TAR5S15U~TAR5S50U
2014-03-01
1
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic
TAR5S15U ~ TAR5S50U
Point Regulators (Low-Dropout Regulators)
The TAR5SxxU Series consists of general-purpose bipolar LDO
regulators with an on/off control pin and features
overtemperature and overcurrent protection circuits.
Features
Low standby current
Overtemperature and overcurrent protections
Wide operating voltage range
High maximum output current
Low input-to-output voltage differential
Small package (UFV package similar to SOT-353)
Allows use of ceramic capacitors as the input and output
capacitors.
Pin Assignment (Top View)
The overtemperature and overcurrent protection features are not intended to guarantee correct operation below
the absolute maximum ratings.
Do not use the TAR5SxxU under conditions where the absolute maximum ratings may be exceeded.
SON5-P-0202-0.65
Weight: 0.007 g (typ.)
VIN
NOISE
GND
VOUT
CONTROL
1 3 2
4 5
(UFV)
Start of commercial production
2001-08
TAR5S15U~TAR5S50U
2014-03-01
2
List of Part Numbers and Markings Part Marking
Part No. Marking Part No. Marking
TAR5S15U 1V5 TAR5S33U 3V3
TAR5S16U 1V6 TAR5S34U 3V4
TAR5S17U 1V7 TAR5S35U 3V5
TAR5S18U 1V8 TAR5S36U 3V6
TAR5S19U 1V9 TAR5S37U 3V7
TAR5S20U 2V0 TAR5S38U 3V8
TAR5S21U 2V1 TAR5S39U 3V9
TAR5S22U 2V2 TAR5S40U 4V0
TAR5S23U 2V3 TAR5S41U 4V1
TAR5S24U 2V4 TAR5S42U 4V2
TAR5S25U 2V5 TAR5S43U 4V3
TAR5S26U 2V6 TAR5S44U 4V4
TAR5S27U 2V7 TAR5S45U 4V5
TAR5S28U 2V8 TAR5S46U 4V6
TAR5S29U 2V9 TAR5S47U 4V7
TAR5S30U 3V0 TAR5S48U 4V8
TAR5S31U 3V1 TAR5S49U 4V9
TAR5S32U 3V2 TAR5S50U 5V0
Absolute Maximum Ratings (Ta = 25°C)
Characteristics Symbol Rating Unit
Supply Voltage VIN 15 V
Output Current IOUT 200 mA
Power Dissipation PD 450 (Note 1) mW
Operation Temp. Range Topr 40 to 85 °C
Storage Temp. Range Tstg 55 to 150 °C
Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the
significant change in temperature, etc.) may cause this product to decrease in the reliability significantly
even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute
maximum ratings and the operating ranges.
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook
(“Handling Precautions”/“Derating Concept and Methods”) and individual reliability data (i.e. reliability test
report and estimated failure rate, etc).
Note 1: Mounted on a glass epoxy circuit board of 30 mm × 30 mm; Pad dimension of 35 mm2
3 V 0
Example: TAR5S30U (3.0-V output)
TAR5S15U~TAR5S50U
2014-03-01
3
TAR5S15U~TAR5S22U
Electrical Characteristic (unless otherwise specified, VIN = VOUT + 1 V, IOUT = 50 mA,
CIN = 1 μF, COUT = 10 μF, C NOISE = 0.01 μF, Tj = 25°C)
Characteristics Symbol Test Condition Min Typ. Max Unit
Output voltage VOUT Please refer to the Output Voltage Accuracy table.
Line regulation Regline VOUT + 1 V VIN 15 V,
IOUT = 1 mA 3 15 mV
Load regulation Regload 1 mA IOUT 150 mA 25 75 mV
IB1 IOUT = 0 mA 170
Quiescent current
IB2 I
OUT = 50 mA 550 850
μA
Standby current IB (OFF) V
CT = 0 V 0.1 μA
Output noise voltage VNO
VIN = VOUT + 1 V, IOUT = 10 mA,
10 Hz f 100 kHz,
CNOISE = 0.01 μF, Ta = 25°C
30 μVrms
Temperature coefficient TCVO 40°C Topr 85°C 100 ppm/°C
Input voltage VIN 2.4 15 V
Ripple rejection R.R.
VIN = VOUT + 1 V, IOUT = 10 mA,
CNOISE = 0.01 μF, f = 1 kHz,
VRipple = 500 mVp-p, Ta = 25°C
70 dB
Control voltage (ON) VCT (ON) 1.5 V
IN V
Control voltage (OFF) VCT (OFF) 0.4 V
Control current (ON) ICT (ON) V
CT = 1.5 V 3 10 μA
Control current (OFF) ICT (OFF) V
CT = 0 V 0 0.1 μA
TAR5S23U~TAR5S50U
Electrical Characteristic (unless otherwise specified, VIN = VOUT + 1 V, IOUT = 50 mA,
CIN = 1 μF, COUT = 10 μF, C NOISE = 0.01 μF, Tj = 25°C)
Characteristics Symbol Test Condition Min Typ. Max Unit
Output voltage VOUT Please refer to the Output Voltage Accuracy table.
Line regulation Regline VOUT + 1 V VIN 15 V,
IOUT = 1 mA 3 15 mV
Load regulation Regload 1 mA IOUT 150 mA 25 75 mV
IB1 IOUT = 0 mA 170
Quiescent current
IB2 I
OUT = 50 mA 550 850
μA
Standby current IB (OFF) V
CT = 0 V 0.1 μA
Output noise voltage VNO
VIN = VOUT + 1 V, IOUT = 10 mA,
10 Hz f 100 kHz,
CNOISE = 0.01 μF, Ta = 25°C
30 μVrms
Dropout volatge VIN VOUT
IOUT = 50 mA 130 200 mV
Temperature coefficient TCVO 40°C Topr 85°C 100 ppm/°C
Input voltage VIN VOUT
+ 0.2 V 15 V
Ripple rejection R.R.
VIN = VOUT + 1 V, IOUT = 10 mA,
CNOISE = 0.01 μF, f = 1 kHz,
VRipple = 500 mVp-p, Ta = 25°C
70 dB
Control voltage (ON) VCT (ON) 1.5 V
IN V
Control voltage (OFF) VCT (OFF) 0.4 V
Control current (ON) ICT (ON) V
CT = 1.5 V 3 10 μA
Control current (OFF) ICT (OFF) V
CT = 0 V 0 0.1 μA
TAR5S15U~TAR5S50U
2014-03-01
4
Output Voltage Accuracy
(VIN = VOUT + 1 V, IOUT = 50 mA, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, T j = 25°C)
Part No. Symbol Min Typ. Max Unit
TAR5S15U 1.44 1.5 1.56
TAR5S16U 1.54 1.6 1.66
TAR5S17U 1.64 1.7 1.76
TAR5S18U 1.74 1.8 1.86
TAR5S19U 1.84 1.9 1.96
TAR5S20U 1.94 2.0 2.06
TAR5S21U 2.04 2.1 2.16
TAR5S22U 2.14 2.2 2.26
TAR5S23U 2.24 2.3 2.36
TAR5S24U 2.34 2.4 2.46
TAR5S25U 2.43 2.5 2.57
TAR5S26U 2.53 2.6 2.67
TAR5S27U 2.63 2.7 2.77
TAR5S28U 2.73 2.8 2.87
TAR5S29U 2.83 2.9 2.97
TAR5S30U 2.92 3.0 3.08
TAR5S31U 3.02 3.1 3.18
TAR5S32U 3.12 3.2 3.28
TAR5S33U 3.21 3.3 3.39
TAR5S34U 3.31 3.4 3.49
TAR5S35U 3.41 3.5 3.59
TAR5S36U 3.51 3.6 3.69
TAR5S37U 3.6 3.7 3.8
TAR5S38U 3.7 3.8 3.9
TAR5S39U 3.8 3.9 4.0
TAR5S40U 3.9 4.0 4.1
TAR5S41U 3.99 4.1 4.21
TAR5S42U 4.09 4.2 4.31
TAR5S43U 4.19 4.3 4.41
TAR5S44U 4.29 4.4 4.51
TAR5S45U 4.38 4.5 4.62
TAR5S46U 4.48 4.6 4.72
TAR5S47U 4.58 4.7 4.82
TAR5S48U 4.68 4.8 4.92
TAR5S49U 4.77 4.9 5.03
TAR5S50U
VOUT
4.87 5.0 5.13
V
TAR5S15U~TAR5S50U
2014-03-01
5
Application Notes
1. Recommended Application Circuit
The above figure shows the recommended application circuit for the TAR5SxxU. Capacitors should be
connected to VIN and VOUT for input/output stabilization.
If on/off control is not required, it is recommended to connect the CONTROL pin (pin 1) to VCC.
2. Power Dissipation
The power dissipation rating (450 mW) is measured on a board shown below. More power can be safely
dissipated by reducing the input voltage, output current and/or ambient temperature. It is recommended to
use the TAR5SxxU at 70% to 80% of the absolute maximum power dissipation.
Thermal Resistance Evaluation Board
CONTROL Operation
HIGH ON
LOW OFF
V
IN
5
NOISE
4
1 3
GND
2
VOUT
CONTROL
0.01 μF
1 μF
10 μF
A
noise-damping capacitor should be connected between the NOISE pin and GND
for stable operation. The recommended value is higher than 0.0047 μF.
Material: Glass epoxy
Dimensions: 30 mm × 30 mm
Copper pad area: 35 mm2, t = 0.8 mm
COUT
CIN
CNOISE
VIN V
OUT
CONTROL GND NOISE
TAR5S15U~TAR5S50U
2014-03-01
6
3. Ripple Rejection
The TAR5SxxU feature a good power supply ripple rejection and input transient response, making them an
ideal solution for the RF block of cell phones.
4. NOISE Pin
The TAR5SxxU have a pin named NOISE. To reduce the output noise and ensure stable operation, a
capacitor should be inserted between the NOISE pin and GND. The capacitance value should be at least
0.0047 μF.
The output voltage rise time varies with the value of the capacitor connected to the NOISE pin.
Ripple Rejection f
Frequency f (Hz)
Ripple rejection (dB)
0
10 100 1 k 10 k 100 k 300 k
10
20
30
40
50
60
70
80
10 μF
2.2 μF
1 μF
VIN = 4.0 V, CNOISE = 0.01 μF,
CIN = 1 μF, V Ripple = 500 mVpp,
IOUT = 10 mA, Ta = 25°C
CNOISE VN
NOISE capacitance CNOISE (F)
Output noise voltage VN (μV)
0
10
20
30
40
50
60
0.001 μ 0.01 μ 1.0 μ
TAR5S50
0.1 μ
TAR5S30
TAR5S15
CIN = 1 μF, C OUT = 10 μF,
IOUT = 10 mA, Ta = 25°C
TAR5S28U Input Transient Response
Time t (ms)
01 45 8 10
Input voltage
2.8 V
2 3 6 7 9
Output voltage
3.1 V
3.4 V
Ta = 25°C, CIN = 1 μF,
COUT = 10 μF, C NOISE = 0.01 μF,
VIN: 3.4 V 3.1 V, IOUT = 50 mA
Turn On Waveform
Time t (ms)
Control voltage
VCT (ON) (V)
Output voltage
VOUT (V)
4010 20
0
1
2
3
1
2
10 0 9030
0
60 50 80 70
Output voltage waveform
Control voltage waveform
CNOISE = 0.01 μF
1 μF
0.33 μF
0.1 μF
CIN = 1 μF, C OUT = 10 μF,
IOUT = 50 mA, Ta = 25°C
TAR5S15U~TAR5S50U
2014-03-01
7
5. Examples of Performance Curves When Ceramic Capacitors Are Used
The stable operating area (SOA) is an area where the output voltage does not go into oscillation. The
following figures represent the SOA obtained using an evaluation circuit shown below. The SOA is determined
by the equivalent series resistance (ESR) of the output capacitor and the output current. The TAR5SxxU
provide stable operation even when a ceramic capacitor is used as the output capacitor.
If the ripple frequency is 30 kHz or greater, the ripple rejection characteristics differ, depending on the type
of the output capacitor (ceramic or tantalum) as shown by the bottom figure on this page.
It is recommended to verify that TAR5SxxU operate properly under the intended conditions of use.
Examples of Safe Operating Area Characteristics
Circuit for Stable Operating Area Evaluation
Ripple Rejection Characteristic (f = 10 kHz to 300 kHz)
(TAR5S15U) Stable Operating Area
Output current IOUT (mA)
(TAR5S50U) Stable Operating Area
(TAR5S28U) Stable Operating Area
Output current IOUT (mA)
Output current IOUT (mA)
Equivalent series resistance ESR (Ω)
Equivalent series resistance ESR (Ω)
Equivalent series resistance ESR (Ω)
Ripple rejection (dB)
(TAR5S30U) Ripple Rejection – f
Frequency f (Hz)
TAR5S**U
GND
CIN
Ceramic
VIN
=
VOUT
+ 1 V
CONTROL
CNOISE = 0.01 μF
ROUT
ESR
COUT
Ceramic
Capacitors used for evaluation
C
IN: Murata GRM40B105K
C
OUT: Murata GRM40B105K / GRM40B106K
30
0
10
20
40
70
50
60 Ceramic
2.2 μF
10 k 300 k 100 k
Ceramic 10 μF
Tantalum10 μF
Tantalum 2.2 μF
Tantalum 1 μF
Ceramic
1 μF
@VIN = 4.0 V, CNOISE = 0.01 μF,
CIN = 1 μF, V Ripple = 500 mVp-p,
IOUT = 10 mA, Ta = 25°C
1000 k
80 40
0.02
0.1
1
10
100
0 20 15060 120 100 140
@VIN = 2.5 V, CNOISE = 0.01 μF,
CIN = 1 μF, C OUT = 1 μF to 10 μF,
Ta = 25°C
Stable Operating Area
80 40
0.02
0.1
1
10
100
020 15060 120 100 140
@VIN = 6.0 V, CNOISE = 0.01 μF,
CIN = 1 μF, C OUT = 1 μF to 10 μF,
Ta = 25°C
Stable Operating Area
80 40
0.02
0.1
1
10
100
0 20 15060 120 100 140
@VIN = 3.8 V, CNOISE = 0.01 μF,
CIN = 1 μF, C OUT = 1 μF to 10 μF,
Ta = 25°C
Stable Operating Area
TAR5S15U~TAR5S50U
2014-03-01
8
Output voltage VOUT (V)
Output voltage VOUT (V)
Output current IOUT (mA)
(TAR5S15U) IOUT – VOUT
Output voltage VOUT (V)
Output current IOUT (mA)
(TAR5S18U) IOUT – VOUT
Output voltage VOUT (V)
Output current IOUT (mA)
(TAR5S20U) IOUT – VOUT
Output voltage VOUT (V)
Output current IOUT (mA)
(TAR5S21U) IOUT – VOUT
Output current IOUT (mA)
(TAR5S22U) IOUT – VOUT
1.4
1.5
1.6
VIN = 2.5 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
1.7
1.8
1.9
VIN = 2.8 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
1.9
2.0
2.1
VIN = 3.0 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
2.0
2.1
2.2
VIN = 3.1 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
2.1
2.2
2.3
VIN = 3.2 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
Output current IOUT (mA)
(TAR5S23U) IOUT – VOUT
Output voltage VOUT (V)
2.2
2.3
2.4
VIN = 3.3 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pu ls e wi d t h = 1 ms
0 50 100 150
Ta = 85°C
40
25
TAR5S15U~TAR5S50U
2014-03-01
9
Output current IOUT (mA)
(TAR5S27U) IOUT – VOUT
Output voltage VOUT (V)
VIN = 3.7 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
2.6
2.7
2.8
0 50 100 150
Ta = 85°C
25
40
Output current IOUT (mA)
(TAR5S30U) IOUT – VOUT
Output voltage VOUT (V)
VIN = 3.8 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
2.7
2.8
2.9
0 50 100 150
Ta = 85°C
25
40
Output current IOUT (mA)
(TAR5S25U) IOUT – VOUT
Output voltage VOUT (V)
Output current IOUT (mA)
(TAR5S31U) IOUT – VOUT
Output voltage VOUT (V)
VIN = 3.9 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
2.8
2.9
3
0 50 100 150
Ta = 85°C
25
40
2.4
2.5
2.6
VIN = 2.6 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
Output current IOUT (mA)
(TAR5S28U) IOUT – VOUT
Output voltage VOUT (V)
Output current IOUT (mA)
(TAR5S29U) IOUT – VOUT
Output voltage VOUT (V)
VIN = 4.0 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
2.9
3.0
3.1
0 50 100 150
Ta = 85°C
25
40
3.0
3.1
3.2
VIN = 4.1 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
TAR5S15U~TAR5S50U
2014-03-01
10
Output current IOUT (mA)
(TAR5S32U) IOUT – VOUT
Output voltage VOUT (V)
Output current IOUT (mA)
(TAR5S33U) IOUT – VOUT
Output voltage VOUT (V)
VIN = 4.3 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
3.2
3.3
3.4
0 50 100 150
Ta = 85°C
25
40
Output current IOUT (mA)
(TAR5S45U) IOUT – VOUT
Output voltage VOUT (V)
VIN = 5.5 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
4.4
4.5
4.6
0 50 100 150
Ta = 85°C
25
40
Output current IOUT (mA)
(TAR5S50U) IOUT – VOUT
Output voltage VOUT (V)
VIN = 6.0 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
4.9
5.0
5.1
0 50 100 150
Ta = 85°C
25
40
Output current IOUT (mA)
(TAR5S35U) IOUT – VOUT
Output voltage VOUT (V)
VIN = 4.5 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
3.4
3.5
3.6
0 50 100 150
Ta = 85°C
25
40
Output current IOUT (mA)
(TAR5S48U) IOUT – VOUT
Output voltage VOUT (V)
VIN = 5.8 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
4.7
4.8
4.9
0 50 100 150
Ta = 85°C
25
40
3.1
3.2
3.3
VIN = 4.2 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
TAR5S15U~TAR5S50U
2014-03-01
11
Bias current IB (mA)
Bias current IB (mA)
Input voltage VIN (V)
(TAR5S15U) IB – VIN
Bias current IB (mA)
Input voltage VIN (V)
(TAR5S18U) IB – VIN
Bias current IB (mA)
Input voltage VIN (V)
(TAR5S20U) IB – VIN
Bias current IB (mA)
Input voltage VIN (V)
(TAR5S21U) IB – VIN
Input voltage VIN (V)
(TAR5S22U) IB – VIN
Input voltage VIN (V)
(TAR5S23U) IB – VIN
Bias current IB (mA)
CIN = 1 μF, C OUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
CIN = 1 μF, C OUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
CIN = 1 μF, C OUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
CIN = 1 μF, C OUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
CIN = 1 μF, C OUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
CIN = 1 μF, C OUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
TAR5S15U~TAR5S50U
2014-03-01
12
Input voltage VIN (V)
(TAR5S27U) IB – VIN
Bias current IB (mA)
CIN = 1 μF, C OUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
Input voltage VIN (V)
(TAR5S30U) IB – VIN
Bias current IB (mA)
CIN = 1 μF, C OUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
Input voltage VIN (V)
(TAR5S25U) IB – VIN
Bias current IB (mA)
Input voltage VIN (V)
(TAR5S31U) IB – VIN
Bias current IB (mA)
Input voltage VIN (V)
(TAR5S28U) IB – VIN
Bias current IB (mA)
CIN = 1 μF, C OUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
Input voltage VIN (V)
(TAR5S29U) IB – VIN
Bias current IB (mA)
CIN = 1 μF, C OUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
CIN = 1 μF, C OUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
CIN = 1 μF, C OUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
TAR5S15U~TAR5S50U
2014-03-01
13
Input voltage VIN (V)
(TAR5S32U) IB – VIN
Bias current IB (mA)
Input voltage VIN (V)
(TAR5S33U) IB – VIN
Bias current IB (mA)
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
CIN = 1 μF, C OUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
Input voltage VIN (V)
(TAR5S45U) IB – VIN
Bias current IB (mA)
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
CIN = 1 μF, C OUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
Input voltage VIN (V)
(TAR5S50U) IB – VIN
Bias current IB (mA)
CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
CIN = 1 μF, C OUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
Input voltage VIN (V)
(TAR5S35U) IB – VIN
Bias current IB (mA)
CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
Input voltage VIN (V)
(TAR5S48U) IB – VIN
Bias current IB (mA)
CIN = 1 μF, C OUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
TAR5S15U~TAR5S50U
2014-03-01
14
Output voltage VOUT (V)
Output voltage VOUT (V)
Input voltage VIN (V)
(TAR5S15U) VOUT – VIN
Output voltage VOUT (V)
Input voltage VIN (V)
(TAR5S18U) VOUT – VIN
Output voltage VOUT (V)
Input voltage VIN (V)
(TAR5S20U) VOUT – VIN
Output voltage VOUT (V)
Input voltage VIN (V)
(TAR5S21U) VOUT – VIN
Input voltage VIN (V)
(TAR5S22U) VOUT – VIN
Input voltage VIN (V)
(TAR5S23U) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
TAR5S15U~TAR5S50U
2014-03-01
15
Input voltage VIN (V)
(TAR5S27U) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Input voltage VIN (V)
(TAR5S30U) VOUT – VIN
Output voltage VOUT (V)
Input voltage VIN (V)
(TAR5S25U) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Input voltage VIN (V)
(TAR5S31U) VOUT – VIN
Output voltage VOUT (V)
Input voltage VIN (V)
(TAR5S28U) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Input voltage VIN (V)
(TAR5S29U) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
TAR5S15U~TAR5S50U
2014-03-01
16
Input voltage VIN (V)
(TAR5S33U) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Input voltage VIN (V)
(TAR5S32U) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Input voltage VIN (V)
(TAR5S45U) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Input voltage VIN (V)
(TAR5S50U) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Input voltage VIN (V)
(TAR5S48U) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Input voltage VIN (V)
(TAR5S35U) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
TAR5S15U~TAR5S50U
2014-03-01
17
Output voltage VOUT (V)
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5S15U) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5S18U) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5S20U) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5S21U) VOUT – Ta
Ambient temperature Ta (°C)
(TAR5S22U) VOUT – Ta
Ambient temperature Ta (°C)
(TAR5S23U) VOUT – Ta
Output voltage VOUT (V)
50
1.4 25 0 25 100 75 50
1.45
1.5
1.55
1.6
VIN = 2.5 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pu ls e wi d t h = 1 ms
IOUT = 50 mA
100 150
50
1.7 25 0 25 100 75 50
1.75
1.8
1.85
1.9
VIN = 2.8 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100 150
50
1.9 25 0 25 100 75 50
1.95
2.0
2.05
2.1
VIN = 3.0 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pu ls e wi d t h = 1 ms
IOUT = 50 mA
100 150
50
2.0 25 0 25 100 75 50
2.05
2.1
2.15
2.2
VIN = 3.1 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100 150
50
2.1 25 0 25 100 75 50
2.15
2.2
2.25
2.3
VIN = 3.2 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pu ls e wi d t h = 1 ms
IOUT = 50 mA
100 150
50
2.2 25 0 25 100 75 50
2.25
2.3
2.35
2.4
VIN = 3.3 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100 150
TAR5S15U~TAR5S50U
2014-03-01
18
Ambient temperature Ta (°C)
(TAR5S25U) VOUT – Ta
Output voltage VOUT (V)
50
2.4 25 0 25 100 75 50
2.45
2.5
2.55
2.6
VIN = 3.5 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pu ls e wi d t h = 1 ms
IOUT = 50 mA
100 150
Ambient temperature Ta (°C)
(TAR5S27U) VOUT – Ta
Output voltage VOUT (V)
50
2.6 25 0 25 100 75 50
2.65
2.7
2.75
2.8
VIN = 3.7 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100 150
Ambient temperature Ta (°C)
(TAR5S30U) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5S31U) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5S28U) VOUT – Ta
Output voltage VOUT (V)
50
2.7 25 0 25 100 75 50
2.75
2.8
2.85
2.9
VIN = 3.8 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pu ls e wi d t h = 1 ms
IOUT = 50 mA
100 150
Ambient temperature Ta (°C)
(TAR5S29U) VOUT – Ta
Output voltage VOUT (V)
50
2.8 25 0 25 100 75 50
2.85
2.9
2.95
3.0
VIN = 3.9 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100 150
50
2.9 25 0 25 75 50
2.95
3.0
3.05
3.1
VIN = 4 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pu ls e wi d t h = 1 ms
IOUT = 50 mA
100
100 150
50
3.0 25 0 25 100 75 50
3.05
3.1
3.15
3.2
VIN = 4.1 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100 150
TAR5S15U~TAR5S50U
2014-03-01
19
Ambient temperature Ta (°C)
(TAR5S32U) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5S33U) VOUT – Ta
Output voltage VOUT (V)
50
3.2 25 0 25 75 50
3.25
3.3
3.35
3.4
VIN = 4.3 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pu ls e wi d t h = 1 ms
IOUT = 50 mA
100
100 150
Ambient temperature Ta (°C)
(TAR5S45U) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5S50U) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5S35U) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5S48U) VOUT – Ta
Output voltage VOUT (V)
50
4.4 25 0 25 100 75 50
4.45
4.5
4.55
4.6
VIN = 5.5 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100
150
50
3.4 25 0 25 100 75 50
3.45
3.5
3.55
3.6
VIN = 4.5 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100
150
50
4.9 25 0 25 100 75 50
4.95
5
5.05
5.1
VIN = 6 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100
150
50
4.7 25 0 25 100 75 50
4.75
4.8
4.85
4.9
VIN = 5.8 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100
150
50
3.1 25 0 25 100 75 50
3.15
3.2
3.25
3.3
VIN = 4.2 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pu ls e wi d t h = 1 ms
IOUT = 50 mA
100 150
TAR5S15U~TAR5S50U
2014-03-01
20
50 25 0 25 100 75 50
0
0.1
0.2
0.3
0.4
0.5
0.6
CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF
Pulse width = 1 ms
IOUT = 150 mA
100
50
10
1
Ambient temperature Ta (°C)
IB – Ta
Bias current I
B (mA)
Ambient temperature Ta (°C)
(TAR5S23U~TAR5S50U) VIN - VOUT – Ta
Dropout voltage VIN - VOUT (V)
Output current IOUT (mA)
(TAR5S23U~TAR5S50U) VIN - VOUT – IOUT
Dropout voltage VIN - VOUT (V)
Output current IOUT (mA)
IB – IOUT
Bias current IB (mA)
Time t (ms)
Turn On Waveform
Output voltage
VOUT (V)
Time t (ms)
Turn Off Waveform
Output voltage
VOUT (V)
50 25 0 25 100 75 50
0
0.5
1
1.5
2
2.5
3
VIN = VOUT + 1 V, CIN = 1 μF,
COUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
IOUT = 150 mA
100
50
10
1
0 50 100 150
Ta = 25°C
85
40
0
0.1
0.2
0.3
0.4
0.5
CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01μF
Pulse width = 1 ms
VIN = VOUT + 1 V,
VCT (ON) = 1.5 0 V, CIN = 1 μF,
COUT = 10 μF, C NOISE = 0.01 μF
0 1
Control voltage waveform
Output voltage waveform
2
3
0
1
0
1
2
3
2
3
0
1
0
1
2
3
VIN = VOUT + 1 V,
VCT (ON) = 0 1.5 V, CIN = 1 μF,
COUT = 10 μF, C NOISE = 0.01 μF
0 1
Ta = 25°C
85
40
Control voltage waveform
Output voltage waveform
Control voltage
V
CT (ON) (V)
Control voltage
VCT (ON) (V)
VIN = VOUT + 1 V,
CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF
Pulse width = 1 ms
0
0.5
1.0
1.5
2.0
2.5
0 50 100 150
Ta = 25°C
85
40
TAR5S15U~TAR5S50U
2014-03-01
21
Frequency f (Hz)
VN – f
Output noise voltage VN (μV/
Hz
)
VIN = VOUT + 1 V, IOUT = 10 mA, CIN = 1 μF,
COUT = 10 μF, C NOISE = 0.01 μF,
10 Hz < f < 100 kHz, Ta = 25°C
10
1
0.1
0.01
0.001
10 100 1 k 10 k 100 k
Frequency f (Hz)
Ripple Rejection – f
Ripple rejection (dB)
0
10
20
60
70
80
30
40
50
10 100 1 k 10 k 100 k 1000 k
VIN = VOUT + 1 V, IOUT = 10 mA, CIN = 1 μF,
COUT = 10 μF, C NOISE = 0.01 μF,
VRipple = 500 mVp-p, Ta = 25°C
TAR5S15U (1.5 V)
TAR5S30U (3.0 V)
TAR5S50U (5.0 V)
TAR5S45U (4.5 V)
TAR5S35U (3.5 V)
TAR5S25U (2.5 V)
Ambient temperature Ta (°C)
PD – Ta
Power dissipation PD (mW)
40
100
0 40 120 80
200
300
400
500
Circuit board material: glass epoxy, Circuit
board dimention:
30 mm × 30 mm,
pad area: 35 mm2 (t = 0.8 mm)
TAR5S15U~TAR5S50U
2014-03-01
22
Package Dimensions
Weight: 0.007 g (typ.)
SON5-P-0202-0.65
2.0±0.1
TAR5S15U~TAR5S50U
2014-03-01
23
RESTRICTIONS ON PRODUCT USE
Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information
in this document, and related hardware, software and systems (collectively "Product") without notice.
This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with
TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are
responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and
systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily
injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the
Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of
all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes
for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the
instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their
own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such
design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts,
diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating
parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR
APPLICATIONS.
PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE
EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH
MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT
("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without
limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for
automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions,
safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE
PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your
TOSHIBA sales representative.
Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
applicable laws or regulations.
The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any
infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to
any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
Do not use or otherwise make available Product or related software or technology for any military purposes, including without
limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile
technology products (mass destruction weapons). Product and related software and technology may be controlled under the
applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the
U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited
except in compliance with all applicable export laws and regulations.
Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances,
including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES
OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.