FN9345 Rev.1.00 Page 1 of 58
Oct 23, 2018
FN9345
Rev.1.00
Oct 23, 2018
RAA210870
Pin-Configurable 70A DC/DC Power Module with PMBus Interface
DATASHEET
The RAA210870 is a pin-strap configurable 70A
step-down PMBus-compliant DC/DC power supply
module that integrates a digital PWM controller,
synchronous MOSFETs, power inductor, and passive
components. Only input and output capacitors are needed
to finish the design. Because of its thermally enhanced
HDA packaging technology, the module can deliver up to
70A of continuous output current without the need for
airflow or additional heat sinking. The RAA210870
simplifies configuration and control of Renesas digital
power technology while offering an upgrade path to full
PMBus configuration through the pin-compatible
ISL8273M.
Operating over an input voltage range of 4.5V to 14V, the
RAA210870 offers adjustable output voltages down to
0.6V and achieves up to 93% conversion efficiencies. A
unique ChargeMode™ control architecture provides a
single clock cycle response to an output load step and can
support switching frequencies up to 1MHz. The power
module integrates all power and most passive
components and requires only a few external components
to operate. A set of external resistors allows the user to
easily configure the device for standard operation. A
standard PMBus interface addresses fault management,
in addition to real-time full telemetry and point-of-load
monitoring.
A fully customizable voltage, current, and temperature
protection scheme ensures safe operation for the
RAA210870 under abnormal operating conditions. The
device is also supported by the PowerNavigator™
software, a full digital power train development
environment.
The RAA210870 is available in a low profile compact
18mmx23mmx7.5mm fully encapsulated thermally
enhanced HDA package.
Applications
Server, telecommunications, storage, and data
communications
Industrial/ATE and networking equipment
General purpose power for ASIC, FPGA, DSP, and
memory
Features
70A single channel output current
4.5V to 14V single rail input voltage
Up to 93% efficiency
Programmable output voltage
0.6V to 2.5V output voltage settings
±1.2% accuracy over line, load, and temperature
ChargeMode control loop architecture
296kHz to 1.06MHz fixed switching frequency
operations
No compensation required
Fast single clock cycle transient response
PMBus interface and/or pin-strap mode
Programmable through PMBus
Pin-strap mode for standard settings
Real-time telemetry for VIN, VOUT, IOUT,
temperature, duty cycle, and fSW
Complete over/undervoltage, current, and
temperature protections with fault logging
PowerNavigator supported
Thermally enhanced 18mmx23mmx7.5mm HDA
package
Related Literature
For a full list of related documents, visit our website
RAA210870 product page
FN9345 Rev.1.00 Page 2 of 58
Oct 23, 2018
RAA210870
Figure 1. 70A Application Circuit
Figure 2. A Small Package for High Power Density
VIN
VDD
VR55
VR5
VR
VOUT
SGND PGND
VR6
VDRV
SCL
SDA
SALRT
VMON
VCC
VDRV1
VSENP
VSENN
VIN
CIN
RAA210870
VOUT
PMBus
Interface
COUT
2x10µF
10µF 10µF
EN
ENABLE
6.65k
Ω
100k Ω
PG
Note: Figure 1 represents a typical implementation of the RAA210870.
For PMBus operation, it is recommended to tie the enable pin (EN) to SGND.
23mm
18mm
7.5mm
FN9345 Rev.1.00 Page 3 of 58
Oct 23, 2018
RAA210870
Table of Contents
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 Typical Application Circuit - Single Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 RAA210870 Internal Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2. Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Thermal Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3. Typical Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Efficiency Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Transient Response Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Derating Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 SMBus Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Output Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Soft-Start, Stop Delay, and Ramp Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Input Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5 Power-Good. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6 Switching Frequency and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.7 Loop Compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.8 SMBus Module Address Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.9 Output Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.10 Output Prebias Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.11 Output Overcurrent Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.12 Thermal Overload Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.13 Phase Spreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.14 Monitoring with SMBus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.15 Snapshot Parameter Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5. Layout Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1 Thermal Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Package Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 PCB Layout Pattern Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Thermal Vias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5 Stencil Pattern Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6 Reflow Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
FN9345 Rev.1.00 Page 4 of 58
Oct 23, 2018
RAA210870
6. PMBus Command Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1 PMBus Data Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 PMBus Use Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7. PMBus Commands Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.1 Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.2 Datasheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9. Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
FN9345 Rev.1.00 Page 5 of 58
Oct 23, 2018
RAA210870 1. Overview
1. Overview
1.1 Typical Application Circuit - Single Module
Figure 3. Typical Application Circuit - Single Module
VIN
VDD
VR55
VR5
VR
VOUT
SGND
PGND
VR6
VDRV
SCL
SDA
SALRT
VMON
VCC
VDRV1
VSENP
VSENN
VIN
VCC
RAA210870
VOUT
1.2V, 70A
10µF
10µF 10µF
SA
VSET_CRS
EN
VSET_FINE
SS/UVLO
ASCR
VAUX or VCC 3.3V to 5V
Should be active before Enable
SYNC
CFG
SWD1
SW1
SWD2
SW2
12V
10µF
47F
Bulk
6x22µF
Ceramic
10x100µF
Ceramic
4x470µF
POSCAP
SCL
Pin-Strap Resistors
EN
SDA
SALRT
C1C2C3
C4C5
C6C7
10µF
C8C9
R1R2R3
R5
R6
R7R8R9R10 R11 R12
PG PG
10k
:
10k
:
10k
:
6.65k
:
100k:
R13
200:
Notes:
1. R2 and R3 are not required if the PMBus host already has I2C pull-up resistors.
2. R7 through R12 can be selected according to the tables for the pin-strap resistor setting in this document.
3. V25, VR, and VR55 do not need external capacitors. V25 can be no connection.
Note 1 Note 1
Note 2
FN9345 Rev.1.00 Page 6 of 58
Oct 23, 2018
RAA210870 1. Overview
Table 1. RAA210870 Design Guide Matrix and Output Voltage Response
VIN
(V)
VOUT
(V)
COUT
(Bulk)
(µF)
COUT
(Ceramic)
(µF)
ASCR
Residual
(Note 7)
ASCR Gain
(Note 7)
P-P
Deviation
(mV)
Recovery
Time
(µs)
Load Step
(A) (Note 6)
Freq.
(kHz)
12 0.7 6x680 13x100 90 320 64.21 14.72 0 - 35 364
12 0.7 5x680 9x100 90 550 62.6 9.43 0 - 35 615
5 0.7 6x680 13x100 90 320 61.62 17.57 0 - 35 364
5 0.7 5x680 9x100 90 550 57.08 9.99 0 - 35 615
12 0.8 6x680 11x100 90 280 70.61 16.3 0 - 35 364
12 0.8 4x680 10x100 90 400 74.14 11.43 0 - 35 615
5 0.8 6x680 11x100 90 280 66.84 19.56 0 - 35 364
5 0.8 4x680 10x100 90 400 69.59 11.19 0 - 35 615
12 0.9 6x680 7x100 90 280 74.3 11.13 0 - 35 364
12 0.9 4x680 10x100 90 400 75.18 10.45 0 - 35 615
5 0.9 6x680 7x100 90 240 73.32 17.57 0 - 35 364
5 0.9 4x680 10x100 90 400 71.58 12.45 0 - 35 615
12 1 5x680 9x100 90 240 83.46 13.52 0 - 35 364
12 1 3x680 12x100 90 360 97.73 10.45 0 - 35 615
5 1 5x680 9x100 90 240 77.09 18.37 0 - 35 364
5 1 3x680 12x100 90 360 93.11 10.45 0 - 35 615
12 1.2 4x470 10x100 90 220 105.75 11 0 - 35 421
12 1.2 3x470 10x100 90 360 97.3 8.46 0 - 35 727
5 1.2 4x470 10x100 90 220 107.39 17.99 0 - 35 421
5 1.2 3x470 10x100 90 360 93.39 9.25 0 - 35 727
12 1.5 3x470 9x100 90 200 129 9.93 0 - 35 471
12 1.5 2x470 8x100 100 280 141.29 10.41 0 - 35 727
5 1.5 3x470 9x100 90 200 129.66 20.38 0 - 35 471
5 1.5 2x470 8x100 100 280 137.26 20.78 0 - 35 727
12 1.8 2x470 12x100 100 180 148.86 13 0 - 35 471
12 1.8 1x470 11x100 100 240 167.2 10 0 - 35 727
5 1.8 2x470 12x100 100 180 130.41 24.37 0 - 35 471
5 1.8 1x470 11x100 100 240 163.79 19.98 0 - 35 727
12 2.5 2x470 6x100 90 140 191.78 11.13 0 - 35 533
5 2.5 2x470 6x100 90 140 181.48 37.9 0 - 35 533
Notes:
4. 1x470µF input bulk (EEE1EA471P) and 6x22µF input ceramic (GRM32ER71C226KE18L) capacitors are used for evaluating all
test conditions above.
5. CIN bulk capacitor is optional only for energy buffer from the long input power supply cable.
6. Output voltage response is tested with 0% - 50% load step and slew rate at 15A/µs.
7. ASCR gain and residual are selected to ensure a phase margin higher than 60° and a gain margin higher than 8dB at ambient
room temperature.
FN9345 Rev.1.00 Page 7 of 58
Oct 23, 2018
RAA210870 1. Overview
Table 2. Recommended Input/Output Capacitor
Vendors Value Part Number
Murata, Input Ceramic 47µF, 16V, 1210 GRM32ER61C476ME15L
Murata, Input Ceramic 22µF, 25V, 1210 GRM32ER61E226KE15L
Murata, Input Ceramic 22µF, 16V, 1210 GRM32ER71C226KE18L
Murata, Output Ceramic 100µF, 6.3V, 1206 GRM31CR60J107ME39L
TDK, Output Ceramic 100µF, 6.3V, 1206 C3216X5R0J107M160AB
Panasonic, Output Bulk 680µF, 2.5V, 2917 2R5TPF680M6L
Panasonic, Output Bulk 470µF, 4V, 2917 4TPE470MCL
Panasonic, Output Bulk 470µF, 6.3V, 2917 6TPF470MAH
Panasonic, Input Bulk 470µF, 25V EEE1EA471P
FN9345 Rev.1.00 Page 8 of 58
Oct 23, 2018
RAA210870 1. Overview
1.2 RAA210870 Internal Block Diagram
Figure 4. Internal Block Diagram
Digital Controller
PGND
SGND
VSET_CRS
SCL
SALRT
SA
EN
PG
SYNC
SGND
PWM2
PMBus/I2C
Interface
SDA
ADC
CSA
VSA
Supervisor
Internal Temp
Sensor
Protection
OC/UC
D-PWM
PLL
SYNC
OUT
Power Management
SS OV/UV Interleave
NVM
VDD
Snapshot
OT/UT
VOUT
0.15µH
Logic
VIN
PGND
VIN
VDRV
VR6
VSENP
CFG
VMON
ADC
VR5
V25
LDOs
VR55
VDD
Filter
VOUT
0.15µH
Logic
VIN
PGND
CSA
ChargeMode
Control
ADC
PWM1
VR
VDRV1
VDRV1
VDRV
VDRV
VCC
SS/UVLO
ASCR
VDRV1
SWD2
SW2
SWD1
SW1
VSENN
100
100
LDO
ADC
:
:
VSET_FINE
FN9345 Rev.1.00 Page 9 of 58
Oct 23, 2018
RAA210870 1. Overview
1.3 Ordering Information
Note: For a full comparison of all the RAA210XXX and ISL827XM product offerings please visit the simple-digital module family page.
Part Number
(Notes 9, 10)
Part
Marking
Temp Range
(°C)
Tape and Reel
(Units) (Note 8)
Package
(RoHS Compliant)
Pkg.
Dwg. #
RAA2108702GLG#AG0 RAA2108702 -40 to +85 - 58 Ld 18x23 HDA Module Y58.18x23
RAA2108702GLG#HG0 RAA2108702 -40 to +85 100 58 Ld 18x23 HDA Module Y58.18x23
RTKA2108702H00000BU Single-Module Evaluation Board
Notes:
8. Refer to TB347 for details about reel specifications.
9. These Pb-free plastic packaged products are RoHS compliant by EU exemption 7C-I and 7A. They employ special Pb-free
material sets; molding compounds/die attach materials and NiPdAu plate-e4 termination finish, which is compatible with both
SnPb and Pb-free soldering operations. Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or
exceed the Pb-free requirements of IPC/JEDEC J-STD-020.
10. For Moisture Sensitivity Level (MSL), refer to the RAA210870 device page. For more information about MSL, refer to TB363.
Table 3. Key Differences between Family of Parts
Part Number Description VIN Range (V) VOUT Range (V) IOUT (A)
RAA210833 33A DC/DC single channel power module 4.5 - 14 0.6 - 5 33
RAA210825 25A DC/DC single channel power module 4.5 - 14 0.6 - 5 25
RAA210850 50A DC/DC single channel power module 4.5 - 14 0.6 - 5 50
RAA210870 70A DC/DC single channel power module 4.5 - 14 0.6 - 2.5 70
RAA210925 25A/25A DC/DC dual channel power module 4.5 - 14 0.6 - 5 25/25
Table 4. Comparison of Simple Digital and Full Digital Parts
ISL8273M RAA210870
VIN (V) 4.5-14 4.5-14
VOUT (V) 0.6-2.5 0.6-2.5
IOUT (Max) (A) 80 70
fSW (kHz) 296-1067 296-1067
Digital PMBus Programmablility for
Configuration of Modules
All PMBus commands. NVM access to
store module configuration.
Configuration of modules supported via
pin-strap resistors. Digital programmability
supports configuration changes during
run-time operation with a subset of PMBus
commands. No NVM access to store module
configuration.
Power Navigator Support Yes Yes
SYNC Capability Yes Yes
Current Sharing Multi-Modules Yes N o
DDC Pin (Inter-Device Communication) Yes N o
FN9345 Rev.1.00 Page 10 of 58
Oct 23, 2018
RAA210870 1. Overview
1.4 Pin Configuration
58 Ld HDA
Top View
FN9345 Rev.1.00 Page 11 of 58
Oct 23, 2018
RAA210870 1. Overview
1.5 Pin Descriptions
Pin
Number
Pin
Name Type Description
PAD1, PAD2 VOUT PWR Power supply output voltage. Output voltage ranges from 0.6V to 2.5V. Tie these two pads
together to achieve a single output. For higher output voltage, refer to the derating curves
starting on page 19 to set the maximum output current from these pads.
PAD3, PAD4,
PAD5, PAD7,
PAD10, PAD12,
PAD13, PAD15
PGND PWR Power ground. Refer to the Layout Guide” on page 30 for the PGND pad connections and
input/output capacitor placement.
PAD6 SGND PWR Signal ground. Refer to Layout Guide for the SGND pad connections.
PAD8, PAD9,
PAD11
VIN PWR Input power supply voltage to power the module. Input voltage ranges from 4.5V to 14V.
PAD14 SW1 PWR Switching node pads. The SW pads dissipate the heat and provide the good thermal
performance. Refer to Layout Guide for the SW pad connections.
PAD16 SW2
C6 VSET_CRS I Output voltage selection pin. Used to set VOUT set point. Use VSET_FINE for fine tuning.
C7 VSET_FINE I Output voltage fine tuning. Provides increased VOUT resolution based on programmed
VSET_CRS value.
C8 CFG I Clock source configuration pin. If the clock source is set to internal, the internal frequency is set
according to the SYNC pin resistor settings. If the clock source is set to external, the internal
frequency is set according to the CFG pin resistor. See Switching Frequency and PLL” on
page 23.
C9 VMON I Driver voltage monitoring. Use this pin to monitor VDRV through an external 16:1 resistor
divider.
C10 SA I Serial address selection pin. Assigns a unique address for each individual device or enables
certain management features.
C11 SALRT O Serial alert. Connect to external host if desired. SALRT is asserted low upon a fault event and
deasserted when the fault is cleared. A pull-up resistor is required.
C12 SDA I/O Serial data. Connect to external host and/or to other Digital-DC™ devices. A pull-up resistor is
required.
C13 SCL I/O Serial clock. Connect to external host and/or to other Digital-DC devices. A pull-up resistor is
required.
D4 SS/ UVLO I Soft-start/stop and undervoltage lockout selection pin. Sets the turn on/off delay and ramp time
in addition to the input UVLO threshold levels.
D5 PG O Power-good output. The power-good is configured as an open-drain output.
D13 SYNC I/O Clock synchronization input. Sets the frequency of the internal switch clock, syncs to an external
clock, or outputs an internal clock. If external synchronization is used, the external clock must be
active before enable.
E14 EN I Enable pin. Set logic high to enable the module output.
C5, D14, E4,
E15, F4, F15,
G4
TEST - Test pins. Do not connect these pins.
G14 ASCR I ChargeMode control ASCR parameters selection pin. Sets the ASCR gain and residual values.
G15 V25 PWR Internal 2.5V reference used to power internal circuitry. No external capacitor required for this
pin. Not recommended to power external circuit.
H3 VSENN I Differential output voltage sense feedback. Connect to a negative output regulation point.
H4 VSENP I Differential output voltage sense feedback. Connect to a positive output regulation point.
H16, J16, K16,
M14
SGND PWR Signal grounds. Use multiple vias to connect the SGND pins to the internal SGND layer.
K14 VDD PWR Input supply voltage for controller. Connect the VDD pad to the VIN supply.
FN9345 Rev.1.00 Page 12 of 58
Oct 23, 2018
RAA210870 1. Overview
L2 VR PWR Internal LDO bias pin. Tie VR to VR55 directly with a short loop trace. Do not use this pin to
power the external circuit.
L3 SWD1 PWR Switching node driving pins. Directly connect to the SW1 and SW2 pads with short loop wires.
P11 SWD2
L14 VR5 PWR Internal 5V reference used to power internal circuitry. Place a 10µF decoupling capacitor for this
pin. Maximum external loading current is 5mA.
M1 VCC PWR Internal LDO output. Connect VCC to VDRV for internal LDO driving.
M5, M17, N5 PGND PWR Power grounds. Use multiple vias to connect the PGND pins to the internal PGND layer.
M10 VR55 PWR Internal 5.5V bias voltage for internal LDO use only. Tie VR55 pin directly to the VR pin. Not
recommended to power external circuits.
M13 VR6 PWR Internal 6V reference used to power internal circuitry. Place a 10µF decoupling capacitor for this
pin. Not recommended to power external circuits.
N6, N16 VDRV PWR Power supply for internal FET drivers. Connect a 10μF bypass capacitor to each of these pins.
These pins can be driven by the internal LDO through VCC pin or by the external power supply
directly. Keep the driving voltage between 4.5V and 5.5V. For 5V input applications, use an
external supply or connect this pin to VIN.
R8, R17 VDRV1 I Bias pin of the internal FET drivers. Always tie to VDRV.
Pin
Number
Pin
Name Type Description
FN9345 Rev.1.00 Page 13 of 58
Oct 23, 2018
RAA210870 2. Specifications
2. Specifications
2.1 Absolute Maximum Ratings
2.2 Thermal Information
Parameter Minimum Maximum Unit
Input Supply Voltage, VIN Pin 0.3V +17 V
Input Supply Voltage for Controller, VDD Pin -0.3 +17 V
MOSFET Switch Node Voltage, SW1/2, SWD1/2 -0.3 +17 V
MOSFET Driver Supply Voltage, VDRV, VDRV1 Pin -0.3 +6.0 V
Output Voltage, VOUT pin .-0.3 +6.0 V
Internal Reference Supply Voltage, VR6 Pin -0.3 +6.6 V
Internal Reference Supply Voltage, VR, VR5, VR55 Pin -0.3 +6.5 V
Internal Reference Supply Voltage, V25 Pin -0.3 +3 V
Logic I/O Voltage for EN, CFG, PG, ASCR, VSET_FINE, SA, SCL, SDA,
SALRT, SYNC, SS/UVLO, VMON, VSET_CRS
-0.3 +6.0 V
Analog Input Voltages
VSENP -0.3 +6.0 V
VSENN -0.3 +0.3 V
ESD Rating Value Unit
Human Body Model (Tested per JESD22-A114F) 2 kV
Machine Model (Tested per JESD22-A115C) 200 V
Charged Device Model (Tested per JESD22-C110D) 750 V
Latch-up (Tested per JESD78C; Class 2, Level A) 100 mA
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may
adversely impact product reliability and result in failures not covered by warranty.
Thermal Resistance (Typical) θJA (°C/W) θJC (°C/W)
58 Ld HDA Package (Notes 11, 12)5.3 1.1
Notes:
11. θJA is measured in free air with the module mounted on an 8-layer evaluation board 4.7x4.8inch in size with 2oz Cu on all layers
and multiple via interconnects as specified in the RTKA2108702H00000BU evaluation board user guide.
12. For θJC, the “case temp” location is the center of the package underside.
Parameter Minimum Maximum Unit
Maximum Junction Temperature (Plastic Package) +125 °C
Storage Temperature Range -55 +150 °C
Pb-Free Reflow Profile See Figure 25 on page 32
FN9345 Rev.1.00 Page 14 of 58
Oct 23, 2018
RAA210870 2. Specifications
2.3 Recommended Operating Conditions
2.4 Electrical Specifications
Parameter Minimum Maximum Unit
Input Supply Voltage Range, VIN 4.5 14 V
Input Supply Voltage Range for Controller, VDD 4.5 14 V
Output Voltage Range, VOUT 0.6 2.5 V
Output Current Range, IOUT(DC) (Note 15)070A
Operating Junction Temperature Range, TJ-40 +125 °C
VIN = VDD = 12V, fSW = 533kHz, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C. Boldface limits apply
across the operating temperature range, -40°C to +85°C.
Parameter Symbol Test Conditions
Min
(Note 13)Typ
Max
(Note 13) Unit
Input and Supply Characteristics
Input Supply Current for Controller IDD VIN = VDD = 12V, VOUT = 0V,
module not enabled
40 50 mA
6V Internal Reference Supply Voltage VR6 5.5 6.1 6.6 V
5V Internal Reference Supply VR5 IVR5 < 5mA 4.5 5.2 5.5 V
2.5V Internal Reference Supply V25 2.25 2.5 2.75 V
Internal LDO Output Voltage VCC 5.3 V
Internal LDO Output Current IVCC VIN = VDD = 12V, VCC
connected to VDRV, module
enabled
50 mA
Input Supply Voltage for Controller
Read Back Resolution
VDD_READ_RES ±20 mV
Input Supply Voltage for Controller
Read Back Total Error (Note 16)
VDD_READ_ERR PMBus Read ±2 % FS
Output Characteristics
Output Voltage Adjustment Range VOUT_RANGE VIN > VOUT + 1.8V 0.54 2.75 V
Output Voltage Set-Point Range VOUT_RES Configured using PMBus ±0.025 %
Output Voltage Set-Point Accuracy
(Notes 14, 16)
VOUT_ACCY Includes line, load, and
temperature
(-20°C ≤ TA ≤ +85°C)
-1.2 +1.2 % FS
Output Voltage Read Back Resolution VOUT_READ_RES ±0.15 % FS
Output Voltage Read Back Total Error
(Note 16)
VOUT_READ_ERR PMBus read -2 +2 % FS
Output Ripple Voltage VOUT_RIPPLE VOUT = 1V, COUT = 6 x 470µF
POSCAP + 12 x 100µF
Ceramic
8mV
Output Current Read Back Resolution IOUT_READ_RES 0.087 A
Output Current Range (Note 15)I
OUT_RANGE 70 A
Output Current Read Back Total Error IOUT_READ_ERR PMBus read at max load.
VOUT = 1V
±3 A
Soft-Start and Sequencing
Delay Time from Enable to VOUT Rise tON_DELAY Configured using pin-strap
resistors or PMBus
2 300 ms
tON_DELAY Accuracy tON_DELAY_ACCY ±2 ms
FN9345 Rev.1.00 Page 15 of 58
Oct 23, 2018
RAA210870 2. Specifications
Output Voltage Ramp-Up Time tON_RISE Configured using pin-strap
resistors or PMBus
0.5 120 ms
Output Voltage Ramp-Up Time
Accuracy
tON_RISE_ACCY ±250 µs
Delay Time from Disable to VOUT Fall tOFF_DELAY Configured using pin-strap
resistors or PMBus
2 300 ms
tOFF_DELAY Accuracy tOFF_DELAY_ACCY ±2 ms
Output Voltage Fall Time tOFF_FALL Configured using pin-strap
resistors or PMBus
0.5 120 ms
Output Voltage Fall Time Accuracy tON_FALL_ACCY ±250 µs
Power-Good
Power-Good Delay VPG_DELAY Configured using PMBus 3 ms
Temperature Sense
Temperature Sense Range TSENSE_RANGE Configurable using PMBus -50 150 °C
Internal Temperature Sensor
Accuracy
INT_TEMPACCY Tested at +100°C -5 +5 °C
Fault Protection
VDD Undervoltage Threshold Range VDD_UVLO_RANGE Measured internally 4.18 16 V
VDD Undervoltage Threshold
Accuracy (Note 16)
VDD_UVLO_ACCY ±2 %FS
VDD Undervoltage Response Time VDD_UVLO_DELAY 10 µs
VOUT Overvoltage Threshold Range VOUT_OV_RANGE Factory default 1.15VOUT V
Configured using PMBus 1.05VOUT VOUT_MAX V
VOUT Undervoltage Threshold Range VOUT_UV_RANGE Factory default 0.85VOUT V
Configured using PMBus 00.95V
OUT V
VOUT OV/UV Threshold Accuracy
(Note 14)
VOUT_OV/UV_ACCY -2 +2 %
VOUT OV/UV Response Time VOUT_OV/UV_DELAY 10 µs
Output Current Limit Set-Point
Accuracy (Note 16)
ILIMIT_ACCY Tested at
IOUT_OC_FAULT_LIMIT = 80A
±10 % FS
Output Current Fault Response Time ILIMIT_DELAY Factory default 3 tSW
(Note 17)
Over-temperature Protection
Threshold
(Controller Junction Temperature)
TJUNCTION Factory default 115 °C
Configured using PMBus -40 125 °C
Thermal Protection Hysteresis TJUNCTION_HYS 15 °C
Oscillator and Switching Characteristics
Switching Frequency Range fSW_RANGE 296 1067 kHz
Switching Frequency Set-Point
Accuracy
fSW_ACCY -5 +5 %
Minimum Pulse Width Required from
External SYNC Clock
EXT_SYNCPW Measured at 50% Amplitude 150 ns
Drift Tolerance for External SYNC
Clock
EXT_SYNCDRIFT External SYNC Clock equal to
500kHz is not supported
-10 +10 %
VIN = VDD = 12V, fSW = 533kHz, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C. Boldface limits apply
across the operating temperature range, -40°C to +85°C. (Continued)
Parameter Symbol Test Conditions
Min
(Note 13)Typ
Max
(Note 13) Unit
FN9345 Rev.1.00 Page 16 of 58
Oct 23, 2018
RAA210870 2. Specifications
Logic Input/Output Characteristics
Bias Current at the Logic Input Pins ILOGIC_BIAS EN, CFG, PG, SA, SCL, SDA,
SALRT, SYNC, UVLO, VMON,
VSET_CRS
-100 +100 nA
Logic Input Low Threshold Voltage VLOGIC_IN_LOW 0.8 V
Logic Input High Threshold Voltage VLOGIC_IN_HIGH 2.0 V
Logic Output Low Threshold Voltage VLOGIC_OUT_LOW 2mA sinking 0.5 V
Logic Output High Threshold Voltage VLOGIC_OUT_HIGH 2mA sourcing 2.25 V
PMBus Interface Timing Characteristic
PMBus Operating Frequency fSMB 100 400 kHz
Notes:
13. Compliance to datasheet limits is assured by one or more methods: Production test, characterization, and/or design. Controller
is independently tested before module assembly.
14. VOUT measured at the termination of the VSENP and VSENN sense points.
15. The MAX load current is determined by the thermal Derating Curves” on page 19.
16. “FS” stands for full scale of recommended maximum operation range.
17. “tSW” stands for time period of operation switching frequency.
VIN = VDD = 12V, fSW = 533kHz, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C. Boldface limits apply
across the operating temperature range, -40°C to +85°C. (Continued)
Parameter Symbol Test Conditions
Min
(Note 13)Typ
Max
(Note 13) Unit
FN9345 Rev.1.00 Page 17 of 58
Oct 23, 2018
RAA210870 3. Typical Performance Curves
3. Typical Performance Curves
3.1 Efficiency Performance
TA = +25°C, no air flow. COUT = 6 x 470µF POSCAP + 12 x 100µF Ceramic. Typical values are used unless otherwise noted.
Figure 5. Efficiency vs Output Current at VIN = 5V,
fSW = 300kHz for Various Output Voltages
Figure 6. Efficiency vs Switching Frequency at VIN = 5V,
IOUT = 70A for Various Output Voltages
Figure 7. Efficiency vs Output Current at VIN = 9V, for
Various Output Voltages
Figure 8. Efficiency vs Switching Frequency at VIN = 9V,
IOUT = 70A for Various Output Voltages
Figure 9. Efficiency vs Output Current at VIN = 12V, for
Various Output Voltages
Figure 10. Efficiency vs Switching Frequency at
VIN =12V, I
OUT = 70A for Various Output Voltages
70
75
80
85
90
95
100
0 10203040506070
Efficiency (%)
Load Current (A)
0.8V, 300kHz
1V, 300kHz
1.2V, 300kHz
1.5V, 300kHz
1.8V, 300kHz
84
85
86
87
88
89
90
91
92
93
300 350 400 450 500 550 600 650 700
Frequency (kHz)
Efficiency (%)
0.8V 1V
1.2V 1.5V 1.8V
65
70
75
80
85
90
95
100
0 10203040506070
Efficiency (%)
Load Current (A)
0.8V, 300kHz
1V, 300kHz
1.2V, 300kHz
1.5V, 346kHz
1.8V, 346kHz
2.5V, 530kHz
82
84
86
88
90
92
94
300 350 400 450 500 550 600 650 700
Frequency (kHz)
Efficiency (%)
0.8V 1V
1.5V 1.8V
1.2V
2.5V
65
70
75
80
85
90
95
100
0 10203040506070
Efficiency (%)
Load Current (A)
0.8V, 300kHz
1V, 300kHz
1.2V, 300kHz
1.5V, 346kHz
1.8V, 346kHz
2.5V, 530kHz
80
82
84
86
88
90
92
94
300 350 400 450 500 550 600 650 700
Frequency (kHz)
Efficiency (%)
0.8V 1V
1.5V 1.8V
1.2V
2.5V
FN9345 Rev.1.00 Page 18 of 58
Oct 23, 2018
RAA210870 3. Typical Performance Curves
3.2 Transient Response Performance
Operating Conditions: IOUT = 0A/35A, IOUT slew rate = 15A/µs, TA= +25°C, 0LFM. Typical values are used unless otherwise noted.
Figure 11. 5VIN to 0.9VOUT Transient Response,
fSW = 615kHz, COUT = 10x100µF Ceramic + 4x680µF
POSCAP
Figure 12. 5VIN to 1.2VOUT Transient Response,
fSW = 421kHz, COUT = 10x100µF Ceramic + 4x470µF
POSCAP
Figure 13. 12VIN to 1VOUT Transient Response,
fSW = 615kHz, COUT = 12x100µF Ceramic + 3x680µF
POSCAP
Figure 14. 12VIN to 1.5VOUT Transient Response,
fSW = 727kHz, COUT = 8x100µF Ceramic + 2x470µF
POSCAP
Figure 15. 12VIN to 1.8VOUT Transient Response,
fSW = 727kHz, COUT = 11x100µF Ceramic + 1x470µF
POSCAP
Figure 16. 12VIN to 2.5VOUT Transient Response,
fSW = 533kHz, COUT = 6x100µF Ceramic + 2x470µF
POSCAP
ASCR Gain = 400
Residual = 90
VOUT (50mV/Div)
IOUT (15A/Div)
50µs/Div
ASCR Gain = 220
Residual = 90
VOUT (50mV/Div)
IOUT (15A/Div)
50µs/Div
ASCR Gain = 360
Residual = 90
VOUT (50mV/Div)
IOUT (15A/Div)
50µs/Div
ASCR Gain = 280
Residual = 100
VOUT (100mV/Div)
IOUT (15A/Div)
50µs/Div
ADCR Gain = 240
Residual = 100
VOUT (100mV/Div)
IOUT (10A/Div)
50µs/Div
ADCR Gain = 160
Residual = 90
VOUT (100mV/Div)
IOUT (10A/Div)
50µs/Div
FN9345 Rev.1.00 Page 19 of 58
Oct 23, 2018
RAA210870 3. Typical Performance Curves
3.3 Derating Curves
All of the following curves were plotted at TJ = +120°C.
Figure 17. 5VIN to 1VOUT
, fSW = 300kHz Figure 18. 12VIN to 1VOUT
, fSW = 300kHz
Figure 19. 5VIN to 1.5VOUT
, fSW = 300kHz Figure 20. 12VIN to 1.5VOUT
, fSW = 364kHz
Figure 21. 5VIN to 2.5VOUT
, fSW = 364kHz Figure 22. 12VIN to 2.5VOUT
, fSW = 533kHz
0
10
20
30
40
50
60
70
80
25 45 65 85 105 125
Load Current (A)
Ambient Temperature (°C)
0LFM
200LFM
400LFM
0
10
20
30
40
50
60
70
80
25 45 65 85 105 125
Load Current (A)
Ambient Temperature (°C)
0LFM
200LFM
400LFM
0
10
20
30
40
50
60
70
80
25 45 65 85 105 125
Load Current (A)
Ambient Temperature (°C)
0LFM
200LFM
400LFM
0
10
20
30
40
50
60
70
80
25 45 65 85 105 125
Load Current (A)
Ambient Temperature (°C)
0LFM
200LFM
400LFM
0
10
20
30
40
50
60
70
80
25 45 65 85 105 125
Load Current (A)
Ambient Temperature (°C)
0LFM
200LFM
400LFM
0
10
20
30
40
50
60
70
80
25 45 65 85 105 125
Load Current (A)
Ambient Temperature (°C)
0LFM
200LFM
400LFM
FN9345 Rev.1.00 Page 20 of 58
Oct 23, 2018
RAA210870 4. Functional Description
4. Functional Description
4.1 SMBus Communications
The RAA210870 provides a SMBus digital interface that enables the user to configure the module in addition to
monitor the input and output parameters. The RAA210870 can be used with any SMBus host device. The module is
compatible with PMBus Power System Management Protocol Specification Parts I and II version 1.2. The
RAA210870 accepts most standard PMBus commands. When PMBus commands are issued, it is recommended to
tie the enable pin to SGND.
The SMBus device address is the only parameter that must be set by the external pins.
4.2 Output Voltage Selection
The output voltage can be set to a voltage between 0.6V and 2.5V if the input voltage is higher than the desired
output voltage by an amount sufficient to maintain regulation.
The VSET_CRS (VOUT Coarse) and VSET_FINE (VOUT Fine) pins are used to set the output voltage. A resistor
placed between the VSET_CRS pin and SGND is used to program the VOUT_CRS (VOUT Coarse) voltage
according to resistor settings in Table 5. A standard 1% resistor is required.
If higher resolution is desired, then VSET_FINE pin can be used to fine tune the output voltage settings according
to the following command set:
Use the resistor values from Table 6 on page 21 to set the appropriate value of N for calculating the final output
voltage.
Table 5. VSET_COARSE Resistor Settings
VOUT_CRS (V) RSET (kΩ)
0.600 10
0.675 11
0.700 12.1
0.720 13.3
0.750 14.7
0.800 16.2
0.850 17.8
0.900 19.6
0.930 21.5
0.950 23.7
0.980 26.1
1.000 28.7, or connect to SGND
1.030 31.6
1.050 34.8
1.100 38.3
1.120 42.2
1.150 46.4
1.200 51.1, or OPEN
1.250 56.2
VOUT_COMMAND =
VOUT_CRS + 5mV • N, if 0.6V ≤ VOUT_CRS ≤ 1.4V
VOUT_CRS + 10mV • N, if 1.5V ≤ VOUT_CRS ≤ 2.4V
VOUT_CRS, if VOUT_CRS = 2.5V
FN9345 Rev.1.00 Page 21 of 58
Oct 23, 2018
RAA210870 4. Functional Description
The output voltage can be set to any value between 0.6V and 2.5V using the pin-strap settings provided in
Tables 5 and 6.
By default, VOUT_MAX is set to 110% of VOUT set by the pin-strap resistor, which can be changed to any value up
to 2.75V by the PMBus command VOUT_MAX.
1.300 61.9
1.350 68.1
1.400 75
1.500 82.5
1.650 90.9
1.800 100
1.850 110
2.000 121
2.200 133
2.400 147
2.500 162, or Connect to V25
Table 6. VSET_FINE Resistor Settings
NR
SET (kΩ)
0 10, or OPEN
111
2 12.1
3 13.3
4 14.7
5 16.2
6 17.8
7 19.6
8 21.5
9 23.7,or Connect to SGND
10 26.1
11 28.7
12 31.6
13 34.8
14 38.3
15 42.2
16 46.4
17 51.1
18 56.2
19 61.9
20 68.1, or Connect to V25
Table 5. VSET_COARSE Resistor Settings (Continued)
VOUT_CRS (V) RSET (kΩ)
FN9345 Rev.1.00 Page 22 of 58
Oct 23, 2018
RAA210870 4. Functional Description
4.3 Soft-Start, Stop Delay, and Ramp Times
The RAA210870 follows an internal start-up procedure after power is applied to the VDD pin. The module
requires approximately 60ms to 70ms to check for specific values stored in its internal memory and programmed
by pin-strap resistors. When this process is complete, the device is ready to accept commands from the PMBus
interface and the module is ready to be enabled. If the module is synchronizing to an external clock source, the
clock frequency must be stable before asserting the EN pin.
It may be necessary to set a delay from when an enable signal is received until the output voltage starts to ramp to
its target value. In addition, the designer may wish to precisely set the time required for VOUT to ramp to its target
value after the delay period has expired. These features can be used as part of an overall inrush current management
strategy or to precisely control how fast a load IC is turned on. The RAA210870 gives the system designer several
options for precisely and independently controlling both the delay and ramp time periods. The soft-start delay
period begins when the EN pin is asserted and ends when the delay time expires.
The soft-start delay and ramp-up time can be programmed to custom values using the PMBus commands
TON_DELAY and TON_RISE. When the delay time is set to 0ms, the device begins its ramp-up after the internal
circuitry has initialized (approximately 2ms). When the soft-start ramp period is set to 0ms, the output ramps up as
quickly as the output load capacitance and loop settings allow. In general, set the soft-start ramp to a value greater
than 1ms to prevent inadvertent fault conditions due to excessive inrush current.
Similar to the soft-start delay and ramp-up time, the delay and ramp down time for soft-stop/off can be
programmed using the PMBus commands TOFF_DELAY and TOFF_FALL. In addition, the module can be
configured as “immediate off” using the command ON_OFF_CONFIG, so that the internal MOSFETs are turned
off immediately after the delay time expires.
The SS/UVLO pin can be used to program the soft-start/stop delay time and ramp time to some typical values as
shown in Table 7.
Table 7. UVLO and Soft-Start/Stop Resistor Settings
Resistor (kΩ) UVLO (V) Delay Time (ms) Ramp Time (ms)
10 4.5 5 2
11 4.5 5 2
12.1 4.5 5 2
13.3 4.5 5 2
14.7 4.5 5 2
16.2 4.5 5 2
17.8 4.5 5 2
19.6 4.5 5 2
21.5 4.5 10 2
23.7 4.5 5 5
26.1 4.5 10 5
28.7 4.5 20 5
31.6 4.5 5 10
34.8 4.5 10 10
38.3 4.5 20 10
42.2 10.8 5 2
46.4 10.8 10 2
51.1 10.8 5 5
56.2 10.8 10 5
61.9 10.8 20 5
FN9345 Rev.1.00 Page 23 of 58
Oct 23, 2018
RAA210870 4. Functional Description
4.4 Input Undervoltage Lockout (UVLO)
The input Undervoltage Lockout (UVLO) prevents the RAA210870 from operating when the input falls below a
preset threshold, indicating the input supply is out of its specified range. The UVLO threshold (VUVLO) can be set
between 4.18V and 16V by using the PMBus command VIN_UV_FAULT_LIMIT. Use the pin-strap method
(SS/UVLO pin) as shown in Table 7 to set the VUVLO to three typical values.
When the module falls below the UVLO threshold, it shuts down immediately. The fault needs to be cleared before
the module can restart.
4.5 Power-Good
The RAA210870 provides a Power-Good (PG) signal that indicates the output voltage is within a specified
tolerance of its target level and no fault condition exists. By default, the PG pin asserts if the output is within 10%
of the target voltage. This limit can be changed using the PMBus command POWER_GOOD_ON.
A PG delay period is defined as the time from when all conditions within the RAA210870 for asserting PG are met
to when the PG pin is actually asserted. This feature is commonly used instead of using an external reset controller
to control external digital logic. A fixed PG delay of 3ms is programmed for the RAA210870.
4.6 Switching Frequency and PLL
The device’s switching frequency is configurable from 296kHz to 1067kHz using the pin-strap method as shown in
Table 9, or by using the PMBus command FREQUENCY_SWITCH.
68.1 10.8 5 10
75 10.8 10 10
82.5 10.8 20 10
Connect to SGND 4.5 5 2
OPEN 4.2 5 5
Connect to V25 4.5 10 10
Table 8. Switching Frequency Resistor Settings
fsw (kHz) RSET (kΩ)
296 14.7, or connect to SGND
300 16.2
320 17.8
364 19.6
400 21.5
421 23.7, or OPEN
471 26.1
533 28.7
571 31.6
615 34.8, or connect to V25
727 38.3
800 42.2
842 46.4
889 51.1
1067 56.2
Table 7. UVLO and Soft-Start/Stop Resistor Settings (Continued)
Resistor (kΩ) UVLO (V) Delay Time (ms) Ramp Time (ms)
FN9345 Rev.1.00 Page 24 of 58
Oct 23, 2018
RAA210870 4. Functional Description
The RAA210870 incorporates an internal Phase-Locked Loop (PLL) to clock the internal circuitry. The PLL can
also be driven by an external clock source connected to the SYNC pin. This configuration can be achieved by
connecting a resistor to the CFG pin. If the clock source is set to be internal, the internal frequency is set according
to the SYNC pin resistor settings as shown in Table 8 on page 23. If clock source is programmed to be external,
then the internal frequency is set according to the resistor connected to the CFG pin as shown in Table 9. The
external clock signal must not vary more than 10% from its initial value and should have a minimum pulse width of
150ns. The external clock frequency should be within ±10% of the listed options shown in Table 9.
4.7 Loop Compensation
The module loop response is programmable using the pin-strap method or by using the PMBus command
ASCR_CONFIG according to Table 10. The RAA210870 uses the ChargeMode control algorithm that responds to
the output current changes within a single PWM switching cycle, achieving a smaller total output voltage variation
with less output capacitance than traditional PWM controllers.
Table 9. External Frequency Sync Settings
Clock Source Internal FREQUENCY_SWITCH (kHz) RSET (kΩ)
Internal Determined by SYNC resistor 10, or OPEN
External 296 11
External 340 12.1
External 390 13.3
External 444 14.7
External 516 16.2, or connect to SGND
External 593 17.8
External 696 19.6
External 800 21.5
External 941 23.7
External 1067 26.1, or Connect to V25
Table 10. ASCR Resistor Settings
ASCR Gain ASCR Residual RSET (kΩ)
100 90 10
110 90 11
120 90 Connect to SGND
140 90 12.1
160 90 13.3
180 90 14.7
200 90 OPEN
220 90 16.2
240 90 17.8
280 90 19.6
320 90 21.5
360 90 23.7
400 90 26.1
450 90 28.7
500 90 31.6
550 90 34.8
FN9345 Rev.1.00 Page 25 of 58
Oct 23, 2018
RAA210870 4. Functional Description
4.8 SMBus Module Address Selection
Each module must have its own unique serial address to distinguish between other devices on the bus. The module
address is set by connecting a resistor between pins SA and SGND. Table 11 lists the available module addresses.
600 90 38.3
700 90 42.2
800 90 46.4
80 100 51.1
120 100 56.2
160 100 61.9
200 100 68.1
240 100 75
280 100 82.5
320 100 90.9
360 100 100
400 100 110
450 100 121
500 100 Connect to V25
550 100 133
600 100 147
700 100 162
800 100 178
Table 11. SMBus Address Resistor Selection
RSA (kΩ) SMBus Address
10 19h
11 1Ah
12.1 1Bh
13.3 1Ch
14.7 1Dh
16.2 1Eh
17.8 1Fh
19.6 20h
21.5 21h
23.7 22h
26.1 23h
28.7 24h
31.6 25h
34.8, or connect to SGND 26h
38.3 27h
42.2, or Open 28h
46.4 29h
Table 10. ASCR Resistor Settings (Continued)
ASCR Gain ASCR Residual RSET (kΩ)
FN9345 Rev.1.00 Page 26 of 58
Oct 23, 2018
RAA210870 4. Functional Description
4.9 Output Overvoltage Protection
The RAA210870 has an internal output overvoltage protection circuit that can protect sensitive load circuitry from
being subjected to a voltage higher than its prescribed limits. A hardware comparator is used to compare the actual
output voltage (seen at pins VSENP, VSENN) to a threshold set to 15% higher than the target output voltage. The
fault threshold can be programmed to a desired level by the PMBus command VOUT_OV_FAULT_LIMIT. If the
VSENP - VSENN voltage exceeds this threshold, the module initiates an immediate shutdown without retry.
Internal to the module, two 100Ω resistors are populated from VOUT to VSENP and SGND to VSENN to protect
the module from overvoltage conditions in case of open at the voltage sensing pins and differential remote sense
traces due to assembly error. As long as differential remote sense traces have low resistance, VOUT regulation
accuracy is not compromised.
4.10 Output Prebias Protection
An output prebias condition exists when an externally applied voltage is present on a power supply’s output before
the power supply’s control IC is enabled. Certain applications require that the converter not be allowed to sink
current during start-up if a prebias condition exists at the output. The RAA210870 provides prebias protection by
sampling the output voltage before initiating an output ramp.
If a prebias voltage lower than the target voltage exists after the preconfigured delay period has expired, the target
voltage is set to match the existing prebias voltage and both drivers are enabled. The output voltage is then ramped
to the final regulation value at the preconfigured ramp rate.
The actual time the output takes to ramp from the prebias voltage to the target voltage varies, depending on the
prebias voltage. However, the total time elapsed from when the delay period expires to when the output reaches its
target value matches the preconfigured ramp time (see Figure 23).
51.1 2Ah
56.2 2Bh
61.9 2Ch
68.1 2Dh
75 2Eh
82.5 2Fh
90.9 30h
100 31h
110 32h
121 33h
133 34h
147 35h
162 36h
178 37h
Table 11. SMBus Address Resistor Selection (Continued)
RSA (kΩ) SMBus Address
FN9345 Rev.1.00 Page 27 of 58
Oct 23, 2018
RAA210870 4. Functional Description
Figure 23. Output Responses to Prebias Voltages
If a prebias voltage is higher than the target voltage after the preconfigured delay period has expired, the target
voltage is set to match the existing prebias voltage, so both drivers are enabled with a PWM duty cycle that ideally
creates the prebias voltage.
When the preconfigured soft-start ramp period has expired, the PG pin is asserted (assuming the prebias voltage is
not higher than the overvoltage limit). The PWM then adjusts its duty cycle to match the original target voltage and
the output ramps down to the preconfigured output voltage.
If a prebias voltage is higher than the overvoltage limit, the device does not initiate a turn-on sequence and declares
an overvoltage fault condition.
4.11 Output Overcurrent Protection
The RAA210870 is protected from damage if the output is shorted to ground or if an overload condition is imposed
on the output. The average output overcurrent fault threshold can be programmed by the PMBus command
IOUT_OC_FAULT_LIMIT. The module automatically programs the peak inductor current fault threshold by
calculating inductor ripple current based on input voltage, switching frequency, and VOUT_COMMAND.
The response from an overcurrent fault is an immediate shutdown with 70ms retry.
4.12 Thermal Overload Protection
The RAA210870 includes a thermal sensor that continuously measures the internal temperature of the module and
shuts down the controller when the temperature exceeds the preset limit. The factory default temperature limit is set
to +115°C. The temperature limit can be changed using the PMBus command OT_FAULT_LIMIT.
The response from an over-temperature fault is an immediate shutdown without retry.
Desired Output
Voltage
Prebias Voltage
VOUT
Time
TON-Delay TON-Rise
Desired Output
Voltage
Prebias Voltage
VOUT
Time
VPREBIAS < VTARGET
VPREBIAS > VTARGET
TON-Rise
TON-Delay
FN9345 Rev.1.00 Page 28 of 58
Oct 23, 2018
RAA210870 4. Functional Description
4.13 Phase Spreading
When multiple point-of-load converters share a common DC input supply, adjust the clock phase offset of each
device, so that not all devices start to switch simultaneously. Setting each converter to start its switching cycle at a
different point in time can dramatically reduce input capacitance requirements and efficiency losses. Because the
peak current drawn from the input supply is effectively spread out over a period of time, the peak current drawn at
any given moment is reduced, and the power losses proportional to the IRMS2 are reduced dramatically.
To enable phase spreading, all converters must be synchronized to the same switching clock. The phase offset
between devices is determined from the lower four bits of the SMBus address of each interleaved device. The
phase offset of each device can be set to any value between 0° and 360° in 22.5° increments. The internal two
phases of the module always maintain a phase difference of 180°.
This functionality can also be accessed using the PMBus command INTERLEAVE.
Table 12. Interleave
SA SA in Binary Low 4-Bits Interleave Phase Shift in Degrees Rail ID
19h 00011001 1001 9 202.5 25
1Ah 00011010 1010 10 225 26
1Bh 00011011 1011 11 247.5 27
1Ch 00011100 1100 12 270 28
1Dh 00011101 1101 13 292.5 29
1Eh 00011110 1110 14 315 30
1Fh 00011111 1111 15 337.5 31
20h 00100000 0000 0 0 0
21h 00100001 0001 1 22.5 1
22h 00100010 0010 2 45 2
23h 00100011 0011 3 67.5 3
24h 00100100 0100 4 90 4
25h 00100101 0101 5 112.5 5
26h 00100110 0110 6 135 6
27h 00100111 0111 7 157.5 7
28h 00101000 1000 8 180 8
29h 00101001 1001 9 202.5 9
2Ah 00101010 1010 10 225 10
2Bh 00101011 1011 11 247.5 11
2Ch 00101100 1100 12 270 12
2Dh 00101101 1101 13 292.5 13
2Eh 00101110 1110 14 315 14
2Fh 00101111 1111 15 337.5 15
30h 00110000 0000 0 0 16
31h 00110001 0001 1 22.5 17
32h 00110010 0010 2 45 18
33h 00110011 0011 3 67.5 19
34h 00110100 0100 4 90 20
35h 00110101 0101 5 112.5 21
36h 00110110 0110 6 135 22
37h 00110111 0111 7 157.5 23
FN9345 Rev.1.00 Page 29 of 58
Oct 23, 2018
RAA210870 4. Functional Description
4.14 Monitoring with SMBus
The RAA210870 can monitor a wide variety of different system parameters using the following PMBus
commands:
READ_VIN
READ_VOUT
READ_IOUT
READ_INTERNAL_TEMP
READ_DUTY_CYCLE
READ_FREQUENCY
READ_VMON
4.15 Snapshot Parameter Capture
The RAA210870 offers a special feature to capture parametric data and fault status following a fault event. A detailed
description is provided in the SNAPSHOT (EAh) and SNAPSHOT_CONTROL (F3h) sections of PMBus
Commands Description” on page 36.
FN9345 Rev.1.00 Page 30 of 58
Oct 23, 2018
RAA210870 5. Layout Guide
5. Layout Guide
To achieve stable operation, low losses and good thermal performance some layout considerations are necessary. See
Figure 24 for the recommended layout.
Establish separate SGND and PGND planes, then connect SGND to PGND on a middle layer and underneath PAD6
with a single point connection. For SGND and PGND pin connections, such as small pins H16, J16, M5, and M17...,
use multiple vias for each pin to connect to the inner SGND or PGND layer.
To minimize high frequency noise, place enough ceramic capacitors between VIN and PGND and VOUT and PGND.
Place bypass capacitors between VDD, VDRV, and the ground plane, as close to the module as possible. It is critical
to place the output ceramic capacitors close to the VOUT pads and in the direction of the load current path to create a
low impedance path for the high frequency inductor ripple current.
Use large copper areas for the power path (VIN, PGND, VOUT) to minimize conduction loss and thermal stress.
Also, use multiple vias to connect the power planes in different layers. It is recommended to enlarge PAD11 and 15
and place more vias on them. The ceramic capacitors CIN can be placed on the bottom layer under these two pads.
Connect remote sensing traces to the regulation point to achieve a tight output voltage regulation and place the two
traces in parallel. Route a trace from VSENN and VSENP to the point of load where the tight output voltage is
desired. Avoid routing any sensitive signal traces, such as the VSENN, VSENP sensing lines near the SW pins.
PAD14 and 16 (SW1 and SW2) are noisy pads, but they are beneficial for thermal dissipation. If the noise issue is
critical for the application, it is recommended to use only the top layer for the SW pads. For better thermal
performance, use multiple vias on these pads to connect into the SW inner and bottom layers. However, caution must
be taken when placing a limited area of SW planes in any layer. The SW planes should avoid the sensing signals and
should be surrounded by the PGND layer to avoid the noise coupling.
For pins SWD1 (L3) and SWD2 (P10), it is recommended to connect to the related SW1 and SW2 pads with short
loop wires. The wire width should be more than 20 mils.
Figure 24. Recommended Layout
PGND
VIN VIN
PGND PGND
VOUT
SGND
VSEN+
VSEN-
Kelvin Connections
CIN CIN
PGND PGND
COUT COUT
FN9345 Rev.1.00 Page 31 of 58
Oct 23, 2018
RAA210870 5. Layout Guide
5.1 Thermal Considerations
Experimental power loss curves along with θJA from thermal modeling analysis can be used to evaluate the thermal
consideration for the module. The derating curves are derived from the maximum power allowed while maintaining
the temperature below the maximum junction temperature of +125°C. In the actual application, consider other heat
sources and design margins.
5.2 Package Description
The RAA210870 uses the High Density Array no-lead package (HDA). This kind of package has advantages such
as good thermal and electrical conductivity, low weight, and small size. The HDA package is applicable for surface
mounting technology and is being more readily used in the industry. The RAA210870 contains several types of
devices, including resistors, capacitors, inductors, and control ICs. The RAA210870 is a copper leadframe based
package with exposed copper thermal pads, which have good electrical and thermal conductivity. The copper
leadframe and multicomponent assembly is overmolded with a polymer mold compound to protect these devices.
The package outline and typical Printed Circuit Board (PCB) layout pattern design and typical stencil pattern
design are shown on pages 51 through 57. The module has a small size of 18mmx 23mmx7.5mm.
5.3 PCB Layout Pattern Design
The bottom of the RAA210870 is a leadframe footprint, which is attached to the PCB by a surface mounting
process. The PCB layout pattern is shown on pages 56 through 57. The PCB layout pattern is an array of solder
mask defined PCB lands which align with the perimeters of the HDA exposed pads and I/O termination
dimensions. The thermal lands on the PCB layout also feature an array of solder mask defined lands and should
match 1:1 with the package exposed die pad perimeters. The exposed solder mask defined PCB land area should be
50-80% of the available module I/O area.
5.4 Thermal Vias
A grid of 1.0mm to 1.2mm pitch thermal vias, which drops down and connects to buried copper plane(s), should be
placed under the thermal land. The vias should be about 0.3mm to 0.33mm in diameter with the barrel plated to
about 1.0 oz. of copper. Although adding more vias (by decreasing via pitch) improves the thermal performance,
diminishing returns are seen as the number of vias is increased. Use as many vias as practical for the thermal land
size and your board design rules allow.
5.5 Stencil Pattern Design
Reflowed solder joints on the perimeter I/O lands should have about a 50µm to 75µm (2 mil to 3 mil) standoff
height. The solder paste stencil design is the first step in developing optimized, reliable solder joints. Stencil
aperture size to solder mask defined PCB land size ratio should typically be 1:1. The aperture width can be reduced
slightly to help prevent solder bridging between adjacent I/O lands. A typical solder stencil pattern is shown in the
Package Outline Drawing section starting on page 53. Consider the symmetry of the whole stencil pattern when
designing its pads. A laser cut, stainless steel stencil with electropolished trapezoidal walls is recommended.
Electropolishing “smooths” the aperture walls resulting in reduced surface friction and better paste release, which
reduces voids. Using a Trapezoidal Section Aperture (TSA) also promotes paste release and forms a brick like
paste deposit that assists in firm component placement. A 0.1mm to 0.15mm stencil thickness is recommended for
this large pitch HDA.
5.6 Reflow Parameters
Due to the low mount height of the HDA, “No-Clean” Type 3 solder paste per ANSI/J-STD-005 is recommended.
A nitrogen purge is also recommended during reflow. A system board reflow profile depends on the thermal mass
of the entire populated board, so it is not practical to define a specific soldering profile just for the HDA. The
profile given in Figure 25 is provided as a guideline, which can be customized for varying manufacturing practices
and applications.
FN9345 Rev.1.00 Page 32 of 58
Oct 23, 2018
RAA210870 5. Layout Guide
Figure 25. Typical Reflow Profile
0300100 150 200 250 350
0
50
100
150
200
250
300
Temperature (°C)
Duration (s)
Slow Ramp (3°C/s MAX)
and Soak from +150°C
TO +200°C for 60s~180s
Ramp Rate 1.5°C from +70°C to +90°C
Peak Temperature ~+245°C;
Typically 60s-150s Above +217°C
Keep Less Than 30s Within 5°C of Peak Temp.
FN9345 Rev.1.00 Page 33 of 58
Oct 23, 2018
RAA210870 6. PMBus Command Summary
6. PMBus Command Summary
Command
Code
Command
Name Description Type
Data
Format
Default
Value
Default
Setting Pg#
01h OPERATION Sets enable and disable settings. R/W Byte BIT 36
02h ON_OFF_CONFIG Configures the EN pin and PMBus
commands to turn the unit ON/OFF
R/W Byte BIT 16h Hardware enable,
soft off
36
03h CLEAR_FAULTS Clears fault indications. Send Byte 36
21h VOUT_COMMAND Sets the nominal value of the output
voltage.
R/W Word L16u VOUT Pin-strap
(set based on
VSET_CRS and
VSET_FINE)
37
24h VOUT_MAX Sets the maximum possible value of
VOUT
. 110% of pin-strap VOUT
.
R/W Word L16u 1.1*VOUT
Pin-strap
37
33h FREQUENCY_SWITCH Sets the switching frequency. R/W Word L11 Pin-strap 37
37h INTERLEAVE Configures a phase offset between
devices sharing a SYNC clock.
R/W Word BIT 0000h Pin-strap (set
based on SMBus
address)
38
40h VOUT_OV_FAULT_LIMIT Sets the VOUT overvoltage fault
threshold.
R/W Word L16u 1.15*VOUT
Pin-strap
38
44h VOUT_UV_FAULT_LIMIT Sets the VOUT undervoltage fault
threshold.
R/W Word L16u 0.85*VOUT
Pin-strap
38
46h IOUT_OC_FAULT_LIMIT Sets the IOUT average overcurrent
fault threshold.
R/W Word L11 EAD0h 90A 38
4Bh IOUT_UC_FAULT_LIMIT Sets the IOUT average undercurrent
fault threshold.
R/W Word L11 E4E0h -50A 39
4Fh OT_FAULT_LIMIT Sets the over-temperature fault
threshold.
R/W Word L11 EB98h +115°C 39
53h UT_FAULT_LIMIT Sets the under-temperature fault
threshold.
R/W Word L11 E530h -45°C 39
55h VIN_OV_FAULT_LIMIT Sets the VIN overvoltage fault
threshold.
R/W Word L11 D3A0h 14.5V 39
59h VIN_UV_FAULT_LIMIT Sets the VIN undervoltage fault
threshold.
R/W Word L11 Pin-strap 40
5Eh POWER_GOOD_ON Sets the voltage threshold for
Power-good indication.
R/W Word L16u 0.9*VOUT
Pin-strap
40
60h TON_DELAY Sets the delay time from ENABLE
to start of VOUT rise.
R/W Word L11 Pin-strap 40
61h TON_RISE Sets the rise time of VOUT after
ENABLE and TON_DELAY.
R/W Word L11 Pin-strap 40
64h TOFF_DELAY Sets the delay time from DISABLE
to start of VOUT fall.
R/W Word L11 Pin-strap 41
65h TOFF_FALL Sets the fall time for VOUT after
DISABLE and TOFF_DELAY.
R/W Word L11 Pin-strap 41
78h STATUS_BYTE Returns an abbreviated status for
fast reads.
Read Byte BIT 00h No faults 41
79h STATUS_WORD Returns information with a
summary of the unit’s fault
condition.
Read Word BIT 0000h No faults 42
7Ah STATUS_VOUT Returns the VOUT specific status. Read Byte BIT 00h No faults 42
7Bh STATUS_IOUT Returns the IOUT specific status. Read Byte BIT 00h No faults 43
FN9345 Rev.1.00 Page 34 of 58
Oct 23, 2018
RAA210870 6. PMBus Command Summary
7Ch STATUS_INPUT Returns specific status specific to
the input.
Read Byte BIT 00h No faults 43
7Dh STATUS_TEMP Returns the temperature specific
status.
Read Byte BIT 00h No faults 43
7Eh STATUS_CML Returns the communication, logic,
and memory specific status.
Read Byte BIT 00h No faults 44
80h STATUS_MFR_SPECIFIC Returns the VMON and external
sync clock specific status.
Read Byte BIT 00h No faults 44
88h READ_VIN Returns the input voltage reading. Read Word L11 44
8Bh READ_VOUT Returns the output voltage reading. Read Word L16u 45
8Ch READ_IOUT Returns the output current reading. Read Word L11 45
8Dh READ_INTERNAL_TEMP Returns the temperature reading
internal to the device.
Read Word L11 45
94h READ_DUTY_CYCLE Returns the duty cycle reading
during the ENABLE state.
Read Word L11 45
95h READ_FREQUENCY Returns the measured operating
switch frequency.
Read Word L11 45
96h READ_IOUT_0 Returns the phase 1 current
reading.
Read Word L11 46
97h READ_IOUT_1 Returns the phase 2 current
reading.
Read Word L11 46
DFh ASCR_CONFIG Configures ASCR control loop. R/W Block CUS Pin-strap46
E4h DEVICE_ID Returns the 16-byte (character)
device identifier string.
Read Block ASC Reads device
version
46
E5h MFR_IOUT_OC_FAULT_
RESPONSE
Configures the IOUT overcurrent
fault response.
R/W Byte BIT B9h Disable and 70ms
continuous retry
47
E6h MFR_IOUT_UC_FAULT_
RESPONSE
Configures the IOUT undercurrent
fault response.
R/W Byte BIT B9h Disable and 70ms
continuous retry
47
EAh SNAPSHOT Returns 32-byte read-back of
parametric and status values.
Read Block BIT 48
F3h SNAPSHOT_CONTROL Snapshot feature control command. R/W Byte BIT 48
F5h MFR_VMON_OV_FAULT_
LIMIT
Returns the VMON overvoltage
threshold.
Read Word L11 CB00h 6V 49
F6h MFR_VMON_UV_FAULT_
LIMIT
Returns the VMON undervoltage
threshold.
Read Word L11 CA00h 4V 49
F7h MFR_READ_VMON Returns the VMON voltage reading. Read Word L11 49
Command
Code
Command
Name Description Type
Data
Format
Default
Value
Default
Setting Pg#
FN9345 Rev.1.00 Page 35 of 58
Oct 23, 2018
RAA210870 6. PMBus Command Summary
6.1 PMBus Data Formats
Linear-11 (L11) - The L11 data format uses 5-bit two’s complement exponent (N) and 11-bit two’s complement
mantissa (Y) to represent real world decimal value (X).
The relation between real world decimal value (X), N, and Y is: X = Y·2N
Linear-16 Unsigned (L16u) - The L16u data format uses a fixed exponent (hard-coded to N = -13h) and a 16-bit
unsigned integer mantissa (Y) to represent real world decimal value (X). The relation between the real world decimal
value (X), N and Y is: X = Y·2-13
Linear-16 Signed (L16s) - The L16s data format uses a fixed exponent (hard-coded to N = -13h) and a 16-bit two’s
complement mantissa (Y) to represent real world decimal value (X).
The relation between the real world decimal value (X), N and Y is: X = Y·2-13
Bit Field (BIT) - An explanation of the Bit Field for each command is provided in PMBus Commands Description
on page 36.
Custom (CUS) - An explanation of the Custom data format for each command is provided in PMBus Commands
Description” on page 36. A combination of Bit Field and integer is a common type of Custom data format.
ASCII (ASC) - A variable length string of text characters using the ASCII data format.
6.2 PMBus Use Guidelines
The PMBus is a powerful tool that allows the user to optimize circuit performance by configuring devices for their
application. When configuring a device in a circuit, the device should be disabled whenever most settings are changed
with PMBus commands. Some exceptions to this recommendation are OPERATION, ON_OFF_CONFIG,
CLEAR_FAULTS, VOUT_COMMAND, and ASCR_CONFIG. While the device is enabled any command can be
read. Many commands do not take effect until after the device has been re-enabled, hence the recommendation that
commands that change device settings are written while the device is disabled.
In addition, there should be a 2ms delay between repeated READ commands sent to the same device. When sending
any other command, a 5ms delay is recommended between repeated commands sent to the same device.
Commands not listed in the PMBus command summary are not allowed for customer use, and are reserved for factory
use only. Issuing reserved commands can result in unexpected operation.
Data Byte High Data Byte Low
Exponent (N) Mantissa (Y)
76543210 76543210
FN9345 Rev.1.00 Page 36 of 58
Oct 23, 2018
RAA210870 7. PMBus Commands Description
7. PMBus Commands Description
OPERATION (01h)
Definition: Sets the Enable and Disable settings.
Data Length in Bytes: 1
Data Format: BIT
Type: R/W
Default Value:
Units: N/A
ON_OFF_CONFIG (02h)
Definition: Configures the interpretation and coordination of the OPERATION command and the ENABLE pin (EN).
Data Length in Bytes: 1
Data Format: BIT
Type: R/W
Default Value: 16h (Device starts from ENABLE pin with soft-off)
Units: N/A
CLEAR_FAULTS (03h)
Definition: Clears all fault bits in all registers and releases the SALRT pin (if asserted) simultaneously. If a fault
condition still exists, the bit reasserts immediately. This command does not restart a device if it has shut down, it only
clears the faults.
Data Length in Bytes: 0
Data Format: N/A
Type: Send byte
Default Value: N/A
Units: N/A
Reference: N/A
Settings Actions
00h Immediate off
40h Soft off
80h On
Settings Actions
16h Device starts from the ENABLE pin with soft off.
17h Device starts from the ENABLE pin with immediate off.
1Ah Device starts from the OPERATION command with soft off.
1Bh Device starts from the OPERATION command with immediate off.
FN9345 Rev.1.00 Page 37 of 58
Oct 23, 2018
RAA210870 7. PMBus Commands Description
VOUT_COMMAND (21h)
Definition: Sets or reports the target output voltage. This command cannot set a value higher than VOUT_MAX.
Data Length in Bytes: 2
Data Format: L16u
Type: R/W
Default Value: Pin-strap setting (set based on VSET_CRS and VSET_FINE)
Units: Volts
Range: 0V to VOUT_MAX
VOUT_MAX (24h)
Definition: Sets an upper limit on the output voltage the unit can command regardless of any other commands or
combinations. The command provides a safeguard against a user accidentally setting the output voltage to a possibly
destructive level rather than to be the primary output overprotection. The default value can be changed using PMBus.
Data Length in Bytes: 2
Data Format: L16u
Type: R/W
Default Value: 1.10 x VOUT pin-strap setting
Units: Volts
Range: 0V to 5.5V
FREQUENCY_SWITCH (33h)
Definition: Sets the switching frequency of the device. The initial default value is defined by a pin-strap, and this
value can be overridden by writing this command from the PMBus. The output must be disabled when writing this
command.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: kHz
Range: 296kHz to 1067kHz
FN9345 Rev.1.00 Page 38 of 58
Oct 23, 2018
RAA210870 7. PMBus Commands Description
INTERLEAVE (37h)
Definition: Configures the phase offset of a device that is sharing a common SYNC clock with other devices. The
phase offset of each device can be set to any value between 0° and 360° in 22.5° increments.
Data Length in Bytes: 2
Data Format: BIT
Type: R/W
Default Value: Pin-strap (set based on SMBus address)
Units: N/A
VOUT_OV_FAULT_LIMIT (40h)
Definition: Sets the VOUT overvoltage fault threshold.
Data Length in Bytes: 2
Data Format: L16u
Type: R/W
Default Value: 1.15xVOUT_COMMAND pin-strap setting
Units: V
Range: 0V to VOUT_MAX
VOUT_UV_FAULT_LIMIT (44h)
Definition: Sets the VOUT undervoltage fault threshold. This fault is masked during ramp or when disabled.
Data Length in Bytes: 2
Data Format: L16u
Type: R/W
Default Value: 0.85xVOUT pin-strap setting
Units: V
Range: 0V to VOUT_MAX
IOUT_OC_FAULT_LIMIT (46h)
Definition: Sets the IOUT average overcurrent fault threshold. The device automatically calculates peak inductor
overcurrent fault limit for each phase based on the equation: IOUT(PEAK OC LIMIT) =
(0.5*IOUT_OC_FAULT_LIMIT+0.5*IRIPPLE(P-P))*120%. A hard bound of 55A is applied to the peak overcurrent
fault limit per phase.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: EAD0h (90A)
Units: A
Range: -100A to 100A
Bits Purpose Value Description
15:8 Reserved 0 These bits are reserved
7:4 Group Number 0 to 15 Sets the group number. A value of 0 is interpreted as 16.
3:0 Position in Group 0 to 15 Sets position of the device's rail within the group.
FN9345 Rev.1.00 Page 39 of 58
Oct 23, 2018
RAA210870 7. PMBus Commands Description
IOUT_UC_FAULT_LIMIT (4Bh)
Definition: Sets the IOUT average undercurrent fault threshold. The device automatically calculates the valley inductor
undercurrent fault limit for each phase based on the equation: IOUT(VALLEY UC LIMIT) =
(0.5*IOUT_UC_FAULT_LIMIT-0.5*IRIPPLE(P-P))*120%. A hard bound of -55A is applied to the valley undercurrent
fault limit per phase.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: E4E0h (-50A)
Units: A
Range: -100A to 100A
OT_FAULT_LIMIT (4Fh)
Definition: Sets the temperature at which the device should indicate an over-temperature fault. Note that the
temperature must drop below the fault level to clear this fault.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: EB98h (+115˚C)
Units: Celsius
Range: 0°C to +150°C
UT_FAULT_LIMIT (53h)
Definition: Sets the temperature, in degrees Celsius, of the unit where it should indicate an under-temperature fault.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: E530h (-45°C)
Units: Celsius
Range: -55°C to +25°C
VIN_OV_FAULT_LIMIT (55h)
Definition: Sets the VIN overvoltage fault threshold.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: D3A0h (14.5V)
Units: V
Range: 0V to 16V
FN9345 Rev.1.00 Page 40 of 58
Oct 23, 2018
RAA210870 7. PMBus Commands Description
VIN_UV_FAULT_LIMIT (59h)
Definition: Sets the VIN undervoltage fault threshold.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: V
Range: 0V to 12V
POWER_GOOD_ON (5Eh)
Definition: Sets the voltage threshold for Power-good indication. Power-good asserts after the output voltage exceeds
POWER_GOOD_ON . It is recommended to set POWER_GOOD_ON higher than VOUT_UV_FAULT_LIMIT.
Data Length in Bytes: 2
Data Format: L16u
Type: R/W
Default Value: 0.9 x VOUT pin-strap setting
Units: V
TON_DELAY (60h)
Definition: Sets the delay time from when the device is enabled to the start of VOUT rise.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: ms
Range: 2ms to 300ms
TON_RISE (61h)
Definition: Sets the rise time of VOUT after ENABLE and TON_DELAY.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: ms
Range: 0ms to 120ms
FN9345 Rev.1.00 Page 41 of 58
Oct 23, 2018
RAA210870 7. PMBus Commands Description
TOFF_DELAY (64h)
Definition: Sets the delay time from DISABLE to start of VOUT fall.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: ms
Range: 2ms to 300ms
TOFF_FALL (65h)
Definition: Sets the soft-off fall time for VOUT after DISABLE and TOFF_DELAY.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: ms
Range: 0ms to 120ms
STATUS_BYTE (78h)
Definition: Returns one byte of information with a summary of the most critical faults.
Data Length in Bytes: 1
Data Format: BIT
Type: Read-only
Default Value: 00h
Units: N/A
Bit Number Status Bit Name Meaning
7 BUSY A fault was declared because the device was busy and unable to respond.
6 OFF This bit is asserted if the unit is not providing power to the output, regardless of the reason,
including simply not being enabled.
5 VOUT_OV_FAULT An output overvoltage fault has occurred.
4 IOUT_OC_FAULT An output overcurrent fault has occurred.
3 VIN_UV_FAULT An input undervoltage fault has occurred.
2 TEMPERATURE A temperature fault has occurred.
1 CML A communications, memory, or logic fault has occurred.
0 None of the Above A fault not listed in bits 7:1 has occurred.
FN9345 Rev.1.00 Page 42 of 58
Oct 23, 2018
RAA210870 7. PMBus Commands Description
STATUS_WORD (79h)
Definition: Returns two bytes of information with a summary of the unit's fault condition. Based on the information in
these bytes, the host can get more information by reading the appropriate status registers. The low byte of the
STATUS_WORD is the same register as the STATUS_BYTE (78h) command.
Data Length in Bytes: 2
Data Format: BIT
Type: Read-only
Default Value: 0000h
Units: N/A
STATUS_VOUT (7Ah)
Definition: Returns one data byte with the status of the output voltage.
Data Length in Bytes: 1
Data Format: BIT
Type: Read-only
Default Value: 00h
Units: N/A
Bit Number Status Bit Name Meaning
15 VOUT An output voltage fault has occurred.
14 IOUT/POUT An output current or output power fault has occurred.
13 INPUT An input voltage, input current, or input power fault has occurred.
12 MFG_SPECIFIC A manufacturer specific fault has occurred.
11 POWER_GOOD# The POWER_GOOD signal, if present, is negated.
10 Reserved This bit is reserved.
9 OTHER A bit in STATUS_OTHER is set.
8 UNKNOWN A fault type not given in Bits 15:1 of the STATUS_WORD has been detected.
7 BUSY A fault was declared because the device was busy and unable to respond.
6 OFF This bit is asserted if the unit is not providing power to the output, regardless of the reason,
including simply not being enabled.
5 VOUT_OV_FAULT An output overvoltage fault has occurred.
4 IOUT_OC_FAULT An output overcurrent fault has occurred.
3 VIN_UV_FAULT An input undervoltage fault has occurred.
2 TEMPERATURE A temperature fault has occurred.
1 CML A communications, memory, or logic fault has occurred.
0 None of the Above A fault not listed in Bits 7:1 has occurred.
Bit Number Status Bit Name Meaning
7 VOUT_OV_FAULT Indicates an output overvoltage fault.
6 Reserved This bit is reserved.
5 Reserved This bit is reserved.
4 VOUT_UV_FAULT Indicates an output undervoltage fault.
3:0 N/A These bits are not used.
FN9345 Rev.1.00 Page 43 of 58
Oct 23, 2018
RAA210870 7. PMBus Commands Description
STATUS_IOUT (7Bh)
Definition: Returns one data byte with the status of the output current.
Data Length in Bytes: 1
Data Format: BIT
Type: Read-only
Default Value: 00h
Units: N/A
STATUS_INPUT (7Ch)
Definition: Returns the input voltage and input current status information.
Data Length in Bytes: 1
Data Format: BIT
Type: Read-only
Default Value: 00h
Units: N/A
STATUS_TEMPERATURE (7Dh)
Definition: Returns one byte of information with a summary of any temperature related faults.
Data Length in Bytes: 1
Data Format: BIT
Type: Read-only
Default Value: 00h
Units: N/A
Bit Number Status Bit Name Meaning
7 IOUT_OC_FAULT An output overcurrent fault has occurred.
6 Reserved This bit is reserved.
5 Reserved This bit is reserved.
4 IOUT_UC_FAULT An output undercurrent fault has occurred.
3:0 N/A These bits are not used.
Bit Number Status Bit Name Meaning
7 VIN_OV_FAULT An input overvoltage fault has occurred.
6 Reserved This bit is reserved.
5 Reserved This bit is reserved.
4 VIN_UV_FAULT An input undervoltage fault has occurred.
3:0 N/A These bits are not used.
Bit Number Status Bit Name Meaning
7 OT_FAULT An over-temperature fault has occurred.
6 Reserved This bit is reserved.
5 Reserved This bit is reserved.
4 UT_FAULT An under-temperature fault has occurred.
3:0 N/A These bits are not used.
FN9345 Rev.1.00 Page 44 of 58
Oct 23, 2018
RAA210870 7. PMBus Commands Description
STATUS_CML (7Eh)
Definition: Returns one byte of information with a summary of any communications, logic, and/or memory errors.
Data Length in Bytes: 1
Data Format: BIT
Type: Read-only
Default Value: 00h
Units: N/A
STATUS_MFR_SPECIFIC (80h)
Definition: Returns one byte of information providing the status of the device's voltage monitoring and clock
synchronization faults.
Data Length in Bytes: 1
Data Format: BIT
Type: Read only
Default value: 00h
Units: N/A
READ_VIN (88h)
Definition: Returns the input voltage reading.
Data Length in Bytes: 2
Data Format: L11
Type: Read-only
Units: V
Bit Number Meaning
7 Invalid or unsupported PMBus command was received.
6 The PMBus command was sent with invalid or unsupported data.
5 Packet error was detected in the PMBus command.
4 Mem/Logic fault.
3:2 Reserved.
1 A PMBus command tried to write to a read-only or protected command, or a communication fault other than the
ones listed in this table has occurred.
0Reserved
Bit Number Field Name Meaning
7:4 Reserved These bits are reserved.
3 External Switching Period Fault Loss of external clock synchronization has occurred.
2 Reserved This bit is reserved.
1 VMON UV Fault The voltage on the VMON pin has dropped below the level set by
VMON_UV_FAULT_LIMIT.
0 VMON OV Fault The voltage on the VMON pin has risen above the level set by
VMON_OV_FAULT_LIMIT.
FN9345 Rev.1.00 Page 45 of 58
Oct 23, 2018
RAA210870 7. PMBus Commands Description
READ_VOUT (8Bh)
Definition: Returns the output voltage reading.
Data Length in Bytes: 2
Data Format: L16u
Type: Read-only
Units: V
READ_IOUT (8Ch)
Definition: Returns the output current reading.
Data Length in Bytes: 2
Data Format: L11
Type: Read-only
Default Value: N/A
Units: A
READ_INTERNAL_TEMP (8Dh)
Definition: Returns the controller junction temperature reading from internal temperature sensor. Note that the
junction temperature of the power stage in the module may be higher than the READ_INTERNAL_TEMP command
value, and the temperature difference depends on the operating condition. In some cases, the power stage junction
temperature can be 30°C higher than the READ_INTERNAL_TEMP command value.
Data Length in Bytes: 2
Data Format: L11
Type: Read-only
Units: °C
READ_DUTY_CYCLE (94h)
Definition: Reports the actual duty cycle of the converter during the enable state.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Units: %
READ_FREQUENCY (95h)
Definition: Reports the actual switching frequency of the converter during the enable state.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Units: kHz
FN9345 Rev.1.00 Page 46 of 58
Oct 23, 2018
RAA210870 7. PMBus Commands Description
READ_IOUT_0 (96h)
Definition: Returns the Phase 1 current reading.
Data Length in Bytes: 2
Data Format: L11
Type: Read-only
Default Value: N/A
Units: A
READ_IOUT_1 (97h)
Definition: Returns the Phase 2 current reading.
Data Length in Bytes: 2
Data Format: L11
Type: Read-only
Default Value: N/A
Units: A
ASCR_CONFIG (DFh)
Definition: Allows user configuration of ASCR settings. ASCR gain is analogous to bandwidth and ASCR residual is
analogous to damping. To improve load transient response performance, increase ASCR gain. To lower transient
response overshoot, increase ASCR residual. Increasing ASCR gain can result in increased PWM jitter and should be
evaluated in the application circuit. Excessive ASCR gain can lead to excessive output voltage ripple. Increasing
ASCR residual to improve transient response damping can result in slower recovery times, but does not affect the peak
output voltage deviation. Typical ASCR gain settings range from 50 to 1000, and ASCR residual settings range from
10 to 100.
Data Length in Bytes: 4
Data Format: CUS
Type: R/W
Default Value: Pin-strap setting
DEVICE_ID (E4h)
Definition: Returns the 16-byte (character) device identifier string.
Data Length in Bytes: 16
Data Format: ASC
Type: Block Read
Default Value: Part number/Die revision/Firmware revision
Bit Purpose Data Format Value Description
31:24 Unused 0000000h Unused
24 Reserved This bit is reserved
23:16 ASCR Residual Setting Integer ASCR residual
15:0 ASCR Gain Setting Integer ASCR gain
FN9345 Rev.1.00 Page 47 of 58
Oct 23, 2018
RAA210870 7. PMBus Commands Description
MFR_IOUT_OC_FAULT_RESPONSE (E5h)
Definition: Configures the IOUT overcurrent fault response as defined by the following table. The command format is
the same as the PMBus standard fault responses except that it sets the overcurrent status bit in STATUS_IOUT.
Data Length in Bytes: 1
Data Format: BIT
Type: R/W
Default Value: B9h (Disable, and 70ms continuous retry)
Units: N/A
MFR_IOUT_UC_FAULT_RESPONSE (E6h)
Definition: Configures the IOUT undercurrent fault response as defined by the following table. The command format is
the same as the PMBus standard fault responses except that it sets the undercurrent status bit in STATUS_IOUT.
Data Length in Bytes: 1
Data Format: BIT
Type: R/W
Default Value: B9h (Disable and 70ms continuous retry)
Units: N/A
Field Name Actions
80h Disable with no retry.
B9h Disable and continuous retry with 70ms delay
Field Name Actions
80h Disable with no retry.
B9h Disable and continuous retry with 70ms delay
FN9345 Rev.1.00 Page 48 of 58
Oct 23, 2018
RAA210870 7. PMBus Commands Description
SNAPSHOT (EAh)
Definition: 32-byte read-back of parametric and status values. It allows monitoring and status data to be stored to flash
following a fault condition. In case of a fault, last updated values are stored to the flash memory. When the
SNAPSHOT STATUS bit is set to stored, the device no longer automatically captures parametric and status values
following fault until stored data are erased. Use the SNAPSHOT_CONTROL command to erase store data and clear
the status bit before next ramp up. Data erase is not allowed when the module is enabled.
Data Length in Bytes: 32
Data Format: Bit field
Type: Block Read
SNAPSHOT_CONTROL (F3h)
Definition: Writing a 01h causes the device to copy the current Snapshot values from NVRAM to the 32-byte
Snapshot command parameter. Writing a 02h causes the device to write the current Snapshot values to NVRAM.
Writing an 03h erases all Snapshot values from NVRAM. Write (02h) and Erase (03h) can be used only when the
device is disabled. All other values are ignored.
Data Length in Bytes: 1
Data Format: Bit field
Type: R/W byte
Byte Number Value Pmbus Command Format
31:23 Reserved These bits are reserved 00h
22 Flash Memory Status Byte
FF - Not Stored
00 - Stored
N/A BIT
21 Manufacturer Specific Status Byte STATUS_MFR_SPECIFIC (80h) Byte
20 CML Status Byte STATUS_CML (7Eh) Byte
19 Temperature Status Byte STATUS_TEMPERATURE (7Dh) Byte
18 Input Status Byte STATUS_INPUT (7Ch) Byte
17 IOUT Status Byte STATUS_IOUT (7Bh) Byte
16 VOUT Status Byte STATUS_VOUT (7Ah) Byte
15:14 Switching Frequency READ_FREQUENCY (95h) L11
13:12 Reserved These bits are reserved 00h
11:10 Internal Temperature READ_INTERNAL_TEMP (8Dh) L11
9:8 Duty Cycle READ_DUTY_CYCLE (94h) L11
7:6 Reserved These bits are reserved L11
5:4 Output Current READ_IOUT (8Ch) L11
3:2 Output Voltage READ_VOUT (8Bh) L16u
1:0 Input Voltage READ_VIN (88h) L11
Value Description
01h Read Snapshot values from NV RAM
02h Write Snapshot values to NV RAM
03h Erase Snapshot values stored in NV RAM.
FN9345 Rev.1.00 Page 49 of 58
Oct 23, 2018
RAA210870 7. PMBus Commands Description
MFR_VMON_OV_FAULT_LIMIT (F5h)
Definition: Reads the VMON OV fault threshold.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Default Value: CB00h (6V)
Units: V
Range: 4V to 6V
MFR_VMON_UV_FAULT_LIMIT (F6h)
Definition: Reads the VMON UV fault threshold
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Default Value: CA00h (4V)
Units: V
Range: 4V to 6V
MFR_READ_VMON (F7h)
Definition: Reads the VMON voltage.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Default Value: N/A
Units: V
Range: 4V to 6V
FN9345 Rev.1.00 Page 50 of 58
Oct 23, 2018
RAA210870 8. Revision History
8. Revision History
8.1 Firmware
8.2 Datasheet
Table 13. RAA210870 Nomenclature Guide
Firmware
Revision Code Change Description Note
RAA210870--G0100 Initial Release Recommended for new designs
Rev. Date Description
1.0 Oct 23, 2018 Updated PG pin description on page 11.
Updated pin configuration to show correct location for M5 and N5.
Changed PMBus to SMBus in the SMBus Communications section.
Changed 5V to 2.5V in the sentence after Table 6 on page 21.
Changed On-Nominal to On in the table under the OPERATION section on page 36.
Changed Reserved to Output Current for Bits5:4 value in the SNAPSHOT section on page 48.
0.00 Sep 10, 2018 Initial release
FN9345 Rev.1.00 Page 51 of 58
Oct 23, 2018
RAA210870 9. Package Outline Drawing
9. Package Outline Drawing
Y58.18x23
58 I/O 18mmx23mmx7.5mm Custom HDA Module
Rev 4, 4/18
1518 1617 1314 1112
AB
AC
U
V
W
Y
AA
N
P
R
T
6910 784523
H
J
K
L
M
D
E
F
G
A
B
C
1
Terminal Tip
7.50 Max
Max 0.025
Seating Plane
Side View
C
42x0.60 ±0.05
Top View
18.00
Detail A
0.20 Ref
0.20 Ref
0.10 C
(9x11.5)
Index Area
Terminal #A1
0.10 C2X
2X
23.00
AB
0.10 C A B
3
30.05 C
42x0.60 ±0.05
2
2
1.00
1.00
0.10 C
0.08 C
Represents the basic land grid pitch.
3.
2.
All dimensions are in millimeters.1.
Notes:
Dimensioning and tolerancing per ASME Y14.5-2009.
Tolerance for exposed PAD edge location dimension on
4.
5.
These 42 I/Os are centered in a fixed row and column matrix
at 1.0mm pitch BSC.
page 3 is ±0.1mm.
Datum A Pin A1 Indicator
C = 0.35
See Detail A
Datum B
16.00
17.20
22.60 ±0.15
0.10 C A B
M
0.40 Ref
0.10 C A B
M
12.00
Bottom View
0.100 R Ref
M
M
7.30 Min
For the most recent package outline drawing, see Y58.18x23.
FN9345 Rev.1.00 Page 52 of 58
Oct 23, 2018
RAA210870 9. Package Outline Drawing
9.70
2.90
3.60
2.00
5.40
7.00
4.00
6.50
8.60
0.20
0.80
6.60
7.20
2.60
8.50
6.40
2.90
5.10
2.40
1.80
4.40
4.60
6.00
0.40
8.60
6.00
8.10
9.30 9.70
11.30
3.80
3.00
1.20
8.10
9.30
11.30
5.20
6.30
6.00
4.00
3.30
0.00
9.10
6.20
7.20
2.00
5.70
5.50
6.30
6.50
8.80
7.80
2.70 2.30
1.70 1.30
0.70
0.70
1.30
1.70
2.30
5.80
5.20
4.80
4.20
3.80
3.20
9.30
8.70
5.30
4.70
3.30
4.30
3.70
2.70
0.30
0.30
7.30 6.70
9.70
11.30
7.70
2.30
1.00
8.20
6.80
2.00
5.50
6.50
9.10
7.20
9.30
4.30
4.70
5.30
5.70
3.70
0.00
0.70
1.30
7.30
6.70
7.80
8.80
9.70
7.70
6.30
11.30
6.20
4.80
4.20
3.80 3.20
1.80
2.20
2.80
5.20
5.80
0.50
0.50
2.80
2.20
1.20 0.80
0.80 1.20
0.20
0.20
1.80
1.60 (2X)
2.10 (2X)
1.10 (2X)
5.30 (2X)
5.60
7.40
6.40
1.40 (2X)
4.40
6.20
0.60
5.60
4.00 (2X)
4.20
2.00 (2X)
0.80 (2X)
2.20
1.10
5.00 (2X)
2.20
2.60
4.80 (2X)
1.60 (2X)
1.00 (2X)
3.60
8.30 (2X)
3.40
1.00 (2X)
1.30
2.30
4.60
4.40
1.60 (2X)
Size Details for the 16 Exposed Pads
Bottom View
1.00 (2X)
Terminal and Pad Edge Details
3.50 (2X)
Details
FN9345 Rev.1.00 Page 53 of 58
Oct 23, 2018
RAA210870 9. Package Outline Drawing
0.000 0.000
11.270
2.030
3.590
3.910
5.470
7.810
8.130
9.410
11.270
11.500
11.500
0.530
1.390
1.710
2.500
5.610
6.400
6.720
7.510
7.830
8.770
0.530
1.390
1.710
2.500
5.610
6.400
6.720
7.510
7.830
8.770
9.000
11.500
11.270
9.730
9.410
8.130
7.810
6.530
5.470
3.910
3.590
2.030
7.510
7.830
8.640
8.960
9.770
10.090
11.270
11.500
9.730
9.000
8.570
7.660
7.340
5.240
4.920
4.190
3.870
3.140
2.090
0.230
0.770
1.230
1.910
2.230
2.910
3.230
3.910
4.230
4.910
5.230
5.910
6.230
6.910
9.000 9.000
Stencil Opening Edge Position - 1
3.895
5.290
2.820
3.895
4.215
5.290
6.530
6.330
7.790
8.110
9.490
9.810
2.820
5.970
6.430
9.730
9.730
6.330
2.820
4.215
0.000
0.000
0.000 0.000
Stencil Opening Edge Position - 2
0.785
3.215
0.215
0.785
4.215
5.215
5.785
6.215
6.785
7.785
9.285
8.715
8.285
7.715
7.285
6.715
6.285
5.715
5.285
4.715
3.715
3.285
2.715
1.715
1.285
0.715
0.285
0.285
0.715
2.715
2.285
8.715
7.285
6.285
5.285
4.285
1.285
0.715
0.285
0.285
0.715
1.285
2.715
1.785
1.785
7.215
7.785
4.785
4.215
9.000
9.000
11.500
11.500 11.500
11.500
9.000
9.000
2.285
4.785
3.785
3.215
2.785
2.215
1.785
1.215
5.785
5.215
0.215
1.215
1.785
2.215
2.785
3.785
4.215
4.785
6.215
6.785
4.285
1.285
3.285
6.215
6.785
1.215
1.215
3.215
3.785
3.715
4.715
5.715
6.715
7.715
9.285
3.285
1.715
8.285
0.0000.000
8.450
7.215
8.785
8.215
Stencil
FN9345 Rev.1.00 Page 54 of 58
Oct 23, 2018
RAA210870 9. Package Outline Drawing
0.000 0.000
6.330
7.960
11.500
6.570
5.890
5.570
4.890
3.890
3.570
2.890
2.570
1.990
1.670
1.160
2.090
2.820
3.140
3.870
4.190
4.430
4.920
5.240
5.970
6.030
6.890
7.210
8.070
11.500
11.500
9.000
9.000
11.500
9.000
9.000
Stencil Opening Edge Position - 3
2.770
1.875
1.555
0.660
0.340
0.555
0.875
1.770
2.330
3.495
4.340
4.660
5.505
5.825
6.670
3.175
4.570
8.530
7.640
9.270
0.0000.000
0.000 0.000
Stencil Opening Edge Position - 4
9.070
7.960
7.640
6.530
9.070
7.960
7.640
6.530
2.930
3.840
4.160
5.070
7.170
6.230
3.840
4.160
2.430
3.110
3.430
4.110
5.110
5.430
6.110
8.530
9.270
0.230
1.840
2.160
3.770
4.090
4.570
9.000
9.000
11.500
11.500
9.000
9.000
11.500
11.500
7.170
6.230
6.030
6.7057.025
7.7008.020
9.280
10.275
8.570
7.230
5.230
6.740
7.060
8.570
5.070
4.030
5.430
4.430
2.930
9.600
10.595
11.270
6.970
0.000
0.000
Stencil
FN9345 Rev.1.00 Page 55 of 58
Oct 23, 2018
RAA210870 9. Package Outline Drawing
0.000 0.000
Stencil Opening Edge Position - 5
6.890
8.070
1.030
2.270
4.030
2.030
3.570
4.430
4.910
8.770
7.810
7.490
6.530
0.430
1.770
6.030
6.705
7.025
7.700
3.030
4.080
4.810
5.130
5.860
6.180
6.910
9.000
9.000
9.280
9.600
10.275
10.595
11.270
11.500
11.500
9.000
9.000
11.500
11.500
5.070
6.030
7.210
3.760
8.020
0.000
PCB Land Pattern - 1 (for Reference)
0.000
9.000
8.800
7.800
7.540
6.690
6.430
5.580
5.320
4.185
3.925
2.790
2.530
1.680
1.420
0.500
1.420
1.680
2.530
2.790
3.925
4.185
5.320
5.580
6.430
6.690
7.540
7.800
8.450
9.000
0.000
11.500
10.950
9.700
9.440
8.100
7.840
6.500
5.500
3.880
3.620
2.000
6.300
7.540
7.800
8.670
8.930
9.800
10.060
11.300
11.500
9.700
0.000
9.000
8.600
7.630
7.370
6.400
6.000
5.210
4.950
4.160
3.900
3.110
2.850
2.060
0.200
0.800
1.200
1.940
2.200
2.940
3.200
3.940
4.200
4.940
5.200
5.940
6.200
6.940
9.000
0.000
9.780
9.700
9.520
8.080
7.820
6.300
11.300
11.500
2.000
3.620
3.880
5.500
6.500
7.840
8.100
9.440
9.700
11.300
11.500
0.500
0.000
8.800
Stencil
FN9345 Rev.1.00 Page 56 of 58
Oct 23, 2018
RAA210870 9. Package Outline Drawing
PCB Land Pattern - 2 (for Reference)
0.000
9.000
5.800
5.200
4.800
4.200
6.800
6.200
3.800
3.200
2.800
2.200
1.800
1.200
0.800
0.200
0.200
0.800
1.200
1.800
2.200
2.800
3.200
3.800
4.200
4.800
9.000
5.200
5.800
0.000
11.500
9.300
8.700
8.300
7.700
7.300
6.700
6.300
5.700
5.300
4.700
4.300
3.700
1.300
0.700
0.300
0.300
0.700
1.300
2.700
3.300
11.500
0.000
9.000
4.800
4.200
3.800
3.200
1.800
1.200
0.200
0.800
1.200
1.800
3.200
3.800
4.200
4.800
6.200
6.800
7.200
7.800
9.000
0.000
11.500
9.300
8.700
8.300
7.700
7.300
6.700
6.300
5.700
5.300
4.700
4.300
3.700
3.300
2.700
2.300
1.700
1.300
0.700
0.300
0.300
0.700
1.300
2.700
3.300
11.500
6.200
6.800
7.200
7.800 8.200
8.800
1.700
2.300
PCB Land Pattern - 3 (for Reference)
0.000
1.800
0.845
0.585
0.370
0.630
1.585
1.845
2.800
9.000
9.000
0.000
6.700
5.795
5.535
4.630
4.370
3.465
3.205
2.300
6.000
6.920
7.180
8.100
11.500
11.500
0.000
11.500
9.300
8.500
7.930
7.670
6.300
11.500
0.000
9.000
6.000
5.210
4.950
4.160
3.900
3.110
2.850
2.060
9.000
1.060
1.700
1.960
2.600
2.860
3.600
3.860
4.600
4.860
5.600
5.860
6.600
PCB land pattern
FN9345 Rev.1.00 Page 57 of 58
Oct 23, 2018
RAA210870 9. Package Outline Drawing
PCB Land Pattern - 4 (for Reference)
9.100
7.930
7.670
6.500
9.000
7.200
6.200
9.000
0.000
11.500
2.900
3.870
4.130
5.100
8.500
9.300
11.500
0.000
9.000
6.140
5.400
5.140
4.400
4.140
3.400
3.140
2.400
7.030
6.770
5.200
8.600
9.000
0.000
11.500
11.300
10.565
10.305
9.570
9.310
7.990
7.730
6.995
6.735
6.000
5.100
4.000
4.130
3.870
2.900
11.500
6.500
7.670
7.930
9.100
0.200
1.870
2.130
3.800
4.060
4.600
5.400
7.000
7.200
8.600
0.000
7.200
6.200
0.000
4.000
5.100
6.000
6.735
6.995
7.730
7.990
9.310
9.570
10.305
10.565
11.300
11.500
11.500
9.000
1.800
0.400
3.000
3.790
4.050
4.840
5.100
5.890
6.150
6.940
9.000
0.000
11.500
8.100
7.180
6.920
6.000
11.500
0.000
9.000
1.000
2.300
PCB Land Pattern - 5 (for Reference)
0.000
8.800
7.780
7.520
6.500
4.940
4.400
3.600
2.000
PCB land pattern
http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.
Renesas Electronics Corporation
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338
SALES OFFICES
© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 7.2
(Rev.4.0-1 November 2017)
Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for
the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by
you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or
arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application
examples.
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by
you or third parties arising from such alteration, modification, copying or reverse engineering.
5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the
product’s quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic
equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are
not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause
serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all
liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or
other Renesas Electronics document.
6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the
reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified
ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a
certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury
or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult
and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and
sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable
laws and regulations.
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws
or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or
transactions.
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third
party in advance of the contents and conditions set forth in this document.
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
All trademarks and registered trademarks are the property of their respective owners.