19-2164; Rev 7; 7/08 High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 The MAX4230-MAX4234 single/dual/quad, high-outputdrive CMOS op amps feature 200mA of peak output current, rail-to-rail input, and output capability from a single 2.7V to 5.5V supply. These amplifiers exhibit a high slew rate of 10V/s and a gain-bandwidth product (GBWP) of 10MHz. The MAX4230-MAX4234 can drive typical headset levels (32), as well as bias an RF power amplifier (PA) in wireless handset applications. The MAX4230 comes in a tiny 5-pin SC70 package and the MAX4231, single with shutdown, is offered in the 6-pin SC70 package and a 1.5mm x 1.0mm x 0.5mm ultra-thin DFN package. The dual op-amp MAX4233 is offered in the space-saving 10-bump chip-scale package (UCSPTM), providing the smallest footprint area for a dual op amp with shutdown. These op amps are designed to be part of the PA control circuitry, biasing RF PAs in wireless headsets. The MAX4231/MAX4233 offer a SHDN feature that drives the output low. This ensures that the RF PA is fully disabled when needed, preventing unconverted signals to the RF antenna. The MAX4230 family offers low offsets, wide bandwidth, and high-output drive in a tiny 2.1mm x 2.0mm spacesaving SC70 package. These parts are offered over the automotive temperature range (-40C to +125C). Applications RF PA Biasing Controls in Handset Applications Portable/Battery-Powered Audio Applications Portable Headphone Speaker Drivers (32) Audio Hands-Free Car Phones (Kits) Laptop/Notebook Computers/TFT Panels Features 30mA Output Drive Capability Rail-to-Rail Input and Output 1.1mA Supply Current per Amplifier 2.7V to 5.5V Single-Supply Operation 10MHz Gain-Bandwidth Product High Slew Rate: 10V/s 100dB Voltage Gain (RL = 100k) 85dB Power-Supply Rejection Ratio No Phase Reversal for Overdriven Inputs Unity-Gain Stable for Capacitive Loads to 780pF Low-Power Shutdown Mode Reduces Supply Current to < 1A Available in 5-Pin SC70 Package (MAX4230) and 6-Pin Thin DFN Package (MAX4231) Available in 10-Bump UCSP Package (MAX4233) Ordering Information PART TEMP RANGE TOP MARK PINPACKAGE MAX4230AXK-T -40C to +125C 5 SC70 ACS MAX4230AUK-T -40C to +125C 5 SOT23 ABZZ MAX4231AXT-T -40C to +125C 6 SC70 ABA MAX4231AUT-T -40C to +125C 6 SOT23 AAUV MAX4231AYT+TG65 -40C to +125C 6 DFN +AI Ordering Information continued at end of data sheet. +Denotes a lead-free/RoHS-compliant package. T = Tape and reel. Sound Ports/Cards Typical Operating Circuit Set-Top Boxes Digital-to-Analog Converter Buffers ANTENNA Transformer/Line Drivers 2.7V TO 5.5V Motor Drivers PA IOUT = 30mA DAC RISO MAX4231 Selector Guide appears at end of data sheet. Pin Configurations appear at end of data sheet. SHDN CLOAD C UCSP is a trademark of Maxim Integrated Products, Inc. R RF ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com. 1 MAX4230-MAX4234 General Description MAX4230-MAX4234 High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 ABSOLUTE MAXIMUM RATINGS Supply Voltage (VDD to VSS) ....................................................6V All Other Pins ....................................(VSS - 0.3V) + (VDD + 0.3V) Output Short-Circuit Duration to VDD or VSS (Note 1) ................10s Continuous Power Dissipation (TA = +70C) 5-Pin SC70 (derate 3.1mW/C above +70C) ..............247mW 5-Pin SOT23 (derate 7.1mW/C above +70C)............571mW 6-Pin SC70 (derate 3.1mW/C above +70C) ..............245mW 6-Pin SOT23 (derate 8.7mW/C above +70C) ...........696mW 6-Pin DFN (derate 2.1mW/C above +70C) .........170.2mW 8-Pin SOT23 (derate 8.9mW/C above +70C) ...........714mW 8-Pin MAX(R) (derate 4.5mW/C above +70C) ..........362mW 10-Pin MAX (derate 5.6mW/C above +70C) ..........444mW 10-Bump UCSP (derate 6.1mW/C above +70C) .....484mW 10-Pin TDFN (derate 24.4mWC above +70C) ........1951mW 14-Pin SO (derate 8.3mW/C above +70C) ...............667mW Operating Temperature Range .........................-40C to +125C Junction Temperature ......................................................+150C Storage Temperature Range .............................-65C to +150C Lead Temperature (soldering, 10s) .................................+300C Note 1: Package power dissipation should also be observed. MAX is a registered trademark of Maxim Integrated Products, Inc. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC ELECTRICAL CHARACTERISTICS (VDD = 2.7V, VSS = 0V, VCM = VDD/2, VOUT = (VDD/2), RL = connected to (VDD/2), V SHDN = VDD, TA = +25C, unless otherwise noted.) (Note 2) PARAMETER SYMBOL Operating Supply Voltage Range VDD Input Offset Voltage VOS Input Bias Current CONDITIONS Inferred from PSRR test TYP 2.7 0.85 MAX UNITS 5.5 V 6 mV IB VCM = VSS to VDD 50 Input Offset Current IOS VCM = VSS to VDD 50 pA Input Resistance RIN 1000 M Common-Mode Input Voltage Range VCM Inferred from CMRR test VSS VSS < VCM < VDD 52 73 CMRR Power-Supply Rejection Ratio PSRR VDD = 2.7V to 5.5V Shutdown Output Impedance ROUT V SHDN = 0V (Note 3) 10 VOUT(SHDN) V SHDN = 0V, RL = 200 (Note 3) RL = 100k VSS + 0.20V < VOUT AVOL RL = 2k < VDD - 0.20V RL = 200 68 Large-Signal Voltage Gain RL = 32 Output Voltage Swing VOUT RL = 200 RL = 2k Output Source/Sink Current IOUT dB 85 dB 74 dB 98 80 400 500 VOL - VSS 360 500 VDD - VOH 80 120 VOL - VSS 70 120 VDD - VOH 8 14 7 14 VDD = 5V, VIN = 100mV 200 VDD = 2.7V Output Voltage VDD = 5V mV 100 85 70 IL = 30mA 120 VDD - VOH VOL - VSS V 70 VDD = 2.7V, VIN = 100mV IL = 10mA pA VDD Common-Mode Rejection Ratio Output Voltage in Shutdown 2 MIN mV mA VDD - VOH 128 200 VOL - VSS 112 175 VDD - VOH 240 320 VOL - VSS 224 300 _______________________________________________________________________________________ mV High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 (VDD = 2.7V, VSS = 0V, VCM = VDD/2, VOUT = (VDD/2), RL = connected to (VDD/2), V SHDN = VDD, TA = +25C, unless otherwise noted.) (Note 2) PARAMETER SYMBOL Quiescent Supply Current (per Amplifier) IDD Shutdown Supply Current (per Amplifier) (Note 3) IDD(SHDN) SHDN Logic Threshold (Note 3) SHDN Input Bias Current TYP MAX VDD = 5.5V, VCM = VDD / 2 CONDITIONS 1.2 2.3 VDD = 2.7V, VCM = VDD / 2 1.1 2.0 VDD = 5.5V 0.5 1 VDD = 2.7V 0.1 1 V SHDN = 0V, RL = MIN Shutdown mode VSS + 0.3 Normal mode VDD - 0.3 VSS < V S HDN < VDD (Note 3) UNITS mA A V 50 pA DC ELECTRICAL CHARACTERISTICS (VDD = 2.7V, VSS = 0V, VCM = VDD/2, VOUT = (VDD/2), RL = connected to (VDD/2), V SHDN = VDD, TA = -40 to +125C, unless otherwise noted.) (Note 2) PARAMETER Operating Supply Voltage Range Input Offset Voltage SYMBOL VDD CONDITIONS MIN Inferred from PSRR test TYP 2.7 Common-Mode Input Voltage Range VOS /T VCM UNITS 5.5 V 8 VOS Offset-Voltage Tempco MAX 3 Inferred from CMRR test VSS mV V/C VDD V Common-Mode Rejection Ratio CMRR VSS < VCM < VDD 46 dB Power-Supply Rejection Ratio PSRR VDD = 2.7V to 5.5V 70 dB Output Voltage in Shutdown Large-Signal Voltage Gain VOUT(SHDN) AVOL V SHDN < 0V, RL = 200 (Note 3) VSS + 0.2V < VDD - 0.2V RL = 32, TA = +85C Output Voltage Swing VOUT RL = 200 RL = 2k Output Voltage IL = 10mA VDD = 2.7V IL = 30mA, TA = -40C to +85C VDD = 5V 150 RL = 2k 76 RL = 200 67 mV dB VDD - VOH 650 VOL - VSS 650 VDD - VOH 150 VOL - VSS 150 VDD - VOH 20 VOL - VSS 20 VDD - VOH 250 VOL - VSS 230 VDD - VOH 400 VOL - VSS 370 mV mV _______________________________________________________________________________________ 3 MAX4230-MAX4234 DC ELECTRICAL CHARACTERISTICS (continued) MAX4230-MAX4234 High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 DC ELECTRICAL CHARACTERISTICS (continued) (VDD = 2.7V, VSS = 0V, VCM = VDD/2, VOUT = (VDD/2), RL = connected to (VDD/2), V SHDN = VDD, TA = -40 to +125C, unless otherwise noted.) (Note 2) PARAMETER SYMBOL Quiescent Supply Current (per Amplifier) IDD Shutdown Supply Current (per Amplifier) (Note 3) IDD(SHDN) CONDITIONS MIN TYP MAX VDD = 5.5V, VCM = VDD/2 2.8 VDD = 2.7V, VCM = VDD/2 2.5 V SHDN < 0V, RL = VDD = 5.5V 2.0 VDD = 2.7V 2.0 UNITS mA A AC ELECTRICAL CHARACTERISTICS (VDD = 2.7V, VSS = 0V, VCM = VDD/2, VOUT = (VDD/2), RL = connected to (VDD/2), V SHDN = VDD, TA = +25C, unless otherwise noted.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Gain-Bandwidth Product GBWP VCM = VDD/2 10 MHz Full-Power Bandwidth FPBW VOUT = 2VP-P, VDD = 5V 0.8 MHz SR 10 V/s Phase Margin PM 70 Degrees Gain Margin GM 15 dB 0.0005 % 8 pF Slew Rate Total Harmonic Distortion Plus Noise THD+N Input Capacitance CIN Voltage-Noise Density en f = 10kHz, VOUT = 2VP-P, AVCL = 1V/V f = 1kHz 15 f = 10kHz 12 Channel-to-Channel Isolation f = 1kHz, RL = 100k 125 dB Capacitive-Load Stability AVCL = 1V/V, no sustained oscillations 780 pF Shutdown Time Enable Time from Shutdown Power-Up Time tSHDN (Note 3) 1 s tENABLE (Note 3) 1 s 5 s tON Note 2: All units 100% tested at +25C. All temperature limits are guaranteed by design. Note 3: SHDN logic parameters are for the MAX4231/MAX4233 only. 4 nV/Hz _______________________________________________________________________________________ High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 GAIN AND PHASE vs. FREQUENCY (CL = 250pF) MAX4230 toc01 60 90 60 90 50 60 50 60 40 30 40 30 30 0 20 -30 10 -60 0 -90 -10 AV = 1000V/V -20 -30 0.01k 0.1k 1k 10k 100k 1M GAIN (dB) 70 PHASE (DEGREES) GAIN (dB) MAX4230 toc02 120 70 30 0 20 -30 10 -60 0 -90 -120 -10 -150 -20 1k POWER-SUPPLY REJECTION RATIO vs. FREQUENCY 10k 100k 1M OUTPUT IMPEDANCE vs. FREQUENCY -10 OUTPUT IMPEDANCE () -20 -30 -40 -50 -60 -70 -80 MAX4230 toc04 1000 MAX4230 toc03 0 100 10 1 0.1 AV = 1V/V AV = 1V/V -90 -100 0.01k 0.01 0.1k 1k 10k 100k 1M 1k 10M 10k 100k 1M 10M FREQUENCY (Hz) FREQUENCY (Hz) SUPPLY CURRENT vs. TEMPERATURE SUPPLY CURRENT vs. TEMPERATURE (SHDN = LOW) 110 MAX4230 toc05 2.0 1.8 100 SUPPLY CURRENT (nA) 1.6 1.4 1.2 1.0 0.8 0.6 0.4 MAX4230 toc06 PSRR (dB) -150 -180 10M 100M FREQUENCY (Hz) FREQUENCY (Hz) SUPPLY CURRENT (mA) -120 AV = 1000V/V CL = 250pF -30 0.01k 0.1k -180 10M 100M 120 PHASE (DEGREES) GAIN AND PHASE vs. FREQUENCY 90 80 70 60 SHDN = VSS 0.2 50 0 -40 -20 0 20 40 60 80 TEMPERATURE (C) 100 120 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (C) _______________________________________________________________________________________ 5 MAX4230-MAX4234 __________________________________________Typical Operating Characteristics (VDD = 2.7V, VSS = 0V, VCM = VDD/2, VOUT = VDD/2, RL = , connected to VDD/2, V SHDN = VDD, TA = +25C, unless otherwise noted.) ____________________________Typical Operating Characteristics (continued) (VDD = 2.7V, VSS = 0V, VCM = VDD/2, VOUT = VDD/2, RL = , connected to VDD/2, V SHDN = VDD, TA = +25C, unless otherwise noted.) 1.8 1.6 MAX4230 toc08 2 MAX4230 toc07 2.0 VDD = 2.7V 1.0 80 VDD - VOUT (mV) 1.2 VDD = 5.0V 0 0.8 0.6 VDD = 5.0V RL = 200 100 1 1.4 VOS (mV) SUPPLY CURRENT (mA) OUTPUT SWING HIGH vs. TEMPERATURE INPUT OFFSET VOLTAGE vs. TEMPERATURE MAX4230/34 toc09 SUPPLY CURRENT PER AMPLIFIER vs. SUPPLY VOLTAGE VDD = 2.7V RL = 200 60 40 -1 0.4 20 0.2 0 -2 3.0 3.5 4.0 4.5 5.0 20 40 60 80 100 120 -40 -20 20 40 60 100 120 80 OUTPUT SWING LOW vs. TEMPERATURE INPUT OFFSET VOLTAGE vs. COMMON-MODE VOLTAGE SUPPLY CURRENT PER AMPLIFIER vs. COMMON-MODE VOLTAGE 80 60 VDD = 2.7V RL = 200 40 1.2 0.5 0 -0.5 -1.0 1.0 -2.0 0 0 20 40 60 80 0.6 VDD = 2.7V 0.2 0 100 120 0.8 0.4 -1.5 20 MAX4230/3 toc12 1.0 SUPPLY CURRENT (mA) MAX4230/3 toc10 VDD = 5.0V RL = 200 -40 -20 0 TEMPERATURE (C) 0.5 1.5 1.0 2.0 2.5 0 0.5 1.5 1.0 2.0 2.5 COMMON-MODE VOLTAGE (V) COMMON-MODE VOLTAGE (V) SUPPLY CURRENT PER AMPLIFIER vs. COMMON-MODE VOLTAGE TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY TOTAL HARMONIC DISTORTION PLUS NOISE vs. PEAK-TO-PEAK OUTPUT VOLTAGE 0.45 MAX4230/34 toc13 1.4 1.2 VOUT = 2VP-P 500kHz LOWPASS FILTER 0.40 10 0.35 f = 10kHz VDD = 5V 1 0.30 0.8 RL = 25 THD+N (%) THD+N (%) 1.0 0.25 0.20 RL = 2k RL = 100k MAX4230/34 toc15 TEMPERATURE (C) MAX4230/34 toc14 VOUT - VSS (mV) 0 TEMPERATURE (C) 100 RL = 250 0.1 0.15 0.6 VDD = 5.0V 0.4 RL = 32 0.10 0.001 0.05 RL = 10k 0 0.2 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 COMMON-MODE VOLTAGE (V) 6 -20 SUPPLY VOLTAGE (V) 140 120 0 -40 5.5 MAX4230/3 toc11 2.5 INPUT OFFSET VOLTAGE (mV) 2.0 SUPPLY CURRENT (mA) MAX4230-MAX4234 High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 10 100 1k FREQUENCY (Hz) 10k 100k 0.0001 4.0 4.2 4.4 4.6 4.8 PEAK-TO-PEAK OUTPUT VOLTAGE (V) _______________________________________________________________________________________ 5.0 High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 SMALL-SIGNAL TRANSIENT RESPONSE (NONINVERTING) LARGE-SIGNAL TRANSIENT RESPONSE (NONINVERTING) SMALL-SIGNAL TRANSIENT RESPONSE (INVERTING) MAX4230/34 toc18 MAX4230/34 toc17 MAX4230/34 toc16 IN IN IN 50mV/div 50mV/div 1V/div OUT OUT OUT OUTPUT CURRENT (mA) 70 1V/div OUT 60 50 40 30 -50 -70 -80 50 OUTPUT VOLTAGE (V) 4.5 5.0 0.6 0.8 1.0 1.2 INPUT VOLTAGE NOISE vs. FREQUENCY VDIFF = 100mV MAX4230/34 toc23 OUTPUT CURRENT vs. OUTPUT VOLTAGE (SINKING, VDD = 5.0V) -100 -150 -250 4.0 0.4 OUTPUT VOLTAGE (V) -200 0 0.2 0 0.5 1.0 1.5 2.0 OUTPUT VOLTAGE (V) 2.5 3.0 1.4 1.6 200 100 INPUT VOLTAGE NOISE (nV/Hz) 100 0 OUTPUT VOLTAGE (V) -50 OUTPUT CURRENT (mA) 150 3.5 -40 10 0 MAX4230/34 toc22 200 3.0 -30 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 VDIFF = 100mV 2.5 -20 -60 OUTPUT CURRENT vs. OUTPUT VOLTAGE (SOURCING, VDD = 5.0V) 2.0 VDIFF = 100mV -10 20 0 400ns/div 0 OUTPUT CURRENT (mA) IN VDIFF = 100mV MAX4230/34 toc20 80 250 OUTPUT CURRENT vs. OUTPUT VOLTAGE (SINKING, VDD = 2.7V) OUTPUT CURRENT vs. OUTPUT VOLTAGE (SOURCING, VDD = 2.7V) MAX4230/34 toc19 MAX4230/34 toc24 LARGE-SIGNAL TRANSIENT RESPONSE (INVERTING) OUTPUT CURRENT (mA) 400ns/div 400ns/div MAX4230/34 toc21 400ns/div 10 100 1k 10k 100k FREQUENCY (Hz) _______________________________________________________________________________________ 7 MAX4230-MAX4234 ____________________________Typical Operating Characteristics (continued) (VDD = 2.7V, VSS = 0V, VCM = VDD/2, VOUT = VDD/2, RL = , connected to VDD/2, V SHDN = VDD, TA = +25C, unless otherwise noted.) High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 MAX4230-MAX4234 Pin Description PIN MAX4230 SOT23/ SC70 MAX4231 SOT23/ SC70/DFN MAX4232 SOT23/ MAX MAX4233 MAX/ TDFN MAX4233 UCSP MAX4234T SSOP/ SO NAME 1 1 -- -- -- -- IN+ Noninverting Input 2 2 4 4 B4 11 VSS Negative Supply Input. Connect to ground for single-supply operation. 3 3 -- -- -- -- IN- Inverting Input 4 4 -- -- -- -- OUT Amplifier Output 5 6 8 10 B1 4 VDD Positive Supply Input -- 5 -- 5, 6 C4, A4 -- SHDN, SHDN1, SHDN2 -- -- 3 3 C3 3 IN1+ Noninverting Input to Amplifier 1 -- -- 2 2 C2 2 IN1- Inverting Input to Amplifier 1 -- -- 1 1 C1 1 OUT1 Amplifier 1 Output -- -- 5 7 A3 5 IN2+ Noninverting Input to Amplifier 2 -- -- 6 8 A2 6 IN2- Inverting Input to Amplifier 2 -- -- 7 9 A1 7 OUT2 -- -- -- -- -- 10, 12 -- -- -- -- -- 9, 13 IN3-, IN4- 8, 14 OUT3, OUT4 -- -- -- -- -- Detailed Description Rail-to-Rail Input Stage The MAX4230-MAX4234 CMOS operational amplifiers have parallel-connected n- and p-channel differential input stages that combine to accept a common-mode range extending to both supply rails. The n-channel stage is active for common-mode input voltages typically greater than (V SS + 1.2V), and the p-channel stage is active for common-mode input voltages typically less than (VDD - 1.2V). Applications Information Package Power Dissipation Warning: Due to the high output current drive, this op amp can exceed the absolute maximum power-dissipation rating. As a general rule, as long as the peak current is less than or equal to 40mA, the maximum package 8 FUNCTION Shutdown Control. Tie to high for normal operation. Amplifier 2 Output IN3+, IN4+ Noninverting Input to Amplifiers 3 and 4 Inverting Input to Amplifiers 3 and 4 Amplifiers 3 and 4 Outputs power dissipation is not exceeded for any of the package types offered. There are some exceptions to this rule, however. The absolute maximum power-dissipation rating of each package should always be verified using the following equations. The equation below gives an approximation of the package power dissipation: PIC(DISS) VRMS IRMS COS where: VRMS = RMS voltage from VDD to VOUT when sourcing current and RMS voltage from VOUT to VSS when sinking current. IRMS = RMS current flowing out of or into the op amp and the load. = phase difference between the voltage and the current. For resistive loads, COS = 1. _______________________________________________________________________________________ High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 MAX4230-MAX4234 RF 3.6V CIN RIN LEFT AUDIO INPUT R COUT HEADPHONE JACK TO 32 STEREO HEADSET C VIN = 2VP-P VBIAS MAX4230 MAX4230 MAX4231 R 32 CIN RIN RIGHT AUDIO INPUT COUT RF Figure 1. MAX4230/MAX4231 Used in Single-Supply Operation Circuit Example For example, the circuit in Figure 1 has a package power dissipation of 196mW: ( ) RMS VDD - VDC + Figure 2. Circuit Example: Adding a Coupling Capacitor Greatly Reduces Power Dissipation of its Package VRMS VPEAK = 3.6V - 1.8V + 2 1.0V = 2.507VRMS 2 I 1.8V 1.0V / 32 IRMS IDC + PEAK = + 32 2 2 = 78.4mARMS where: VDC = the DC component of the output voltage. IDC = the DC component of the output current. VPEAK = the highest positive excursion of the AC component of the output voltage. IPEAK = the highest positive excursion of the AC component of the output current. Therefore: PIC(DISS) = VRMS IRMS COS = 196mW Adding a coupling capacitor improves the package power dissipation because there is no DC current to the load, as shown in Figure 2: = VPEAK 2 1.0V 2 = 0.707VRMS I IRMS IDC + PEAK 2 = 22.1mARMS = 0A + 1.0V / 32 2 Therefore: PIC(DISS) = VRMS IRMS COS = 15.6mW If the configuration in Figure 1 were used with all four of the MAX4234 amplifiers, the absolute maximum powerdissipation rating of this package would be exceeded (see the Absolute Maximum Ratings section). 60mW Single-Supply Stereo Headphone Driver Two MAX4230/MAX4231s can be used as a single-supply, stereo headphone driver. The circuit shown in Figure 2 can deliver 60mW per channel with 1% distortion from a single 5V supply. The input capacitor (CIN), in conjunction with RIN, forms a highpass filter that removes the DC bias from the incoming signal. The -3dB point of the highpass filter is given by: f -3dB = 1 2RINCIN _______________________________________________________________________________________ 9 MAX4230-MAX4234 High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 C1 0.1F R1 16k R2 82k 0.5VP-P 1/2 3V 3V 2 R5 51k C2 0.1F VCC = 3.0V RL = 100k 3 IN 1V/div MAX4232 1 8 4 32 fs = 100Hz R4 10k R3 10k OUT 1V/div 6 R6 51k 7 5 1/2 MAX4232 Figure 3. Dual MAX4230/MAX4231 Bridge Amplifier for 200mW at 3V Choose gain-setting resistors RIN and RF according to the amount of desired gain, keeping in mind the maximum output amplitude. The output coupling capacitor, COUT, blocks the DC component of the amplifier output, preventing DC current flowing to the load. The output capacitor and the load impedance form a highpass filer with the -3dB point determined by: f -3dB = 1 2RLCOUT For a 32 load, a 100F aluminum electrolytic capacitor gives a low-frequency pole at 50Hz. 5s/div Figure 4. Rail-to-Rail Input/Output Range Rail-to-Rail Output Stage The minimum output is within millivolts of ground for single-supply operation, where the load is referenced to ground (VSS). Figure 4 shows the input voltage range and the output voltage swing of a MAX4230 connected as a voltage follower. The maximum output voltage swing is load dependent; however, it is guaranteed to be within 500mV of the positive rail (VDD = 2.7V) even with maximum load (32 to ground). Observe the Absolute Maximum Ratings for power dissipation and output short-circuit duration (10s, max) because the output current can exceed 200mA (see the Typical Operating Characteristics.) Bridge Amplifier Input Capacitance The circuit shown in Figure 3 uses a dual MAX4230 to implement a 3V, 200mW amplifier suitable for use in size-constrained applications. This configuration eliminates the need for the large coupling capacitor required by the single op-amp speaker driver when single-supply operation is necessary. Voltage gain is set to 10V/V; however, it can be changed by adjusting the 82k resistor value. One consequence of the parallel-connected differential input stages for rail-to-rail operation is a relatively large input capacitance CIN (5pF typ). This introduces a pole at frequency (2RCIN)-1, where R is the parallel combination of the gain-setting resistors for the inverting or noninverting amplifier configuration (Figure 5). If the pole frequency is less than or comparable to the unity-gain bandwidth (10MHz), the phase margin is reduced, and the amplifier exhibits degraded AC performance through either ringing in the step response or sustained oscillations. The pole frequency is 10MHz when R = 2k. To maximize stability, R << 2k is recommended. Rail-to-Rail Input Stage The MAX4230-MAX4234 CMOS op amps have parallelconnected n- and p-channel differential input stages that combine to accept a common-mode range extending to both supply rails. The n-channel stage is active for common-mode input voltages typically greater than (V SS + 1.2V), and the p-channel stage is active for common-mode input voltages typically less than (VDD 1.2V). 10 ______________________________________________________________________________________ High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 R VOUT MAX4230 R = R || Rf RfCf = RCIN CAPACITIVE LOAD (pF) 2000 Rf VIN MAX4230-MAX4234 2500 Cf INVERTING UNSTABLE 1500 STABLE 1000 500 VDD = 5.0V RL TO VDD/2 0 1 10 100 1k 10k 100k RESISTIVE LOAD () NONINVERTING VIN Figure 6. Capacitive-Load Stability VOUT MAX4230 Rf Cf R 20mV/div R = R || Rf RfCf = RCIN 20mV/div VDD = 3.0V, CL = 1500pF RL = 100k, RISO = 0 Figure 5. Inverting and Noninverting Amplifiers with Feedback Compensation 1s/div Figure 7. Small-Signal Transient Response with Excessive Capacitive Load To improve step response when R > 2k, connect small capacitor Cf between the inverting input and output. Choose Cf as follows: Cf = 8(R / Rf) [pf] where Rf is the feedback resistor and R is the gain-setting resistor (Figure 5). 20mV/div Driving Capacitive Loads The MAX4230-MAX4234 have a high tolerance for capacitive loads. They are stable with capacitive loads up to 780pF. Figure 6 is a graph of the stable operating region for various capacitive loads vs. resistive loads. Figures 7 and 8 show the transient response with excessive capacitive loads (1500pF), with and without the addition of an isolation resistor in series with the output. Figure 9 shows a typical noninverting capacitive-load-driving circuit in the unity-gain configuration. 20mV/div VDD = 3.0V, CL = 1500pF RL = 100k, RISO = 39 1s/div Figure 8. Small-Signal Transient Response with Excessive Capacitive Load with Isolation Resistor ______________________________________________________________________________________ 11 MAX4230-MAX4234 High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 SHDN 2V/div IDD 1mA/div RISO CL OUT 2V/div 100s/div Figure 9. Capacitive-Load-Driving Circuit 1V/div Figure 11. Shutdown Enable/Disable Supply Current VDD 2V/div IDD 1mA/div 1V/div 4s/div Figure 10. Shutdown Output Voltage Enable/Disable 40s/div Figure 12. Power-Up/Down Supply Current Selector Guide The resistor improves the circuit's phase margin by isolating the load capacitor from the op amp's output. Power-Up and Shutdown Modes The MAX4231/MAX4233 have a shutdown option. When the shutdown pin (SHDN) is pulled low, supply current drops to 0.5A per amplifier (VDD = 2.7V), the amplifiers are disabled, and their outputs are driven to VSS. Since the outputs are actively driven to V SS in shutdown, any pullup resistor on the output causes a current drain from the supply. Pulling SHDN high enables the amplifier. In the dual MAX4233, the two amplifiers shut down independently. Figure 10 shows the MAX4231's output voltage to a shutdown pulse. The MAX4231-MAX4234 typically settle within 5s after power-up. Figures 11 and 12 show IDD to a shutdown plus and voltage power-up cycle. 12 PART AMPS PER PACKAGE SHUTDOWN MODE MAX4230 Single -- MAX4231 Single Yes MAX4232 Dual -- MAX4233 Dual Yes MAX4234 Quad -- When exiting shutdown, there is a 6s delay before the amplifier's output becomes active (Figure 10). ______________________________________________________________________________________ High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 TOP VIEW IN+ 1 VSS 2 5 VDD IN+ 1 MAX4231 6 VDD 5 SHDN VDD SHDN OUT 4 5 6 OUT1 1 IN1- 2 MAX4230 VSS 2 4 OUT IN- 3 4 OUT + SOT23/SC70 IN1- 2 3 10 VDD MAX4233 9 OUT2 8 IN2- A 3 IN+ VSS IN- OUT2 IN2+ SHDN2 4 IN2- 3 IN2- 6 IN2- VSS 4 5 IN2+ SOT23/MAX OUT2 2 IN1+ 3 DFN 10 9 8 7 6 OUT1 1 14 OUT4 IN1- 2 13 IN4- IN2+ SHDN2 12 IN4+ IN1+ 3 VSS 4 7 IN2+ B SHDN1 5 6 MAX 2 SC70/SOT23 1 IN1+ 1 VDD IN- 3 7 OUT2 MAX4232 MAX4231 OUT1 1 8 VDD VDD VSS MAX4233 MAX4233 SHDN2 C OUT1 IN1- IN1+ 1 2 3 4 5 OUT1 IN1- IN1+ VSS SHDN1 SHDN1 UCSP MAX4234 VDD 4 11 VSS IN2+ 5 10 IN3+ IN2- 6 9 IN3- OUT2 7 8 OUT3 TSSOP/SO TDFN TDFN EXPOSED PAD CONNECTED TO VSS Power Supplies and Layout The MAX4230-MAX4234 can operate from a single 2.7V to 5.5V supply, or from dual 1.35V to 2.5V supplies. For single-supply operation, bypass the power supply with a 0.1F ceramic capacitor. For dual-supply operation, bypass each supply to ground. Good layout improves performance by decreasing the amount of stray capacitance at the op amps' inputs and outputs. Decrease stray capacitance by placing external components close to the op amps' pins, minimizing trace and lead lengths. Ordering Information (continued) PINPACKAGE TOP MARK MAX4232AKA+T -40C to +125C 8 SOT23-8 AAKW MAX4232AUA+T -40C to +125C 8 MAX-8 -- MAX4233AUB+T -40C to +125C 10 MAX-10 -- MAX4233ABC+T -40C to +125C 10 UCSP-10 ABE MAX4233ATB+T -40C to +125C 10 TDFN-EP* +AQH MAX4234AUD -40C to +125C 14 TSSOP PART TEMP RANGE MAX4234ASD -40C to +125C 14 SO +Denotes a lead-free/RoHS-compliant package. T = Tape and reel. *EP = Exposed pad. -- -- Chip Information MAX4230 TRANSISTOR COUNT: 230 MAX4231 TRANSISTOR COUNT: 230 MAX4232 TRANSISTOR COUNT: 462 MAX4233 TRANSISTOR COUNT: 462 MAX4234 TRANSISTOR COUNT: 924 ______________________________________________________________________________________ 13 MAX4230-MAX4234 Pin Configurations Package Information (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.) SC70, 5L.EPS MAX4230-MAX4234 High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 PACKAGE OUTLINE, 5L SC70 21-0076 14 ______________________________________________________________________________________ E 1 1 High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 SC70, 6L.EPS ______________________________________________________________________________________ 15 MAX4230-MAX4234 Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) SOT-23 5L .EPS MAX4230-MAX4234 High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 16 ______________________________________________________________________________________ High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 6LSOT.EPS PACKAGE OUTLINE, SOT 6L BODY 21-0058 I 1 2 ______________________________________________________________________________________ 17 MAX4230-MAX4234 Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) MAX4230-MAX4234 High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) PACKAGE OUTLINE, SOT 6L BODY 21-0058 18 ______________________________________________________________________________________ I 2 2 High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 8LUMAXD.EPS ______________________________________________________________________________________ 19 MAX4230-MAX4234 Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) SOT23, 8L.EPS MAX4230-MAX4234 High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 MARKING 0 0 PACKAGE OUTLINE, SOT-23, 8L BODY 21-0078 20 ______________________________________________________________________________________ H 1 1 High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 12L, UCSP 4x3.EPS PACKAGE OUTLINE, 4x3 UCSP 21-0104 F 1 1 ______________________________________________________________________________________ 21 MAX4230-MAX4234 Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) 6, 8, &10L, DFN THIN.EPS MAX4230-MAX4234 High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 22 ______________________________________________________________________________________ High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 COMMON DIMENSIONS PACKAGE VARIATIONS SYMBOL MIN. MAX. PKG. CODE N D2 E2 e JEDEC SPEC b [(N/2)-1] x e A 0.70 0.80 T633-2 6 1.500.10 2.300.10 0.95 BSC MO229 / WEEA 0.400.05 1.90 REF D 2.90 3.10 T833-2 8 1.500.10 2.300.10 0.65 BSC MO229 / WEEC 0.300.05 1.95 REF E 2.90 3.10 T833-3 8 1.500.10 2.300.10 0.65 BSC MO229 / WEEC 0.300.05 1.95 REF A1 0.00 0.05 T1033-1 10 1.500.10 2.300.10 0.50 BSC MO229 / WEED-3 0.250.05 2.00 REF L 0.20 0.40 T1033-2 10 1.500.10 2.300.10 0.50 BSC MO229 / WEED-3 0.250.05 2.00 REF k 0.25 MIN. T1433-1 14 1.700.10 2.300.10 0.40 BSC ---- 0.200.05 2.40 REF A2 0.20 REF. T1433-2 14 1.700.10 2.300.10 0.40 BSC ---- 0.200.05 2.40 REF ______________________________________________________________________________________ 23 MAX4230-MAX4234 Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) 6L ULTRA THINLGA.EPS MAX4230-MAX4234 High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 24 ______________________________________________________________________________________ High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 TABLE 1 TABLE 2 ______________________________________________________________________________________ 25 MAX4230-MAX4234 Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) MAX4230-MAX4234 High-Output-Drive, 10MHz, 10V/s, Rail-to-Rail I/O Op Amps with Shutdown in SC70 Revision History REVISION NUMBER REVISION DATE 7 7/08 DESCRIPTION Added 6-pin DFN package for the MAX4231 PAGES CHANGED 1, 2, 8, 13 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 26 (c) 2008 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc.