TSOP91..
Document Number 84788
Rev. 1.0, 14-Sep-05
Vishay Semiconductors
www.vishay.com
1
19026
IR Receiver Modules for Remote Control Systems
Description
The TSOP91.. - series are miniaturized receivers for
infrared remote control systems. PIN diode and
preamplifier are assembled on lead frame, the epoxy
package is designed as IR filter.
The demodulated output signal can directly be
decoded by a microprocessor. The main benefit of the
TSOP91.. is the compatibility to all kind of datafor-
mats.
Features
Photo detector and preamplifier in one
package
Built in filter for carrier frequency of IR
signal
Shielding against electrical field
disturbance
TTL and CMOS compatibility
Output active low
Low power consumption
Lead (Pb)-free component
Component in accordance to RoHS 2002/95/EC
and WEEE 2002/96/EC
Special Features
Enhanced datarate of up to 4000 bits/s
Suitable burst length 6 cycles/burst
Mechanical Data
Pinning:
1 = OUT, 2 = VS, 3 = GND
Parts Table
Block Diagram Application Circuit
Part Carrier Frequency
TSOP9130 30 kHz
TSOP9133 33 kHz
TSOP9136 36 kHz
TSOP9137 36.7 kHz
TSOP9138 38 kHz
TSOP9140 40 kHz
TSOP9156 56 kHz
30 k
2
3
1
V
S
OUT
Demo-
GND
Pass
AGCInput
PIN
Band dulator
Control Circuit
16835
IR Transmitter
with
TSALxxxx
GND
µC
+4.5V .. 5.5V
GND
TSOP91..
Circuit
VS
OUT
VO
19622
No external components are required
e3
www.vishay.com
2
Document Number 84788
Rev. 1.0, 14-Sep-05
TSOP91..
Vishay Semiconductors
Absolute Maximum Ratings
Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
Electrical and Optical Characteristics
Tamb = 25 °C, unless otherwise specified
Parameter Test condition Symbol Value Unit
Supply Voltage (Pin 2) VS- 0.3 to + 6.0 V
Supply Current (Pin 2) IS5mA
Output Voltage (Pin 1) VO- 0.3 to (Vs + 0.3) V
Output Current (Pin 1) IO10 mA
Junction Temperature Tj100 °C
Storage Temperature Range Tstg - 25 to + 85 °C
Operating Temperature Range Tamb - 25 to + 85 °C
Power Consumption (Tamb 85 °C) Ptot 50 mW
Soldering Temperature t 10 s, 1 mm from case Tsd 260 °C
Parameter Test condition Symbol Min Typ. Max Unit
Supply Current (Pin 2) VS = 5 V, Ev = 0 ISD 1.0 1.4 1.75 mA
VS = 5 V, Ev = 40 klx, sunlight ISH 1.6 mA
Supply Voltage (Pin 2) VS4.5 5.5 V
Transmission Distance Ev = 0, test signal see fig. 3,
IR diode TSAL6200,
IF = 400 mA
d30m
Output Voltage Low (Pin 1) IOL = 0.5 mA, Ee = 0.7 mW/m2,
f = fo test signal see fig. 1
VOL 250 mV
Minimum Irradiance
(30 - 40 kHz)
Pulse width tolerance:
tpi - 5/fo < tpo < tpi + 6/fo,
test signal see fig. 3
Ee min 0.4 0.6 mW/m2
Minimum Irradiance (56 kHz) Pulse width tolerance:
tpi - 5/fo < tpo < tpi + 6/fo,
test signal see fig. 3
Ee min 0.5 0.7 mW/m2
Maximum Irradiance tpi - 5/fo < tpo < tpi + 6/fo,
test signal see fig. 3
Ee max 30 W/m2
Directivity Angle of half transmission
distance
ϕ1/2 ± 45 deg
TSOP91..
Document Number 84788
Rev. 1.0, 14-Sep-05
Vishay Semiconductors
www.vishay.com
3
Typical Characteristics (Tamb = 25 °C unless otherwise specified)
Figure 1. Output Function
Figure 2. Pulse Length and Sensitivity in Dark Ambient
Figure 3. Output Function
Ee
T
tpi *) t
VO
VOH
VOLtpo2)t
14337
Optical Test Signal
(IR diode TSAL6200, IF=0.4 A, N=6 pulses, f=f0, T=10 ms)
Output Signal
td1)
1) 3/f0 < td < 9/f0
2) tpi – 4/f0 < tpo < tpi + 6/f0
*) tpi w6/fo is recommended for optimal function
tOutput Pulse Width ( ms )
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.11.010.0 100.0 1000.010000.0
EeIrradiance ( mW/m2 )
16907
po
Input Burst Duration
l= 950 nm,
optical test signal, fig.1
Output Pulse
E
e
t
V
O
V
OH
V
OL
t
600 ms 600 ms
T = 60 ms
T
on
T
off
94 8134
Optical Test Signal
Output Signal, ( see Fig.4 )
Figure 4. Output Pulse Diagram
Figure 5. Frequency Dependence of Responsivity
Figure 6. Sensitivity in Bright Ambient
T ,TOutput Pulse Width ( ms )
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.11.010.0 100.0 1000.010000.0
E
e
Irradiance ( mW/m
2
)
16909
To ff
l= 950 nm,
optical test signal, fig.3
To n
on off
0.0
0.2
0.4
0.6
0.8
1.0
1.2
0.7 0.91.11.3
f/f0 – Relative Frequency
16926
f = f0"5%
Df ( 3dB ) = f0/7
E / E – Rel. Responsivity
e min e
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
0.01 0.10 1.00 10.00 100.00
E – Ambient DC Irradiance (W/m
2
)
16911
Correlation with ambient light sources:
10W/m
2
^1.4klx (Std.illum.A,T=2855K)
10W/m
2
^8.2klx (Daylight,T=5900K)
Ambient,l = 950 nm
E – Threshold Irradiance ( mW/m )
e min
2
www.vishay.com
4
Document Number 84788
Rev. 1.0, 14-Sep-05
TSOP91..
Vishay Semiconductors
Figure 7. Sensitivity vs. Supply Voltage Disturbances
Figure 8. Max. Envelope Duty Cycle vs. Burstlength
Figure 9. Sensitivity vs. Ambient Temperature
0.0
0.5
1.0
1.5
2.0
0.11.010.0 100.0 1000.0
DV
sRMS
AC Voltage on DC Supply Voltage (mV)
16912
f = f
o
f = 10 kHz
E – Threshold Irradiance ( mW/m )
e min 2
f = 1 kHz
f = 100 Hz
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
02040 60 80 100 120
Burst Length ( number of cycles / burst )
16914
f = 38 kHz, Ee = 2 mW/m2
Max. Envelope Duty Cycle
0.0
0.1
0.2
0.3
0.4
0.5
0.6
30 15 0 15 30 45607590
T
amb
Ambient Temperature ( qC )
16918
Sensitivity in dark ambient
E – Threshold Irradiance ( mW/m )
e min
2
Figure 10. Relative Spectral Sensitivity vs. Wavelength
Figure 11. Horizontal Directivity ϕx
Figure 12. Vertical Directivity ϕy
750 850 950 1050
0
0.2
0.4
0.6
0.8
1.2
S ( ) – Relative Spectral Sensitivity
rel
l– Wavelength ( nm )
1150
94 8408
1.0
l
19258
0.4 0.2 0 0.2 0.4 0.60.6
0.9
0°
30°
10°20°
40°
50°
60°
70°
80°
1.0
0.8
0.7
drel - Relative Transmission Distance
19259
0.4 0.2 0 0.2 0.4 0.60.6
0.9
0°
30°
10°20°
40°
50°
60°
70°
80°
1.0
0.8
0.7
drel - Relative Transmission Distance
TSOP91..
Document Number 84788
Rev. 1.0, 14-Sep-05
Vishay Semiconductors
www.vishay.com
5
Suitable Data Format
The circuit of the TSOP91.. is designed in that way
that unexpected output pulses due to noise or distur-
bance signals are avoided. A bandpass filter, an inte-
grator stage and an automatic gain control are used
to suppress such disturbances.
The distinguishing mark between data signal and dis-
turbance signal are carrier frequency, burst length
and duty cycle.
The data signal should fulfill the following conditions:
• Carrier frequency should be close to center fre-
quency of the bandpass (e.g. 38 kHz).
• Burst length should be 6 cycles/burst or longer.
• After each burst which is between 6 cycles and 70
cycles a gap time of at least 10 cycles is necessary.
• For each burst which is longer than 1.8 ms a corre-
sponding gap time is necessary at some time in the
data stream. This gap time should have at least same
length as the burst.
• Up to 2200 short bursts per second can be received
continuously.
Some examples for suitable data format are: NEC
Code (repetitive pulse), NEC Code (repetitive data),
Toshiba Micom Format, Sharp Code, RC5 Code,
RC6 Code, R-2000 Code, Sony Code, RECS-80
Code.
When a disturbance signal is applied to the TSOP91..
it can still receive the data signal. However the sensi-
tivity is reduced to such a level that no unexpected
pulses will occur.
Some examples for such disturbance signals which
are suppressed by the TSOP91.. are:
• DC light (e.g. from tungsten bulb or sunlight)
• Continuous signal at 38 kHz or at any other fre-
quency
• Signals from fluorescent lamps with electronic bal-
last (an example of the signal modulation is shown in
Figure 13).
Figure 13. IR Signal from Fluorescent Lamp with low Modulation
0 5 10 15 20
Time ( ms )
16920
IR Signal
IR Signal from fluorescent
lamp with low modulation
www.vishay.com
6
Document Number 84788
Rev. 1.0, 14-Sep-05
TSOP91..
Vishay Semiconductors
Package Dimensions in mm
19010
TSOP91..
Document Number 84788
Rev. 1.0, 14-Sep-05
Vishay Semiconductors
www.vishay.com
7
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems with respect to their impact on the health and safety of our employees and the public, as well as
their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use
of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Legal Disclaimer Notice
Vishay
Document Number: 91000 www.vishay.com
Revision: 08-Apr-05 1
Notice
Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc.,
or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.
Information contained herein is intended to provide a product description only. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's
terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express
or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness
for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications.
Customers using or selling these products for use in such applications do so at their own risk and agree to fully
indemnify Vishay for any damages resulting from such improper use or sale.