 1
IS, pulse Diode pulse Current 200 A VGS = -4 V, pulse width tP limited by Tjmax Note 1
trr Reverse Recover time 24 ns
VGS = -4 V, ISD = 35 A, VR = 600 V
dif/dt = 3075 A/µs, TJ = 150 °C Note 1
Qrr Reverse Recovery Charge 536 nC
Irrm Peak Reverse Recovery Current 35 A
Thermal Characteristics
Symbol Parameter Typ. Max. Unit Test Conditions Note
RθJC Thermal Resistance from Junction to Case 0.48 0.52 °C/W Fig. 21
RθJA Thermal Resistance From Junction to Ambient 40
3C3M0030090K Rev. 4, 01-2021
Figure 2. Output Characteristics TJ = 25 ºC
Typical Performance
Figure 5. On-Resistance vs. Drain Current
For Various Temperatures
Figure 1. Output Characteristics TJ = -40 ºC
Figure 3.
Output Characteristics TJ = 150 ºC Figure 4. Normalized On-Resistance vs. Temperature
Figure 6. On-Resistance vs. Temperature
For Various Gate Voltage
0
20
40
60
80
100
120
140
160
180
200
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage, V
DS
(V)
Conditions:
T
j
= -40 °C
tp = < 200 µs
V
GS
= 7V
V
GS
= 13V
V
GS
= 11V
V
GS
= 9V
V
GS
= 15V
0
20
40
60
80
100
120
140
160
180
200
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage, V
DS
(V)
Conditions:
T
j
= 25 °C
tp = < 200 µs
V
GS
= 7V
V
GS
= 15V V
GS
= 13V
V
GS
= 11V
V
GS
= 9V
0
20
40
60
80
100
120
140
160
180
200
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage, V
DS
(V)
Conditions:
T
j
= 150 °C
tp = < 200 µs
V
GS
= 7V
V
GS
= 15V
V
GS
= 13V V
GS
= 11V
V
GS
= 9V
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
-50 -25 025 50 75 100 125 150
On Resistance, R
DS On
(P.U.)
Junction Temperature, T
j
C)
Conditions:
I
DS
= 35 A
V
GS
= 15 V
t
p
< 200 µs
0
10
20
30
40
50
60
020 40 60 80 100 120 140
On Resistance, R
DS On
(mOhms)
Drain-Source Current, I
DS
(A)
V
GS
= 15 V
t
< 200 µs
T
j
= 150 °C
T
j
= -40 °C
T
j
= 25 °C
0
10
20
30
40
50
60
70
80
-50 -25 025 50 75 100 125 150
On Resistance, R
DS On
(mOhms)
Junction Temperature, T
j
C)
Conditions:
I
DS
= 35 A
t
p
< 200 µs
V
GS
= 15 V
V
GS
= 13 V
V
GS
= 11 V
4C3M0030090K Rev. 4, 01-2021
Typical Performance
Figure 8. Body Diode Characteristic at -40 ºC
Figure 9. Body Diode Characteristic at 25 ºC Figure 10. Body Diode Characteristic at 150 ºC
Figure 7. Transfer Characteristic for
Various Junction Temperatures
Figure 11. Threshold Voltage vs. Temperature Figure 12. Gate Charge Characteristics
0
10
20
30
40
50
60
70
80
90
100
110
024 6 8 10 12 14
Drain-Source Current, I
DS
(A)
Gate-Source Voltage, V
GS
(V)
Conditions:
V
DS
= 20 V
tp < 200 µs
T
J
= 25 °C T
J
= -40 °C
T
J
= 150 °C
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
-10 -8 -6 -4 -2 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
j
= -40°C
t
p
< 200 µs
V
GS
= -2 V
V
GS
= -4 V V
GS
= 0 V
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
-10 -8 -6 -4 -2 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
j
= 25°C
t
p
< 200 µs
V
GS
= -2 V
V
GS
= -4 V
V
GS
= 0 V
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
-10 -8 -6 -4 -2 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
j
= 150°C
t
p
< 200 µs
V
GS
= -2 V
V
GS
= -4 V
V
GS
= 0 V
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
-50 -25 025 50 75 100 125 150
Threshold Voltage, V
th
(V)
Junction Temperature T
J
C)
Conditons
V
GS
= V
DS
I
DS
= 11 mA
-4
0
4
8
12
16
010 20 30 40 50 60 70 80
Gate-Source Voltage, V
GS
(V)
Gate Charge, Q
G
(nC)
Conditions:
I
DS
=
I
GS
= 50 mA
V
DS
=
T
J
= 25 °C
35 A
600 V
5C3M0030090K Rev. 4, 01-2021
Typical Performance
Figure 15. 3rd Quadrant Characteristic at 150 ºC
Figure 13. 3rd Quadrant Characteristic at -40 ºC Figure 14. 3rd Quadrant Characteristic at 25 ºC
Figure 16. Output Capacitor Stored Energy
Figure 17. Capacitances vs. Drain-Source
Voltage (0 - 200V)
Figure 18. Capacitances vs. Drain-Source
Voltage (0 - 900V)
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
-10 -8 -6 -4 -2 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
j
= -40 °C
t
p
< 200 µs
V
GS
= 10 V
V
GS
= 5 V
V
GS
= 15 V
V
GS
= 0 V
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
-10 -8 -6 -4 -2 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
j
= 25 °C
t
p
< 200 µs
V
GS
= 10 V
V
GS
= 5 V
V
GS
= 15 V
V
GS
= 0 V
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
-8 -7 -6 -5 -4 -3 -2 -1 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
j
= 150 °C
t
p
< 200 µs
V
GS
= 10 V
V
GS
= 5 V
V
GS
= 15 V
V
GS
= 0 V
0
10
20
30
40
50
60
70
0100 200 300 400 500 600 700 800 900 1000
Stored Energy, E
OSS
(µJ)
Drain to Source Voltage, V
DS
(V)
1
10
100
1000
10000
050 100 150 200
Capacitance (pF)
Drain-Source Voltage, VDS (V)
C
iss
C
oss
Conditions:
T
J
= 25 °C
V
AC
= 25 mV
f = 1 MHz
C
rss
1
10
100
1000
10000
0100 200 300 400 500 600 700 800 900
Capacitance (pF)
Drain-Source Voltage, VDS (V)
C
iss
C
oss
Conditions:
T
J
= 25 °C
V
AC
= 25 mV
f = 1 MHz
C
rss
6C3M0030090K Rev. 4, 01-2021
Typical Performance
Figure 22. Safe Operating Area
Figure 21. Transient Thermal Impedance
(Junction - Case)
Figure 23. Clamped Inductive Switching Energy vs.
Drain Current (VDD = 450V)
Figure 24. Clamped Inductive Switching Energy vs.
Drain Current (VDD = 600V)
Figure 19. Continuous Drain Current Derating vs.
Case Temperature
Figure 20. Maximum Power Dissipation Derating vs.
Case Temperature
0
10
20
30
40
50
60
70
80
-50 -25 025 50 75 100 125 150
Drain-Source Continous Current, I
DS (DC)
(A)
Case Temperature, T
C
C)
Conditions:
T
J
≤ 150 °C
0
50
100
150
200
250
-50 -25 025 50 75 100 125 150
Maximum Dissipated Power, P
tot
(W)
Case Temperature, T
C
C)
Conditions:
T
J
≤ 150 °C
1E-3
10E-3
100E-3
1
1E-6 10E-6 100E-6 1E-3 10E-3 100E-3 1
Junction To Case Impedance, Z
thJC
(
o
C/W)
Time, t
p
(s)
0.5
0.3
0.1
0.05
0.02
0.01
SinglePulse
0.01
0.10
1.00
10.00
100.00
0.1 110 100 1000
Drain-Source Current, I
DS
(A)
Drain-Source Voltage, V
DS
(V)
100 µs
1 ms
10 µs
Conditions:
T
C
= 25 °C
D = 0,
Parameter: t
p
100 ms
Limited by R
DS On
1 µs
0
50
100
150
200
250
300
350
400
010 20 30 40 50 60 70 80
Switching Loss (uJ)
Drain to Source Current, I
DS
(A)
E
Off
E
On
E
Total
Conditions:
T
J
=
V
DD
=
R
G(ext)
=
V
GS
=
FWD =
L =
25 °C
450 V
2.5 Ω
-4/+15 V
C3M0030090K
59 μH
0
100
200
300
400
500
600
700
010 20 30 40 50 60 70 80
Switching Loss (uJ)
Drain to Source Current, I
DS
(A)
E
Off
E
On
E
Total
Conditions:
T
J
=
V
DD
=
R
G(ext)
=
V
GS
=
FWD =
L =
25 °C
600 V
2.5 Ω
-4/+15 V
C3M0030090K
59 μH
7C3M0030090K Rev. 4, 01-2021
Typical Performance
Figure 26. Clamped Inductive Switching Energy vs.
Temperature
Figure 27. Switching Times vs. RG(ext)
Figure 25. Clamped Inductive Switching Energy vs. RG(ext)
Figure 28. Switching Times Denition
0
200
400
600
800
1000
0510 15 20 25
Switching Loss (uJ)
External Gate Resistor RG(ext) (Ohms)
E
Off
E
On
E
Total
Conditions:
T
J
=
V
DD
=
I
DS
=
V
GS
=
FWD =
L =
25 °C
600 V
35 A
-4/+15 V
C3M0030090K
59 μH
0
50
100
150
200
250
300
350
400
450
500
025 50 75 100 125 150 175 200
Switching Loss (uJ)
Junction Temperature, T
J
C)
E
Off
E
On
E
Total
Conditions:
I
DS
=
V
DD
=
R
G(ext)
=
V
GS
=
L =
FWD =
FWD =
35 A
600 V
2.5 Ω
-4/+15 V
59 μH
C3M0030090K
E
Total with Schottky
E
On with Schottky
E
Off with Schottky
C4D20120D
0
10
20
30
40
50
60
70
80
90
100
0 5 10 15 20 25
Switching Times (ns)
External Gate Resistor RG(ext) (Ohms)
t
d(off)
Conditions:
T
J
=
V
DD
=
I
DS
=
V
GS
=
FWD =
t
r
t
f
t
d(on)
25 °C
600 V
35 A
-4/+15 V
C3M0030090K
8C3M0030090K Rev. 4, 01-2021
Test Circuit Schematic
L
Q
2
D.U.T
Q
1
VGS= - 4 V
R
G
R
G
C
DC
V
DC
KS
KS
D1SiC
Schottky
D.U.T
Q
2
VDC
R
G
Figure 29a. Clamped Inductive Switching Test Circuit Using
MOSFET Intrinsic Body Diode
Figure 29b. Clamped Inductive Switching Test Circuit Using
SiC Schottky Diode
9C3M0030090K Rev. 4, 01-2021
Package Dimensions
Package TO-247-4L
10 C3M0030090K Rev. 4, 01-2021
Package Dimensions
Package TO-247-4L
NOTE ;
1. ALL METAL SURFACES: TIN PLATED, EXCEPT AREA OF CUT
2. DIMENSIONING & TOLERANCEING CONFIRM TO
ASME Y14.5M-1994.
3. ALL DIMENSIONS ARE IN MILLIMETERS.
ANGLES ARE IN DEGREES.
4. ‘N’ IS THE NUMBER OF TERMINAL POSITIONS
1111 C3M0030090K Rev. 4, 01-2021
Copyright © 2021 Cree, Inc. All rights reserved.
The information in this document is subject to change without notice.
Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc.
Cree, Inc.
4600 Silicon Drive
Durham, NC 27703
USA Tel: +1.919.313.5300
Fax: +1.919.313.5451
www.wolfspeed.com/power
RoHS Compliance
The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the
threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/
EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or
from the Product Documentation sections of www.cree.com.
REACh Compliance
REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA)
has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree represen-
tative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is
also available upon request.
This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body
nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited
to equipment used in the operation of nuclear facilities, life-support machines, cardiac debrillators or similar emergency medical
equipment, aircraft navigation or communication or control systems, air trafc control systems.
Notes
Related Links
SPICE Models: http://wolfspeed.com/power/tools-and-support
SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support
SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support