1C3M0120090J Rev. A 01-2018
C3M0120090J
Silicon Carbide Power MOSFET
C3MTM MOSFET Technology
N-Channel Enhancement Mode
Features
• New C3M SiC MOSFET technology
• High blocking voltage with low On-resistance
• High speed switching with low capacitances
• New low impedance package with driver source
• Fast intrinsic diode with low reverse recovery (Qrr)
• Halogen free, RoHS compliant
• Wide creepage (~7mm) between drain and source
Benets
• Highersystemefciency
• Reduced cooling requirements
• Increased power density
• Increased system switching frequency
Applications
• Renewable energy
• EV battery chargers
• High voltage DC/DC converters
• Switch Mode Power Supplies
• Lighting
Package
Part Number Package
C3M0120090J TO-263-7
V
DS
900 V
I
D
@
25˚C
22 A
R
DS(on)
120 m
Maximum Ratings (TC=25˚Cunlessotherwisespecied)
Symbol Parameter Value Unit Test Conditions Note
VDSmax Drain - Source Voltage 900 V VGS = 0 V, ID=100μA
VGSmax Gate - Source Voltage -8/+18 V Absolute maximum values
VGSop Gate - Source Voltage -4/+15 V Recommended operational values Note (1)
ID Continuous Drain Current
22
AVGS = 15 V, TC =25˚C Fig. 19
14 VGS = 15 V, TC =100˚C
ID(pulse) Pulsed Drain Current 50 A Pulse width tP limited by Tjmax Fig. 22
PDPower Dissipation 83 W TC=25˚C,TJ=150˚C Fig. 20
TJ , Tstg Operating Junction and Storage Temperature -55 to
+150 ˚C
TLSolder Temperature 260 ˚C 1.6mm (0.063”) from case for 10s
Note (1): MOSFET can also safely operate at 0/+15 V
1 2 3 4 5 6 7
G KS S S S S S
TAB
Drain
Drain
(TAB)
Power
Source
(Pin 3,4,5,6,7)
Driver
Source
(Pin 2)
Gate
(Pin 1)
2C3M0120090J Rev. A 01-2018
Electrical Characteristics (TC=25˚Cunlessotherwisespecied)
Symbol Parameter Min. Typ. Max. Unit Test Conditions Note
V(BR)DSS Drain-Source Breakdown Voltage 900 V VGS = 0 V, ID=100μA
VGS(th) Gate Threshold Voltage 1.8 2.1 3.5 VVDS = VGS, ID = 3 mA Fig. 11
1.6 VVDS = VGS, ID = 3 mA, TJ = 150ºC
IDSS Zero Gate Voltage Drain Current 1 100 μA VDS = 900 V, VGS = 0 V
IGSS Gate-Source Leakage Current 10 250 nA VGS = 15 V, VDS = 0 V
RDS(on) Drain-Source On-State Resistance 120 155 mVGS = 15 V, ID = 15 A Fig. 4,
5, 6
170 VGS = 15 V, ID = 15 A, TJ = 150ºC
gfs Transconductance 7.7 SVDS= 15 V, IDS= 15 A Fig. 7
6.7 VDS= 15 V, IDS= 15 A, TJ = 150ºC
Ciss Input Capacitance 350
pF VGS = 0 V, VDS = 600 V
f = 1 MHz
VAC = 25 mV
Fig. 17,
18
Coss Output Capacitance 40
Crss Reverse Transfer Capacitance 3
Eoss Coss Stored Energy 9 μJ Fig. 16
EON Turn-On Switching Energy 49
μJ VDS = 400 V, VGS = -4 V/15 V, ID = 15 A,
RG(ext) =2.5Ω,L=142μH,TJ = 150ºC
Fig. 26,
29
EOFF Turn Off Switching Energy 16
td(on) Turn-On Delay Time 12.5
ns
VDD = 400 V, VGS = -4 V/15 V
ID = 15 A, RG(ext)=2.5Ω,
Timing relative to VDS
Inductive load
Fig. 27,
29
trRise Time 9
td(off) Turn-Off Delay Time 15
tfFall Time 5
RG(int) Internal Gate Resistance 16 f = 1 MHz, VAC = 25 mV
Qgs Gate to Source Charge 4.8
nC
VDS = 400 V, VGS = -4 V/15 V
ID = 15 A
Per IEC60747-8-4 pg 21
Fig. 12
Qgd Gate to Drain Charge 5.0
QgTotal Gate Charge 17.3
Reverse Diode Characteristics (TC=25˚Cunlessotherwisespecied)
Symbol Parameter Typ. Max. Unit Test Conditions Note
VSD Diode Forward Voltage
4.8 V VGS = -4 V, ISD = 7.5 A Fig. 8, 9,
10
4.4 V VGS = -4 V, ISD = 7.5 A, TJ = 150 °C
ISContinuous Diode Forward Current 17 A VGS = -4 V Note (2)
IS, pulse Diode pulse Current 50 A VGS = -4 V, pulse width tP limited by Tjmax Note (2)
trr Reverse Recover time 24 ns
VGS = -4 V, ISD = 15 A, VR = 400 V
dif/dt = 900 A/µs, TJ = 150 °C Note (2)
Qrr Reverse Recovery Charge 115 nC
Irrm Peak Reverse Recovery Current 6.2 A
Note (2): When using SiC Body Diode the maximum recommended VGS = -4V
Thermal Characteristics
Symbol Parameter Max. Unit Test Conditions Note
RθJC Thermal Resistance from Junction to Case 1.5 °C/W Fig. 21
RθJA Thermal Resistance From Junction to Ambient 40
3C3M0120090J Rev. A 01-2018
0
5
10
15
20
25
30
35
40
45
0246810 11
Drain-Source Current, I
DS
(A)
Drain-Source Voltage, V
DS
(V)
Conditions:
T
J
= 150 °C
tp = < 200 µs
V
GS
= 15 V
V
GS
= 13 V
V
GS
= 11 V
V
GS
= 9 V
V
GS
= 7 V
0
5
10
15
20
25
30
35
40
45
0246810 11
Drain-Source Current, I
DS
(A)
Drain-Source Voltage, V
DS
(V)
Conditions:
T
J
= -55 °C
tp = < 200 µs
V
GS
= 15 V
V
GS
= 13 V
V
GS
= 11 V
V
GS
= 9 V
V
GS
= 7 V
0
5
10
15
20
25
30
35
40
45
0 2 4 6 8 10 11
Drain-Source Current, I
DS
(A)
Drain-Source Voltage, V
DS
(V)
Conditions:
T
J
= 25 °C
tp = < 200 µs
V
GS
= 15 V
V
GS
= 13 V
V
GS
= 11 V
V
GS
= 9 V
V
GS
= 7 V
Figure 2. Output Characteristics TJ = 25 ºC
Typical Performance
Figure 5. On-Resistance vs. Drain Current
For Various Temperatures
Figure 1. Output Characteristics TJ = -55 ºC
Figure 3.
Output Characteristics TJ = 150 ºC
0.0
0.5
1.0
1.5
2.0
2.5
-50 -25 025 50 75 100 125 150
On Resistance, R
DS On
(P.U.)
Conditions:
IDS = 15 A
VGS = 15 V
tp< 200 µs
0
25
50
75
100
125
150
175
200
225
250
0 5 10 15 20 25 30 35 40 45
On Resistance, R
DS On
(mOhms)
Drain-Source Current, I
DS
(A)
Conditions:
VGS = 15 V
tp< 200 µs
TJ= 150 °C
TJ= -55 °C
TJ= 25 °C
Figure 4. Normalized On-Resistance vs. Temperature
0
25
50
75
100
125
150
175
200
225
250
275
300
-50 -25 025 50 75 100 125 150
On Resistance, R
DS On
(mOhms)
Conditions:
I
DS
= 15 A
t
p
< 200 µs
V
GS
= 15 V
V
GS
= 13 V
V
GS
= 11 V
Figure 6. On-Resistance vs. Temperature
For Various Gate Voltage
4C3M0120090J Rev. A 01-2018
Typical Performance
Figure 8. Body Diode Characteristic at -55 ºC
Figure 9. Body Diode Characteristic at 25 ºC
0
5
10
15
20
25
30
35
0246810 12 14
Drain-Source Current, I
DS
(A)
Gate-Source Voltage, V
GS
(V)
Conditions:
V
DS
= 20 V
tp < 200 µs
T
J
= 150 °C
T
J
= -55 °C
T
J
= 25 °C
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
-8 -7 -6 -5 -4 -3 -2 -1 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
J
= -55°C
t
p
< 200 µs
V
GS
= -2 V
V
GS
= -4 V
V
GS
= 0 V
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
-8 -7 -6 -5 -4 -3 -2 -1 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
J
= 25°C
t
p
< 200 µs
V
GS
= -2 V
V
GS
= -4 V
V
GS
= 0 V
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
-8 -7 -6 -5 -4 -3 -2 -1 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
J
= 150°C
t
p
< 200 µs
V
GS
= -2 V
V
GS
= -4 V
V
GS
= 0 V
0.0
0.5
1.0
1.5
2.0
2.5
3.0
-50 -25 025 50 75 100 125 150
Threshold Voltage, V
th
(V)
Junction Temperature T
J
C)
Conditons
V
GS
= V
DS
I
DS
= 3 mA
Figure 10. Body Diode Characteristic at 150 ºC
-4
0
4
8
12
16
04812 16 20
Gate-Source Voltage, V
GS
(V)
Gate Charge, Q
G
(nC)
Conditions:
I
DS
= 15 A
I
GS
= 10 mA
V
DS
= 400 V
T
J
= 25 °C
Figure 7. Transfer Characteristic for
Various Junction Temperatures
Figure 11. Threshold Voltage vs. Temperature Figure 12. Gate Charge Characteristics
5C3M0120090J Rev. A 01-2018
Typical Performance
Figure 15. 3rd Quadrant Characteristic at 150 ºC
Figure 13. 3rd Quadrant Characteristic at -55 ºC
-40
-30
-20
-10
0
-6 -5 -4 -3 -2 -1 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
J
= -55 °C
t
p
< 200 µs
V
GS
= 10 V
V
GS
= 5 V
V
GS
= 15 V
V
GS
= 0 V
-40
-30
-20
-10
0
-6 -5 -4 -3 -2 -1 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
J
= 25 °C
t
p
< 200 µs
V
GS
= 10 V
V
GS
= 5 V
V
GS
= 15 V
V
GS
= 0 V
-40
-30
-20
-10
0
-6 -5 -4 -3 -2 -1 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
J
= 150 °C
t
p
< 200 µs
V
GS
= 10 V
V
GS
= 5 V
V
GS
= 15 V
V
GS
= 0 V
Figure 14. 3rd Quadrant Characteristic at 25 ºC
0
5
10
15
20
0100 200 300 400 500 600 700 800 900 1000
Stored Energy, E
OSS
(µJ)
Drain to Source Voltage, V
DS
(V)
Figure 16. Output Capacitor Stored Energy
Figure 17. Capacitances vs. Drain-Source
Voltage (0 - 200V)
1
10
100
1000
050 100 150 200
Capacitance (pF)
Drain-Source Voltage, V
DS
(V)
C
iss
C
oss
Conditions:
T
J
= 25 °C
V
AC
= 25 mV
f = 1 MHz
C
rss
1
10
100
1000
0100 200 300 400 500 600 700 800 900
Capacitance (pF)
Drain-Source Voltage, V
DS
(V)
C
iss
C
oss
Conditions:
T
J
= 25 °C
V
AC
= 25 mV
f = 1 MHz
C
rss
Figure 18. Capacitances vs. Drain-Source
Voltage (0 - 900V)
6C3M0120090J Rev. A 01-2018
1E-3
10E-3
100E-3
1
1E-6 10E-6 100E-6 1E-3 10E-3 100E-3 1
Junction To Case Impedance, Z
thJC
(
o
C/W)
Time, t
p
(s)
0.5
0.3
0.1
0.05
0.02
0.01
SinglePulse
Typical Performance
0
5
10
15
20
25
-55 -30 -5 20 45 70 95 120 145
Drain-Source Continous Current, I
DS (DC)
(A)
Case Temperature, T
C
C)
Conditions:
T
J
≤ 150 °C
0
10
20
30
40
50
60
70
80
90
-55 -30 -5 20 45 70 95 120 145
Maximum Dissipated Power, P
tot
(W)
Case Temperature, T
C
C)
Conditions:
T
J
≤ 150 °C
0.01
0.10
1.00
10.00
0.1 110 100 1000
Drain-Source Current, I
DS
(A)
Drain-Source Voltage, V
DS
(V)
100 µs
1 ms
10 µs
Conditions:
T
C
= 25 °C
D = 0,
Parameter: t
p
100 ms
Limited by R
DS On
Figure 22. Safe Operating Area
Figure 21. Transient Thermal Impedance
(Junction - Case)
0
40
80
120
160
200
0 5 10 15 20 25
Switching Loss (uJ)
Drain to Source Current,I
DS
(A)
E
Off
E
On
E
Total
Conditions:
T
J
= 25 °C
V
DD
= 600 V
R
G(ext)
= 2.5
V
GS
= -4V/+15 V
FWD = C3M0120090J
L = 142 μH
Figure 23. Clamped Inductive Switching Energy vs.
Drain Current (VDD = 600V)
Figure 24. Clamped Inductive Switching Energy vs.
Drain Current (VDD = 400V)
0
20
40
60
80
100
120
0 5 10 15 20 25
Switching Loss (uJ)
Drain to Source Current,I
DS
(A)
E
Off
E
On
E
Total
Conditions:
T
J
= 25 °C
V
DD
= 400 V
R
G(ext)
= 2.5
V
GS
= -4V/+15 V
FWD = C3M0120090J
L = 142 μH
Figure 19. Continuous Drain Current Derating vs.
Case Temperature
Figure 20. Maximum Power Dissipation Derating vs.
Case Temperature
7C3M0120090J Rev. A 01-2018
Typical Performance
0
30
60
90
120
150
0 5 10 15 20 25
Switching Loss (uJ)
External Gate Resistor RG(ext) (Ohms)
E
Off
E
On
E
Total
Conditions:
T
J
= 25 °C
V
DD
= 400 V
I
DS
= 15 A
V
GS
= -4V/+15 V
FWD = C3M0120090J
L = 142 μH
0
5
10
15
20
25
30
0 5 10 15 20 25
Times (ns)
External Gate Resistor RG(ext) (Ohms)
t
d(off)
Conditions:
T
J
= 25 °C
V
DD
= 400 V
I
DS
= 15 A
V
GS
= -4V/+15 V
FWD = C3M0120090J
L = 142 μH
t
r
t
f
t
d(on)
0
20
40
60
80
100
025 50 75 100 125 150 175
Switching Loss (uJ)
E
Off
E
On
E
Total
Conditions:
I
DS
= 15 A
V
DD
= 400 V
R
G(ext)
= 2.5
V
GS
= -4V/+15 V
FWD = C3M0120090J
L = 142 μH
Figure 26. Clamped Inductive Switching Energy vs.
Temperature
Figure 27. Switching Times vs. RG(ext)
Figure 25. Clamped Inductive Switching Energy vs. RG(ext)
Figure28.SwitchingTimesDenition
8C3M0120090J Rev. A 01-2018
Test Circuit Schematic
Figure 29. Clamped Inductive Switching Test Circuit
Q2
VDC
Q1
VGS= - 4V
RG
RG
D.U.T
Note (3): Turn-off and Turn-on switching energy and timing values measured using SiC MOSFET Body Diode as shown above.
9C3M0120090J Rev. A 01-2018
Package Dimensions
Package 7L D2PAK
Dim All Dimensions in Millimeters
Min typ Max
A 4.300 4.435 4.570
A1 0.00 0.125 0.25
b 0.500 0.600 0.700
b2 0.600 0.800 1.000
c 0.330 0.490 0.650
C2 1.170 1.285 1.400
D 9.025 9.075 9.125
D1 4.700 4.800 4.900
E 10.130 10.180 10.230
E1 6.500 7.550 8.600
E2 6.778 7.223 7.665
e 1.27
H 15.043 16.178 17.313
L 2.324 2.512 2.700
L1 0.968 1.418 1.868
Ø
Ø1 4.5˚ 5.5˚
TO-263-7
1010 C3M0120090J Rev. A 01-2018
Copyright © 2018 Cree, Inc. All rights reserved.
The information in this document is subject to change without notice.
Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc.
Cree, Inc.
4600 Silicon Drive
Durham, NC 27703
USA Tel: +1.919.313.5300
Fax: +1.919.313.5451
www.cree.com/power
• RoHSCompliance
The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the
threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/
EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or
from the Product Documentation sections of www.cree.com.
• REAChCompliance
REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA)
has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree represen-
tative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is
also available upon request.
• This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body
nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited
toequipmentusedintheoperationofnuclearfacilities,life-supportmachines,cardiacdebrillatorsorsimilaremergencymedical
equipment,aircraftnavigationorcommunicationorcontrolsystems,airtrafccontrolsystems.
Notes
Related Links
• C2M PSPICE Models: http://wolfspeed.com/power/tools-and-support
• SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support
• SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support