AD5165
Rev. 0 | Page 14 of 16
PROGRAMMING THE POTENTIOMETER DIVIDER
Voltage Output Operation
The digital potentiometer easily generates a voltage divider at
wiper-to-B and wiper-to-A proportional to the input voltage at
A to B. Unlike the polarity of VDD to GND, which must be
positive, voltage across A to B, W to A, and W to B can be at
either polarity.
A
V
I
W
B
V
O
04749-0-040
Figure 38. Potentiometer Mode Configuration
If ignoring the effect of the wiper resistance for approximation,
connecting the A terminal to 5 V and the B terminal to ground
produces an output voltage at the wiper-to-B starting at 0 V
up to 1 LSB less than 5 V. Each LSB of voltage is equal to the
voltage applied across terminals A and B divided by the 256
positions of the potentiometer divider. The general equation
defining the output voltage at VW with respect to ground for any
valid input voltage applied to terminals A and B is
B
A
WV
D
V
D
DV 256
256
256
)( −
+= (3)
A more accurate calculation, which includes the effect of wiper
resistance, VW, is
B
AB
WA
A
AB
WB
WV
R
DR
V
R
DR
DV )(
)(
)( += (4)
Operation of the digital potentiometer in the divider mode
results in a more accurate operation over temperature. Unlike
the rheostat mode, the output voltage is dependent mainly on
the ratio of the internal resistors RWA and RWB and not the
absolute values. Therefore, the temperature drift reduces to
15 ppm/°C.
3-WIRE SERIAL BUS DIGITAL INTERFACE
The AD5165 contains a 3-wire digital interface (SDI, CS, and
CLK). The 8-bit serial word must be loaded MSB first. The
format of the word is shown in Table 5.
The positive-edge sensitive CLK input requires clean transitions
to avoid clocking incorrect data into the serial input register.
Standard logic families work well. If mechanical switches are
used for product evaluation, they should be debounced by a
flip-flop or other suitable means. When CS is high, the clock
loads data into the serial register on each positive clock edge,
as shown in Figure 34.
The data setup and data hold times in the specifications table
determine the valid timing requirements. The AD5165 uses an
8-bit serial input data register word that is transferred to the
internal RDAC register when the CS line returns to logic low.
Extra MSB bits are ignored.
ESD PROTECTION
All digital inputs are protected with a series of input resistors
and parallel Zener ESD structures, shown in Figure 39 and
Figure 40. This applies to the digital input pins SDI, CLK,
and CS.
LOGIC
340
GND
04749-0-041
Figure 39. ESD Protection of Digital Pins
A, B, W
GND
04749-0-042
Figure 40. ESD Protection of Resistor Terminals
TERMINAL VOLTAGE OPERATING RANGE
The AD5165 VDD and GND power supply defines the boundary
conditions for proper 3-terminal digital potentiometer oper-
ation. Supply signals present on terminals A, B, and W that
exceed VDD or GND are clamped by the internal forward-biased
diodes, as shown in Figure 41.
GND
A
W
B
V
DD
04749-0-043
Figure 41. Maximum Terminal Voltages Set by VDD and GND
POWER-UP SEQUENCE
Because the ESD protection diodes limit the voltage compliance
at terminals A, B, and W (see Figure 41), it is important to
power VDD/GND before applying any voltage to terminals A, B,
and W; otherwise, the diode is forward biased such that VDD is
powered unintentionally and may affect the rest of the user’s
circuit. The ideal power-up sequence is in the following order:
GND, VDD, digital inputs, and then VA, VB, and VW. The relative
order of powering VA, VB, VW, and the digital inputs is not
important as long as they are powered after VDD/GND.