This is information on a product in full production.
January 2017 DocID026967 Rev 4 1/128
STM32F098CC STM32F098RC
STM32F098VC
ARM®-based 32-bit MCU, 256 KB Flash, CAN, 12 timers, ADC,
DAC, and comm. interfaces, 1.8 V
Datasheet - production data
Features
Core: ARM® 32-bit Cortex®-M0 CPU,
frequency up to 48 MHz
Memories
256 Kbytes of Flash memory
32 Kbytes of SRAM with HW parity
CRC calculation unit
Reset and power management
Digital & I/Os supply: VDD = 1.8 V ± 8%
Analog supply: VDDA = VDD to 3.6 V
Selected I/Os: VDDIO2 = 1.65 V to 3.6 V
Low power modes: Sleep, Stop
–V
BAT supply for RTC and backup registers
Clock management
4 to 32 MHz crystal oscillator
32 kHz oscillator for RTC with calibration
Internal 8 MHz RC with x6 PLL option
Internal 40 kHz RC oscillator
Internal 48 MHz oscillator with automatic
trimming based on ext. synchronization
Up to 87 fast I/Os
All mappable on external interrupt vectors
Up to 68 I/Os with 5V-tolerant capability
and 19 with independent supply VDDIO2
12-channel DMA controller
One 12-bit, 1.0 µs ADC (up to 16 channels)
Conversion range: 0 to 3.6 V
Separate analog supply: 2.4 V to 3.6 V
One 12-bit D/A converter (with 2 channels)
Two fast low-power analog comparators with
programmable input and output
Up to 23 capacitive sensing channels for
touchkey, linear and rotary touch sensors
Calendar RTC with alarm and periodic wakeup
from Stop/Standby
12 timers
One 16-bit advanced-control timer for
6 channel PWM output
One 32-bit and seven 16-bit timers, with up
to 4 IC/OC, OCN, usable for IR control
decoding or DAC control
Independent and system watchdog timers
SysTick timer
Communication interfaces
–Two I
2C interfaces supporting Fast Mode
Plus (1 Mbit/s) with extra current sink, one
supporting SMBus/PMBus and wakeup
Up to eight USARTs supporting master
synchronous SPI and modem control, three
with ISO7816 interface, LIN, IrDA, auto
baud rate detection and wakeup feature
Two SPIs (18 Mbit/s) with 4 to 16
programmable bit frames, and with I2S
interface multiplexed
CAN interface
HDMI CEC wakeup on header reception
Serial wire debug (SWD)
96-bit unique ID
All packages ECOPACK®2
LQFP100 14x14 mm
LQFP64 10x10 mm
LQFP48 7x7 mm
UFQFPN48
7x7 mm
)%*$
UFBGA100
7x7 mm
UFBGA64
5x5 mm
WLCSP64
3.3x3.6mm
www.st.com
Contents STM32F098CC STM32F098RC STM32F098VC
2/128 DocID026967 Rev 4
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 ARM®-Cortex®-M0 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 14
3.5 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.2 Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.3 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.8 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 17
3.9.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 17
3.10 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.11 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.12 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.13 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.14 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14.2 General-purpose timers (TIM2, 3, 14, 15, 16, 17) . . . . . . . . . . . . . . . . . 22
3.14.3 Basic timersTIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.14.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.14.5 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.14.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
DocID026967 Rev 4 3/128
STM32F098CC STM32F098RC STM32F098VC Contents
4
3.15 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 23
3.16 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.17 Universal synchronous/asynchronous receiver/transmitter (USART) . . . 25
3.18 Serial peripheral interface (SPI) / Inter-integrated sound interface (I2S) . 26
3.19 High-definition multimedia interface (HDMI) - consumer
electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.20 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.21 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.22 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 55
6.3.3 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.5 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Contents STM32F098CC STM32F098RC STM32F098VC
4/128 DocID026967 Rev 4
6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.14 NRST and NPOR pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.15 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.16 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.17 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.18 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.19 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.20 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.21 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.1 UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.2 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.3 UFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.4 WLCSP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.5 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
7.6 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
7.7 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
7.8 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.8.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.8.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 121
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
DocID026967 Rev 4 5/128
STM32F098CC STM32F098RC STM32F098 VC List of tables
6
List of tables
Table 1. STM32F098CC/RC/VC family device features and peripheral counts . . . . . . . . . . . . . . . . 11
Table 2. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 3. Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 4. Capacitive sensing GPIOs available on STM32F098CC/RC/VC devices . . . . . . . . . . . . . 20
Table 5. Number of capacitive sensing channels available
on STM32F098CC/RC/VC devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 6. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 7. Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 8. STM32F098CC/RC/VC I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 9. STM32F098CC/RC/VC USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 10. STM32F098CC/RC/VC SPI/I2S implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 11. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 12. STM32F098CC/RC/VC pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 13. Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 42
Table 14. Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 43
Table 15. Alternate functions selected through GPIOC_AFR registers for port C . . . . . . . . . . . . . . . 44
Table 16. Alternate functions selected through GPIOD_AFR registers for port D . . . . . . . . . . . . . . . 44
Table 17. Alternate functions selected through GPIOE_AFR registers for port E . . . . . . . . . . . . . . . 45
Table 18. Alternate functions selected through GPIOF_AFR registers for port F. . . . . . . . . . . . . . . . 45
Table 19. STM32F098CC/RC/VC peripheral register boundary addresses . . . . . . . . . . . . . . . . . . . . 47
Table 20. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 21. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 22. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 23. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 24. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 25. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 26. Typical and maximum current consumption from VDD supply at VDD = 1.8 V . . . . . . . . . . 58
Table 27. Typical and maximum current consumption in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 28. Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . 59
Table 29. Typical and maximum current consumption from the VBAT supply. . . . . . . . . . . . . . . . . . . 60
Table 30. Typical current consumption, code executing from Flash memory,
running from HSE 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 31. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 32. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 33. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 34. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 35. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 36. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 37. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 38. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 39. HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 40. HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 41. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 42. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 43. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 44. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 45. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 46. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
List of tables STM32F098CC STM32F098RC STM32F098VC
6/128 DocID026967 Rev 4
Table 47. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 48. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 49. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 50. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 51. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 52. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 53. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 54. NPOR pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 55. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 56. RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 57. ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 58. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 59. Comparator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 60. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 61. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 62. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 63. IWDG min/max timeout period at 40 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 64. WWDG min/max timeout value at 48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 65. I2C analog filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 66. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 67. I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 68. UFBGA100 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 69. UFBGA100 recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 70. LQPF100 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 71. UFBGA64 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 72. UFBGA64 recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 73. WLCSP64 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 74. WLCSP64 recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 75. LQFP64 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 76. LQFP48 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 77. UFQFPN48 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 78. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 79. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 80. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
DocID026967 Rev 4 7/128
STM32F098CC STM32F098RC STM32F098 VC List of figures
8
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 3. UFBGA100 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 4. LQFP100 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 5. UFBGA64 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 6. LQFP64 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 7. WLCSP64 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 8. LQFP48 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 9. UFQFPN48 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 10. STM32F098CC/RC/VC memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 11. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 12. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 13. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 14. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 15. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 16. Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 17. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 18. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 19. HSI oscillator accuracy characterization results for soldered parts . . . . . . . . . . . . . . . . . . 71
Figure 20. HSI14 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 21. HSI48 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 22. TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 23. Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 24. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 25. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 26. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 27. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 28. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 29. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 30. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 31. I2S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 32. I2S master timing diagram (Philips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 33. UFBGA100 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 34. Recommended footprint for UFBGA100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 35. UFBGA100 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 36. LQFP100 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 37. Recommended footprint for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 38. LQFP100 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 39. UFBGA64 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 40. Recommended footprint for UFBGA64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 41. UFBGA64 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 42. WLCSP64 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 43. Recommended footprint for WLCSP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 44. WLCSP64 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 45. LQFP64 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 46. Recommended footprint for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 47. LQFP64 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 48. LQFP48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
List of figures STM32F098CC STM32F098RC STM32F098VC
8/128 DocID026967 Rev 4
Figure 49. Recommended footprint for LQFP48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 50. LQFP48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 51. UFQFPN48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 52. Recommended footprint for UFQFPN48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 53. UFQFPN48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 54. LQFP64 PD max versus TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
DocID026967 Rev 4 9/128
STM32F098CC STM32F098RC STM32F098VC Introduction
27
1 Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32F098CC/RC/VC microcontrollers.
This document should be read in conjunction with the STM32F0xxxx reference manual
(RM0091). The reference manual is available from the STMicroelectronics website
www.st.com.
For information on the ARM® Cortex®-M0 core, please refer to the Cortex®-M0 Technical
Reference Manual, available from the www.arm.com website.
Description STM32F098CC STM32F098RC STM32F098VC
10/128 DocID026967 Rev 4
2 Description
The STM32F098CC/RC/VC microcontrollers incorporate the high-performance
ARM® Cortex®-M0 32-bit RISC core operating at up to 48 MHz frequency, high-speed
embedded memories (256 Kbytes of Flash memory and 32 Kbytes of SRAM), and an
extensive range of enhanced peripherals and I/Os. The device offers standard
communication interfaces (two I2Cs, two SPIs/one I2S, one HDMI CEC and up to eight
USARTs), one CAN, one 12-bit ADC, one 12-bit DAC with two channels, seven 16-bit
timers, one 32-bit timer and an advanced-control PWM timer.
The STM32F098CC/RC/VC microcontrollers operate in the -40 to +85 °C and -40 to +105
°C temperature ranges, at a 1.8 V ± 8% power supply. A comprehensive set of
power-saving modes allows the design of low-power applications.
The STM32F098CC/RC/VC microcontrollers include devices in seven different package
ranging from 48 pins to 100 pins with a die form also available upon request. Depending on
the device chosen, different sets of peripherals are included.
These features make the STM32F098CC/RC/VC microcontrollers suitable for a wide range
of applications such as application control and user interfaces, hand-held equipment, A/V
receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications,
PLCs, inverters, printers, scanners, alarm systems, video intercoms and HVACs.
DocID026967 Rev 4 11/128
STM32F098CC STM32F098RC STM32F098VC Description
27
Table 1. STM32F098CC/RC/VC family device features and peripheral counts
Peripheral STM32F098CC STM32F098RC STM32F098VC
Flash memory (Kbyte) 256
SRAM (Kbyte) 32
Timers
Advanced
control 1 (16-bit)
General
purpose
5 (16-bit)
1 (32-bit)
Basic 2 (16-bit)
Comm.
interfaces
SPI [I2S](1) 2 [2]
I2C2
USART 6 8
CAN 1
CEC 1
12-bit ADC
(number of channels)
1
(10 ext. + 3 int.)
1
(16 ext. + 3 int.)
12-bit DAC
(number of channels)
1
(2)
Analog comparator 2
GPIOs 37 51 87
Capacitive sensing
channels 16 17 23
Max. CPU frequency 48 MHz
Operating voltage VDD = 1.8 V ± 8%, VDDA = from VDD to 3.6 V
Operating temperature Ambient operating temperature: -40°C to 85°C / -40°C to 105°C
Junction temperature: -40°C to 105°C / -40°C to 125°C
Packages LQFP48
UFQFPN48
LQFP64
UFBGA64
WLCSP64
LQFP100
UFBGA100
1. The SPI interface can be used either in SPI mode or in I2S audio mode.
Description STM32F098CC STM32F098RC STM32F098VC
12/128 DocID026967 Rev 4
Figure 1. Block diagram
06Y9
6833/<
683(59,6,21
3RZHUGRPDLQRIDQDORJEORFNV 9%$7
FKDQQHOV
FRPSOFKDQQHOV
%5.(75LQSXWDV$)
#9
''
#9''$
6\VWHPDQGSHULSKHUDO
FORFNV
3$>@
3%>@
3&>@
3)>@3)
3)>@
JURXSVRI
FKDQQHOV
6<1&
$)
026,6'
0,620&.
6&.&.
166:6DV$)
#9
''$
9
''$
9
66$
6:&/.
6:',2
DV$)
[
$'LQSXW
#9
''$
#9''
9
''
325
5HVHW
,QW
9
''
9
9
66
1567
9
''$
9
66$
26&B,1
26&B287
9
%$7
WR9
26&B,1
26&B287
7$03(557&
$/$50287
#9%$7
6<1&
026,6'
0,620&.
6&.&.
166:6DV$)
+6,
+6,
/6,
+6,
3//&/.
9''
,5B287DV$)
FKDQQHO
FRPSO%5.DV$)
FKDQQHO
FRPSO%5.DV$)
FKDQQHODV$)
FK(75DV$)
FK(75DV$)
*3'0$
FKDQQHOV
&257(;0&38
I
0$;
 0+]
6HULDO:LUH
'HEXJ
19,&
7RXFK
6HQVLQJ
&RQWUROOHU
3$'
$QDORJ
VZLWFKHV
(;7,7:.83
63,,6
63,,6
6<6&)*,)
'%*0&8
:LQGRZ:'*
$3%
$+%
&5&
5(6(7&/2&.
&21752/
3:07,0(5
7,0(5ELW
7,0(5
7,0(5
7,0(5
7,0(5
;7$/26&
0+]
,QG:LQGRZ:'*
1325
65$0
.%
7HPS
VHQVRU
,)
ELW$'&
57& %DFNXS
UHJ
57&LQWHUIDFH
&56
65$0
%
5&0+]
5&0+]
5&N+]
3//
5&0+]
$+%GHFRGHU
;7$/N+]
65$0
FRQWUROOHU
%XVPDWUL[
32:(5
1325
)ODVK
PHPRU\
LQWHUIDFH
)ODVK*3/
XSWR.%
ELW
2EO
9''
FKDQQHOV
FRPSO%5.DV$)
7,0(5
5;7;&76576
&.DV$)
86$57
5;7;&76576
&.DV$)
86$57
5;7;&76576
&.DV$)
86$57
5;7;576&.DV$)
86$57
5;7;576&.DV$)
86$57
5;7;576&.DV$)
86$57
5;7;576&.DV$)86$57
5;7;&76576
&.DV$)
86$57
6&/6'$
H[WUDP$)0DV$)
6&/6'$60%$
H[WUDP$)0DV$)
&(&DV$)
,&
,&
+'0,&(&
ELW'$&
ELW'$&
,)
'$&B287
'$&B287
#9
''$
7,0(5
7,0(5
%[&$1
*3FRPSDUDWRU
*3FRPSDUDWRU
,1387
,1387
287387
DV$)
#9
''$
7;5;DV$)
*3,2SRUW)
*3,2SRUW(
*3,2SRUW'
*3,2SRUW&
*3,2SRUW%
*3,2SRUW$
3'>@
3(>@
9''$
325
DocID026967 Rev 4 13/128
STM32F098CC STM32F098RC STM32F098VC Functional overview
27
3 Functional overview
Figure 1 shows the general block diagram of the STM32F098CC/RC/VC devices.
3.1 ARM®-Cortex®-M0 core
The ARM® Cortex®-M0 is a generation of ARM 32-bit RISC processors for embedded
systems. It has been developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced system response to interrupts.
The ARM® Cortex®-M0 processors feature exceptional code-efficiency, delivering the high
performance expected from an ARM core, with memory sizes usually associated with 8- and
16-bit devices.
The STM32F098CC/RC/VC devices embed ARM core and are compatible with all ARM
tools and software.
3.2 Memories
The device has the following features:
32 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait
states and featuring embedded parity checking with exception generation for fail-critical
applications.
The non-volatile memory is divided into two arrays:
256 Kbytes of embedded Flash memory for programs and data
Option bytes
The option bytes are used to write-protect the memory (with 4 KB granularity) and/or
readout-protect the whole memory with the following options:
Level 0: no readout protection
Level 1: memory readout protection, the Flash memory cannot be read from or
written to if either debug features are connected or boot in RAM is selected
Level 2: chip readout protection, debug features (Cortex®-M0 serial wire) and
boot in RAM selection disabled
3.3 Boot modes
At startup, the boot pin and boot selector option bits are used to select one of the three boot
options:
boot from User Flash memory
boot from System Memory
boot from embedded SRAM
The boot pin is shared with the standard GPIO and can be disabled through the boot
selector option bits. The boot loader is located in System Memory. It is used to reprogram
the Flash memory by using USART on pins PA14/PA15 or PA9/PA10 or I2C on pins
PB6/PB7.
Functional overview STM32F098CC STM32F098RC STM32F098VC
14/128 DocID026967 Rev 4
3.4 Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link-
time and stored at a given memory location.
3.5 Power management
3.5.1 Power supply schemes
VDD = VDDIO1 = 1.8 V ± 8%: external power supply for I/Os (VDDIO1) and digital logic. It
is provided externally through VDD pins.
VDDA = from VDD to 3.6 V: external analog power supply for ADC, DAC, RCs and PLL
(minimum voltage to be applied to VDDA is 2.4 V when the ADC or DAC are used). It is
provided externally through VDDA pin. The VDDA voltage level must be always greater
or equal to the VDD voltage level and must be established first.
VDDIO2 = 1.65 to 3.6 V: external power supply for marked I/Os. VDDIO2 is provided
externally through the VDDIO2 pin. The VDDIO2 voltage level is completely independent
from VDD or VDDA, but it must not be provided without a valid supply on VDD. The
VDDIO2 supply is monitored and compared with the internal reference voltage
(VREFINT). When the VDDIO2 is below this threshold, all the I/Os supplied from this rail
are disabled by hardware. The output of this comparator is connected to EXTI line 31
and it can be used to generate an interrupt. Refer to the pinout diagrams or tables for
concerned I/Os list.
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
For more details on how to connect power pins, refer to Figure 13: Power supply scheme.
3.5.2 Power-on reset
To guarantee a proper power-on reset, the NPOR pin must be held low until VDD is stable.
When VDD is stable, the reset state can be exited either by:
putting the NPOR pin in high impedance (NPOR pin has an internal pull-up), or by
forcing the pin to high level by connecting it to VDDA
3.5.3 Low-power modes
The STM32F098CC/RC/VC microcontrollers support two low-power modes to achieve the
best compromise between low power consumption, short startup time and available wakeup
sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
DocID026967 Rev 4 15/128
STM32F098CC STM32F098RC STM32F098VC Functional overview
27
Stop mode
Stop mode achieves very low power consumption while retaining the content of SRAM
and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the
HSE crystal oscillators are disabled.
The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line
source can be one of the 16 external lines, RTC, I2C1 USART1, USART3, COMPx.
The CEC, USART1, USART2, USART3 and I2C1 peripherals can be configured to
enable the HSI RC oscillator so as to get clock for processing incoming data.
Note: The RTC, the IWDG, and th e corresponding clock source s are not sto pped by enter ing Stop
mode.
3.6 Clocks and startup
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is
selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in
which case it is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full
interrupt management of the PLL clock entry is available when necessary (for example on
failure of an indirectly used external crystal, resonator or oscillator).
Several prescalers allow the application to configure the frequency of the AHB and the APB
domains. The maximum frequency of the AHB and the APB domains is 48 MHz.
Additionally, also the internal RC 48 MHz oscillator can be selected for system clock or PLL
input source. This oscillator can be automatically fine-trimmed by the means of the CRS
peripheral using the external synchronization.
Functional overview STM32F098CC STM32F098RC STM32F098VC
16/128 DocID026967 Rev 4
Figure 2. Clock tree
3.7 General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions.
06Y9
26&B,1
26&B287
26&B,1
26&B287
,:'*
3//08/
0&2
0DLQFORFN
RXWSXW
3//&/.
+6,
+6(
3//&/.
$'&
DV\QFKURQRXV
FORFNLQSXW
/6(
/6,
+6,
+6(
57&
3//65&
6:
0&2
57&&/.
57&6(/
6<6&/.
7,0

)/,7)&/. )ODVKPHPRU\
SURJUDPPLQJ
LQWHUIDFH
+6,
+6,
/6(
,&
86$57
/6(
+6,
6<6&/.
3&/.
6<6&/.
+6,
3&/.
,663,
,663,
&(&
$3%
SHULSKHUDOV
/6,
/6(
35(',9
+6,
3//12',9
0&235(
7,0
/6(
+6(
/6(
6<1&
&66
7ULP
/HJHQG
ZKLWH FORFNWUHHFRQWUROHOHPHQW
FORFNOLQH
FRQWUROOLQH
EODFN FORFNWUHHHOHPHQW

0+]
+6(26&



0+]5&
+6,
«
«
0+]
+6,5&


N+]
/6(26&
N+]
/6,5&
3//
[[
[
0+]
+6,5&
[[


86$57[6:
335(
335(+35(
&(&6:

,&6:
6<6&/.
&56
+6,
+6,
+6, +6,
+6,
6<1&65&
86$57
86$57
+&/.
$+%FRUHPHPRU\'0$
&RUWH[)&/.IUHHUXQFORFN
&RUWH[
V\VWHPWLPHU

DocID026967 Rev 4 17/128
STM32F098CC STM32F098RC STM32F098VC Functional overview
27
The I/O configuration can be locked if needed following a specific sequence in order to
avoid spurious writing to the I/Os registers.
3.8 Direct memory access controller (DMA)
The 12-channel general-purpose DMAs (seven channels for DMA1 and five channels for
DMA2) manage memory-to-memory, peripheral-to-memory and memory-to-peripheral
transfers.
The DMAs support circular buffer management, removing the need for user code
intervention when the controller reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with support for software
trigger on each channel. Configuration is made by software and transfer sizes between
source and destination are independent.
DMA can be used with the main peripherals: SPIx, I2Sx, I2Cx, USARTx, all TIMx timers
(except TIM14), DAC and ADC.
3.9 Interrupts and events
3.9.1 Nested vectored interrupt controller (NVIC)
The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to
32 maskable interrupt channels (not including the 16 interrupt lines of Cortex®-M0) and 4
priority levels.
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail-chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt
latency.
3.9.2 Extended interrupt/event controller (EXTI)
The extended interrupt/event controller consists of 32 edge detector lines used to generate
interrupt/event requests and wake-up the system. Each line can be independently
configured to select the trigger event (rising edge, falling edge, both) and can be masked
independently. A pending register maintains the status of the interrupt requests. The EXTI
can detect an external line with a pulse width shorter than the internal clock period. Up to 87
GPIOs can be connected to the 16 external interrupt lines.
Functional overview STM32F098CC STM32F098RC STM32F098VC
18/128 DocID026967 Rev 4
3.10 Analog-to-digital converter (ADC)
The 12-bit analog-to-digital converter has up to 16 external and 3 internal (temperature
sensor, voltage reference, VBAT voltage measurement) channels and performs conversions
in single-shot or scan modes. In scan mode, automatic conversion is performed on a
selected group of analog inputs.
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
3.10.1 Temperature sensor
The temperature sensor (TS) generates a voltage VSENSE that varies linearly with
temperature.
The temperature sensor is internally connected to the ADC_IN16 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
3.10.2 Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC and comparators. VREFINT is internally connected to the ADC_IN17 input channel. The
precise voltage of VREFINT is individually measured for each part by ST during production
test and stored in the system memory area. It is accessible in read-only mode.
Table 2. Temp era tu r e se n sor ca lib rat io n val ue s
Calibration value name Description Memory address
TS_CAL1
TS ADC raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA= 3.3 V (± 10 mV)
0x1FFF F7B8 - 0x1FFF F7B9
TS_CAL2
TS ADC raw data acquired at a
temperature of 110 °C (± 5 °C),
VDDA= 3.3 V (± 10 mV)
0x1FFF F7C2 - 0x1FFF F7C3
Table 3. Internal voltage reference calibration values
Calibration value name Description Memory address
VREFINT_CAL
Raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA= 3.3 V (± 10 mV)
0x1FFF F7BA - 0x1FFF F7BB
DocID026967 Rev 4 19/128
STM32F098CC STM32F098RC STM32F098VC Functional overview
27
3.10.3 VBAT battery voltage monitoring
This embedded hardware feature allows the application to measure the VBAT battery voltage
using the internal ADC channel ADC_IN18. As the VBAT voltage may be higher than VDDA,
and thus outside the ADC input range, the VBAT pin is internally connected to a bridge
divider by 2. As a consequence, the converted digital value is half the VBAT voltage.
3.11 Digital-to-analog converter (DAC)
The two 12-bit buffered DAC channels can be used to convert digital signals into analog
voltage signal outputs. The chosen design structure is composed of integrated resistor
strings and an amplifier in non-inverting configuration.
This digital Interface supports the following features:
8-bit or 12-bit monotonic output
Left or right data alignment in 12-bit mode
Synchronized update capability
Noise-wave generation
Triangular-wave generation
Dual DAC channel independent or simultaneous conversions
DMA capability for each channel
External triggers for conversion
Six DAC trigger inputs are used in the device. The DAC is triggered through the timer trigger
outputs and the DAC interface is generating its own DMA requests.
3.12 Comparators (COMP)
The device embeds two fast rail-to-rail low-power comparators with programmable
reference voltage (internal or external), hysteresis and speed (low speed for low power) and
with selectable output polarity.
The reference voltage can be one of the following:
External I/O
DAC output pins
Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to Table 25: Embedded
internal refe re nc e vo ltage for the value and precision of the internal reference voltage.
Both comparators can wake up from STOP mode, generate interrupts and breaks for the
timers and can be also combined into a window comparator.
3.13 Touch sensing controller (TSC)
The STM32F098CC/RC/VC devices provide a simple solution for adding capacitive sensing
functionality to any application. These devices offer up to 23 capacitive sensing channels
distributed over 8 analog I/O groups.
Capacitive sensing technology is able to detect the presence of a finger near a sensor which
is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation
Functional overview STM32F098CC STM32F098RC STM32F098VC
20/128 DocID026967 Rev 4
introduced by the finger (or any conductive object) is measured using a proven
implementation based on a surface charge transfer acquisition principle. It consists in
charging the sensor capacitance and then transferring a part of the accumulated charges
into a sampling capacitor until the voltage across this capacitor has reached a specific
threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the
hardware touch sensing controller and only requires few external components to operate.
For operation, one capacitive sensing GPIO in each group is connected to an external
capacitor and cannot be used as effective touch sensing channel.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware
library, which is free to use and allows touch sensing functionality to be implemented reliably
in the end application.
Table 4. Capacitive sensing GPIOs available on STM32F098CC/RC/VC devices
Group Capacitive sensing
signal name Pin
name Group Capacitive sensing
signal name Pin
name
1
TSC_G1_IO1 PA0
5
TSC_G5_IO1 PB3
TSC_G1_IO2 PA1 TSC_G5_IO2 PB4
TSC_G1_IO3 PA2 TSC_G5_IO3 PB6
TSC_G1_IO4 PA3 TSC_G5_IO4 PB7
2
TSC_G2_IO1 PA4
6
TSC_G6_IO1 PB11
TSC_G2_IO2 PA5 TSC_G6_IO2 PB12
TSC_G2_IO3 PA6 TSC_G6_IO3 PB13
TSC_G2_IO4 PA7 TSC_G6_IO4 PB14
3
TSC_G3_IO1 PC5
7
TSC_G7_IO1 PE2
TSC_G3_IO2 PB0 TSC_G7_IO2 PE3
TSC_G3_IO3 PB1 TSC_G7_IO3 PE4
4
TSC_G4_IO1 PA9 TSC_G7_IO4 PE5
TSC_G4_IO2 PA10
8
TSC_G8_IO1 PD12
TSC_G4_IO3 PA11 TSC_G8_IO2 PD13
TSC_G4_IO4 PA12 TSC_G8_IO3 PD14
TSC_G8_IO4 PD15
Table 5. Number of capacitive sensing channels available
on STM32F098CC/RC/VC devices
Analog I/O group Number of capacitive sensing channels
STM32F098Vx STM32F098Rx STM32F098Cx
G1 3 3 3
G2 3 3 3
G3 2 2 1
G4 3 3 3
DocID026967 Rev 4 21/128
STM32F098CC STM32F098RC STM32F098VC Functional overview
27
3.14 Timers and watchdogs
The STM32F098CC/RC/VC devices include up to six general-purpose timers, two basic
timers and an advanced control timer.
Table 6 compares the features of the different timers.
3.14.1 Advanced-control timer (TIM1)
The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six
channels. It has complementary PWM outputs with programmable inserted dead times. It
G5 3 3 3
G6 3 3 3
G7 3 0 0
G8 3 0 0
Number of capacitive
sensing channels 23 17 16
Table 5. Number of capacitive sensing channels available
on STM32F098CC/RC/VC devices (continued)
Analog I/O group Number of capacitive sensing channels
STM32F098Vx STM32F098Rx STM32F098Cx
Table 6. Timer feature comparison
Timer
type Timer Counter
resolution Counter
type Prescaler
factor
DMA
request
generation
Capture/compare
channels Complementary
outputs
Advanced
control TIM1 16-bit Up, down,
up/down
integer from
1 to 65536 Yes 4 3
General
purpose
TIM2 32-bit Up, down,
up/down
integer from
1 to 65536 Yes 4 -
TIM3 16-bit Up, down,
up/down
integer from
1 to 65536 Yes 4 -
TIM14 16-bit Up integer from
1 to 65536 No 1 -
TIM15 16-bit Up integer from
1 to 65536 Yes 2 1
TIM16
TIM17 16-bit Up integer from
1 to 65536 Yes 1 1
Basic TIM6
TIM7 16-bit Up integer from
1 to 65536 Yes - -
Functional overview STM32F098CC STM32F098RC STM32F098VC
22/128 DocID026967 Rev 4
can also be seen as a complete general-purpose timer. The four independent channels can
be used for:
input capture
output compare
PWM generation (edge or center-aligned modes)
one-pulse mode output
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If
configured as the 16-bit PWM generator, it has full modulation capability (0-100%).
The counter can be frozen in debug mode.
Many features are shared with those of the standard timers which have the same
architecture. The advanced control timer can therefore work together with the other timers
via the Timer Link feature for synchronization or event chaining.
3.14.2 General-purpose timers (TIM2, 3, 14, 15, 16, 17)
There are six synchronizable general-purpose timers embedded in the
STM32F098CC/RC/VC devices (see Table 6 for differences). Each general-purpose timer
can be used to generate PWM outputs, or as simple time base.
TIM2, TIM3
STM32F098CC/RC/VC devices feature two synchronizable 4-channel general-purpose
timers. TIM2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3
is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4
independent channels each for input capture/output compare, PWM or one-pulse mode
output. This gives up to 12 input captures/output compares/PWMs on the largest packages.
The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advanced-
control timer via the Timer Link feature for synchronization or event chaining.
TIM2 and TIM3 both have independent DMA request generation.
These timers are capable of handling quadrature (incremental) encoder signals and the
digital outputs from 1 to 3 hall-effect sensors.
Their counters can be frozen in debug mode.
TIM14
This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM14 features one single channel for input capture/output compare, PWM or one-pulse
mode output.
Its counter can be frozen in debug mode.
TIM15, TIM16 and TIM17
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single
channel for input capture/output compare, PWM or one-pulse mode output.
The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate
withTIM1 via the Timer Link feature for synchronization or event chaining.
DocID026967 Rev 4 23/128
STM32F098CC STM32F098RC STM32F098VC Functional overview
27
TIM15 can be synchronized with TIM16 and TIM17.
TIM15, TIM16 and TIM17 have a complementary output with dead-time generation and
independent DMA request generation.
Their counters can be frozen in debug mode.
3.14.3 Basic timersTIM6 and TIM7
These timers are mainly used for DAC trigger generation. They can also be used as generic
16-bit time bases.
3.14.4 Independent watchdog (IWDG)
The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with
user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it
operates independently from the main clock, it can operate in Stop mode. It can be used
either as a watchdog to reset the device when a problem occurs, or as a free running timer
for application timeout management. It is hardware or software configurable through the
option bytes. The counter can be frozen in debug mode.
3.14.5 System window watchdog (WWDG)
The system window watchdog is based on a 7-bit downcounter that can be set as free
running. It can be used as a watchdog to reset the device when a problem occurs. It is
clocked from the APB clock (PCLK). It has an early warning interrupt capability and the
counter can be frozen in debug mode.
3.14.6 SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
a 24-bit down counter
autoreload capability
maskable system interrupt generation when the counter reaches 0
programmable clock source (HCLK or HCLK/8)
3.15 Real-time clock (RTC) and backup registers
The RTC and the five backup registers are supplied through a switch that takes power either
on VDD supply when present or through the VBAT pin. The backup registers are five 32-bit
registers used to store 20 bytes of user application data when VDD power is not present.
They are not reset by a system or power reset.
Functional overview STM32F098CC STM32F098RC STM32F098VC
24/128 DocID026967 Rev 4
The RTC is an independent BCD timer/counter. Its main features are the following:
calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format
automatic correction for 28, 29 (leap year), 30, and 31 day of the month
programmable alarm with wake up from Stop mode capability
Periodic wakeup unit with programmable resolution and period.
on-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize the RTC with a master clock
digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal
inaccuracy
Three anti-tamper detection pins with programmable filter. The MCU can be woken up
from Stop mode on tamper event detection
timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be
woken up from Stop mode on timestamp event detection
reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision
The RTC clock sources can be:
a 32.768 kHz external crystal
a resonator or oscillator
the internal low-power RC oscillator (typical frequency of 40 kHz)
the high-speed external clock divided by 32
3.16 Inter-integrated circuit interface (I2C)
Up to two I2C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both
can support Standard mode (up to 100 kbit/s), Fast mode (up to 400 kbit/s) and Fast Mode
Plus (up to 1 Mbit/s) with extra output drive on most of the associated I/Os.
Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two
addresses, one with configurable mask). They also include programmable analog and
digital noise filters.
In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP
capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts
Table 7. Comparison of I2C analog and digital filters
Aspect Analog filter Digital filter
Pulse width of
suppressed spikes 50 ns Programmable length from 1 to 15
I2Cx peripheral clocks
Benefits Available in Stop mode
–Extra filtering capability vs.
standard requirements
–Stable length
Drawbacks Variations depending on
temperature, voltage, process
Wakeup from Stop on address
match is not available when digital
filter is enabled.
DocID026967 Rev 4 25/128
STM32F098CC STM32F098RC STM32F098VC Functional overview
27
verifications and ALERT protocol management. I2C1 also has a clock domain independent
from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address
match.
The I2C peripherals can be served by the DMA controller.
Refer to Table 8 for the differences between I2C1 and I2C2.
3.17 Universal synchronous/asynchronous receiver/transmitter
(USART)
The device embeds up to eight universal synchronous/asynchronous receivers/transmitters
(USART1, USART2, USART3, USART4, USART5, USART6, USART7, USART8) which
communicate at speeds of up to 6 Mbit/s.
They provide hardware management of the CTS, RTS and RS485 DE signals,
multiprocessor communication mode, master synchronous communication and single-wire
half-duplex communication mode. USART1, USART2 and USART3 support also SmartCard
communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud
rate feature, and have a clock domain independent of the CPU clock, allowing to wake up
the MCU from Stop mode.
The USART interfaces can be served by the DMA controller.
Table 8. STM32F098CC/RC/VC I2C implementation
I2C features(1)
1. X = supported.
I2C1 I2C2
7-bit addressing mode X X
10-bit addressing mode X X
Standard mode (up to 100 kbit/s) X X
Fast mode (up to 400 kbit/s) X X
Fast Mode Plus (up to 1 Mbit/s) with extra output drive I/Os X X
Independent clock X -
SMBus X -
Wakeup from STOP X -
Table 9. STM32F098CC/RC/VC USART implementation
USART modes/features(1) USART1
USART2
USART3 USART4
USART5
USART6
USART7
USART8
Hardware flow control for modem X X -
Continuous communication using DMA X X X
Multiprocessor communication X X X
Synchronous mode X X X
Smartcard mode X - -
Functional overview STM32F098CC STM32F098RC STM32F098VC
26/128 DocID026967 Rev 4
3.18 Serial peripheral interface (SPI) / Inter-integrated sound
interface (I2S)
Two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in full-duplex
and half-duplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame size is configurable from 4 bits to 16 bits.
Two standard I2S interfaces (multiplexed with SPI1 and SPI2 respectively) supporting four
different audio standards can operate as master or slave at half-duplex communication
mode. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data
resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to
192 kHz can be set by an 8-bit programmable linear prescaler. When operating in master
mode, they can output a clock for an external audio component at 256 times the sampling
frequency.
Single-wire half-duplex communication X X X
IrDA SIR ENDEC block X - -
LIN mode X - -
Dual clock domain and wakeup from Stop mode X - -
Receiver timeout interrupt X - -
Modbus communication X - -
Auto baud rate detection X - -
Driver Enable X X X
1. X = supported.
Table 9. STM32F098CC/RC/VC USART implementation (continued)
USART modes/features(1) USART1
USART2
USART3 USART4
USART5
USART6
USART7
USART8
Table 10. STM32F098CC/RC/VC SPI/I2S implementation
SPI features(1)
1. X = supported.
SPI1 and SPI2
Hardware CRC calculation X
Rx/Tx FIFO X
NSS pulse mode X
I2S mode X
TI mode X
DocID026967 Rev 4 27/128
STM32F098CC STM32F098RC STM32F098VC Functional overview
27
3.19 High-definition multimedia interface (HDMI) - consumer
electronics control (CEC)
The device embeds a HDMI-CEC controller that provides hardware support for the
Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).
This protocol provides high-level control functions between all audiovisual products in an
environment. It is specified to operate at low speeds with minimum processing and memory
overhead. It has a clock domain independent from the CPU clock, allowing the HDMI_CEC
controller to wakeup the MCU from Stop mode on data reception.
3.20 Controller area network (CAN)
The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It
can receive and transmit standard frames with 11-bit identifiers as well as extended frames
with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and
14 scalable filter banks.
3.21 Clock recovery system (CRS)
The STM32F098CC/RC/VC embeds a special block which allows automatic trimming of the
internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device
operational range. This automatic trimming is based on the external synchronization signal,
which could be either derived from LSE oscillator, from an external signal on CRS_SYNC
pin or generated by user software. For faster lock-in during startup it is also possible to
combine automatic trimming with manual trimming action.
3.22 Serial wire debug port (SW-DP)
An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected
to the MCU.
Pinouts and pin descriptions STM32F098CC STM32F098RC STM32F098VC
28/128 DocID026967 Rev 4
4 Pinouts and pin descriptions
Figure 3. UFBGA100 package pinout
06Y9
$
%
&
'
(
7RSYLHZ
)
*
+
,2VXSSOLHGIURP9'',2
-
.
/
0
3(
3(
3&
3)
966$
3)
9''$
3(
3(
3(
3(
9%$7
3)
3)
1567
3&
3&
3$
3$
3%
3(
3%
966
1&
9''
3&
3$
3$
3$
3)
%227
3%
9''
3$
3$
3$
3'
3%
3%
3&
3&
3%
3'
3'
1325
3%
3%
3'
3(
3(
3%
3'
3'
3'
3(
3(
3$
3'
3'
3'
3(
3(
3$
3&
3&
3&
3$
3'
3'
3%
3%
3(
3$
3&
3)
3$
3&
3'
3'
3%
3%
3(
9'',2
3$
3$
3$
3&
3&
3'
3'
3%
3%
3(
966
9''
3&
3&
26&B
,1
3&
26&B
287
3)
26&B
,1
3)
26&B
287
966
8)%*$

DocID026967 Rev 4 29/128
STM32F098CC STM32F098RC STM32F098VC Pinouts and pin descriptions
41
Figure 4. LQFP100 package pinout
06Y9
7RSYLHZ
,2VXSSOLHGIURP9'',2
/4)3



























































































9'',2
966
3)
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3'
3'
3'
3'
3'
3'
3'
3'
3%
3%
3%
3%
3$
966
9''
3$
3$
3$
3$
3&
3&
3%
3%
1325
3(
3(
3(
3(
3(
3(
3(
3(
3(
3%
3%
966
9''
3(
3(
3(
3(
3(
9%$7
3&26&B,1
3&26&B287
3)
3)
3)26&B,1
1567
3&
3&
3&
3&
3)
966$
3)
9''$
3$
3$
3$
3&
3)26&B287
9''
966
3(
3(
3%
3%
3)%227
3%
3%
3%
3%
3%
3'
3'
3'
3'
3'
3'
3'
3'
3&
3&
3&
3$
3$
Pinouts and pin descriptions STM32F098CC STM32F098RC STM32F098VC
30/128 DocID026967 Rev 4
Figure 5. UFBGA64 package pinout
DocID026967 Rev 4 31/128
STM32F098CC STM32F098RC STM32F098VC Pinouts and pin descriptions
41
Figure 6. LQFP64 package pinout
06Y9
7RSYLHZ
/4)3























































9%$7
3&26&B,1
3)26&B,1
1567
3&
3&
3&
3&
966$
9''$
3$
3$
3$
9''
3%
3%
3)%227
3%
3%
3%
3%
3%
3'
3&
3&
3&
3$
3$
9'',2
966
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
3&
966
3)26&B287
3&26&B287
3$
3$
3&
3&
3%
3%
1325
3%
3%
966
9''
3$
3$
9''
966
3$
,2VXSSOLHGIURP9'',2
Pinouts and pin descriptions STM32F098CC STM32F098RC STM32F098VC
32/128 DocID026967 Rev 4
Figure 7. WLCSP64 package pinout
1. The above figure shows the package in top view, changing from bottom view in the previous document
versions.
Figure 8. LQFP48 package pinout
06Y9
$
%
&
'
(
7RSYLHZ
:/&63

)
*
+
9''9663%3%3'3&3$9'',2
9%$7
3&3%3%3&3$9663$
3&
26&B
,1
3&
26&B
287
3)
%227
3%3&3$3$3$
3)
26&B
,1
15673&3%3%3$3$3&
3)
26&B
287
3&3&3$3$3&3&3&
3&3$3$3$3&3%3%3%
966$9669''3$3%3%3%3%
9''$3$3$3&13253%9669''
,2VXSSOLHGIURP9'',2
DocID026967 Rev 4 33/128
STM32F098CC STM32F098RC STM32F098VC Pinouts and pin descriptions
41
Figure 9. UFQFPN48 package pinout
06Y9
9%$7
1567
966$
9''$
3$
3$
3&
3&26&B,1
3)26&B,1
3)26&B287
3&26&B287
3$
3$
3$
3$
3$
3%
3%
1325
3%
3%
966
9''
9'',2
966
3$
3$
3$
3$
3$
3$
3%
3%
3%
3%
9''
966
3%
3%
3%
3%
3%
3%
3%
3$
3$
3$
,2VXSSOLHGIURP9'',2
3)%227
7RSYLHZ
([SRVHGSDG
(
[SRVH
G
SD
G
8)4)31







































Table 11. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during and
after reset is the same as the actual pin name
Pin type
S Supply pin
I Input-only pin
I/O Input / output pin
I/O structure
FT 5 V-tolerant I/O
FTf 5 V-tolerant I/O, FM+ capable
TTa 3.3 V-tolerant I/O directly connected to ADC
POR External power on reset pin with embedded weak pull-up resistor,
powered from VDDA
TC Standard 3.3 V I/O
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after
reset.
Pinouts and pin descriptions STM32F098CC STM32F098RC STM32F098VC
34/128 DocID026967 Rev 4
Pin
functions
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
Table 11. Legend/abbreviations used in the pinout table (continued)
Name Abbreviation Definition
Ta bl e 12 . STM32F098 CC/RC/VC pin defi n iti on s
Pin numbers
Pin name
(function up on
reset)
Pin type
I/O structure
Notes
Pin functions
UFBGA100
LQFP100
UFBGA64
LQFP64
WLCSP64
LQFP48/UFQFPN48
Alternate functions Additional
functions
B2 1 - - - - PE2 I/O FT TSC_G7_IO1, TIM3_ETR -
A1 2 - - - - PE3 I/O FT TSC_G7_IO2, TIM3_CH1 -
B1 3 - - - - PE4 I/O FT TSC_G7_IO3, TIM3_CH2 -
C2 4 - - - - PE5 I/O FT TSC_G7_IO4, TIM3_CH3 -
D2 5 - - - - PE6 I/O FT TIM3_CH4 WKUP3,
RTC_TAMP3
E2 6 B2 1 B8 1 VBAT S - - Backup power supply
C1 7 A2 2 B7 2 PC13 I/O TC
(1)
(2) -
WKUP2,
RTC_TAMP1,
RTC_TS,
RTC_OUT
D1 8 A1 3 C8 3
PC14-
OSC32_IN
(PC14)
I/O TC
(1)
(2) - OSC32_IN
E1 9 B1 4 C7 4
PC15-
OSC32_OUT
(PC15)
I/O TC
(1)
(2) - OSC32_OUT
F2 10 - - - - PF9 I/O FT TIM15_CH1, USART6_TX -
G2 11 - - - - PF10 I/O FT TIM15_CH2, USART6_RX -
F112C15D85 PF0-OSC_IN
(PF0) I/O FTf CRS_ SYNC, I2C1_SDA OSC_IN
G113D16E86PF1-OSC_OUT
(PF1) I/O FTf I2C1_SCL OSC_OUT
H2 14 E1 7 D7 7 NRST I/O RST Device reset input / internal reset output
(active low)
DocID026967 Rev 4 35/128
STM32F098CC STM32F098RC STM32F098VC Pinouts and pin descriptions
41
H1 15 E3 8 E7 - PC0 I/O TTa
EVENTOUT,
USART6_TX,
USART7_TX
ADC_IN10
J2 16 E2 9 F8 - PC1 I/O TTa
EVENTOUT,
USART6_RX,
USART7_RX
ADC_IN11
J3 17 F2 10 D6 - PC2 I/O TTa SPI2_MISO, I2S2_MCK,
EVENTOUT, USART8_TX ADC_IN12
K2 18 G1 11 E6 - PC3 I/O TTa SPI2_MOSI, I2S2_SD,
EVENTOUT, USART8_RX ADC_IN13
J119---- PF2 I/O FT
EVENTOUT,
USART7_TX,
USART7_CK_RTS
WKUP8
K1 20 F1 12 G8 8 VSSA S - Analog ground
M1 21 H1 13 H8 9 VDDA S - Analog power supply
L1 22 - - - - PF3 I/O FT
EVENTOUT,
USART7_RX,
USART6_CK_RTS
L2 23 G2 14 F7 10 PA0 I/O TTa
USART2_CTS,
TIM2_CH1_ETR,
TSC_G1_IO1,
USART4_TX
COMP1_OUT
RTC_ TAMP2,
WKUP1,
ADC_IN0,
COMP1_INM6
M2 24 H2 15 F6 11 PA1 I/O TTa
USART2_RTS,
TIM2_CH2,
TIM15_CH1N,
TSC_G1_IO2,
USART4_RX,
EVENTOUT
ADC_IN1,
COMP1_INP
K3 25 F3 16 E5 12 PA2 I/O TTa
USART2_TX, TIM2_CH3,
TIM15_CH1,
TSC_G1_IO3
COMP2_OUT
ADC_IN2,
WKUP4,
COMP2_INM6
L3 26 G3 17 H7 13 PA3 I/O TTa
USART2_RX,TIM2_CH4,
TIM15_CH2,
TSC_G1_IO4
ADC_IN3,
COMP2_INP
D3 27 C2 18 G7 - VSS S - Ground
Table 12. STM32F098CC/RC/VC pin definitions (continued)
Pin numbers
Pin name
(function up on
reset)
Pin type
I/O structure
Notes
Pin functions
UFBGA100
LQFP100
UFBGA64
LQFP64
WLCSP64
LQFP48/UFQFPN48
Alternate functions Additional
functions
Pinouts and pin descriptions STM32F098CC STM32F098RC STM32F098VC
36/128 DocID026967 Rev 4
H3 28 D2 19 G6 - VDD S - Digital power supply
M3 29 H3 20 H6 14 PA4 I/O TTa
SPI1_NSS, I2S1_WS,
TIM14_CH1,
TSC_G2_IO1,
USART2_CK,
USART6_TX
COMP1_INM4,
COMP2_INM4,
ADC_IN4,
DAC_OUT1
K4 30 F4 21 F5 15 PA5 I/O TTa
SPI1_SCK, I2S1_CK,
CEC,
TIM2_CH1_ETR,
TSC_G2_IO2,
USART6_RX
COMP1_INM5,
COMP2_INM5,
ADC_IN5,
DAC_OUT2
L4 31 G4 22 G5 16 PA6 I/O TTa
SPI1_MISO, I2S1_MCK,
TIM3_CH1, TIM1_BKIN,
TIM16_CH1,
COMP1_OUT,
TSC_G2_IO3,
EVENTOUT,
USART3_CTS
ADC_IN6
M4 32 H4 23 E4 17 PA7 I/O TTa
SPI1_MOSI, I2S1_SD,
TIM3_CH2, TIM14_CH1,
TIM1_CH1N, TIM17_CH1,
COMP2_OUT,
TSC_G2_IO4,
EVENTOUT
ADC_IN7
K5 33 H5 24 H5 - PC4 I/O TTa EVENTOUT, USART3_TX ADC_IN14
L5 34 H6 25 F4 - PC5 I/O TTa TSC_G3_IO1,
USART3_RX
ADC_IN15,
WKUP5
M5 35 F5 26 G4 18 PB0 I/O TTa
TIM3_CH3, TIM1_CH2N,
TSC_G3_IO2,
EVENTOUT,
USART3_CK
ADC_IN8
M6 36 G5 27 F3 19 PB1 I/O TTa
TIM3_CH4,
USART3_RTS,
TIM14_CH1, TIM1_CH3N,
TSC_G3_IO3
ADC_IN9
L6 37 G6 28 H4 20 NPOR I POR (3) Device power-on reset input (active low)
M738---- PE7 I/OFT TIM1_ETR,
USART5_CK_RTS -
Table 12. STM32F098CC/RC/VC pin definitions (continued)
Pin numbers
Pin name
(function up on
reset)
Pin type
I/O structure
Notes
Pin functions
UFBGA100
LQFP100
UFBGA64
LQFP64
WLCSP64
LQFP48/UFQFPN48
Alternate functions Additional
functions
DocID026967 Rev 4 37/128
STM32F098CC STM32F098RC STM32F098VC Pinouts and pin descriptions
41
L7 39 - - - - PE8 I/O FT TIM1_CH1N,
USART4_TX -
M8 40 - - - - PE9 I/O FT TIM1_CH1, USART4_RX -
L8 41 - - - - PE10 I/O FT TIM1_CH2N,
USART5_TX -
M9 42 - - - - PE11 I/O FT TIM1_CH2, USART5_RX -
L9 43 - - - - PE12 I/O FT SPI1_NSS, I2S1_WS,
TIM1_CH3N -
M10 44 - - - - PE13 I/O FT SPI1_SCK, I2S1_CK,
TIM1_CH3 -
M11 45 - - - - PE14 I/O FT SPI1_MISO, I2S1_MCK,
TIM1_CH4 -
M12 46 - - - - PE15 I/O FT SPI1_MOSI, I2S1_SD,
TIM1_BKIN -
L10 47 G7 29 G3 21 PB10 I/O FTf
SPI2_SCK, I2S2_CK,
I2C2_SCL,
USART3_TX, CEC,
TSC_SYNC, TIM2_CH3
-
L1148H730H322 PB11 I/O FTf
USART3_RX, TIM2_CH4,
EVENTOUT,
TSC_G6_IO1,
I2C2_SDA
-
F1249D531H223 VSS S - Ground
G12 50 E5 32 H1 24 VDD S - Digital power supply
L12 51 H8 33 G2 25 PB12 I/O FT
TIM1_BKIN, TIM15_BKIN,
SPI2_NSS, I2S2_WS,
USART3_CK,
TSC_G6_IO2,
EVENTOUT
-
K12 52 G8 34 F2 26 PB13 I/O FTf
SPI2_SCK, I2S2_CK,
I2C2_SCL,
USART3_CTS,
TIM1_CH1N,
TSC_G6_IO3
-
Table 12. STM32F098CC/RC/VC pin definitions (continued)
Pin numbers
Pin name
(function up on
reset)
Pin type
I/O structure
Notes
Pin functions
UFBGA100
LQFP100
UFBGA64
LQFP64
WLCSP64
LQFP48/UFQFPN48
Alternate functions Additional
functions
Pinouts and pin descriptions STM32F098CC STM32F098RC STM32F098VC
38/128 DocID026967 Rev 4
K11 53 F8 35 G1 27 PB14 I/O FTf
SPI2_MISO, I2S2_MCK,
I2C2_SDA,
USART3_RTS,
TIM1_CH2N, TIM15_CH1,
TSC_G6_IO4
-
K10 54 F7 36 F1 28 PB15 I/O FT
SPI2_MOSI, I2S2_SD,
TIM1_CH3N,
TIM15_CH1N,
TIM15_CH2
WKUP7,
RTC_REFIN
K9 55 - - - - PD8 I/O FT USART3_TX -
K8 56 - - - - PD9 I/O FT USART3_RX -
J12 57 - - - - PD10 I/O FT USART3_CK -
J11 58 - - - - PD11 I/O FT USART3_CTS -
J10 59 - - - - PD12 I/O FT
USART3_RTS,
TSC_G8_IO1,
USART8_CK_RTS
-
H12 60 - - - - PD13 I/O FT TSC_G8_IO2,
USART8_TX -
H11 61 - - - - PD14 I/O FT TSC_G8_IO3,
USART8_RX -
H10 62 - - - - PD15 I/O FT
TSC_G8_IO4,
CRS_SYNC,
USART7_CK_RTS
-
E12 63 F6 37 E1 - PC6 I/O FT (4) TIM3_CH1, USART7_TX -
E1164E738D1 - PC7 I/O FT (4) TIM3_CH2, USART7_RX -
E1065E839E2 - PC8 I/O FT (4) TIM3_CH3, USART8_TX -
D1266D840E3 - PC9 I/O FT (4) TIM3_CH4, USART8_RX -
D1167D741D229 PA8 I/O FT (4)
USART1_CK, TIM1_CH1,
EVENTOUT, MCO,
CRS_SYNC
-
D1068C742C130 PA9 I/O FT (4)
USART1_TX, TIM1_CH2,
TIM15_BKIN, MCO,
TSC_G4_IO1, I2C1_SCL
-
C1269C643C231 PA10 I/O FT (4)
USART1_RX, TIM1_CH3,
TIM17_BKIN,
TSC_G4_IO2, I2C1_SDA
-
Table 12. STM32F098CC/RC/VC pin definitions (continued)
Pin numbers
Pin name
(function up on
reset)
Pin type
I/O structure
Notes
Pin functions
UFBGA100
LQFP100
UFBGA64
LQFP64
WLCSP64
LQFP48/UFQFPN48
Alternate functions Additional
functions
DocID026967 Rev 4 39/128
STM32F098CC STM32F098RC STM32F098VC Pinouts and pin descriptions
41
B1270C844D332 PA11 I/O FT (4)
CAN_RX, USART1_CTS,
TIM1_CH4, COMP1_OUT,
TSC_G4_IO3,
EVENTOUT, I2C2_SCL
-
A1271B845B133 PA12 I/O FT (4)
CAN_TX, USART1_RTS,
TIM1_ETR, COMP2_OUT,
TSC_G4_IO4,
EVENTOUT, I2C2_SDA
-
A1172A846C334 PA13 I/O FT
(4)
(5) IR_OUT, SWDIO -
C11 73 - - - - PF6 I/O FT (4) --
F1174D647B235 VSS S - Ground
G11 75 E6 48 A1 36 VDDIO2 S - Digital power supply
A1076A749B337 PA14 I/O FT
(4)
(5) USART2_TX, SWCLK -
A9 77 A6 50 A2 38 PA15 I/O FT (4)
SPI1_NSS, I2S1_WS,
USART2_RX,
USART4_RTS,
TIM2_CH1_ETR,
EVENTOUT
-
B1178B751A3 - PC10 I/O FT (4) USART3_TX,
USART4_TX -
C1079B652C4 - PC11 I/O FT (4) USART3_RX,
USART4_RX -
B1080C553B4 - PC12 I/O FT (4)
USART3_CK,
USART4_CK,
USART5_TX
-
C981---- PD0 I/OFT
(4) SPI2_NSS, I2S2_WS,
CAN_RX -
B982---- PD1 I/OFT
(4) SPI2_SCK, I2S2_CK
CAN_TX -
C8 83 B5 54 A4 - PD2 I/O FT (4) USART3_RTS,
TIM3_ETR, USART5_RX -
B884---- PD3 I/OFT SPI2_MISO, I2S2_MCK,
USART2_CTS -
Table 12. STM32F098CC/RC/VC pin definitions (continued)
Pin numbers
Pin name
(function up on
reset)
Pin type
I/O structure
Notes
Pin functions
UFBGA100
LQFP100
UFBGA64
LQFP64
WLCSP64
LQFP48/UFQFPN48
Alternate functions Additional
functions
Pinouts and pin descriptions STM32F098CC STM32F098RC STM32F098VC
40/128 DocID026967 Rev 4
B785---- PD4 I/OFT SPI2_MOSI, I2S2_SD,
USART2_RTS -
A6 86 - - - - PD5 I/O FT USART2_TX -
B6 87 - - - - PD6 I/O FT USART2_RX -
A5 88 - - - - PD7 I/O FT USART2_CK -
A8 89 A5 55 D4 39 PB3 I/O FT
SPI1_SCK, I2S1_CK,
TIM2_CH2, TSC_G5_IO1,
EVENTOUT, USART5_TX
-
A7 90 A4 56 D5 40 PB4 I/O FT
SPI1_MISO, I2S1_MCK,
TIM17_BKIN, TIM3_CH1,
TSC_G5_IO2,
EVENTOUT, USART5_RX
-
C5 91 C4 57 C5 41 PB5 I/O FT
SPI1_MOSI, I2S1_SD,
I2C1_SMBA,
TIM16_BKIN,
TIM3_CH2,
USART5_CK_RTS
WKUP6
B5 92 D3 58 A5 42 PB6 I/O FTf
I2C1_SCL, USART1_TX,
TIM16_CH1N,
TSC_G5_I03
-
B4 93 C3 59 B5 43 PB7 I/O FTf
I2C1_SDA, USART1_RX,
USART4_CTS,
TIM17_CH1N,
TSC_G5_IO4
-
A4 94 B4 60 C6 44 PF11-BOOT0 I/O FT - Boot memory
selection
A3 95 B3 61 A6 45 PB8 I/O FTf
I2C1_SCL, CEC,
TIM16_CH1, TSC_SYNC,
CAN_RX
-
B3 96 A3 62 B6 46 PB9 I/O FTf
SPI2_NSS, I2S2_WS,
I2C1_SDA, IR_OUT,
TIM17_CH1, EVENTOUT,
CAN_TX
-
C3 97 - - - - PE0 I/O FT EVENTOUT, TIM16_CH1 -
A2 98 - - - - PE1 I/O FT EVENTOUT, TIM17_CH1 -
Table 12. STM32F098CC/RC/VC pin definitions (continued)
Pin numbers
Pin name
(function up on
reset)
Pin type
I/O structure
Notes
Pin functions
UFBGA100
LQFP100
UFBGA64
LQFP64
WLCSP64
LQFP48/UFQFPN48
Alternate functions Additional
functions
DocID026967 Rev 4 41/128
STM32F098CC STM32F098RC STM32F098VC Pinouts and pin descriptions
41
D3 99 D4 63 A7 47 VSS S - Ground
C4 100 E4 64 A8 48 VDD S - Digital power supply
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These GPIOs must not be used as current sources (e.g. to drive an LED).
2. After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content
of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the RTC
domain and RTC register descriptions in the reference manual.
3. This pin is powered by VDDA.
4. PC6, PC7, PC8, PC9, PA8, PA9, PA10, PA11, PA12, PA13, PF6, PA14, PA15, PC10, PC11, PC12, PD0, PD1 and PD2 I/Os
are supplied by VDDIO2
5. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on the SWDIO pin
and the internal pull-down on the SWCLK pin are activated.
Table 12. STM32F098CC/RC/VC pin definitions (continued)
Pin numbers
Pin name
(function up on
reset)
Pin type
I/O structure
Notes
Pin functions
UFBGA100
LQFP100
UFBGA64
LQFP64
WLCSP64
LQFP48/UFQFPN48
Alternate functions Additional
functions
STM32F098CC STM32F098RC STM32F098VC
42/128 DocID026967 Rev 4
Table 13. Alternate functions selected through GPIOA_AFR registers for port A
Pin name AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
PA0 - USART2_CTS TIM2_CH1_ETR TSC_G1_IO1 USART4_TX - - COMP1_OUT
PA1 EVENTOUT USART2_RTS TIM2_CH2 TSC_G1_IO2 USART4_RX TIM15_CH1N - -
PA2 TIM15_CH1 USART2_TX TIM2_CH3 TSC_G1_IO3 - - - COMP2_OUT
PA3 TIM15_CH2 USART2_RX TIM2_CH4 TSC_G1_IO4 - - - -
PA4 SPI1_NSS, I2S1_WS USART2_CK - TSC_G2_IO1 TIM14_CH1 USART6_TX - -
PA5 SPI1_SCK, I2S1_CK CEC TIM2_CH1_ETR TSC_G2_IO2 - USART6_RX - -
PA6 SPI1_MISO, I2S1_MCK TIM3_CH1 TIM1_BKIN TSC_G2_IO3 USART3_CTS TIM16_CH1 EVENTOUT COMP1_OUT
PA7 SPI1_MOSI, I2S1_SD TIM3_CH2 TIM1_CH1N TSC_G2_IO4 TIM14_CH1 TIM17_CH1 EVENTOUT COMP2_OUT
PA8 MCO USART1_CK TIM1_CH1 EVENTOUT CRS_SYNC - - -
PA9 TIM15_BKIN USART1_TX TIM1_CH2 TSC_G4_IO1 I2C1_SCL MCO - -
PA10 TIM17_BKIN USART1_RX TIM1_CH3 TSC_G4_IO2 I2C1_SDA - - -
PA11 EVENTOUT USART1_CTS TIM1_CH4 TSC_G4_IO3 CAN_RX I2C2_SCL - COMP1_OUT
PA12 EVENTOUT USART1_RTS TIM1_ETR TSC_G4_IO4 CAN_TX I2C2_SDA - COMP2_OUT
PA13 SWDIO IR_OUT - - - - - -
PA14 SWCLK USART2_TX - - - - - -
PA15 SPI1_NSS, I2S1_WS USART2_RX TIM2_CH1_ETR EVENTOUT USART4_RTS - - -
STM32F098CC STM32F098RC STM32F098VC
DocID026967 Rev 4 43/128
Table 14. Alternate functions selected through GPIOB_AFR registers for port B
Pin name AF0 AF1 AF2 AF3 AF4 AF5
PB0 EVENTOUT TIM3_CH3 TIM1_CH2N TSC_G3_IO2 USART3_CK -
PB1 TIM14_CH1 TIM3_CH4 TIM1_CH3N TSC_G3_IO3 USART3_RTS -
PB3 SPI1_SCK, I2S1_CK EVENTOUT TIM2_CH2 TSC_G5_IO1 -
PB4 SPI1_MISO, I2S1_MCK TIM3_CH1 EVENTOUT TSC_G5_IO2 TIM17_BKIN
PB5 SPI1_MOSI, I2S1_SD TIM3_CH2 TIM16_BKIN I2C1_SMBA -
PB6 USART1_TX I2C1_SCL TIM16_CH1N TSC_G5_IO3 - -
PB7 USART1_RX I2C1_SDA TIM17_CH1N TSC_G5_IO4 USART4_CTS -
PB8 CEC I2C1_SCL TIM16_CH1 TSC_SYNC CAN_RX -
PB9 IR_OUT I2C1_SDA TIM17_CH1 EVENTOUT CAN_TX SPI2_NSS, I2S2_WS
PB10 CEC I2C2_SCL TIM2_CH3 TSC_SYNC USART3_TX SPI2_SCK, I2S2_CK
PB11 EVENTOUT I2C2_SDA TIM2_CH4 TSC_G6_IO1 USART3_RX -
PB12 SPI2_NSS, I2S2_WS EVENTOUT TIM1_BKIN TSC_G6_IO2 USART3_CK TIM15_BKIN
PB13 SPI2_SCK, I2S2_CK - TIM1_CH1N TSC_G6_IO3 USART3_CTS I2C2_SCL
PB14 SPI2_MISO, I2S2_MCK TIM15_CH1 TIM1_CH2N TSC_G6_IO4 USART3_RTS I2C2_SDA
PB15 SPI2_MOSI, I2S2_SD TIM15_CH2 TIM1_CH3N TIM15_CH1N - -
STM32F098CC STM32F098RC STM32F098VC
44/128 DocID026967 Rev 4
Table 15. Alternate functions selected through GPIOC_AFR registers for port C
Pin name AF0 AF1 AF2
PC0 EVENTOUT USART7_TX USART6_TX
PC1 EVENTOUT USART7_RX USART6_RX
PC2 EVENTOUT SPI2_MISO, I2S2_MCK USART8_TX
PC3 EVENTOUT SPI2_MOSI, I2S2_SD USART8_RX
PC4 EVENTOUT USART3_TX -
PC5 TSC_G3_IO1 USART3_RX -
PC6 TIM3_CH1 USART7_TX -
PC7 TIM3_CH2 USART7_RX -
PC8 TIM3_CH3 USART8_TX -
PC9 TIM3_CH4 USART8_RX -
PC10 USART4_TX USART3_TX -
PC11 USART4_RX USART3_RX -
PC12 USART4_CK USART3_CK USART5_TX
PC13 - - -
PC14 - - -
PC15 - - -
Table 16. Alternate functions selected through GPIOD_AFR registers for port D
Pin name AF0 AF1 AF2
PD0 CAN_RX SPI2_NSS, I2S2_WS -
PD1 CAN_TX SPI2_SCK, I2S2_CK -
PD2 TIM3_ETR USART3_RTS USART5_RX
PD3 USART2_CTS SPI2_MISO, I2S2_MCK -
PD4 USART2_RTS SPI2_MOSI, I2S2_SD -
PD5 USART2_TX - -
PD6 USART2_RX - -
PD7 USART2_CK - -
PD8 USART3_TX - -
PD9 USART3_RX - -
PD10 USART3_CK - -
PD11 USART3_CTS - -
PD12 USART3_RTS TSC_G8_IO1 USART8_CK_RTS
PD13 USART8_TX TSC_G8_IO2 -
PD14 USART8_RX TSC_G8_IO3 -
PD15 CRS_SYNC TSC_G8_IO4 USART7_CK_RTS
DocID026967 Rev 4 45/128
STM32F098CC STM32F098RC STM32F098VC
45
Table 17. Alternate functions selected through GPIOE_AFR registers for port E
Pin name AF0 AF1
PE0 TIM16_CH1 EVENTOUT
PE1 TIM17_CH1 EVENTOUT
PE2 TIM3_ETR TSC_G7_IO1
PE3 TIM3_CH1 TSC_G7_IO2
PE4 TIM3_CH2 TSC_G7_IO3
PE5 TIM3_CH3 TSC_G7_IO4
PE6 TIM3_CH4 -
PE7 TIM1_ETR USART5_CK_RTS
PE8 TIM1_CH1N USART4_TX
PE9 TIM1_CH1 USART4_RX
PE10 TIM1_CH2N USART5_TX
PE11 TIM1_CH2 USART5_RX
PE12 TIM1_CH3N SPI1_NSS, I2S1_WS
PE13 TIM1_CH3 SPI1_SCK, I2S1_CK
PE14 TIM1_CH4 SPI1_MISO, I2S1_MCK
PE15 TIM1_BKIN SPI1_MOSI, I2S1_SD
Table 18. Alternate functions selected through GPIOF_AFR registers for port F
Pin
name AF0 AF1 AF2
PF0 CRS_SYNC I2C1_SDA -
PF1 - I2C1_SCL -
PF2 EVENTOUT USART7_TX USART7_CK_RTS
PF3 EVENTOUT USART7_RX USART6_CK_RTS
PF6---
PF9 TIM15_CH1 USART6_TX -
PF10 TIM15_CH2 USART6_RX -
Memory mapping STM32F098CC STM32F098RC STM32F098VC
46/128 DocID026967 Rev 4
5 Memory mapping
Figure 10. STM32F098CC/RC/VC memory map
06Y9
$+%
[))))))))
3HULSKHUDOV
65$0
)ODVKPHPRU\
5HVHUYHG
6\VWHPPHPRU\
2SWLRQ%\WHV
[(
)ODVKV\VWHP
PHPRU\RU65$0
GHSHQGLQJRQ%227
FRQILJXUDWLRQ
[
[(
[&
[$
[
[
[
[
[
[
[
[)))'
[))))
[)))))))
[
5HVHUYHG
&2'(
$3%
$3%
5HVHUYHG
[
[
[
[
5HVHUYHG
[
$+%
[
5HVHUYHG
[))
[))
&RUWH[0LQWHUQDO
SHULSKHUDOV
5HVHUYHG
[))))&
5HVHUYHG
5HVHUYHG
5HVHUYHG
5HVHUYHG
5HVHUYHG
5HVHUYHG
5HVHUYHG
DocID026967 Rev 4 47/128
STM32F098CC STM32F098RC STM32F098VC Memory mapping
49
Table 19. STM32F098CC/RC/VC peripheral register boundary addresses
Bus Boundary address Size Perip heral
0x4800 1800 - 0x5FFF FFFF ~384 MB Reserved
AHB2
0x4800 1400 - 0x4800 17FF 1 KB GPIOF
0x4800 1000 - 0x4800 13FF 1 KB GPIOE
0x4800 0C00 - 0x4800 0FFF 1 KB GPIOD
0x4800 0800 - 0x4800 0BFF 1 KB GPIOC
0x4800 0400 - 0x4800 07FF 1 KB GPIOB
0x4800 0000 - 0x4800 03FF 1 KB GPIOA
0x4002 4400 - 0x47FF FFFF ~128 MB Reserved
AHB1
0x4002 4000 - 0x4002 43FF 1 KB TSC
0x4002 3400 - 0x4002 3FFF 3 KB Reserved
0x4002 3000 - 0x4002 33FF 1 KB CRC
0x4002 2400 - 0x4002 2FFF 3 KB Reserved
0x4002 2000 - 0x4002 23FF 1 KB Flash memory interface
0x4002 1400 - 0x4002 1FFF 3 KB Reserved
0x4002 1000 - 0x4002 13FF 1 KB RCC
0x4002 0400 - 0x4002 0FFF 3 KB Reserved
0x4002 0000 - 0x4002 03FF 1 KB DMA
0x4001 8000 - 0x4001 FFFF 32 KB Reserved
Memory mapping STM32F098CC STM32F098RC STM32F098VC
48/128 DocID026967 Rev 4
APB
0x4001 5C00 - 0x4001 7FFF 9 KB Reserved
0x4001 5800 - 0x4001 5BFF 1 KB DBGMCU
0x4001 4C00 - 0x4001 57FF 3 KB Reserved
0x4001 4800 - 0x4001 4BFF 1 KB TIM17
0x4001 4400 - 0x4001 47FF 1 KB TIM16
0x4001 4000 - 0x4001 43FF 1 KB TIM15
0x4001 3C00 - 0x4001 3FFF 1 KB Reserved
0x4001 3800 - 0x4001 3BFF 1 KB USART1
0x4001 3400 - 0x4001 37FF 1 KB Reserved
0x4001 3000 - 0x4001 33FF 1 KB SPI1/I2S1
0x4001 2C00 - 0x4001 2FFF 1 KB TIM1
0x4001 2800 - 0x4001 2BFF 1 KB Reserved
0x4001 2400 - 0x4001 27FF 1 KB ADC
0x4001 2000 - 0x4001 23FF 1 KB Reserved
0x4001 1C00 – 0x4001 1FFF 1 KB USART8
0x4001 1800 – 0x4001 1BFF 1 KB USART7
0x4001 1400 – 0x4001 17FF 1 KB USART6
0x4001 0800 - 0x4001 13FF 3 KB Reserved
0x4001 0400 - 0x4001 07FF 1 KB EXTI
0x4001 0000 - 0x4001 03FF 1 KB SYSCFG + COMP
0x4000 8000 - 0x4000 FFFF 32 KB Reserved
Table 19. STM32F098CC/RC/VC peripheral register boundary addresses (continued)
Bus Boundary address Size Perip heral
DocID026967 Rev 4 49/128
STM32F098CC STM32F098RC STM32F098VC Memory mapping
49
APB
0x4000 7C00 - 0x4000 7FFF 1 KB Reserved
0x4000 7800 - 0x4000 7BFF 1 KB CEC
0x4000 7400 - 0x4000 77FF 1 KB DAC
0x4000 7000 - 0x4000 73FF 1 KB PWR
0x4000 6C00 - 0x4000 6FFF 1 KB CRS
0x4000 6800 - 0x4000 6BFF 1 KB Reserved
0x4000 6400 - 0x4000 67FF 1 KB BxCAN
0x4000 6100 - 0x4000 63FF 768 B Reserved
0x4000 6000 - 0x4000 60FF 256 B CAN RAM
0x4000 5C00 - 0x4000 5FFF 1 KB Reserved
0x4000 5800 - 0x4000 5BFF 1 KB I2C2
0x4000 5400 - 0x4000 57FF 1 KB I2C1
0x4000 5000 - 0x4000 53FF 1 KB USART5
0x4000 4C00 - 0x4000 4FFF 1 KB USART4
0x4000 4800 - 0x4000 4BFF 1 KB USART3
0x4000 4400 - 0x4000 47FF 1 KB USART2
0x4000 3C00 - 0x4000 43FF 2 KB Reserved
0x4000 3800 - 0x4000 3BFF 1 KB SPI2
0x4000 3400 - 0x4000 37FF 1 KB Reserved
0x4000 3000 - 0x4000 33FF 1 KB IWDG
0x4000 2C00 - 0x4000 2FFF 1 KB WWDG
0x4000 2800 - 0x4000 2BFF 1 KB RTC
0x4000 2400 - 0x4000 27FF 1 KB Reserved
0x4000 2000 - 0x4000 23FF 1 KB TIM14
0x4000 1800 - 0x4000 1FFF 2 KB Reserved
0x4000 1400 - 0x4000 17FF 1 KB TIM7
0x4000 1000 - 0x4000 13FF 1 KB TIM6
0x4000 0800 - 0x4000 0FFF 2 KB Reserved
0x4000 0400 - 0x4000 07FF 1 KB TIM3
0x4000 0000 - 0x4000 03FF 1 KB TIM2
Table 19. STM32F098CC/RC/VC peripheral register boundary addresses (continued)
Bus Boundary address Size Perip heral
Electrical characteristics STM32F098CC STM32F098RC STM32F098VC
50/128 DocID026967 Rev 4
6 Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3).
6.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 1.8 V and VDDA =
3.3 V. They are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 11.
6.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 12.
Figure 11. Pin loading conditions Figure 12. Pin input voltage
069
0&8SLQ
& S)
069
0&8SLQ
9,1
DocID026967 Rev 4 51/128
STM32F098CC STM32F098RC STM32F098VC Electrical characteristics
99
6.1.6 Power supply scheme
Figure 13. Power supply scheme
Caution: Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure the good functionality of
the device.
9''
9'',2
/HYHOVKLIWHU
,2
ORJLF
.HUQHOORJLF
&38'LJLWDO
0HPRULHV
%DFNXSFLUFXLWU\
/6(57&
%DFNXSUHJLVWHUV
,1
287
*3,2V
±9
,1
287
*3,2V
[Q)
[)
Q)
/HYHOVKLIWHU
,2
ORJLF
)
9'',2
966
[966
[9''
9%$7
9&25(
3RZHUVZLWFK
1325
9'',2
9'',2
$'&
'$&
$QDORJ
5&V3//«
95()
95()
9''$
Q)
)
9''$
966$
069
Electrical characteristics STM32F098CC STM32F098RC STM32F098VC
52/128 DocID026967 Rev 4
6.1.7 Current consumption measurement
Figure 14. Current consumption measurement scheme
069
9%$7
9''
9''$
,''
,''$
,''B9%$7
9'',2
DocID026967 Rev 4 53/128
STM32F098CC STM32F098RC STM32F098VC Electrical characteristics
99
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 20: Voltage characteristics,
Table 21: Current characteristics and Table 22: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Table 20. Vo ltage characteristics(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
Symbol Ratings Min Max Unit
VDD–VSS External main supply voltage 0.3 1.95 V
VDDIO2–VSS External I/O supply voltage - 0.3 4.0 V
VDDA–VSS External analog supply voltage - 0.3 4.0 V
VDD–VDDA Allowed voltage difference for VDD > VDDA -0.4V
VBAT–VSS External backup supply voltage - 0.3 4.0 V
VIN(2)
2. VIN maximum must always be respected. Refer to Table 21: Current characteristics for the maximum
allowed injected current values.
Input voltage on FT and FTf pins VSS 0.3 VDDIOx + 4.0(3)
3. Valid only if the internal pull-up/pull-down resistors are disabled. If internal pull-up or pull-down resistor is
enabled, the maximum limit is 4 V.
V
Input voltage on POR pins VSS 0.3 4.0 V
Input voltage on TTa pins VSS 0.3 4.0 V
Input voltage on any other pin VSS 0.3 4.0 V
|VDDx| Variations between different VDD power pins - 50 mV
|VSSx - VSS|Variations between all the different ground
pins -50mV
VESD(HBM)
Electrostatic discharge voltage
(human body model)
see Section 6.3.11: Electrical
sensitivity characteristics -
Electrical characteristics STM32F098CC STM32F098RC STM32F098VC
54/128 DocID026967 Rev 4
Table 21. Current characteristics
Symbol Ratings Max. Unit
IVDD Total current into sum of all VDD power lines (source)(1) 120
mA
IVSS Total current out of sum of all VSS ground lines (sink)(1) -120
IVDD(PIN) Maximum current into each VDD power pin (source)(1) 100
IVSS(PIN) Maximum current out of each VSS ground pin (sink)(1) -100
IIO(PIN)
Output current sunk by any I/O and control pin 25
Output current source by any I/O and control pin -25
IIO(PIN)
Total output current sunk by sum of all I/Os and control pins(2) 80
Total output current sourced by sum of all I/Os and control pins(2) -80
Total output current sourced by sum of all I/Os supplied by VDDIO2 -40
IINJ(PIN)(3)
Injected current on POR, FT and FTf pins -5/+0(4)
Injected current on TC and RST pin ± 5
Injected current on TTa pins(5) ± 5
IINJ(PIN) Total injected current (sum of all I/O and control pins)(6) ± 25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.
3. A positive injection is induced by VIN > VDDIOx while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be
exceeded. Refer to Table 20: Voltage characteristics for the maximum allowed input voltage values.
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
5. On these I/Os, a positive injection is induced by VIN > VDDA. Negative injection disturbs the analog performance of the
device. See note (2) below Table 57: ADC accuracy.
6. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 22. Thermal characteristics
Symbol Ratin gs Value Unit
TSTG Storage temperature range –65 to +150 °C
TJMaximum junction temperature 150 °C
DocID026967 Rev 4 55/128
STM32F098CC STM32F098RC STM32F098VC Electrical characteristics
99
6.3 Operating conditions
6.3.1 General operating conditions
6.3.2 Operating conditions at power-up / power-down
The parameters given in Table 24 are derived from tests performed under the ambient
temperature condition summarized in Table 23.
Table 23. General operating conditions
Symbol Parameter Conditions Min Max Unit
fHCLK Internal AHB clock frequency - 0 48
MHz
fPCLK Internal APB clock frequency - 0 48
VDD Standard operating voltage - 1.65 1.95 V
VDDIO2 I/O supply voltage Must not be supplied if VDD
is not present 1.65 3.6 V
VDDA
Analog operating voltage
(ADC and DAC not used) Must have a potential equal
to or higher than VDD
VDD 3.6
V
Analog operating voltage
(ADC and DAC used) 2.4 3.6
VBAT Backup operating voltage - 1.65 3.6 V
VIN I/O input voltage
TC and RST I/O –0.3 VDDIOx+0.3
VTTa and POR I/O –0.3 VDDA+0.3(1)
FT and FTf I/O –0.3 5.2(1)
PD
Power dissipation at TA = 85 °C
for suffix 6 or TA = 105 °C for
suffix 7(2)
UFBGA100 - 364
mW
LQFP100 - 476
LQFP64 - 455
WLCSP64 - 377
UFBGA64 - 308
LQFP48 - 370
UFQFPN48 - 625
TA
Ambient temperature for the
suffix 6 version
Maximum power dissipation –40 85
°C
Low power dissipation(3) –40 105
Ambient temperature for the
suffix 7 version
Maximum power dissipation –40 105
°C
Low power dissipation(3) –40 125
1. For operation with a voltage higher than VDDIOx + 0.3 V, the internal pull-up resistor must be disabled.
2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax. See
3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.8:
Thermal characteristics).
Electrical characteristics STM32F098CC STM32F098RC STM32F098VC
56/128 DocID026967 Rev 4
6.3.3 Embedded reference voltage
The parameters given in Table 25 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 23: General operating
conditions.
6.3.4 Supp ly current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 14 : Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to CoreMark code.
Table 24. Operating conditions at power-up / power-down
Symbol Parameter Conditions Min Max Unit
tVDD
VDD rise time rate
-
0
µs/V
VDD fall time rate 20
tVDDA
VDDA rise time rate
-
0
VDDA fall time rate 20
Table 25. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage –40 °C < TA < +105 °C 1.2 1.23 1.25 V
tSTART
ADC_IN17 buffer startup
time ---10
(1) µs
tS_vrefint
ADC sampling time when
reading the internal
reference voltage
-4(1)
1. Guaranteed by design, not tested in production.
-- µs
VREFINT
Internal reference voltage
spread over the
temperature range
VDDA = 3 V - - 10(1) mV
TCoeff Temperature coefficient - - 100(1) -100(1) ppm/°C
TVREFINT_RDY
(2)
2. Guaranteed by design, not tested in production. This parameter is the latency between the time when pin
NPOR is set to 1 by the application and the time when the VREFINTRDYF status bit is set to 1 by the
hardware.
Internal reference voltage
temporization - 1.5 2.5 4.5 ms
DocID026967 Rev 4 57/128
STM32F098CC STM32F098RC STM32F098VC Electrical characteristics
99
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in analog input mode
All peripherals are disabled except when explicitly mentioned
The Flash memory access time is adjusted to the fHCLK frequency:
0 wait state and Prefetch OFF from 0 to 24 MHz
1 wait state and Prefetch ON above 24 MHz
When the peripherals are enabled fPCLK = fHCLK
The parameters given in Table 26 to Table 29 are derived from tests performed under
ambient temperature and supply voltage conditions summarized in Table 23: General
operating conditions.
Electrical characteristics STM32F098CC STM32F098RC STM32F098VC
58/128 DocID026967 Rev 4
Table 26. Typical and maximum current consumption from VDD supply at VDD = 1.8 V
Symbol
Parameter
Conditions fHCLK
All peripherals enabled All peripherals disabled
Unit
Typ Max @ TA(1)
Typ Max @ TA(1)
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
IDD
Supply current in Run mode,
code executing from Flash memory
HSI48 48 MHz 26.2 28.0 28.8 28.9 14.2 15.1 15.2 15.3
mA
HSE bypass,
PLL on
48 MHz 26.1 27.9 28.7 28.8 14.1 15.0 15.1 15.3
32 MHz 17.7 18.9 19.4 19.5 9.6 10.2 10.3 10.4
24 MHz 13.8 14.6 14.9 15.0 7.9 8.2 8.4 8.6
HSE bypass,
PLL off
8 MHz 4.7 5.0 5.1 5.3 2.7 2.9 2.9 2.9
1 MHz 0.8 0.9 1.0 1.1 0.6 0.7 0.8 0.8
HSI clock,
PLL on
48 MHz 26.1 27.9 28.7 28.9 14.1 15.0 15.2 15.3
32 MHz 17.8 19.0 19.4 19.5 9.7 10.2 10.4 10.4
24 MHz 13.9 14.7 15.0 15.1 8.0 8.3 8.5 8.7
HSI clock,
PLL off 8 MHz 4.8 5.1 5.1 5.4 2.7 2.9 2.9 2.9
Supply current in Run mode,
code executing from RAM
HSI48 48 MHz 25.7 27.6 28.2 28.5 13.6 14.6 14.7 14.9
HSE bypass,
PLL on
48 MHz 25.5 27.4 28.1 28.3 13.5 14.5 14.7 14.8
32 MHz 17.2 18.4 18.9 19.0 9.1 9.7 9.9 9.9
24 MHz 13.1 14.0 14.3 14.4 7.1 7.5 7.7 7.8
HSE bypass,
PLL off
8 MHz 4.2 4.6 4.7 4.8 2.3 2.5 2.5 2.6
1 MHz 0.5 0.7 0.7 0.7 0.3 0.4 0.4 0.5
HSI clock,
PLL on
48 MHz 25.6 27.5 28.2 28.4 13.6 14.5 14.7 14.8
32 MHz 17.3 18.5 18.9 19.0 9.1 9.8 9.9 10.0
24 MHz 13.2 14.1 14.4 14.4 7.2 7.6 7.8 7.9
HSI clock,
PLL off 8 MHz 4.4 4.7 4.9 4.9 2.3 2.6 2.6 2.6
Supply current in Sleep mode
HSI48 48 MHz 16.5 17.7 18.2 18.3 3.1 3.4 3.5 3.6
mA
HSE bypass,
PLL on
48 MHz 16.4 17.6 18.0 18.1 3.1 3.3 3.4 3.5
32 MHz 11.1 11.9 12.2 12.3 2.1 2.3 2.4 2.5
24 MHz 8.4 9.1 9.3 9.4 1.6 1.8 1.9 2.0
HSE bypass,
PLL off
8 MHz 2.8 3.0 3.1 3.4 0.5 0.7 0.7 0.8
1 MHz 0.4 0.5 0.5 0.6 0.2 0.3 0.3 0.4
HSI clock,
PLL on
48 MHz 16.4 17.7 18.1 18.2 3.1 3.3 3.4 3.5
32 MHz 11.2 12.0 12.2 12.3 2.2 2.4 2.5 2.6
24 MHz 8.5 9.1 9.3 9.4 1.7 1.8 1.9 2.0
HSI clock,
PLL off 8 MHz 2.8 3.1 3.1 3.5 0.6 0.7 0.7 0.8
DocID026967 Rev 4 59/128
STM32F098CC STM32F098RC STM32F098VC Electrical characteristics
99
1. Data based on characterization results, not tested in production unless otherwise specified.
Table 27. Typical and maximum current consumption in Stop mode
Symbol
Parameter
Conditions
Typ @ VDDA (VDD = 1.8 V) Max
Unit
= 1.8 V
= 2.0 V
= 2.4 V
= 2.7 V
= 3.0 V
= 3.3 V
= 3.6 V
TA =
25 °C TA =
85 °C TA =
105 °C
IDD Supply current
in Stop mode All oscillators OFF
0.6 2.4 33 78
µA
IDDA 0.9 0.9 1.0 1.0 1.0 1.1 1.2 2.5 3.0 3.7
Table 28. Typical and maximum current consumption from the VDDA supply
Symbol
Para-meter
Conditions
(1) fHCLK
VDDA = 2.4 V VDDA = 3.6 V
Unit
Typ Max @ TA(2)
Typ Max @ TA(2)
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
IDDA
Supply
current in
Run or
Sleep
mode,
code
executing
from
Flash
memory
or RAM
HSI48 48 MHz 311 332 337 346 315 333 340 349
µA
HSE
bypass,
PLL on
48 MHz 146 167 177 180 159 180 191 196
32 MHz 100 118 124 126 108 126 134 137
24 MHz 79 95 98 99 85 100 105 108
HSE
bypass,
PLL off
8 MHz 2 3 3 4 3 3 4 4
1 MHz 2 2 3 3 2 3 3 4
HSI clock,
PLL on
48 MHz 212 242 253 257 234 261 274 280
32 MHz 165 193 202 203 183 206 215 219
24 MHz 143 170 176 177 160 179 186 189
HSI clock,
PLL off 8 MHz 64 82 84 85 76 88 91 92
1. Current consumption from the VDDA supply is independent of whether the digital peripherals are enabled or disabled, being
in Run or Sleep mode or executing from Flash memory or RAM. Furthermore, when the PLL is off, IDDA is independent from
the frequency.
2. Data based on characterization results, not tested in production unless otherwise specified.
Electrical characteristics STM32F098CC STM32F098RC STM32F098VC
60/128 DocID026967 Rev 4
Typical current consumption
The MCU is placed under the following conditions:
VDD = VDDA = 1.8 V
All I/O pins are in analog input configuration
The Flash memory access time is adjusted to fHCLK frequency:
0 wait state and Prefetch OFF from 0 to 24 MHz
1 wait state and Prefetch ON above 24 MHz
When the peripherals are enabled, fPCLK = fHCLK
PLL is used for frequencies greater than 8 MHz
AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and
500 kHz respectively
Table 29. Typical and maximum current consumption from the VBAT supply
Symbol Parameter Conditions
Typ @ VBAT Max(1)
Unit
1.65 V
1.8 V
2.4 V
2.7 V
3.3 V
3.6 V
TA =
25 °C TA =
85 °C TA =
105 °C
IDD_VBAT
RTC
domain
supply
current
LSE & RTC ON; “Xtal
mode”: lower driving
capability;
LSEDRV[1:0] = '00'
0.5 0.5 0.6 0.7 0.9 1.0 1.0 1.3 1.8
µA
LSE & RTC ON; “Xtal
mode” higher driving
capability;
LSEDRV[1:0] = '11'
0.8 0.8 0.9 1.0 1.2 1.3 1.4 1.7 2.2
1. Data based on characterization results, not tested in production.
DocID026967 Rev 4 61/128
STM32F098CC STM32F098RC STM32F098VC Electrical characteristics
99
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 50: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
Table 30. Typical current consumption, code executing from Flash memory,
running from HSE 8 MHz crystal
Symbol Parameter fHCLK
Typical cons umption in
Run mode Typical consumption in
Sleep mode Unit
Peripherals
enabled Peripherals
disabled Peripherals
enabled Peripherals
disabled
IDD
Current
consumption
from VDD
supply
48 MHz 26.1 14.3 16.8 3.4
mA
36 MHz 20.2 11.1 13.0 2.8
32 MHz 18.5 10.3 11.7 2.5
24 MHz 14.5 8.1 9.1 1.9
16 MHz 10.1 5.7 6.3 1.4
8 MHz 5.0 2.8 2.9 0.7
4 MHz 3.1 1.8 1.9 0.6
2 MHz 1.8 1.1 1.3 0.6
1 MHz 1.2 0.8 1.0 0.5
500 kHz 1.0 0.7 0.9 0.5
IDDA
Current
consumption
from VDDA
supply
48 MHz 151
A
36 MHz 118
32 MHz 108
24 MHz 87
16 MHz 63
8 MHz 1.1
4 MHz 1.1
2 MHz 1.1
1 MHz 1.1
500 kHz 1.1
Electrical characteristics STM32F098CC STM32F098RC STM32F098VC
62/128 DocID026967 Rev 4
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 32: Peripheral current consumption), the I/Os used by an application also contribute
to the current consumption. When an I/O pin switches, it uses the current from the I/O
supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load
(internal or external) connected to the pin:
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDDIOx is the I/O supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT + CEXT + CS
CS is the PCB board capacitance including the pad pin.
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
ISW VDDIOx fSW C××=
DocID026967 Rev 4 63/128
STM32F098CC STM32F098RC STM32F098VC Electrical characteristics
99
Table 31. Switching output I/O current consumption
Symbol Parameter Conditions(1)
1. CS = 5 pF (estimated value).
I/O toggling
frequency (fSW)Typ Unit
ISW
I/O current
consumption
VDDIOx = 1.8 V
CEXT = 0 pF
C = CINT + CEXT + CS
2 MHz 0.09
mA
4 MHz 0.17
8 MHz 0.34
18 MHz 0.79
36 MHz 1.50
48 MHz 2.06
VDDIOx = 1.8 V
CEXT = 10 pF
C = CINT + CEXT + CS
2 MHz 0.13
4 MHz 0.26
8 MHz 0.50
18 MHz 1.18
36 MHz 2.27
48 MHz 3.03
VDDIOx = 1.8 V
CEXT = 22 pF
C = CINT + CEXT + CS
2 MHz 0.18
4 MHz 0.36
8 MHz 0.69
18 MHz 1.60
36 MHz 3.27
VDDIOx = 1.8 V
CEXT = 33 pF
C = CINT + CEXT + CS
2 MHz 0.23
4 MHz 0.45
8 MHz 0.87
18 MHz 2.0
36 MHz 3.7
VDDIOx = 1.8 V
CEXT = 47 pF
C = CINT + CEXT + CS
2 MHz 0.29
4 MHz 0.55
8 MHz 1.09
18 MHz 2.43
Electrical characteristics STM32F098CC STM32F098RC STM32F098VC
64/128 DocID026967 Rev 4
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 32. The MCU is placed
under the following conditions:
All I/O pins are in analog mode
All peripherals are disabled unless otherwise mentioned
The given value is calculated by measuring the current consumption
with all peripherals clocked off
with only one peripheral clocked on
Ambient operating temperature and supply voltage conditions summarized in Table 20:
Voltage characteristics
Table 32. Peripheral current consumption
Periphera l Typical consumption at 25 °C Unit
AHB
BusMatrix(1) 3.1
µA/MHz
CRC 2.0
DMA1 5.5
DMA2 5.1
Flash memory interface 15.4
GPIOA 5.5
GPIOB 5.4
GPIOC 3.2
GPIOD 3.1
GPIOE 4.0
GPIOF 2.5
SRAM 0.8
TSC 5.5
All AHB peripherals 61.0
DocID026967 Rev 4 65/128
STM32F098CC STM32F098RC STM32F098VC Electrical characteristics
99
APB
APB-Bridge(2) 3.6
µA/MHz
ADC(3) 4.3
CAN 12.4
CEC 0.4
CRS 0.0
DAC(3) 4.2
DBG (MCU Debug Support) 0.2
I2C1 2.9
I2C2 2.4
PWR 0.6
SPI1 8.8
SPI2 7.8
SYSCFG and COMP 1.9
TIM1 15.2
TIM14 2.6
TIM15 8.7
TIM16 5.8
TIM17 7.0
TIM2 16.2
TIM3 11.9
TIM6 11.8
TIM7 2.5
USART1 17.6
USART2 16.3
USART3 16.2
USART4 4.7
USART5 4.4
USART6 5.5
USART7 5.2
USART8 5.1
WWDG 1.1
All APB peripherals 207.2
1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).
2. The APB Bridge is automatically active when at least one peripheral is ON on the Bus.
3. The power consumption of the analog part (IDDA) of peripherals such as ADC, DAC, comparators, is not
included. Refer to the tables of characteristics in the subsequent sections.
Table 32. Peripheral current consumption (continued)
Periphera l Typical consumption at 25 °C Unit
Electrical characteristics STM32F098CC STM32F098RC STM32F098VC
66/128 DocID026967 Rev 4
6.3.5 Wakeup time from low-power mode
The wakeup times given in Table 33 are the latency between the event and the execution of
the first user instruction. The device goes in low-power mode after the WFE (Wait For
Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles
must be added to the following timings due to the interrupt latency in the Cortex M0
architecture.
The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode.
During wakeup from Stop mode, SYSCLK takes the default setting: HSI 8 MHz.
The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode.
All timings are derived from tests performed under the ambient temperature and supply
voltage conditions summarized in Table 23: General operating conditions.
6.3.6 External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.13. However,
the recommended clock input waveform is shown in Figure 15: High-speed ex ter n al clock
source AC timing diagram.
Table 33. Low-power mode wakeup timings
Symbol Parameter Typ @ VDDA Max Unit
= 1.8 V = 3.3 V
tWUSTOP Wakeup from Stop mode 3.5 2.8 5.3 µs
tWUSLEEP Wakeup from Sleep mode 4 SYSCLK cycles - µs
Table 34. High-speed external user clock characteristics
Symbol Parameter(1)
1. Guaranteed by design, not tested in production.
Min Typ Max Unit
fHSE_ext User external clock source frequency - 8 32 MHz
VHSEH OSC_IN input pin high level voltage 0.7 VDDIOx -V
DDIOx V
VHSEL OSC_IN input pin low level voltage VSS - 0.3 VDDIOx
tw(HSEH)
tw(HSEL)
OSC_IN high or low time 15 - -
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time - - 20
DocID026967 Rev 4 67/128
STM32F098CC STM32F098RC STM32F098VC Electrical characteristics
99
Figure 15. High-speed external clock source AC timing diagram
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.13. However,
the recommended clock input waveform is shown in Figure 16.
Figure 16. Low-speed external clock source AC timing diagram
Table 35. Low-speed external user clock characteristics
Symbol Parameter(1)
1. Guaranteed by design, not tested in production.
Min Typ Max Unit
fLSE_ext User external clock source frequency - 32.768 1000 kHz
VLSEH OSC32_IN input pin high level voltage 0.7 VDDIOx -V
DDIOx V
VLSEL OSC32_IN input pin low level voltage VSS - 0.3 VDDIOx
tw(LSEH)
tw(LSEL)
OSC32_IN high or low time 450 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time - - 50
069
9+6(+
WI+6(


7+6(
W
WU+6(
9+6(/
WZ+6(+
WZ+6(/
069
9/6(+
WI/6(


7/6(
W
WU/6(
9/6(/
WZ/6(+
WZ/6(/
Electrical characteristics STM32F098CC STM32F098RC STM32F098VC
68/128 DocID026967 Rev 4
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 36. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 17). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST mic ro co ntro ller s” av aila ble fro m the ST webs ite www.st.com.
Table 36. HSE oscillator characteristics
Symbol Parameter Conditions(1)
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
Min(2) Typ Max(2)
2. Guaranteed by design, not tested in production.
Unit
fOSC_IN Oscillator frequency - 4 8 32 MHz
RFFeedback resistor - - 200 - k
IDD HSE current consumption
During startup(3)
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time
--8.5
mA
VDD = 1.8 V,
Rm = 30 ,
CL = 10 pF@8 MHz
-0.4-
VDD = 1.8 V,
Rm = 45 ,
CL = 10 pF@8 MHz
-0.5-
VDD = 1.8 V,
Rm = 30 ,
CL = 5 pF@32 MHz
-0.8-
VDD = 1.8 V,
Rm = 30 ,
CL = 10 pF@32 MHz
-1-
VDD = 1.8 V,
Rm = 30 ,
CL = 20 pF@32 MHz
-1.5-
gm Oscillator transconductance Startup 10 - - mA/V
tSU(HSE)(4)
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
Startup time VDD is stabilized - 2 - ms
DocID026967 Rev 4 69/128
STM32F098CC STM32F098RC STM32F098VC Electrical characteristics
99
Figure 17. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator
oscillator. All the information given in this paragraph are based on design simulation results
obtained with typical external components specified in Table 37. In the application, the
resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
069

26&B,1
26&B287
5)
%LDV
FRQWUROOHG
JDLQ
I+6(
5(;7
0+]
UHVRQDWRU
5HVRQDWRUZLWKLQWHJUDWHG
FDSDFLWRUV
&/
&/
Table 37. LSE oscillator characteristics (fLSE = 32.768 kHz)
Symbol Parameter Conditions(1) Min(2) Typ Max(2) Unit
IDD LSE current consumption
low drive capability - 0.5 0.9
µA
medium-low drive capability - - 1
medium-high drive capability - - 1.3
high drive capability - - 1.6
gm
Oscillator
transconductance
low drive capability 5 - -
µA/V
medium-low drive capability 8 - -
medium-high drive capability 15 - -
high drive capability 25 - -
tSU(LSE)(3) Startup time VDDIOx is stabilized - 2 - s
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
2. Guaranteed by design, not tested in production.
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
Electrical characteristics STM32F098CC STM32F098RC STM32F098VC
70/128 DocID026967 Rev 4
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST mic ro co ntro ller s” av aila ble fro m the ST webs ite www.st.com.
Figure 18. Typical application with a 32.768 kHz crystal
Note: An external resistor is no t required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
6.3.7 Internal clock source characteristics
The parameters given in Table 38 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 23: General operating
conditions. The provided curves are characterization results, not tested in production.
069
26&B,1
26&B287
'ULYH
SURJUDPPDEOH
DPSOLILHU
I/6(
N+]
UHVRQDWRU
5HVRQDWRUZLWKLQWHJUDWHG
FDSDFLWRUV
&/
&/
DocID026967 Rev 4 71/128
STM32F098CC STM32F098RC STM32F098VC Electrical characteristics
99
High-speed internal (HSI) RC oscillator
Figure 19. HSI oscill at or ac cu ra cy ch aract eriz at io n results for soldered parts
Table 38. HSI oscillator characteristics(1)
1. VDDA = 3.3 V, TA = -40 to 105°C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency - - 8 - MHz
TRIM HSI user trimming step - - - 1(2)
2. Guaranteed by design, not tested in production.
%
DuCy(HSI) Duty cycle - 45(2) -55
(2) %
ACCHSI
Accuracy of the HSI
oscillator
TA = -40 to 105°C -2.8(3)
3. Data based on characterization results, not tested in production.
-3.8
(3)
%
TA = -10 to 85°C -1.9(3) -2.3
(3)
TA = 0 to 85°C -1.9(3) -2
(3)
TA = 0 to 70°C -1.3(3) -2
(3)
TA = 0 to 55°C -1(3) -2
(3)
TA = 25°C(4)
4. Factory calibrated, parts not soldered.
-1 - 1
tsu(HSI) HSI oscillator startup time - 1(2) -2
(2) µs
IDDA(HSI)
HSI oscillator power
consumption - - 80 100(2) µA
069
5<$>
"
."9
.*/
       









Electrical characteristics STM32F098CC STM32F098RC STM32F098VC
72/128 DocID026967 Rev 4
High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)
Figure 20. HSI14 oscillator accuracy characterization results
Table 39. HSI14 oscillator characteristics(1)
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI14 Frequency - - 14 - MHz
TRIM HSI14 user-trimming step - - - 1(2)
2. Guaranteed by design, not tested in production.
%
DuCy(HSI14) Duty cycle - 45(2) -55
(2) %
ACCHSI14
Accuracy of the HSI14
oscillator (factory calibrated)
TA = –40 to 105 °C –4.2(3)
3. Data based on characterization results, not tested in production.
-5.1
(3) %
TA = –10 to 85 °C –3.2(3) -3.1
(3) %
TA = 0 to 70 °C –2.5(3) -2.3
(3) %
TA = 25 °C –1 - 1 %
tsu(HSI14) HSI14 oscillator startup time - 1(2) -2
(2) µs
IDDA(HSI14)
HSI14 oscillator power
consumption --100150
(2) µA
069











      
0$;
0,1
7>&@
$
DocID026967 Rev 4 73/128
STM32F098CC STM32F098RC STM32F098VC Electrical characteristics
99
High-speed internal 48 MHz (HSI48) RC oscillator
Figure 21. HSI48 oscillator accuracy characterization results
Table 40. HSI48 oscillator characteristics(1)
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI48 Frequency - - 48 - MHz
TRIM HSI48 user-trimming step - 0.09(2) 0.14 0.2(2) %
DuCy(HSI48) Duty cycle - 45(2)
2. Guaranteed by design, not tested in production.
-55
(2) %
ACCHSI48
Accuracy of the HSI48
oscillator (factory calibrated)
TA = –40 to 105 °C -4.9(3)
3. Data based on characterization results, not tested in production.
-4.7
(3) %
TA = –10 to 85 °C -4.1(3) -3.7
(3) %
TA = 0 to 70 °C -3.8(3) -3.4
(3) %
TA = 25 °C -2.8 - 2.9 %
tsu(HSI48) HSI48 oscillator startup time - - - 6(2) µs
IDDA(HSI48)
HSI48 oscillator power
consumption - - 312 350(2) µA
069











      
0$;
0,1
7>&@
$
Electrical characteristics STM32F098CC STM32F098RC STM32F098VC
74/128 DocID026967 Rev 4
Low-speed internal (LSI) RC oscillator
6.3.8 PLL characteristics
The parameters given in Table 42 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 23: General operating
conditions.
6.3.9 Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
Table 41. LSI oscillator characteristics(1)
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Min Typ Max Unit
fLSI Frequency 30 40 50 kHz
tsu(LSI)(2)
2. Guaranteed by design, not tested in production.
LSI oscillator startup time - - 85 µs
IDDA(LSI)(2) LSI oscillator power consumption - 0.75 1.2 µA
Table 42. PLL characteristics
Symbol Parameter Value Unit
Min Typ Max
fPLL_IN
PLL input clock(1)
1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the
range defined by fPLL_OUT
.
1(2) 8.0 24(2) MHz
PLL input clock duty cycle 40(2) -60
(2) %
fPLL_OUT PLL multiplier output clock 16(2) -48MHz
tLOCK PLL lock time - - 200(2)
2. Guaranteed by design, not tested in production.
µs
JitterPLL Cycle-to-cycle jitter - - 300(2) ps
Table 43. Flash memory characteristics
Symbol Parameter Conditions Min Typ Max(1)
1. Guaranteed by design, not tested in production.
Unit
tprog 16-bit programming time TA = - 40 to +105 °C 40 53.5 60 µs
tERASE Page (2 KB) erase time TA = - 40 to +105 °C 20 - 40 ms
tME Mass erase time TA = - 40 to +105 °C 20 - 40 ms
IDD Supply current
Write mode - - 10 mA
Erase mode - - 12 mA
DocID026967 Rev 4 75/128
STM32F098CC STM32F098RC STM32F098VC Electrical characteristics
99
6.3.10 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 45. They are based on the EMS levels and classes
defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Table 44. Flash memory endurance and data retention
Symbol Parameter Conditions Min(1)
1. Data based on characterization results, not tested in production.
Unit
NEND Endurance TA = –40 to +105 °C 10 kcycle
tRET Data retention
1 kcycle(2) at TA = 85 °C
2. Cycling performed over the whole temperature range.
30
Year1 kcycle(2) at TA = 105 °C 10
10 kcycle(2) at TA = 55 °C 20
Table 45. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin
to induce a functional disturbance
VDD = 1.8 V, LQFP100, TA = +25 °C,
fHCLK = 48 MHz,
conforming to IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 1.8 V, LQFP100, TA = +25°C,
fHCLK = 48 MHz,
conforming to IEC 61000-4-4
4B
Electrical characteristics STM32F098CC STM32F098RC STM32F098VC
76/128 DocID026967 Rev 4
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (for example control registers)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
6.3.11 Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 46. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs. [fHSE/fHCLK]Unit
8/48 MHz
SEMI Peak level
VDD = 1.8 V, TA = 25 °C,
LQFP100 package
compliant with
IEC 61967-2
0.1 to 30 MHz 3
dBµV30 to 130 MHz 23
130 MHz to 1 GHz 15
EMI Level 4 -
DocID026967 Rev 4 77/128
STM32F098CC STM32F098RC STM32F098VC Electrical characteristics
99
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
A supply overvoltage is applied to each power supply pin.
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with EIA/JESD 78A IC latch-up standard.
6.3.12 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDDIOx (for standard, 3.3 V-capable I/O pins) should be avoided during normal
product operation. However, in order to give an indication of the robustness of the
microcontroller in cases when abnormal injection accidentally happens, susceptibility tests
are performed on a sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or
oscillator frequency deviation).
The characterization results are given in Table 49.
Negative induced leakage current is caused by negative injection and positive induced
leakage current is caused by positive injection.
Table 47. ESD absolute maximum ratings
Symbol Ratings Conditions Packages Class Maximum
value(1) Unit
VESD(HBM)
Electrostatic discharge voltage
(human body model)
TA = +25 °C, conforming
to JESD22-A114 All 2 2000 V
VESD(CDM)
Electrostatic discharge voltage
(charge device model)
TA = +25 °C, conforming
to ANSI/ESD STM5.3.1
WLCSP64,
LQFP100 C3 250
V
All others C4 500
1. Data based on characterization results, not tested in production.
Table 48. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +105 °C conforming to JESD78A II level A
Electrical characteristics STM32F098CC STM32F098RC STM32F098VC
78/128 DocID026967 Rev 4
6.3.13 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 50 are derived from tests
performed under the conditions summarized in Table 23: General operating conditions. All
I/Os are designed as CMOS- and TTL-compliant.
Table 49. I/O current injection susceptibility
Symbol Description
Functional
susceptibility Unit
Negative
injection Positive
injection
IINJ
Injected current on BOOT0 -0 NA
mA
Injected current on PF1 pin (FTf pin) -0 NA
Injected current on PC0 pin (TTA pin) -0 +5
Injected current on PA4, PA5 pins with induced leakage
current on adjacent pins less than -20 A-5 NA
Injected current on other FT and FTf pins, and on NPOR pin -5 NA
Injected current on all other TC, TTa and RST pins -5 +5
Table 50. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL
Low level input
voltage
TC and TTa I/O - - 0.3 VDDIOx+0.07(1)
VFT and FTf I/O - - 0.475 VDDIOx–0.2(1)
All I/Os - - 0.3 VDDIOx
VIH
High level input
voltage
TC and TTa I/O 0.445 VDDIOx+0.398(1) --
VFT and FTf I/O 0.5 VDDIOx+0.2(1) --
All I/Os 0.7 VDDIOx --
Vhys Schmitt trigger
hysteresis
TC and TTa I/O - 200(1) -
mV
FT and FTf I/O - 100(1) -
Ilkg Input leakage
current(2)
TC, FT and FTf I/O
TTa in digital mode
VSS VIN VDDIOx
--± 0.1
µA
TTa in digital mode
VDDIOx VIN VDDA
--1
TTa in analog mode
VSS VIN VDDA
--± 0.2
FT and FTf I/O
VDDIOx VIN 5 V --10
DocID026967 Rev 4 79/128
STM32F098CC STM32F098RC STM32F098VC Electrical characteristics
99
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements is shown in Figure 22 for standard I/Os, and in Figure 23 for
5 V-tolerant I/Os. The following curves are design simulation results, not tested in
production.
RPU
Weak pull-up
equivalent resistor
(3)
VIN = VSS 25 40 55 k
RPD
Weak pull-down
equivalent
resistor(3)
VIN = - VDDIOx 25 40 55 k
CIO I/O pin capacitance - - 5 - pF
1. Data based on design simulation only. Not tested in production.
2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 49:
I/O current injection susceptibility.
3. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimal (~10% order).
Table 50. I/O static cha r acteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F098CC STM32F098RC STM32F098VC
80/128 DocID026967 Rev 4
Figure 22. TC an d TTa I/O input characteristics
Figure 23. Five volt tolerant (FT and FTf) I/O input characteristics
06Y9
          



7(67('5$1*(
7(67('5$1*(
9
,+PLQ
 9
'',2[
&026VWDQGDUGUHTXLUHPHQW
9
,/PD[
 9
'',2[
&026VWDQGDUGUHTXLUHPHQW
81'(),1(',13875$1*(
9,+PLQ 9'',2[
9
,/PD[
 9
'',2[

9,19
9'',2[9
77/VWDQGDUGUHTXLUHPHQW
77/VWDQGDUGUHTXLUHPHQW
06Y9
          



7(67('5$1*(
7(67('5$1*(
9
,+PLQ
 9
'',2[
&026VWDQGDUGUHTXLUHPHQW
9
,/PD[
 9
'',2[
&026VWDQGDUGUHTXLUHPHQW
81'(),1(',13875$1*(
9,+PLQ 9'',2[
9,/PD[ 9'',2[
9,19
9'',2[9
77/VWDQGDUGUHTXLUHPHQW
77/VWDQGDUGUHTXLUHPHQW
DocID026967 Rev 4 81/128
STM32F098CC STM32F098RC STM32F098VC Electrical characteristics
99
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or
source up to +/- 20 mA (with a relaxed VOL/VOH).
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
The sum of the currents sourced by all the I/Os on VDDIOx, plus the maximum
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Table 20: Voltage characteristics).
The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of
the MCU sunk on VSS, cannot exceed the absolute maximum rating IVSS (see
Table 20: Voltage characteristics).
Output voltage levels
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 23: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT, TTa or
TC unless otherwise specified).
Table 51. Output voltage characteristics(1)
Symbol Parameter Conditions Min Max Unit
VOL Output low level voltage for an I/O pin CMOS port(2)
|IIO| = 8 mA
VDDIOx 2.7 V
-0.4
V
VOH Output high level voltage for an I/O pin VDDIOx–0.4 -
VOL Output low level voltage for an I/O pin TTL port(2)
|IIO| = 8 mA
VDDIOx 2.7 V
-0.4
V
VOH Output high level voltage for an I/O pin 2.4 -
VOL(3) Output low level voltage for an I/O pin |IIO| = 20 mA
VDDIOx 2.7 V
-1.3
V
VOH(3) Output high level voltage for an I/O pin VDDIOx–1.3 -
VOL(3) Output low level voltage for an I/O pin |IIO| = 6 mA
VDDIOx 2 V
-0.4
V
VOH(3) Output high level voltage for an I/O pin VDDIOx–0.4 -
VOL(4) Output low level voltage for an I/O pin
|IIO| = 4 mA
-0.4V
VOH(4) Output high level voltage for an I/O pin VDDIOx–0.4 - V
VOLFm+(3) Output low level voltage for an FTf I/O pin in
Fm+ mode
|IIO| = 20 mA
VDDIOx 2.7 V -0.4V
|IIO| = 10 mA - 0.4 V
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 20:
V oltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always
respect the absolute maximum ratings IIO.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. Data based on characterization results. Not tested in production.
4. Data based on characterization results. Not tested in production.
Electrical characteristics STM32F098CC STM32F098RC STM32F098VC
82/128 DocID026967 Rev 4
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 24 and
Table 52, respectively. Unless otherwise specified, the parameters given are derived from
tests performed under the ambient temperature and supply voltage conditions summarized
in Table 23: General operating conditions.
Table 52. I/O AC characteristics(1)(2)
OSPEEDRy
[1:0] value(1) Symbol Parameter Conditions Min Max Unit
x0
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDDIOx 2 V
-2MHz
tf(IO)out Output fall time - 125
ns
tr(IO)out Output rise time - 125
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDDIOx < 2 V
-1MHz
tf(IO)out Output fall time - 125
ns
tr(IO)out Output rise time - 125
01
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDDIOx 2 V
-10MHz
tf(IO)out Output fall time - 25
ns
tr(IO)out Output rise time - 25
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDDIOx < 2 V
-4MHz
tf(IO)out Output fall time - 62.5
ns
tr(IO)out Output rise time - 62.5
11
fmax(IO)out Maximum frequency(3)
CL = 30 pF, VDDIOx 2.7 V - 50
MHz
CL = 50 pF, VDDIOx 2.7 V - 30
CL = 50 pF, 2 V VDDIOx < 2.7 V - 20
CL = 50 pF, VDDIOx < 2 V - 10
tf(IO)out Output fall time
CL = 30 pF, VDDIOx 2.7 V - 5
ns
CL = 50 pF, VDDIOx 2.7 V - 8
CL = 50 pF, 2 V VDDIOx < 2.7 V - 12
CL = 50 pF, VDDIOx < 2 V - 25
tr(IO)out Output rise time
CL = 30 pF, VDDIOx 2.7 V - 5
CL = 50 pF, VDDIOx 2.7 V - 8
CL = 50 pF, 2 V VDDIOx < 2.7 V - 12
CL = 50 pF, VDDIOx < 2 V - 25
DocID026967 Rev 4 83/128
STM32F098CC STM32F098RC STM32F098VC Electrical characteristics
99
Figure 24. I/O AC characteristics de f i n iti on
6.3.14 NRST and NPOR pin characteristics
NRST pin characteristics
The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-
up resistor, RPU.
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 23: General operating conditions.
Fm+
configuration
(4)
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDDIOx 2 V
-2MHz
tf(IO)out Output fall time - 12
ns
tr(IO)out Output rise time - 34
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDDIOx < 2 V
-0.5MHz
tf(IO)out Output fall time - 16
ns
tr(IO)out Output rise time - 44
-t
EXTIpw
Pulse width of external
signals detected by the
EXTI controller
-10-ns
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference manual for a
description of GPIO Port configuration register.
2. Guaranteed by design, not tested in production.
3. The maximum frequency is defined in Figure 24.
4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0091
for a detailed description of Fm+ I/O configuration.
Table 52. I/O AC characteristics(1)(2) (continued)
OSPEEDRy
[1:0] value(1) Symbol Parameter Conditions Min Max Unit
069
7


 


0D[LPXPIUHTXHQF\LVDFKLHYHGLIWW
ZKHQORDGHGE\&VHHWKHWDEOH,2$&FKDUDFWHULVWLFVGHILQLWLRQ
UI
U,2RXW
WI,2RXW
W
-
7DQGLIWKHGXW\F\FOHLV
Electrical characteristics STM32F098CC STM32F098RC STM32F098VC
84/128 DocID026967 Rev 4
Figure 25. Recommended NRST pin protection
1. The external capacitor protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 53: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.
NPOR pin characteristics
The NPOR pin input driver uses the CMOS technology. It is connected to a permanent pull-
up resistor to the VDDA, RPU.
Unless otherwise specified, the parameters given in Table 54 below are derived from tests
performed under ambient temperature and supply voltage conditions summarized in
Table 23: General operating conditions.
Table 53. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL(NRST) NRST input low level voltage - - - 0.3 VDD+0.07(1)
V
VIH(NRST) NRST input high level voltage - 0.445 VDD+0.398(1) --
Vhys(NRST)
NRST Schmitt trigger voltage
hysteresis --200-mV
RPU
Weak pull-up equivalent
resistor(2) VIN = VSS 25 40 55 k
VF(NRST) NRST input filtered pulse - - - 100(1) ns
VNF(NRST) NRST input not filtered pulse - 700(1) --ns
1. Data based on design simulation only. Not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance is minimal (~10% order).
069
5
38
9
''
,QWHUQDOUHVHW
([WHUQDO
UHVHWFLUFXLW

1567

)LOWHU
)
DocID026967 Rev 4 85/128
STM32F098CC STM32F098RC STM32F098VC Electrical characteristics
99
6.3.15 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 55 are derived from tests
performed under the conditions summarized in Table 23: General operating conditions.
Note: It is recommended to perform a calibration after each power-up.
Table 54. NPOR pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL(NPOR) NPOR Input low level voltage - - - 0.475 VDDA - 0.2(1)
V
VIH(NPOR)
NPOR Input high level
voltage -0.5 V
DDA + 0.2(1) --
Vhys(NPOR)
NPOR Schmitt trigger voltage
hysteresis --100
(1) -mV
RPU
Weak pull-up equivalent
resistor(2) VIN = VSS 25 40 55 kΩ
1. Guaranteed by design, not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance is minimal (~10% order).
Table 55. ADC characteristics
Symbol Para meter Conditions Min Typ Max Unit
VDDA
Analog supply voltage for
ADC ON - 2.4 - 3.6 V
IDDA (ADC)
Current consumption of
the ADC(1) VDDA = 3.3 V - 0.9 - mA
fADC ADC clock frequency - 0.6 - 14 MHz
fS(2) Sampling rate 12-bit resolution 0.043 - 1 MHz
fTRIG(2) External trigger frequency
fADC = 14 MHz,
12-bit resolution --823kHz
12-bit resolution - - 17 1/fADC
VAIN Conversion voltage range - 0 - VDDA V
RAIN(2) External input impedance See Equation 1 and
Table 5 6 for details --50k
RADC(2) Sampling switch
resistance ---1k
CADC(2) Internal sample and hold
capacitor ---8pF
tCAL(2)(3) Calibration time
fADC = 14 MHz 5.9 µs
-831/f
ADC
Electrical characteristics STM32F098CC STM32F098RC STM32F098VC
86/128 DocID026967 Rev 4
Equation 1: RAIN max formula
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
WLATENCY(2)(4) ADC_DR register ready
latency
ADC clock = HSI14
1.5 ADC
cycles + 2
fPCLK cycles
-
1.5 ADC
cycles + 3
fPCLK cycles
-
ADC clock = PCLK/2 - 4.5 - fPCLK
cycle
ADC clock = PCLK/4 - 8.5 - fPCLK
cycle
tlatr(2) Trigger conversion latency
fADC = fPCLK/2 = 14 MHz 0.196 µs
fADC = fPCLK/2 5.5 1/fPCLK
fADC = fPCLK/4 = 12 MHz 0.219 µs
fADC = fPCLK/4 10.5 1/fPCLK
fADC = fHSI14 = 14 MHz 0.179 - 0.250 µs
JitterADC ADC jitter on trigger
conversion fADC = fHSI14 -1-1/f
HSI14
tS(2) Sampling time
fADC = 14 MHz 0.107 - 17.1 µs
- 1.5 - 239.5 1/fADC
tSTAB(2) Stabilization time - 14 1/fADC
tCONV(2) Total conversion time
(including sampling time)
fADC = 14 MHz,
12-bit resolution 1-18µs
12-bit resolution 14 to 252 (tS for sampling +12.5 for
successive approximation) 1/fADC
1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 µA on IDDA and 60 µA
on IDD should be taken into account.
2. Guaranteed by design, not tested in production.
3. Specified value includes only ADC timing. It does not include the latency of the register access.
4. This parameter specify latency for transfer of the conversion result to the ADC_DR register. EOC flag is set at this time.
Table 55. ADC characteristics (continued)
Symbol Para meter Conditions Min Typ Max Unit
RAIN
TS
fADC CADC 2N2+
()ln××
----------------------------------------------------------------RADC
<
Table 56. RAIN max for fADC = 14 MHz
Ts (cycles) tS (µs) RAIN max (k)(1)
1.5 0.11 0.4
7.5 0.54 5.9
13.5 0.96 11.4
DocID026967 Rev 4 87/128
STM32F098CC STM32F098RC STM32F098VC Electrical characteristics
99
28.52.0425.2
41.52.9637.2
55.5 3.96 50
71.5 5.11 NA
239.5 17.1 NA
1. Guaranteed by design, not tested in production.
Ta bl e 56 . RAIN max for fADC = 14 MHz (continued)
Ts (cycles) tS (µs) RAIN max (k)(1)
Table 57. ADC accuracy(1)(2)(3)
Symbol Parameter Test conditions Typ Max(4) Unit
ET Total unadjusted error
fPCLK = 48 MHz,
fADC = 14 MHz, RAIN < 10 k
VDDA = 3 V to 3.6 V
TA = 25 °C
±1.3 ±2
LSB
EO Offset error ±1 ±1.5
EG Gain error ±0.5 ±1.5
ED Differential linearity error ±0.7 ±1
EL Integral linearity error ±0.8 ±1.5
ET Total unadjusted error
fPCLK = 48 MHz,
fADC = 14 MHz, RAIN < 10 k
VDDA = 2.7 V to 3.6 V
TA = - 40 to 105 °C
±3.3 ±4
LSB
EO Offset error ±1.9 ±2.8
EG Gain error ±2.8 ±3
ED Differential linearity error ±0.7 ±1.3
EL Integral linearity error ±1.2 ±1.7
ET Total unadjusted error
fPCLK = 48 MHz,
fADC = 14 MHz, RAIN < 10 k
VDDA = 2.4 V to 3.6 V
TA = 25 °C
±3.3 ±4
LSB
EO Offset error ±1.9 ±2.8
EG Gain error ±2.8 ±3
ED Differential linearity error ±0.7 ±1.3
EL Integral linearity error ±1.2 ±1.7
1. ADC DC accuracy values are measured after internal calibration.
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input
pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog
input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject
negative current.
Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 6.3.13 does not affect the ADC
accuracy.
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.
4. Data based on characterization results, not tested in production.
Electrical characteristics STM32F098CC STM32F098RC STM32F098VC
88/128 DocID026967 Rev 4
Figure 26. ADC accuracy characteristics
Figure 27. Typical connection diagram using the ADC
1. Refer to Table 55: ADC characteristics for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 13: Power suppl y
scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as
close as possible to the chip.
(
7
 7RWDO8QDMXVWHG(UURUPD[LPXPGHYLDWLRQ
EHWZHHQWKHDFWXDODQGLGHDOWUDQVIHUFXUYHV
(
2
 2IIVHW(UURUPD[LPXPGHYLDWLRQ
EHWZHHQWKHILUVWDFWXDOWUDQVLWLRQDQGWKHILUVW
LGHDORQH
(
*
 *DLQ(UURUGHYLDWLRQEHWZHHQWKHODVW
LGHDOWUDQVLWLRQDQGWKHODVWDFWXDORQH
(
'
 'LIIHUHQWLDO/LQHDULW\(UURUPD[LPXP
GHYLDWLRQEHWZHHQDFWXDOVWHSVDQGWKHLGHDORQHV
(
/
 ,QWHJUDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ
EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW
FRUUHODWLRQOLQH
([DPSOHRIDQDFWXDOWUDQVIHUFXUYH
7KHLGHDOWUDQVIHUFXUYH
(QGSRLQWFRUUHODWLRQOLQH




    9''$
966$
(2
(7
(/
(*
('
/6%,'($/



069
069
$,1[
 $

&
SDUDVLWLF
,
/
9
7
9
7
ELW
FRQYHUWHU
&
$'&
5
$'&
9
''$
6DPSOHDQGKROG$'&
FRQYHUWHU
5
$,1
9
$,1

DocID026967 Rev 4 89/128
STM32F098CC STM32F098RC STM32F098VC Electrical characteristics
99
6.3.16 DAC electrical specifications
Table 58. DAC characteristics
Symbol Parameter Min Typ Max Unit Comments
VDDA
Analog supply voltage for
DAC ON 2.4 - 3.6 V -
RLOAD(1) Resistive load with buffer
ON
5- - kLoad connected to VSSA
25 - - kLoad connected to VDDA
RO(1) Impedance output with
buffer OFF -- 15 k
When the buffer is OFF, the
Minimum resistive load between
DAC_OUT and VSS to have a
1% accuracy is 1.5 M
CLOAD(1) Capacitive load - - 50 pF
Maximum capacitive load at
DAC_OUT pin (when the buffer
is ON).
DAC_OUT
min(1)
Lower DAC_OUT voltage
with buffer ON 0.2 - - V
It gives the maximum output
excursion of the DAC.
It corresponds to 12-bit input
code (0x0E0) to (0xF1C) at
VDDA = 3.6 V and (0x155) and
(0xEAB) at VDDA = 2.4 V
DAC_OUT
max(1)
Higher DAC_OUT voltage
with buffer ON --V
DDA – 0.2 V
DAC_OUT
min(1)
Lower DAC_OUT voltage
with buffer OFF -0.5 - mV
It gives the maximum output
excursion of the DAC.
DAC_OUT
max(1)
Higher DAC_OUT voltage
with buffer OFF --V
DDA – 1LSB V
IDDA(1)
DAC DC current
consumption in quiescent
mode(2)
-- 600 µA
With no load, middle code
(0x800) on the input
-- 700 µA
With no load, worst code
(0xF1C) on the input
DNL(3)
Differential non linearity
Difference between two
consecutive code-1LSB)
-- ±0.5 LSB
Given for the DAC in 10-bit
configuration
-- ±2 LSB
Given for the DAC in 12-bit
configuration
INL(3)
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on a
line drawn between Code 0
and last Code 1023)
-- ±1 LSB
Given for the DAC in 10-bit
configuration
-- ±4 LSB
Given for the DAC in 12-bit
configuration
Offset(3)
Offset error
(difference between
measured value at Code
(0x800) and the ideal value
= VDDA/2)
-- ±10 mV -
-- ±3 LSB
Given for the DAC in 10-bit at
VDDA = 3.6 V
-- ±12LSB
Given for the DAC in 12-bit at
VDDA = 3.6 V
Electrical characteristics STM32F098CC STM32F098RC STM32F098VC
90/128 DocID026967 Rev 4
Gain error(3) Gain error - - ±0.5 % Given for the DAC in 12-bit
configuration
tSETTLING(3)
Settling time (full scale: for a
10-bit input code transition
between the lowest and the
highest input codes when
DAC_OUT reaches final
value ±1LSB
-3 4 µsC
LOAD 50 pF, RLOAD 5 k
Update
rate(3)
Max frequency for a correct
DAC_OUT change when
small variation in the input
code (from code i to i+1LSB)
-- 1 MS/sC
LOAD 50 pF, RLOAD 5 k
tWAKEUP(3)
Wakeup time from off state
(Setting the ENx bit in the
DAC Control register)
-6.5 10 µs
CLOAD 50 pF, RLOAD 5 k
input code between lowest and
highest possible ones.
PSRR+ (1)
Power supply rejection ratio
(to VDDA) (static DC
measurement
- –67 –40 dB No RLOAD, CLOAD = 50 pF
1. Guaranteed by design, not tested in production.
2. The DAC is in “quiescent mode” when it keeps the value steady on the output so no dynamic consumption is involved.
3. Data based on characterization results, not tested in production.
Table 58. DAC characteristics (continued)
Symbol Parameter Min Typ Max Unit Comments
DocID026967 Rev 4 91/128
STM32F098CC STM32F098RC STM32F098VC Electrical characteristics
99
6.3.17 Comparator characteristics
Table 59. Comparator characteristics
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
VDDA Analog supply voltage - VDD -3.6 V
VIN
Comparator input
voltage range -0-V
DDA -
VSC
VREFINT scaler offset
voltage - - ±5 ±10 mV
tS_SC
VREFINT scaler startup
time from power down ---0.2ms
tSTART
Comparator startup
time
Startup time to reach propagation delay
specification --60µs
tD
Propagation delay for
200 mV step with
100 mV overdrive
Ultra-low power mode - 2 4.5
µsLow power mode - 0.7 1.5
Medium power mode - 0.3 0.6
High speed mode
VDDA 2.7 V - 50 100
ns
VDDA < 2.7 V - 100 240
Propagation delay for
full range step with
100 mV overdrive
Ultra-low power mode - 2 7
µsLow power mode - 0.7 2.1
Medium power mode - 0.3 1.2
High speed mode
VDDA 2.7 V - 90 180
ns
VDDA < 2.7 V - 110 300
Voffset Comparator offset error - - ±4 ±10 mV
dVoffset/dT Offset error
temperature coefficient --18-µV/°C
IDD(COMP)
COMP current
consumption
Ultra-low power mode - 1.2 1.5
µA
Low power mode - 3 5
Medium power mode - 10 15
High speed mode - 75 100
Electrical characteristics STM32F098CC STM32F098RC STM32F098VC
92/128 DocID026967 Rev 4
Vhys Comparator hysteresis
No hysteresis
(COMPxHYST[1:0]=00) --0-
mV
Low hysteresis
(COMPxHYST[1:0]=01)
High speed mode 3
8
13
All other power
modes 510
Medium hysteresis
(COMPxHYST[1:0]=10)
High speed mode 7
15
26
All other power
modes 919
High hysteresis
(COMPxHYST[1:0]=11)
High speed mode 18
31
49
All other power
modes 19 40
1. Data based on characterization results, not tested in production.
Table 59. Comparator characteristics (continued)
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
DocID026967 Rev 4 93/128
STM32F098CC STM32F098RC STM32F098VC Electrical characteristics
99
6.3.18 Temperature sensor characteristics
6.3.19 VBAT monitoring characteristics
6.3.20 Timer characteristics
The parameters given in the following tables are guaranteed by design.
Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 60. TS characteristics
Symbol Parameter Min Typ Max Unit
TL(1) VSENSE linearity with temperature - ± 1 ± 2 °C
Avg_Slope(1) Average slope 4.0 4.3 4.6 mV/°C
V30 Voltage at 30 °C (± 5 °C)(2) 1.34 1.43 1.52 V
tSTART(1) ADC_IN16 buffer startup time - - 10 µs
tS_temp(1) ADC sampling time when reading the
temperature 4- -µs
1. Guaranteed by design, not tested in production.
2. Measured at VDDA = 3.3 V ± 10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 2:
Tempe rature sensor calibration values.
Table 61. VBAT monitoring characteristics
Symbol Parameter Min Typ Max Unit
R Resistor bridge for VBAT -2 x 50- k
QRatio on VBAT measurement - 2 - -
Er(1) Error on Q –1 - +1 %
tS_vbat(1) ADC sampling time when reading the VBAT 4- -µs
1. Guaranteed by design, not tested in production.
Table 62. TIMx chara ct eri st ic s
Symbol Parameter Conditions Min Typ Max Unit
tres(TIM) Timer resolution time
--1-
tTIMxCLK
fTIMxCLK = 48 MHz - 20.8 - ns
fEXT
Timer external clock
frequency on CH1 to
CH4
--
fTIMxCLK/2 -MHz
fTIMxCLK = 48 MHz - 24 - MHz
tMAX_COUNT
16-bit timer maximum
period
--
216 -tTIMxCLK
fTIMxCLK = 48 MHz - 1365 - µs
32-bit counter
maximum period
--
232 -tTIMxCLK
fTIMxCLK = 48 MHz - 89.48 - s
Electrical characteristics STM32F098CC STM32F098RC STM32F098VC
94/128 DocID026967 Rev 4
6.3.21 Communication interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:
Standard-mode (Sm): with a bit rate up to 100 kbit/s
Fast-mode (Fm): with a bit rate up to 400 kbit/s
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.
The I2C timings requirements are guaranteed by design when the I2Cx peripheral is
properly configured (refer to Reference manual).
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins
support Fm+ low level output current maximum requirement. Refer to Section 6.3.13: I/O
port characteristics for the I2C I/Os characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog
filter characteristics:
Table 63. IWDG min/max timeout period at 40 kHz (LSI)(1)
1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30
to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing
of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.
Prescaler divider PR[2:0] bits Min timeout RL[11:0]=
0x000 Max timeout RL[11:0]=
0xFFF Unit
/4 0 0.1 409.6
ms
/8 1 0.2 819.2
/16 2 0.4 1638.4
/32 3 0.8 3276.8
/64 4 1.6 6553.6
/128 5 3.2 13107.2
/256 6 or 7 6.4 26214.4
Table 64. WWDG min/max timeout value at 48 MHz (PCLK)
Prescaler WDGTB Min timeout value Max timeout value Unit
1 0 0.0853 5.4613
ms
2 1 0.1706 10.9226
4 2 0.3413 21.8453
8 3 0.6826 43.6906
DocID026967 Rev 4 95/128
STM32F098CC STM32F098RC STM32F098VC Electrical characteristics
99
SPI/I2S characteristics
Unless otherwise specified, the parameters given in Table 66 for SPI or in Table 67 for I2S
are derived from tests performed under the ambient temperature, fPCLKx frequency and
supply voltage conditions summarized in Table 23: General operatin g conditions.
Refer to Section 6.3.13: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S).
Table 65. I2C analog filter characteristics(1)
1. Guaranteed by design, not tested in production.
Symbol Parameter Min Max Unit
tAF
Maximum width of spikes that are
suppressed by the analog filter 50(2)
2. Spikes with widths below tAF(min) are filtered.
260(3)
3. Spikes with widths above tAF(max) are not filtered
ns
Table 66. SPI characteristics(1)
Symbol Parameter Conditions Min Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master mode - 18
MHz
Slave mode - 18
tr(SCK)
tf(SCK)
SPI clock rise and fall
time Capacitive load: C = 15 pF - 6 ns
tsu(NSS) NSS setup time Slave mode 4Tpclk -
ns
th(NSS) NSS hold time Slave mode 2Tpclk + 10 -
tw(SCKH)
tw(SCKL)
SCK high and low time Master mode, fPCLK = 36 MHz,
presc = 4 Tpclk/2 -2 Tpclk/2 + 1
tsu(MI)
tsu(SI)
Data input setup time
Master mode 4 -
Slave mode 5 -
th(MI) Data input hold time
Master mode 4 -
th(SI) Slave mode 5 -
ta(SO)(2) Data output access time Slave mode, fPCLK = 20 MHz 0 3Tpclk
tdis(SO)(3) Data output disable time Slave mode 0 18
tv(SO) Data output valid time Slave mode (after enable edge) - 22.5
tv(MO) Data output valid time Master mode (after enable edge) - 6
th(SO) Data output hold time
Slave mode (after enable edge) 11.5 -
th(MO) Master mode (after enable edge) 2 -
DuCy(SCK) SPI slave input clock
duty cycle Slave mode 25 75 %
1. Data based on characterization results, not tested in production.
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z
Electrical characteristics STM32F098CC STM32F098RC STM32F098VC
96/128 DocID026967 Rev 4
Figure 28. SPI timing diagram - slave mode and CPHA = 0
Figure 29. SPI timing diagram - slave mode and CPHA = 1
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
06Y9
166LQSXW
&3+$ 
&32/ 
6&.LQSXW
&3+$ 
&32/ 
0,62RXWSXW
026,LQSXW
WVX6,
WK6,
WZ6&./
WZ6&.+
WF6&.
WU6&.
WK166
WGLV62
WVX166
WD62 WY62
1H[WELWV,1
/DVWELW287
)LUVWELW,1
)LUVWELW287 1H[WELWV287
WK62 WI6&.
/DVWELW,1
06Y9
166LQSXW
&3+$ 
&32/ 
6&.LQSXW
&3+$ 
&32/ 
0,62RXWSXW
026,LQSXW
WVX6, WK6,
WZ6&./
WZ6&.+
WVX166
WF6&.
WD62 WY62
)LUVWELW287 1H[WELWV287
1H[WELWV,1
/DVWELW287
WK62 WU6&.
WI6&. WK166
WGLV62
)LUVWELW,1 /DVWELW,1
DocID026967 Rev 4 97/128
STM32F098CC STM32F098RC STM32F098VC Electrical characteristics
99
Figure 30. SPI timing diagram - master mode
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
DLF
6&.2XWSXW
&3+$
026,
287387
0,62
,13 87
&3+$
/6%287
/6%,1
&32/ 
&32/ 
% , 7287
166LQSXW
WF6&.
WZ6&.+
WZ6&./
WU6&.
WI6&.
WK0,
+LJK
6&.2XWSXW
&3+$
&3+$
&32/ 
&32/ 
WVX0,
WY02 WK02
06%,1 %,7,1
06%287
Ta b le 67 . I2S characteristics(1)
Symbol Parameter Conditions Min Max Unit
fCK
1/tc(CK)
I2S clock frequency
Master mode (data: 16 bits, Audio
frequency = 48 kHz) 1.597 1.601
MHz
Slave mode 0 6.5
tr(CK) I2S clock rise time
Capacitive load CL = 15 pF
-10
ns
tf(CK) I2S clock fall time - 12
tw(CKH) I2S clock high time Master fPCLK= 16 MHz, audio
frequency = 48 kHz
306 -
tw(CKL) I2S clock low time 312 -
tv(WS) WS valid time Master mode 2 -
th(WS) WS hold time Master mode 2 -
tsu(WS) WS setup time Slave mode 7 -
th(WS) WS hold time Slave mode 0 -
DuCy(SCK) I2S slave input clock duty
cycle Slave mode 25 75 %
Electrical characteristics STM32F098CC STM32F098RC STM32F098VC
98/128 DocID026967 Rev 4
Figure 31. I2S slave timing diagram (Philips protocol)
1. Measurement points are done at CMOS levels: 0.3 × VDDIOx and 0.7 × VDDIOx.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
tsu(SD_MR) Data input setup time
Master receiver 6 -
ns
tsu(SD_SR) Slave receiver 2 -
th(SD_MR)(2)
Data input hold time
Master receiver 4 -
th(SD_SR)(2) Slave receiver 0.5 -
tv(SD_MT)(2)
Data output valid time
Master transmitter - 4
tv(SD_ST)(2) Slave transmitter - 31
th(SD_MT) Data output hold time
Master transmitter 0 -
th(SD_ST) Slave transmitter 13 -
1. Data based on design simulation and/or characterization results, not tested in production.
2. Depends on fPCLK. For example, if fPCLK = 8 MHz, then TPCLK = 1/fPLCLK = 125 ns.
Table 67. I2S characteristics(1) (continued)
Symbol Parameter Conditions Min Max Unit
06Y9
&.,QSXW
&32/ 
&32/ 
WF&.
:6LQSXW
6'WUDQVPLW
6'UHFHLYH
WZ&.+ WZ&./
WVX:6 WY6'B67 WK6'B67
WK:6
WVX6'B65 WK6'B65
06%UHFHLYH %LWQUHFHLYH /6%UHFHLYH
06%WUDQVPLW %LWQWUDQVPLW
/6%UHFHLYH
/6%WUDQVPLW
DocID026967 Rev 4 99/128
STM32F098CC STM32F098RC STM32F098VC Electrical characteristics
99
Figure 32. I2S master timing diagram (Philips protocol)
1. Data based on characterization results, not tested in production.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
CAN (controller area network) interface
Refer to Section 6.3.13: I/O port characteristics for more details on the input/output alternate
function characteristics (CAN_TX and CAN_RX).
06Y9
&.RXWSXW
&32/ 
&32/ 
WF&.
:6RXWSXW
6'UHFHLYH
6'WUDQVPLW
WZ&.+
WZ&./
WVX6'B05
WY6'B07 WK6'B07
WK:6
WK6'B05
06%UHFHLYH %LWQUHFHLYH /6%UHFHLYH
06%WUDQVPLW %LWQWUDQVPLW /6%WUDQVPLW
WI&. WU&.
WY:6
/6%UHFHLYH
/6%WUDQVPLW


Package information STM32F098CC STM32F098RC STM32F098VC
100/128 DocID026967 Rev 4
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1 UFBGA100 package information
UFBGA100 is a 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra-fine-profile ball grid array
package.
Figure 33. UFBGA100 package outline
1. Drawing is not to scale.
Table 68. UFBGA100 package mechanical data
Symbol millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A - - 0.600 - - 0.0236
A1 - - 0.110 - - 0.0043
A2 - 0.450 - - 0.0177 -
A3 - 0.130 - - 0.0051 0.0094
A4 - 0.320 - - 0.0126 -
$&B0(B9
6HDWLQJSODQH
$
H=
=
'
0
EEDOOV
$
(
7239,(:%277209,(:

$EDOO
LGHQWLILHU
H
$
$
<
;
=
GGG =
'
(
HHH =<;
III
0
0=
$
$
$EDOO
LQGH[DUHD
DocID026967 Rev 4 101/128
STM32F098CC STM32F098RC STM32F098VC Package information
124
Figure 34. Recommended footpr int for UFBGA100 package
b 0.240 0.290 0.340 0.0094 0.0114 0.0134
D 6.850 7.000 7.150 0.2697 0.2756 0.2815
D1 - 5.500 - - 0.2165 -
E 6.850 7.000 7.150 0.2697 0.2756 0.2815
E1 - 5.500 - - 0.2165 -
e - 0.500 - - 0.0197 -
Z - 0.750 - - 0.0295 -
ddd - - 0.080 - - 0.0031
eee - - 0.150 - - 0.0059
fff - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 69. UFBGA100 recommended PCB design rules
Dimension Recommended values
Pitch 0.5
Dpad 0.280 mm
Dsm 0.370 mm typ. (depends on the solder mask
registration tolerance)
Stencil opening 0.280 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Table 68. UFBGA100 package mechanical data (continued)
Symbol millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
$&B)3B9
'SDG
'VP
Package information STM32F098CC STM32F098RC STM32F098VC
102/128 DocID026967 Rev 4
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 35. UFBGA100 package marking example
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
D^ϯϲϰϬϯsϭ
ZĞǀŝƐŝŽŶĐŽĚĞ
<::
670)
9&+
5
ĂƚĞĐŽĚĞ
WƌŽĚƵĐƚŝĚĞŶƚŝĨŝĐĂƚŝŽŶ ;ϭͿ
WŝŶϭŝĚĞŶƚŝĨŝĞƌ
DocID026967 Rev 4 103/128
STM32F098CC STM32F098RC STM32F098VC Package information
124
7.2 LQFP100 package information
LQFP100 is a100-pin, 14 x 14 mm low-profile quad flat package.
Figure 36. LQFP100 package outline
1. Drawing is not to scale.
Table 70. LQPF100 package mechanical data
Symbol millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 - 12.000 - - 0.4724 -
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
H
,'(17,),&$7,21
3,1
*$8*(3/$1(
PP
6($7,1*3/$1(
'
'
'
(
(
(
.
FFF &
&




 

/B0(B9
$
$
$
/
/
F
E
$
Package information STM32F098CC STM32F098RC STM32F098VC
104/128 DocID026967 Rev 4
Figure 37. Recommended footprint for LQFP100 package
1. Dimensions are expressed in millimeters.
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 - 12.000 - - 0.4724 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 70. LQPF100 package mechanical data (continued)
Symbol millimeters inches(1)
Min Typ Max Min Typ Max
 
 

 
 




DLF
DocID026967 Rev 4 105/128
STM32F098CC STM32F098RC STM32F098VC Package information
124
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 38. LQFP100 package marking example
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
670)
9&7 5
WƌŽĚƵĐƚŝĚĞŶƚŝĨŝĐĂƚŝŽŶ ;ϭͿ
ZĞǀŝƐŝŽŶĐŽĚĞ
::<
ĂƚĞĐŽĚĞ
KƉƚŝŽŶĂůŐĂƚĞŵĂƌŬ
WŝŶϭŝĚĞŶƚŝĨŝĞƌ
D^ϯϱϱϴϮsϭ
Package information STM32F098CC STM32F098RC STM32F098VC
106/128 DocID026967 Rev 4
7.3 UFBGA64 package information
UFBGA64 is a 64-ball, 5 x 5 mm, 0.5 mm pitch ultra-fine-profile ball grid array
package.
Figure 39. UFBGA64 package outline
1. Drawing is not to scale.
Table 71. UFBGA64 package mechanical data
Symbol millimeters inches(1)
Min Typ Max Min Typ Max
A 0.460 0.530 0.600 0.0181 0.0209 0.0236
A1 0.050 0.080 0.110 0.0020 0.0031 0.0043
A2 0.400 0.450 0.500 0.0157 0.0177 0.0197
A3 0.080 0.130 0.180 0.0031 0.0051 0.0071
A4 0.270 0.320 0.370 0.0106 0.0126 0.0146
b 0.170 0.280 0.330 0.0067 0.0110 0.0130
D 4.850 5.000 5.150 0.1909 0.1969 0.2028
D1 3.450 3.500 3.550 0.1358 0.1378 0.1398
E 4.850 5.000 5.150 0.1909 0.1969 0.2028
E1 3.450 3.500 3.550 0.1358 0.1378 0.1398
e - 0.500 - - 0.0197 -
F 0.700 0.750 0.800 0.0276 0.0295 0.0315
$B0(B9
6HDWLQJSODQH
$
H)
)
'
+
EEDOOV
$
(
7239,(:%277209,(:
H
$
<
;
=
GGG =
'
(
HHH = < ;
III
0
0=
$
$
$EDOO
LGHQWLILHU
$EDOO
LQGH[DUHD
$
DocID026967 Rev 4 107/128
STM32F098CC STM32F098RC STM32F098VC Package information
124
Figure 40. Recommende d footprint for UFBGA64 package
ddd - - 0.080 - - 0.0031
eee - - 0.150 - - 0.0059
fff - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 72. UFBGA64 recommended PCB design rules
Dimension Recommended values
Pitch 0.5
Dpad 0.280 mm
Dsm 0.370 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening 0.280 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Pad trace width 0.100 mm
Table 71. UFBGA64 package mechanical data (continued)
Symbol millimeters inches(1)
Min Typ Max Min Typ Max
A 0.460 0.530 0.600 0.0181 0.0209 0.0236
$B)3B9
'SDG
'VP
Package information STM32F098CC STM32F098RC STM32F098VC
108/128 DocID026967 Rev 4
Device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 41. UFBGA64 package marking example
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
ZĞǀŝƐŝŽŶĐŽĚĞ
<::
)5&+
5
ĂƚĞĐŽĚĞ
WƌŽĚƵĐƚŝĚĞŶƚŝĨŝĐĂƚŝŽŶ
;ϭͿ
ĂůůϭŝĚĞŶƚŝĨŝĞƌ
^ƚĂŶĚĂƌĚ^důŽŐŽ
D^ϯϵϬϭϵsϭ
DocID026967 Rev 4 109/128
STM32F098CC STM32F098RC STM32F098VC Package information
124
7.4 WLCSP64 package information
WLCSP64 is a 64-ball, 3 .347 x 3.585 mm, 0 .4 mm pitch wa fer-le vel chip-scale p ac kage.
Figure 42. WLCSP64 package outline
1. Drawing is not to scale.
Table 73. WLCSP64 package mechanical data
Symbol millimeters inches(1)
Min Typ Max Min Typ Max
A 0.525 0.555 0.585 0.0207 0.0219 0.0230
A1 - 0.175 - - 0.0069 -
A2 - 0.380 - - 0.0150 -
A3 - 0.025 - - 0.0010 -
$
%XPS
HHH
'HWDLO$
URWDWHG
6HDWLQJSODQH
E
%XPSVLGH
H
H
H
H
*
)
$B0(B9
6LGHYLHZ
'HWDLO$
$
$
:DIHUEDFNVLGH
'
(
*
)
$
+
=
EEE =
[
2ULHQWDWLRQ
UHIHUHQFH
$
$
Package information STM32F098CC STM32F098RC STM32F098VC
110/128 DocID026967 Rev 4
Figure 43. Recommended footprint for WLCSP64 package
b(2) 0.220 0.250 0.280 0.0087 0.0098 0.0110
D 3.312 3.347 3.382 0.1304 0.1318 0.1331
E 3.550 3.585 3.620 0.1398 0.1411 0.1425
e - 0.400 - - 0.0157 -
e1 - 2.800 - - 0.1102 -
e2 - 2.800 - - 0.1102 -
F - 0.2735 - - 0.0108 -
G - 0.3925 - - 0.0155 -
aaa - - 0.100 - - 0.0039
bbb - - 0.100 - - 0.0039
ccc - - 0.100 - - 0.0039
ddd - - 0.050 - - 0.0020
eee - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
Table 74. WLCSP64 recommended PCB design rules
Dimensi o n Recommende d va lues
Pitch 0.4
Dpad
260 µm max. (circular)
220 µm recommended
Dsm 300 µm min. (for 260 µm diameter pad)
PCB pad design Non-solder mask defined via underbump allowed.
Table 73. WLCSP64 package mechanical data (continued)
Symbol millimeters inches(1)
Min Typ Max Min Typ Max
069
'VP
'SDG
DocID026967 Rev 4 111/128
STM32F098CC STM32F098RC STM32F098VC Package information
124
Device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 44. WLCSP64 package marking example
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
ZĞǀŝƐŝŽŶĐŽĚĞ
ĂƚĞĐŽĚĞ
WƌŽĚƵĐƚ
ŝĚĞŶƚŝĨŝĐĂƚŝŽŶ
<:: 5
670)
5&<
Žƚ
;ϭͿ
D^ϯϲϰϬϲsϭ
Package information STM32F098CC STM32F098RC STM32F098VC
112/128 DocID026967 Rev 4
7.5 LQFP64 package information
LQFP64 is a 64-pin, 10 x 10 mm low-profile quad flat package.
Figure 45. LQFP64 package outline
1. Drawing is not to scale.
Table 75. LQ F P64 package mech an ic a l data
Symbol millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D - 12.000 - - 0.4724 -
D1 - 10.000 - - 0.3937 -
D3 - 7.500 - - 0.2953 -
E - 12.000 - - 0.4724 -
E1 - 10.000 - - 0.3937 -
:B0(B9
$
$
$
6($7,1*3/$1(
FFF &
E
&
F
$
/
/
.
,'(17,),&$7,21
3,1
'
'
'
H







(
(
(
*$8*(3/$1(
PP
DocID026967 Rev 4 113/128
STM32F098CC STM32F098RC STM32F098VC Package information
124
Figure 46. Recommended footprint for LQFP64 package
1. Dimensions are expressed in millimeters.
E3 - 7.500 - - 0.2953 -
e - 0.500 - - 0.0197 -
K 0°3.5°7° 0°3.5°7°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 75. LQFP64 package mechanical data (continued)
Symbol millimeters inches(1)
Min Typ Max Min Typ Max



 










DLF
Package information STM32F098CC STM32F098RC STM32F098VC
114/128 DocID026967 Rev 4
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 47. LQFP64 package marking example
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
670)
5&7
5
<::
ZĞǀŝƐŝŽŶĐŽĚĞ
ĂƚĞĐŽĚĞ
WƌŽĚƵĐƚŝĚĞŶƚŝĨŝĐĂƚŝŽŶ ;ϭͿ
WŝŶϭŝĚĞŶƚŝĨŝĞƌ
D^ϯϱϱϴϯsϭ
DocID026967 Rev 4 115/128
STM32F098CC STM32F098RC STM32F098VC Package information
124
7.6 LQFP48 package information
LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package.
Figure 48. LQFP48 package outline
1. Drawing is not to scale.
%B0(B9
3,1
,'(17,),&$7,21
FFF &
&
'
PP
*$8*(3/$1(
E
$
$
$
F
$
/
/
'
'
(
(
(
H







6($7,1*
3/$1(
.
Package information STM32F098CC STM32F098RC STM32F098VC
116/128 DocID026967 Rev 4
Figure 49. Recommended footprint for LQFP48 package
1. Dimensions are expressed in millimeters.
Ta bl e 76 . LQ F P 48 package mechan ic a l da ta
Symbol millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.500 - - 0.2165 -
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.500 - - 0.2165 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
  













DLG

DocID026967 Rev 4 117/128
STM32F098CC STM32F098RC STM32F098VC Package information
124
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 50. LQFP48 package marking example
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
<::
670)
&&7
5ZĞǀŝƐŝŽŶĐŽĚĞ
ĂƚĞĐŽĚĞ
WƌŽĚƵĐƚŝĚĞŶƚŝĨŝĐĂƚŝŽŶ
;ϭͿ
WŝŶϭŝĚĞŶƚŝĨŝĞƌ
D^ϯϱϱϴϰsϭ
Package information STM32F098CC STM32F098RC STM32F098VC
118/128 DocID026967 Rev 4
7.7 UFQFPN48 package information
UFQFPN48 is a 48-lead, 7x7 mm, 0.5 mm pitch, ultra-thin fine-pitch quad flat package.
Figure 51. UFQFPN48 package outline
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and
solder this back-side pad to PCB ground.
$%B0(B9
'
3LQLGHQWLILHU
ODVHUPDUNLQJDUHD
((
'<
'
(
([SRVHGSDG
DUHD
=

'HWDLO=
5W\S

/
&[
SLQFRUQHU
$
6HDWLQJ
SODQH
$
E
H
GGG
'HWDLO<
7
DocID026967 Rev 4 119/128
STM32F098CC STM32F098RC STM32F098VC Package information
124
Figure 52. Recommended footprint for UFQFPN48 package
1. Dimensions are expressed in millimeters.
Table 77. UFQFPN48 package mechanical data
Symbol millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.500 0.550 0.600 0.0197 0.0217 0.0236
A1 0.000 0.020 0.050 0.0000 0.0008 0.0020
D 6.900 7.000 7.100 0.2717 0.2756 0.2795
E 6.900 7.000 7.100 0.2717 0.2756 0.2795
D2 5.500 5.600 5.700 0.2165 0.2205 0.2244
E2 5.500 5.600 5.700 0.2165 0.2205 0.2244
L 0.300 0.400 0.500 0.0118 0.0157 0.0197
T - 0.152 - - 0.0060 -
b 0.200 0.250 0.300 0.0079 0.0098 0.0118
e - 0.500 - - 0.0197 -
ddd - - 0.080 - - 0.0031




 







$%B)3B9


 



Package information STM32F098CC STM32F098RC STM32F098VC
120/128 DocID026967 Rev 4
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 53. UFQFPN48 package marking example
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
<::
5
670)
&&8
ZĞǀŝƐŝŽŶĐŽĚĞ
ĂƚĞĐŽĚĞ
WƌŽĚƵĐƚŝĚĞŶƚŝĨŝĐĂƚŝŽŶ ;ϭͿ
WŝŶϭŝĚĞŶƚŝĨŝĞƌ
D^ϯϲϰϬϳsϭ
DocID026967 Rev 4 121/128
STM32F098CC STM32F098RC STM32F098VC Package information
124
7.8 Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 23: General operating conditions.
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x JA)
Where:
TA max is the maximum ambient temperature in °C,
JA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = (VOL × IOL) + ((VDDIOx – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
7.8.1 Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org
7.8.2 Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the ordering
information scheme shown in Section 8: Ordering information.
Table 78. Packag e th e rmal ch a r ac te ris tics
Symbol Parameter Value Unit
Θ
JA
Thermal resistance junction-ambient
UFBGA100 - 7 × 7 mm 55
°C/W
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm 42
Thermal resistance junction-ambient
UFBGA64 - 5 × 5 mm / 0.5 mm pitch 65
Thermal resistance junction-ambient
LQFP64 - 10 × 10 mm / 0.5 mm pitch 44
Thermal resistance junction-ambient
WLCSP64 - 0.4 mm pitch 53
Thermal resistance junction-ambient
LQFP48 - 7 × 7 mm 54
Thermal resistance junction-ambient
UFQFPN48 - 7 × 7 mm 32
Package information STM32F098CC STM32F098RC STM32F098VC
122/128 DocID026967 Rev 4
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at
maximum dissipation and, to a specific maximum junction temperature.
As applications do not commonly use the STM32F098CC/RC/VC at maximum dissipation, it
is useful to calculate the exact power consumption and junction temperature to determine
which temperature range will be best suited to the application.
The following examples show how to calculate the temperature range needed for a given
application.
Example 1: High-performance application
Assuming the following application conditions:
Maximum temperature TAmax = 82 °C (measured according to JESD51-2), IDDmax = 50
mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL
= 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output at low level
with IOL = 20 mA, VOL= 1.3 V
PINTmax = 50 mA × 3.5 V= 175 mW
PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW
This gives: PINTmax = 175 mW and PIOmax = 272 mW:
PDmax = 175 + 272 = 447 mW
Using the values obtained in Table 78 TJmax is calculated as follows:
For LQFP64, 45 °C/W
TJmax = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.115 °C = 102.115 °C
This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C).
In this case, parts must be ordered at least with the temperature range suffix 6 (see
Section 8: Ordering information).
Note: With this given PDmax we can find the TAmax allowed for a given device temperature range
(order code suffix 6 or 7).
Suffix 6: TAmax = TJmax - (45°C/W × 447 mW) = 105-20.115 = 84.885 °C
Suffix 7: TAmax = TJmax - (45°C/W × 447 mW) = 125-20.115 = 104.885 °C
Example 2: High-temperature application
Using the same rules, it is possible to address applications that run at high temperatures
with a low dissipation, as long as junction temperature TJ remains within the specified
range.
Assuming the following application conditions:
Maximum temperature TAmax = 100 °C (measured according to JESD51-2), IDDmax =
20 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with
IOL = 8 mA, VOL= 0.4 V
PINTmax = 20 mA × 3.5 V= 70 mW
PIOmax = 20 × 8 mA × 0.4 V = 64 mW
This gives: PINTmax = 70 mW and PIOmax = 64 mW:
PDmax = 70 + 64 = 134 mW
Thus: PDmax = 134 mW
DocID026967 Rev 4 123/128
STM32F098CC STM32F098RC STM32F098VC Package information
124
Using the values obtained in Table 78 TJmax is calculated as follows:
For LQFP64, 45 °C/W
TJmax = 100 °C + (45 °C/W × 134 mW) = 100 °C + 6.03 °C = 106.03 °C
This is above the range of the suffix 6 version parts (–40 < TJ < 105 °C).
In this case, parts must be ordered at least with the temperature range suffix 7 (see
Section 8: Ordering information) unless we reduce the power dissipation in order to be able
to use suffix 6 parts.
Refer to the figure below to select the required temperature range (suffix 6 or 7) according to
your temperature or power requirements.
Figure 54. LQFP64 PD max versus TA
06Y9







       
6XIIL[
6XIIL[
3'P:
7$&
Ordering information STM32F098CC STM32F0 98RC STM32F098VC
124/128 DocID026967 Rev 4
8 Ordering information
For a list of available options (memory, package, and so on) or for further information on any
aspect of this device, please contact your nearest ST sales office.
Table 79. Ordering information scheme
Example:STM32F098RCT6x
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = General-purpose
Sub-family
098 = STM32F098xx
Pin count
C = 48 pins
R = 64 pins
V = 100 pins
User code memory size
C = 256 Kbyte
Package
H = UFBGA
T = LQFP
U = UFQFPN
Y = WLCSP
Temperature range
6 = –40 to 85 °C
Options
xxx = code ID of programmed parts (includes packing type)
TR = tape and reel packing
blank = tray packing
DocID026967 Rev 4 125/128
STM32F098CC STM32F098RC STM32F098VC Revision history
127
9 Revision history
Table 80. Document revision history
Date Revision Changes
10-Nov-2014 1 Initial release.
19-Nov-2014 2
Updated:
Section: Features on the cover page: changed the
number of capacitive sensing channels.
Table: STM32F098xC family device features and
peripheral counts: changed the number of GPIOs and
capacitive sensing channels.
17-Dec-2015 3
Cover page:
the document status to Datasheet - Production data
Fast Mode Plus current sink corrected from 20 mA to
“extra”
Section 2: Description:
Table 1: STM32F098CC/RC/VC family device
features and peripheral counts- I/O and capacitive
channel numbers corrected
Section 3: Functional ov erview:
updated Figure 1: Block diagram (number of AF) and
Figure 2: Clock tree
Section 3.5.3: Low-power modes - added info. on
comm. peripherals configurable to operate with HSI
Section 3.9.2: Extended interrupt/event controller
(EXTI) - number of GPIOs corrected
added number of complementary outputs for the
general purpose and for the advance control timers in
Table 6: Timer feature comparison
Section 3.14.3: Basic timersTIM6 and TIM7 -
corrected from plain text to numbered title
Section 4: Pinouts and pin descriptions:
Package pinout figures updated (look and feel)
Figure 7: WLCSP64 package pinout - now presente d
in top view
Table 12: STM32F098CC/RC/VC pin definitions -
MCO moved from additional to alternate functions
column
Table 14: Alte rnate functions selected through
GPIOB_AFR registers for port B- CAN_RX and CAN-
TX added as AF4 for PB8 and PB9, respectively
Table 18: Alte rnate functions selected through
GPIOF_AFR registers for port F- lines PF4 and PF5
removed
Section 5: Memory mapping:
updated Figure 10: STM32F098CC/RC/VC memory
map
Revision history STM32F098CC STM32F098RC STM32F098VC
126/128 DocID026967 Rev 4
17-Dec-2015 3
(continued)
Section 6: Electrical characteristics :
footnote for VIN max value in Table 20: V oltage
characteristics
footnote for VIN max value in Table 23: General
operating conditions
Table 25: Embedded internal reference voltage:
added tSTART parameter and removal of -40°-to-85°
condition for VREFINT and associated note
Figure 18: Typical application with a 32.768 kHz
crystal - correction of OSC_IN and OSC_OUT to
OSC32_IN and OSC32_OUT and fHSE to fLSE
Table 47: ESD absolute maximum ratings updated
–V
DDIOx replaced VDD in Figure 22: TC and TTa I/O
input characteristics and Fi gure 23: Five volt tolerant
(FT and FTf) I/O input characteristics
Table 50: I/O static characteristics- note removed
Table 55: ADC characteristics - updated some
parameter values, test conditions and added
footnotes (3) and (4)
–I
DDA max value (DAC DC current consumption) in
Table 58: DAC characteristics
Table 59: Comparator characteristics - min value
added for VDDA
Table 60: TS characteristics: removed the minimum
value for tSTART symbol and updated parameter name
R parameter typical. value in Table 61: VBAT
monitoring characteristics
Table 62: TIMx characte ristics: removed ResTM
parameter line and all values put in new Typ column,
tCOUNTER substituted with tMAX_COUNT
, values defined
as powers of two
Table 67: I2S characteristics reorganized and max
value added for tv(SD_ST)
Figure 32: I2S master timing diagram (Philips protocol)
added definition of edge level references
Section 7: Package information:
Figure 33: UFBGA100 package outline and
associated Table 68 updated
Figure 34 and associated Table 69 updated
Figure 35: UFBGA100 package marking example and
associated text updated
Figure 38: LQFP100 package marking example and
associated text updated
Table 72: UFBGA64 recommended PCB design rules
added
Figure 41: UFBGA64 package marking example
added
Section 8: Part numbering:
added tray packing to options
Table 80. Document revision history (continued)
Date Revision Changes
DocID026967 Rev 4 127/128
STM32F098CC STM32F098RC STM32F098VC Revision history
127
10-Jan-2017 4
Section 6: Electrical characteristics :
Table 37: LSE oscillator characteristics (fLSE = 32.768
kHz) - information on configuring different drive
capabilities removed. See the corresponding
reference manual.
Table 25: Embedded internal reference voltage -
VREFINT values
Table 58: DAC characteristics - min. RLOAD to VDDA
defined
Figure 28: SPI timing diagram - slave mode and
CPHA = 0 and Figure 29: SPI timing diagram - slave
mode and CPHA = 1 enhanced and corrected
Section 8: Ordering information:
The name of the section changed from the previous
“Part numbering”
Table 80. Document revision history (continued)
Date Revision Changes
STM32F098CC STM32F098RC STM32F098VC
128/128 DocID026967 Rev 4
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved