[TK638xxAMH] TK638xxAMH Small and Thin package, High Maximum IOut, Low VDrop 500mA CMOS LDO Regulator IC 1-. DESCRIPTION 4-. PIN CONFIGURATION The TK638xxAMH is a CMOS LDO regulator. The package is the small and thin HSON1820A-6. The IC is designed for high output current batterypowered system and mobile communication. The IC can supply 500mA output current The IC does not require a noise-bypass capacitor. The IC offers very low dropout voltage and higher load current. The output voltage is internally fixed from 1.2V to 4.3V. 1 VIn 2 GND NC 5 3 VCont NC 4 (Top Veiw) 2-. FEATURES 5-. BLOCK DIAGRAM Package: HSON1820A-6 High maximum output current Low dropout voltage No external noise-bypass capacitor required Thermal and over current protection On/Off control High accuracy VIn VOut 1 CIn 6 VRef COut GND 2 On/Off Control 3-. APPLICATIONS 5 NC 4 NC Thermal & Over Current Protection VCont Any Electronic Equipment AP-MS0032-E-00 VOut 6 3 -1- 2011/02 [TK638xxAMH] 6-. ORDERING INFORMATION T K 6 3 8 A M H G H L - C Voltage Code (Refer to the following table) Temeprature Code -C : Ta=25C Version A Storage Direction L : LEFT type Package code MH : HSON1820A-6 Environment Code GH : Lead Free and Halogen Free Output Voltage Voltage Code Output Voltage Voltage Code Output Voltage Voltage Code 12 28 35 1.2V 2.8V 3.5V 15 29 40 1.5V 2.9V 4.0V 1.8V 18 3.0V 30 4.2V 42 25 31 43 2.5V 3.1V 4.3V 2.6V 26 3.2V 32 2.7V 27 3.3V 33 * If you need a voltage other than the value listed in the above table, please contact Asahi Kasei Microdevices. 7-. ABSOLUTE MAXIMUM RATINGS Ta=25C Parameter Absolute Maximum Ratings Input Voltage Output pin Voltage Control pin Voltage Storage Temperature Range Power Dissipation Symbol Rating Units VIn,MAX VOut,MAX VCont,MAX Tstg -0.3 ~ 6.0 -0.3 ~ VIn+0.3 -0.3 ~ 6.0 -55 ~ 150 V V V C PD 1200 mW Conditions When mounted on a PCB (30mm30mm1mm), Internal Limited Tj=150C * Operating Condition Operational Temperature Range TOP -40 ~ 85 C Operational Voltage Range VOP 2.0 ~ 6.0 V * PD must be decreased at the rate of 9.6mW for operation above 25C. The maximum ratings are the absolute limitation values with the possibility of the IC being damaged. If the operation exceeds any of these standards, quality cannot be guaranteed. AP-MS0032-E-00 -2- 2011/02 [TK638xxAMH] 8-. ELECTRICAL CHARACTERISTICS The parameters with min. or max. values will be guaranteed at Ta=Tj=25C with test when manufacturing or SQC (Statistical Quality Control) methods. The operation between -40 ~ 85C is guaranteed by design. VIn=VOut,TYP+1V, VCont=1.2V, Ta=Tj=25C Value Parameter Symbol Units Conditions MIN TYP MAX Output Voltage VOut V IOut=5mA Refer to TABLE 1 Line Regulation LinReg 0.0 4.0 mV VIn=1V mV IOut=5mA ~ 250mA Refer to TABLE 1 Load Regulation LoaReg mV IOut=5mA ~ 500mA Refer to TABLE 1 mV IOut=250mA Refer to TABLE 1 Dropout Voltage VDrop mV IOut=500mA Refer to TABLE 1 Maximum Load Current *1 IOut,MAX 550 800 mA VOut=VOut,TYP0.9 Quiescent Current IQ 75 150 A IOut=0mA, VCont=VIn Standby Current IStandby A VCont=0V 0.01 0.1 GND Pin Current IGND A IOut=250mA, VCont=VIn 120 240 Control Terminal Control Current ICont A VCont=1.2V 2 4 1.2 V VOut On state Control Voltage VCont 0.2 V VOut Off state Reference Value Output Voltage / Temp. VOut/Ta Output Noise Voltage VNoise (TK63828AMH) Ripple Rejection RR (TK63828AMH) Rise Time (TK63828AMH) tr - 100 - ppm/C IOut=5mA - 40 - Vrms - 70 - dB - 70 - s COut=1.0F, IOut=30mA, BPF=400Hz~80kHz COut=1.0F, IOut=10mA, f=1kHz COut=1.0F, IOut=30mA VCont: Pulse Wave (100Hz), VCont On VOut95% point *1: The maximum output current is limited by power dissipation. The maximum load current is the current where the output voltage decreases to 90% by increasing the output current at Tj=25C, compared to the output voltage specified at VIn=VOut,TYP+1V. The maximum load current indicates the current at which over current protection turns on. For all output voltage products, the maximum output current for normal operation without operating any protection is 500mA. Accordingly, LoaReg and VDrop are specified on the condition that IOut is less than 500mA. General Note Parameters with only typical values are just reference. (Not guaranteed) The noise level is dependent on the output voltage, the capacitance and capacitor characteristics. AP-MS0032-E-00 -3- 2011/02 [TK638xxAMH] TABLE 1. Output Voltage Part Number Load Regulation IOut=5 ~ 250mA IOut=5 ~ 500mA Dropout Voltage IOut=250mA IOut=500mA MIN TYP MAX TYP MAX TYP MAX TYP MAX TYP MAX V V V mV mV mV mV mV mV mV mV TK63812AMH 1.185 1.200 1.215 10 40 20 80 810 925 820 1050 TK63815AMH 1.485 1.500 1.515 10 40 20 80 510 625 520 755 TK63818AMH 1.782 1.800 1.818 10 40 20 80 210 305 395 670 TK63825AMH 2.475 2.500 2.525 11 44 21 84 145 245 305 515 TK63826AMH 2.574 2.600 2.626 11 44 21 84 140 240 290 495 TK63827AMH 2.673 2.700 2.727 11 44 21 84 135 230 285 480 TK63828AMH 2.772 2.800 2.828 11 44 21 84 135 230 275 465 TK63829AMH 2.871 2.900 2.929 11 44 21 84 130 225 265 450 TK63830AMH 2.970 3.000 3.030 11 44 22 88 125 215 255 430 TK63831AMH 3.069 3.100 3.131 11 44 22 88 125 215 250 425 TK63832AMH 3.168 3.200 3.232 11 44 22 88 120 205 250 425 TK63833AMH 3.267 3.300 3.333 11 44 22 88 120 205 245 415 TK63835AMH 3.465 3.500 3.535 11 44 22 88 115 195 240 405 TK63840AMH 3.960 4.000 4.040 12 48 23 92 110 185 225 380 TK63842AMH 4.158 4.200 4.242 12 48 23 92 110 185 220 370 TK63843AMH 4.257 4.300 4.343 12 48 23 92 110 185 215 365 Notice. Please contact your authorized Asahi Kasei Microdevices representative for voltage availability. AP-MS0032-E-00 -4- 2011/02 [TK638xxAMH] 9-. TEST CIRCUIT Test circuit for electrical characteristic IIn _ VIn VOut A CIn =1.0F V GND Cont VIn= VOut,TYP+1.0V Notice. COut =1.0F IOut =5mA _ ICont A _ V The limit values of the electrical characteristics are determined when CIn=1.0F(Ceramic) and COut=1.0F(Ceramic). VOut VCont VIn VOut CIn =1.0F V GND Cont VIn COut =1.0F _ V IOut _ ICont A VCont VOut VOut vs VIn VDrop vs IOut VOut vs IOut VOut vs IOut VOut vs Ta VDrop vs Ta IOut,MAX vs Ta ICont vs VCont , VOut vs VCont ICont vs Ta VCont vs Ta VNoise vs VIn VNoise vs IOut VNoise vs VOut VNoise vs Frequency IIn _ A VIn VOut CIn =1.0F V GND Cont VIn= VOut,TYP+1.0V Open COut =1.0F IQ vs VIn IStandby vs VIn IQ vs Ta _ ICont A VCont VIn VOut CIn =1.0F V GND Cont VIn= VOut,TYP+1.0V _ ICont A IGND IGND vs IOut IGND vs Ta COut =1.0F _ A IOut VCont AP-MS0032-E-00 -5- 2011/02 [TK638xxAMH] VIn= VOut,TYP+1.5V Vripple= 500mVP-P VIn VOut CIn =1.0uF V GND Cont RR vs VIn RR vs Frequency RR vs Frequency COut =1.0uF IOut =10mA VCont =1.1V VOut,TYP+2V VIn VOut,TYP+1V VCont GND COut =2.2uF IOut =5mA VCont =1.1V VIn VOut CIn =1.0F V GND Cont VIn= VOut,TYP+1.0V Line Transient VOut _ V VOut Load Transient COut =1.0F IOut _ V VOut VCont =1.1V VIn VOut CIn =1.0F V GND Cont VIn= VOut,TYP+1.0V AP-MS0032-E-00 VCont =0V 1.1V On/Off Transient COut =1.0F IOut= 30mA _ V VOut -6- 2011/02 [TK638xxAMH] 10-. TYPICAL CHARACTERISTICS 10-1-. DC CHARACTERISTICS VOut vs VIn (TK63812AMH) VOut vs VIn (TK63812AMH) 40 40 20 20 0 0 VOut [mV] VOut [mV] IOut=5mA -20 -40 -20 -40 -60 -60 -80 -80 -100 0 1 2 3 4 5 -100 -200 6 IOut=0, 5, 50, 100, 250, 500mA 0 VIn [V] 200 400 600 800 1000 400 500 400 500 VIn-VOut [mV] VOut vs VIn (TK63828AMH) VOut vs VIn (TK63828AMH) 20 40 IOut=5mA 20 10 IOut=0, 5, 50, 100, 250, 500mA VOut [mV] VOut [mV] 0 0 -10 -20 -40 -60 -20 -80 -100 -100 -30 0 1 2 3 4 5 6 0 200 300 VIn-VOut [mV] VIn [V] VOut vs VIn (TK63843AMH) VOut vs VIn (TK63843AMH) 10 40 IOut=5mA 5 20 0 IOut=0, 5, 50, 100, 250, 500mA 0 VOut [mV] VOut [mV] 100 -5 -10 -15 -20 -40 -60 -20 -80 -25 -30 0 1 2 3 4 5 -100 -100 6 VIn [V] AP-MS0032-E-00 0 100 200 300 VIn-VOut [mV] -7- 2011/02 [TK638xxAMH] VOut vs IOut (TK63812AMH) 2 VOut [V] 1.5 1 0.5 0 0 200 400 600 800 1000 800 1000 800 1000 IOut [mA] VOut vs IOut (TK63828AMH) 0 4 -100 3 VOut [V] VDrop [mV] VDrop vs IOut (TK63828AMH) -200 -300 2 1 -400 0 0 100 200 300 400 500 0 200 IOut [mA] 400 600 IOut [mA] VDrop vs IOut (TK63843AMH) VOut vs IOut (TK63843AMH) 0 6 5 4 VOut [V] VDrop [mV] -100 -200 3 2 -300 1 -400 0 0 100 200 300 400 0 500 IOut [mA] AP-MS0032-E-00 200 400 600 IOut [mA] -8- 2011/02 [TK638xxAMH] VOut vs IOut (TK63812AMH) VOut vs Ta (TK63812AMH) 10 100 80 0 60 VOut [mV] VOut [mV] 40 -10 -20 20 0 -20 -40 -30 -60 -80 -40 0 100 200 300 400 -100 -50 500 -25 0 25 IOut [mA] Ta [C] VOut vs IOut (TK63828AMH) VOut vs Ta (TK63828AMH) 50 75 100 50 75 100 50 75 100 100 10 80 60 0 VOut [mV] VOut [mV] 40 -10 -20 20 0 -20 -40 -30 -60 -80 -100 -50 -40 0 100 200 300 400 500 -25 0 25 IOut [mA] Ta [C] VOut vs IOut (TK63843AMH) VOut vs Ta (TK63843AMH) 10 100 80 0 60 VOut [mV] VOut [V] 40 -10 -20 20 0 -20 -40 -30 -60 -80 -40 0 100 200 300 400 -100 -50 500 IOut [mA] AP-MS0032-E-00 -25 0 25 Ta [C] -9- 2011/02 [TK638xxAMH] IOut,MAX vs Ta (TK63812AMH) 1000 IOut, MAX [mA] 900 800 700 600 500 -50 -25 0 25 50 75 100 50 75 100 50 75 100 Ta [C] IOut,MAX vs Ta (TK63828AMH) 0 1000 -100 900 IOut, MAX [mA] VDrop [mV] VDrop vs Ta (TK63828AMH) 250mA -200 -300 500mA -400 -500 -50 -25 0 25 50 75 800 700 600 500 -50 100 -25 0 Ta [C] Ta [C] IOut,MAX vs Ta (TK63843AMH) 0 1000 -100 900 250mA IOut, MAX [mA] VDrop [mV] VDrop vs Ta (TK63843AMH) -200 -300 500mA -400 -500 -50 25 800 700 600 -25 0 25 50 75 500 -50 100 Ta [C] AP-MS0032-E-00 -25 0 25 Ta [C] - 10 - 2011/02 [TK638xxAMH] IQ vs VIn (TK63812AMH) IStandby vs VIn (TK63812AMH) 140 10 VCont=VIn VCont=0V 9 120 8 7 IStandby [nA] IQ [A] 100 80 60 6 5 4 3 40 2 20 1 0 0 1 2 3 4 5 0 6 0 1 2 VIn [V] 3 4 5 6 VIn [V] IQ vs VIn (TK63828AMH) IStandby vs VIn (TK63828AMH) 140 10 VCont=VIn VCont=0V 9 120 8 7 IStandby [nA] IQ [A] 100 80 60 6 5 4 3 40 2 20 1 0 0 1 2 3 4 5 0 6 0 1 2 VIn [V] 3 4 5 6 VIn [V] IQ vs VIn (TK63843AMH) IStandby vs VIn (TK63843AMH) 140 10 VCont=VIn VCont=0V 9 120 8 7 IStandby [nA] IQ [A] 100 80 60 6 5 4 3 40 2 20 1 0 0 1 2 3 4 5 0 6 0 VIn [V] AP-MS0032-E-00 1 2 3 4 5 6 VIn [V] - 11 - 2011/02 [TK638xxAMH] IGND vs IOut (TK63812AMH) IQ vs Ta (TK63812AMH) 200 200 VCont=VIn 160 160 140 140 120 120 100 80 100 80 60 60 40 40 20 20 0 0 100 200 300 400 VCont=VIn 180 IQ [A] IGND [A] 180 0 -50 500 -25 0 IOut [mA] 75 100 IQ vs Ta (TK63828AMH) 200 200 VCont=VIn 180 160 160 140 140 120 120 100 80 100 80 60 60 40 40 20 20 0 0 100 200 300 400 VCont=VIn 180 IQ [A] IGND [A] 50 Ta [C] IGND vs IOut (TK63828AMH) 0 -50 500 -25 0 IOut [mA] 25 50 75 100 Ta [C] IGND vs IOut (TK63843AMH) IQ vs Ta (TK63843AMH) 200 200 VCont=VIn 180 160 160 140 140 120 120 100 80 100 80 60 60 40 40 20 20 0 0 100 200 300 400 0 -50 500 IOut [mA] AP-MS0032-E-00 VCont=VIn 180 IQ [A] IGND [A] 25 -25 0 25 50 75 100 Ta [C] - 12 - 2011/02 [TK638xxAMH] IGND vs Ta (TK63812AMH) ICont vs VCont, VOut vs VCont (TK63812AMH) 200 6 3 5 2.5 180 4 120 ICont [A] IGND [A] 140 100 80 60 40 VCont=VIn, IOut=250mA 20 0 -50 2 VIn=2, 3, 4, 5, 6V 3 1.5 2 1 1 0.5 0 -25 0 25 50 75 0 0 100 VOut [V] 160 0.5 1 1.5 2 VCont [V] Ta [C] IGND vs Ta (TK63828AMH) ICont vs VCont, VOut vs VCont (TK63828AMH) 200 6 6 5 5 180 4 120 ICont [A] IGND [A] 140 100 80 60 40 VCont=VIn, IOut=250mA 20 0 -50 4 VIn=3, 4, 5, 6V 3 3 2 2 1 1 0 -25 0 25 50 75 100 VOut [V] 160 0 0 0.5 Ta [C] 1 1.5 2 VCont [V] IGND vs Ta (TK63843AMH) ICont vs VCont, VOut vs VCont (TK63843AMH) 200 6 6 180 120 ICont [A] IGND [A] 140 100 80 60 40 VCont=VIn, IOut=250mA 20 0 -50 5 VIn=5, 6V 4 4 3 3 2 2 1 1 0 -25 0 25 50 75 0.5 1 1.5 2 VCont [V] Ta [C] AP-MS0032-E-00 0 0 100 VOut [V] 5 160 - 13 - 2011/02 [TK638xxAMH] VCont vs Ta (TK63812AMH) ICont vs Ta (TK638xxAMH) 1.4 4 VCont=1.2V 1.2 3 ICont [A] VCont [V] 1 0.8 0.6 0.4 2 1 0.2 0 -50 -25 0 25 50 75 0 -50 100 Ta [C] -25 0 25 50 75 100 Ta [C] VCont vs Ta (TK63828AMH) 1.4 1.2 VCont [V] 1 0.8 0.6 0.4 0.2 0 -50 -25 0 25 50 75 100 50 75 100 Ta [C] VCont vs Ta (TK63843AMH) 1.4 1.2 VCont [V] 1 0.8 0.6 0.4 0.2 0 -50 -25 0 25 Ta [C] AP-MS0032-E-00 - 14 - 2011/02 [TK638xxAMH] 10-2-. AC CHARACTERISTICS RR vs VIn (TK63812AMH) RR vs Frequency (TK63812AMH) 0 0 IOut=10mA -10 -20 -20 -30 -30 -40 -40 RR [dB] RR [dB] -10 -50 -60 -50 -60 -70 -70 -80 -80 -90 -100 100 IOut=10, 50, 100, 250, 500mA -90 -100 1k 10k 100k 1M 0 1 2 Frequency [Hz] 0 IOut=10mA -20 -30 -30 -40 -40 RR [dB] RR [dB] -10 -20 -50 -60 -60 -70 -80 -80 -90 IOut=10, 50, 100, 250, 500mA -50 -70 -90 -100 1k 10k 100k 1M 0 0.5 1 Frequency [Hz] 2 2.5 3 3.5 RR vs Frequency (TK63843AMH) 0 0 IOut=10mA -10 -10 -20 -20 -30 -30 -40 -40 RR [dB] RR [dB] 1.5 VIn-VOut [V] RR vs VIn (TK63843AMH) -50 -60 -60 -70 -80 -80 -90 IOut=10, 50, 100, 250, 500mA -50 -70 -90 -100 1k 10k 100k 1M 0 Frequency [Hz] AP-MS0032-E-00 5 RR vs Frequency (TK63828AMH) 0 -10 -100 100 4 VIn-VOut [V] RR vs VIn (TK63828AMH) -100 100 3 0.5 1 1.5 2 VIn-VOut [V] - 15 - 2011/02 [TK638xxAMH] VNoise vs VIn (TK63812AMH) 100 IOut=30mA 90 80 VNoise [Vrms] The ripple rejection (RR) characteristic depends on the characteristic and the capacitance value of the capacitor connected to the output side. The RR characteristic of 50kHz or more varies greatly with the capacitor on the output side and PCB pattern. If necessary, please confirm stability of your design. 70 60 50 40 30 20 10 0 1 2 3 4 5 6 VIn [V] VNoise vs VIn (TK63828AMH) 100 IOut=30mA 90 VNoise [Vrms] 80 70 60 50 40 30 20 10 0 2.5 3 3.5 4 4.5 5 5.5 6 VIn [V] VNoise vs VIn (TK63843AMH) 100 IOut=30mA 90 VNoise [Vrms] 80 70 60 50 40 30 20 10 0 4 4.5 5 5.5 6 VIn [V] AP-MS0032-E-00 - 16 - 2011/02 [TK638xxAMH] VNoise vs VOut (TK638xxAMH) 100 100 90 90 80 80 70 70 VNoise [Vrms] VNoise [Vrms] VNoise vs IOut (TK63812AMH) 60 50 40 30 IOut=30mA 60 50 40 30 20 20 10 10 0 0 0 100 200 300 400 1 500 1.5 2 2.5 3 3.5 4 4.5 VOut [V] IOut [mA] VNoise vs IOut (TK63828AMH) 100 90 VNoise [Vrms] 80 70 60 50 40 30 20 10 0 0 100 200 300 400 500 400 500 IOut [mA] VNoise vs IOut (TK63843AMH) 100 90 VNoise [Vrms] 80 70 60 50 40 30 20 10 0 0 100 200 300 IOut [mA] AP-MS0032-E-00 - 17 - 2011/02 [TK638xxAMH] VNoise vs Frequency (TK63812AMH) 10 VNoise [V/OHz ] IOut=10mA 1 0.01 10 100 1k 10k 100k Frequency [Hz] VNoise vs Frequency (TK63828AMH) VNoise [V/OHz ] 10 IOut=10mA 1 0.01 10 100 1k 10k 100k Frequency [Hz] VNoise vs Frequency (TK63843AMH) VNoise [V/OHz ] 10 IOut=10mA 1 0.1 0.01 10 100 1k 10k 100k Frequency [Hz] AP-MS0032-E-00 - 18 - 2011/02 [TK638xxAMH] 10-3-. TRANSIENT CHARACTERISTICS Line Transient (TK63812AMH) Load Transient (IOut=5500mA) (TK63812AMH) 500mA 3.2 VIn VOut 0 IOut 2.2 IOut=100, 250, 500mA VOut 10mV/div 0 5mA 0 0.5A/div 0.2V/div 0 0 0 20sec/div 40sec/div Time Time Line Transient (TK63828AMH) Load Transient (IOut=5500mA) (TK63828AMH) 500mA 4.8 VIn VOut IOut 3.8 0 IOut=100, 250, 500mA VOut 10mV/div 0 5mA 0 0.5A/div 0.2V/div 0 0 0 20sec/div 40sec/div Time Time Line Transient (TK63843AMH) Load Transient (IOut=5500mA) (TK63843AMH) 500mA 6.3 VIn VOut IOut 5.3 0 5mA 0 0.5A/div IOut=100, 250, 500mA 10mV/div 0 0.2V/div 0 0 0 AP-MS0032-E-00 20sec/div 40sec/div Time Time - 19 - 2011/02 [TK638xxAMH] Load Transient (IOut=100 or 2000mA) (TK63812AMH) Load Transient (IOut=0100 or 200mA) (TK63812AMH) 500mA 500mA IOut 0mA VOut IOut 0.5A/div 0 VOut 0.2V/div 0 0.5A/div 0mA 0.2V/div 0 40msec/div 10sec/div Time Time Load Transient (IOut=100 or 2000mA) (TK63828AMH) Load Transient (IOut=0100 or 200mA) (TK63828AMH) 500mA 500mA IOut 0 0mA VOut 0 0.5A/div 0 0.2V/div 0 0.5A/div 0mA 0.2V/div 10msec/div 10sec/div Time Time Load Transient (IOut=100 or 2000mA) (TK63843AMH) Load Transient (IOut=0100 or 200mA) (TK63843AMH) -20m 500mA 500mA IOut 0 0mA VOut 0 AP-MS0032-E-00 0.5A/div 0 0.2V/div 0 0.5A/div 0mA 0.2V/div 10msec/div 10sec/div Time Time - 20 - 2011/02 [TK638xxAMH] On/Off Transient (VCont=01.2V) (TK63812AMH) VCont 0 On/Off Transient (VCont=1.20V) (TK63812AMH) 1V/div VCont 0 VOut 0 0.5V/div VOut 0 0.5V/div IIn 0 0.5A/div IIn 0 0.5A/div COut=1.0, 2.2, 4.7F 1V/div COut=1.0, 2.2, 4.7F IOut=30mA IOut=30mA 40sec/div 400sec/div Time Time On/Off Transient (VCont=01.2V) (TK63828AMH) VCont 0 On/Off Transient (VCont=1.20V) (TK63828AMH) 1V/div VCont 0 1V/div VOut 0 COut=1.0, 2.2, 4.7F COut=1.0, 2.2, 4.7F VOut 0 IIn 0 1V/div 1V/div IIn 0 0.5A/div 0.5A/div IOut=30mA IOut=30mA 40sec/div 1msec/div Time Time On/Off Transient (VCont=01.2V) (TK63843AMH) VCont 0 On/Off Transient (VCont=1.20V) (TK63843AMH) 1V/div VCont 0 2V/div VOut 0 COut=1.0, 2.2, 4.7F COut=1.0, 2.2, 4.7F VOut 0 IIn 0 1V/div 2V/div IIn 0 0.5A/div 0.5A/div IOut=30mA IOut=30mA AP-MS0032-E-00 40sec/div 1msec/div Time Time - 21 - 2011/02 [TK638xxAMH] 11-. PIN DESCRIPTION Pin No. 1 2 Pin Description VIn GND Internal Equivalent Circuit ESD protection 3 VCont NC The pull-down resistor (about 650k) is built-in. No Connection VIn 6 Control Terminal VCont > 1.2V : On VCont < 0.2V : Off VCont 650k 4,5 Description Input Terminal GND Terminal VOut VOut Output Terminal ESD protection AP-MS0032-E-00 - 22 - 2011/02 [TK638xxAMH] Fig12-2: Output Current vs Stable Operation Area 12-. APPLICATIONS INFORMATION 12-1-. Stability TK63812AMH T a =-40~85C 100 Unstable Area 10 ESR [ ] Linear regulators require input and output capacitors in order to maintain the regulator's loop stability. If 1.0F capacitors are connected to the input side and the output side, the IC provides stable operation. However, it is recommended to use as large a value capacitor as is practical. The output noise and the ripple noise decrease as the value of the capacitor increases. A recommended value of the application is as follows. CIn1.0F, COut1.0F It is not possible to determine this indiscriminately. Please confirm the stability in your design. 1 Stable Area COut=1.0F 0.1 0.01 Fig12-1: Capacitor in the application 0 100 200 300 400 500 IOut [mA] VIn TK638xxA CIn1.0F VOut COut1.0F TK63828AMH T a =-40~85C 100 VCont Unstable Area ESR [ ] 10 1 Stable Area COut=1.0F 0.1 0.01 0 100 200 300 400 500 IOut [mA] TK63843AMH T a =-40~85C 100 Unstable Area ESR [ ] 10 1 Stable Area COut=1.0F 0.1 0.01 0 100 200 300 400 500 IOut [mA] AP-MS0032-E-00 - 23 - 2011/02 [TK638xxAMH] Fig.12-2 shows the stable operation area of output current and the equivalent series resistance (ESR) with a ceramic capacitor of 0.68F. ESR of the output capacitor must be in the stable operation area. Please select the best output capacitor according to the voltage and current used. The stability of the regulator improves as the value of the output side capacitor increases (the stable operation area extends.) Please use as large a value capacitor as is practical. For evaluation Kyocera : CM105B105K06A ,CM21B225K10A CM21B475K06A Fig12-3: ex. Ceramic Capacitance vs Voltage, Temperature Capacitance vs Voltage 100 90 80 70 60 50 CAP(%) B Curve F Curve 0 2 4 6 8 10 12 Bias Voltage(V) Capacitance vs Temperature 100 90 80 70 60 50 CAP(%) B Curve F Curve -50 -25 0 25 50 75 100 Ta(C) Generally, a ceramic capacitor has both a temperature characteristic and a voltage characteristic. Please consider both characteristics when selecting the part. The B curves are the recommended characteristics. AP-MS0032-E-00 - 24 - 2011/02 [TK638xxAMH] How to determine the thermal resistance when mounted on PCB The thermal resistance when mounted is expressed as follows: Tj=jaPD+Ta Tj of IC is set around 150C. PD is the value when the thermal sensor is activated. If the ambient temperature is 25C, then: 150=jaPD+25 ja=125/PD (C /mW) 12-2-. Layout 12-4: Layout example 1Pin PCB Material: Glass epoxy Size: 30mmx30mmx1.0mm Please do derating with 9.6mW/C at PD=1200mW, and 25C or more. Thermal resistance (ja) is=250C/W. PD is easily calculated. A simple way to determine PD is to calculate VInIIn when the output side is shorted. Input current gradually falls as output voltage rises after working thermal shutdown. You should use the value when thermal equilibrium is reached. Fig12-6: How to determine DPD Fig12-5: Derating Curve PD (mW) Pd(mW) 2 PD 1200 -9.6mW/C DPD 3 5 4 25 25 50 100 (85C) 150C The package loss is limited at the temperature that the internal temperature sensor works (about 150C). Therefore, the package loss is assumed to be an internal limitation. There is no heat radiation characteristic of the package unit assumed because of its small size. Heat is carried away from the device by being mounted on the PCB. This value is directly effected by the material and the copper pattern etc. of the PCB. The losses are approximately 1200mW. Enduring these losses becomes possible in a lot of applications operating at 25C. The overheating protection circuit operates when the junction temperature reaches 150C (this happens when the regulator is dissipating excessive power, outside temperature is high, or heat radiation is bad). The output current and the output voltage will drop when the protection circuit operates. However, operation begins again as soon as the output voltage drops and the temperature of the chip decreases. AP-MS0032-E-00 - 25 - 50 75 100 Ta (C) 125 150 Procedure (When mounted on PCB.) 1. Find PD (VInIIn when the output side is shortcircuited). 2. Plot PD against 25C. 3. Connect PD to the point corresponding to the 150C with a straight line. 4. In design, take a vertical line from the maximum operating temperature (e.g., 75C) to the derating curve. 5. Read off the value of PD against the point at which the vertical line intersects the derating curve. This is taken as the maximum power dissipation DPd. 6. DPD (VIn,MAXVOut)=IOut (at 75C) The maximum output current at the highest operating temperature will be IOut DPD (VIn,MAX-VOut). Please use the device at low temperature with better radiation. The lower temperature provides better quality. 2011/02 [TK638xxAMH] 12-3-. On/Off Control It is recommended to turn the regulator Off when the circuit following the regulator is not operating. A design with little electric power loss can be implemented. We recommend the use of the On/Off control of the regulator without using a high side switch to provide an output from the regulator. A highly accurate output voltage with low voltage drop is obtained. Because the control current is small, it is possible to control it directly by CMOS logic. Fig12-7: The use of On/Off control Vsat REG On/Off Cont. Control Terminal Voltage (VCont) VCont > 1.2V VCont < 0.2V On/Off State On Off Parallel Connected On/Off Control Fig12-8: The example of parallel connected IC VIn VOut TK63843A 4.3V TK63828A 2.8V TK63812A 1.2V On/Off Cont. The above figure is multiple regulators being controlled by a single On/Off control signal. There is concern of overheating, because the power loss of the low voltage side IC (TK63812AMH) is large. The series resistor (R) is put in the input line of the low output voltage regulator in order to prevent over-dissipation. The voltage dropped across the resistor reduces the large input-to-output voltage across the regulator, reducing the power dissipation in the device. When the thermal sensor works, a decrease of the output voltage, oscillation, etc. may be observed. AP-MS0032-E-00 - 26 - 2011/02 [TK638xxAMH] 12-4-. Definition of term Characteristics Protections Output Voltage (VOut) The output voltage is specified with VIn=(VOutTYP+1V) and IOut=5mA. Maximum Output Current (IOut, MAX) The rated output current is specified under the condition where the output voltage drops to 90% of the value specified with IOut=5mA. The input voltage is set to VOutTYP+1V and the current is pulsed to minimize temperature effect. Dropout Voltage (VDrop) The dropout voltage is the difference between the input voltage and the output voltage at which point the regulator starts to fall out of regulation. Below this value, the output voltage will fall as the input voltage is reduced. It is dependent upon the output voltage, the load current, and the junction temperature. Line Regulation (LinReg) Line regulation is the ability of the regulator to maintain a constant output voltage as the input voltage changes. The line regulation is specified as the input voltage is changed from VIn=VOut,TYP+1V to VIn=6V. It is a pulse measurement to minimize temperature effect. Over Current Sensor The over current sensor protects the device when there is excessive output current. It also protects the device if the output is accidentally connected to ground. Thermal Sensor The thermal sensor protects the device in case the junction temperature exceeds the safe value (Tj=150C). This temperature rise can be caused by external heat, excessive power dissipation caused by large input to output voltage drops, or excessive output current. The regulator will shut off when the temperature exceeds the safe value. As the junction temperatures decrease, the regulator will begin to operate again. Under sustained fault conditions, the regulator output will oscillate as the device turns off then resets. Damage may occur to the device under extreme fault. Please prevent the loss of the regulator when this protection operates, by reducing the input voltage or providing better heat efficiency. ESD MM : 200pF 0 150V or more HBM : 100pF 1.5k 2000V or more Load Regulation (LoaReg) Load regulation is the ability of the regulator to maintain a constant output voltage as the load current changes. It is a pulsed measurement to minimize temperature effects with the input voltage set to VIn=VOut,TYP+1V. The load regulation is specified under an output current step condition of 1mA to 50mA. Ripple Rejection (RR) Ripple rejection is the ability of the regulator to attenuate the ripple content of the input voltage at the output. It is specified with 500mVP-P, 1kHz super-imposed on the input voltage, where VIn=VOut,TYP+1.5V. Ripple rejection is the ratio of the ripple content of the output vs. input and is expressed in dB. Standby Current (IStandby) Standby current is the current which flows into the regulator when the output is turned off by the control function (VCont=0V). AP-MS0032-E-00 - 27 - 2011/02 [TK638xxAMH] 13-. PACKAGE OUTLINE 6-Lead-Small Outline Non-Leaded Package with Heat Sink 6 4 0.35 0.40 Mark : HSON1820A-6 1 1 Pin Mark 2.40 1.00 2.00.05 Lot No. 3 0.05 0.5 0.30.05 0.230.03 1 0.65 0.05 0.15 0.05 1.60 Reference Mount Pad 0.05 M (0.075) 1.50.05 (0.2) 1.0 0.05 0.10.05 ) .1 0.20.05 3 0 (C 6 0.5 0~0.05 0.075 0.05 1.8 0.05 4 Unit : mm Package Structure and Others Package Material Terminal Material Terminal Finish : Epoxy Resin : Copper Alloy : Ni/Pd/Au Mark Method Country of Origin Mass : Laser : Japan : 0.0072g Caution in Printed Circuit Board Layout In addition to the normal pins, this plastic package has exposed metal tabs. This tab is electrically connected to the GND of internal chip. Avoid electrical contact with this tab from external print traces, adjacent components other than GND, etc. This tab is recommended to be solder-mounted so as to enhance heat release. AP-MS0032-E-00 - 28 - 2011/02 [TK638xxAMH] Marking Part Number TK63812AMH TK63815AMH TK63818AMH TK63825AMH TK63826AMH TK63827AMH AP-MS0032-E-00 Marking Code C12 C15 C18 C25 C26 C27 Part Number TK63828AMH TK63829AMH TK63830AMH TK63831AMH TK63832AMH TK63833AMH Marking Code C28 C29 C30 C31 C32 C33 - 29 - Part Number TK63835AMH TK63840AMH TK63842AMH TK63843AMH Marking Code C35 C40 C42 C43 2011/02 [TK638xxAMH] IMPORTANT NOTICE These products and their specifications are subject to change without notice. When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the products. Descriptions of external circuits, application circuits, software and other related information contained in this document are provided only to illustrate the operation and application examples of the semiconductor products. You are fully responsible for the incorporation of these external circuits, application circuits, software and other related information in the design of your equipments. AKM assumes no responsibility for any losses incurred by you or third parties arising from the use of these information herein. AKM assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of such information contained herein. Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials. AKM products are neither intended nor authorized for use as critical componentsNote1) in any safety, life support, or other hazard related device or systemNote2), and AKM assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKM. As used here: Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability. Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property. It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification. AP-MS0032-E-00 - 30 - 2011/02