IKW50N60T
TrenchStop® Series q
Power Semiconductors 1 Rev. 2.4 Sep 08
Low Loss DuoPack : IGBT in TrenchStop® and Fieldstop technology
with soft, fast recovery anti-parallel EmCon HE diode
Very low VCE(sat) 1.5 V (typ.)
Maximum Junction Temperature 175 °C
Short circuit withstand time – 5µs
Designed for :
- Frequency Converters
- Uninterrupted Power Supply
TrenchStop® and Fieldstop technology for 600 V applications
offers :
- very tight parameter distribution
- high ruggedness, temperature stable behavior
- very high switching speed
Positive temperature coefficient in VCE(sat)
Low EMI
Low Gate Charge
Very soft, fast recovery anti-parallel EmCon HE diode
Qualified according to JEDEC1 for target applications
Pb-free lead plating; RoHS compliant
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type VCE I
C VCE(sat),Tj=25°C Tj,max Marking Package
IKW50N60T 600V 50A 1.5V 175°C K50T60 PG-TO-247-3
Maximum Ratings
Parameter Symbol Value Unit
Collector-emitter voltage VCE 600 V
DC collector current, limited by Tjmax
TC = 25°C
TC = 100°C
IC
802)
50
Pulsed collector current, tp limited by Tjmax ICpuls 150
Turn off safe operating area (VCE 600V, Tj 175°C) - 150
Diode forward current, limited by Tjmax
TC = 25°C
TC = 100°C
IF
100
50
Diode pulsed current, tp limited by Tjmax IFpuls 150
A
Gate-emitter voltage VGE ±20 V
Short circuit withstand time3)
VGE = 15V, VCC 400V, Tj 150°C
tSC 5
µs
Power dissipation TC = 25°C Ptot 333 W
Operating junction temperature Tj -40...+175
Storage temperature Tstg -55...+175
Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260
°C
1 J-STD-020 and JESD-022
2) Value limited by bond wire
3) Allowed number of short circuits: <1000; time between short circuits: >1s.
G
C
E
PG-TO-247-3
http://store.iiic.cc/
IKW50N60T
TrenchStop® Series q
Power Semiconductors 2 Rev. 2.4 Sep 08
Thermal Resistance
Parameter Symbol Conditions Max. Value Unit
Characteristic
IGBT thermal resistance,
junction – case
RthJC 0.45
Diode thermal resistance,
junction – case
RthJCD 0.8
Thermal resistance,
junction – ambient
RthJA 40
K/W
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Value
Parameter Symbol Conditions
min. Typ. max.
Unit
Static Characteristic
Collector-emitter breakdown voltage V(BR)CES VGE=0V, IC=0.2mA 600 - -
Collector-emitter saturation voltage VCE(sat) VGE = 15V, IC=50A
Tj=25°C
Tj=175°C
-
-
1.5
1.9
2
-
Diode forward voltage
VF VGE=0V, IF=50A
Tj=25°C
Tj=175°C
-
-
1.65
1.6
2.05
-
Gate-emitter threshold voltage VGE(th) IC=0.8mA,VCE=VGE 4.1 4.9 5.7
V
Zero gate voltage collector current
ICES VCE=600V,
VGE=0V
Tj=25°C
Tj=175°C
-
-
-
-
40
1000
µA
Gate-emitter leakage current IGES VCE=0V,VGE=20V - - 100 nA
Transconductance gfs VCE=20V, IC=50A - 31 - S
Integrated gate resistor RGint -
Dynamic Characteristic
Input capacitance Ciss - 3140 -
Output capacitance Coss - 200 -
Reverse transfer capacitance Crss
VCE=25V,
VGE=0V,
f=1MHz - 93 -
pF
Gate charge QGate VCC=480V, IC=50A
VGE=15V
- 310 - nC
Internal emitter inductance
measured 5mm (0.197 in.) from case
LE - 13 - nH
Short circuit collector current1) IC(SC) VGE=15V,tSC5µs
VCC = 400V,
Tj 150°C
- 458.3 - A
1) Allowed number of short circuits: <1000; time between short circuits: >1s.
http://store.iiic.cc/
IKW50N60T
TrenchStop® Series q
Power Semiconductors 3 Rev. 2.4 Sep 08
Switching Characteristic, Inductive Load, at Tj=25 °C
Value
Parameter Symbol Conditions
min. Typ. max.
Unit
IGBT Characteristic
Turn-on delay time td(on) - 26 -
Rise time tr - 29 -
Turn-off delay time td(off) - 299 -
Fall time tf - 29 -
ns
Turn-on energy Eon - 1.2 -
Turn-off energy Eoff - 1.4 -
Total switching energy Ets
Tj=25°C,
VCC=400V,IC=50A,
VGE=0/15V,
RG= 7 ,
L
σ
1)=103nH,
C
σ
1)=39pF
Energy losses include
“tail” and diode
reverse recovery. - 2.6 -
mJ
Anti-Parallel Diode Characteristic
Diode reverse recovery time trr - 143 - ns
Diode reverse recovery charge Qrr - 1.8 - µC
Diode peak reverse recovery current Irrm - 27.7 - A
Diode peak rate of fall of reverse
recovery current during tb
dirr/dt
Tj=25°C,
VR=400V, IF=50A,
diF/dt=1280A/µs
- 671 -
A/µs
Switching Characteristic, Inductive Load, at Tj=175 °C
Value
Parameter Symbol Conditions
min. Typ. max.
Unit
IGBT Characteristic
Turn-on delay time td(on) - 27 -
Rise time tr - 33 -
Turn-off delay time td(off) - 341 -
Fall time tf - 55 -
ns
Turn-on energy Eon - 1.8 -
Turn-off energy Eoff - 1.8 -
Total switching energy Ets
Tj=175°C,
VCC=400V,IC=50A,
VGE=0/15V,
RG= 7
L
σ
1)=103nH,
C
σ
1)=39pF
Energy losses include
“tail” and diode
reverse recovery. - 3.6 -
mJ
Anti-Parallel Diode Characteristic
Diode reverse recovery time trr - 205 - ns
Diode reverse recovery charge Qrr - 4.3 - µC
Diode peak reverse recovery current Irrm - 40.7 - A
Diode peak rate of fall of reverse
recovery current during tb
dirr/dt
Tj=175°C
VR=400V, IF=50A,
diF/dt=1280A/µs
- 449 -
A/µs
1) Leakage inductance L
σ
and Stray capacity Cσ due to dynamic test circuit in Figure E.
http://store.iiic.cc/
IKW50N60T
TrenchStop® Series q
Power Semiconductors 4 Rev. 2.4 Sep 08
IC, COLLECTOR CURRENT
100Hz 1kHz 10kHz 100kHz
0A
20A
40A
60A
80A
1
00A
1
20A
1
40A
TC=110°C
TC=80°C
IC, COLLECTOR CURRENT
1V 10V 100V 1000V
1A
10A
100A
10µs
1ms
DC
tp=2µs
50µs
10ms
f, SWITCHING FREQUENCY VCE, COLLECTOR-EMITTER VOLTAGE
Figure 1. Collector current as a function of
switching frequency
(Tj 175°C, D = 0.5, VCE = 400V,
VGE = 0/+15V, RG = 7)
Figure 2. Safe operating area
(D = 0, TC = 25°C, Tj 175°C;
VGE=15V)
Ptot, POWER DISSIPATION
25°C 50°C 75°C 100°C 125°C 150°C
0W
50W
100W
150W
200W
250W
300W
IC, COLLECTOR CURRENT
25°C 75°C 125°C
0A
20A
40A
60A
80A
TC, CASE TEMPERATURE TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function of
case temperature
(Tj 175°C)
Figure 4. Collector current as a function of
case temperature
(VGE 15V, Tj 175°C)
Ic
Ic
http://store.iiic.cc/
IKW50N60T
TrenchStop® Series q
Power Semiconductors 5 Rev. 2.4 Sep 08
IC, COLLECTOR CURRENT
0V 1V 2V 3V
0A
20A
40A
60A
80A
100A
120A
15V
7V
9V
11V
13V
VGE=20V
IC, COLLECTOR CURRENT
0V 1V 2V 3V 4V
0A
20A
40A
60A
80A
100A
120A
15V
13V
7V
9V
11V
VGE=20V
VCE, COLLECTOR-EMITTER VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristic
(Tj = 25°C)
Figure 6. Typical output characteristic
(Tj = 175°C)
IC, COLLECTOR CURRENT
0V 2V 4V 6V 8V
0A
20A
40A
60A
80A
25°C
TJ=175°C
VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE
C 50°C 100°C 150°C
0.0V
0.5V
1.0V
1.5V
2.0V
2.5V
IC=50A
IC=100A
IC=25A
VGE, GATE-EMITTER VOLTAGE TJ, JUNCTION TEMPERATURE
Figure 7. Typical transfer characteristic
(VCE=10V)
Figure 8. Typical collector-emitter
saturation voltage as a function of
junction temperature
(VGE = 15V)
http://store.iiic.cc/
IKW50N60T
TrenchStop® Series q
Power Semiconductors 6 Rev. 2.4 Sep 08
t, SWITCHING TIMES
0A 20A 40A 60A 80A
10ns
100ns tr
td(on)
tf
td(off)
t, SWITCHING TIMES
0Ω 5Ω 10Ω 15Ω 20Ω 25
10ns
100ns
tr
td(on)
tf
td(off)
IC, COLLECTOR CURRENT RG, GATE RESISTOR
Figure 9. Typical switching times as a
function of collector current
(inductive load, TJ=175°C,
VCE = 400V, VGE = 0/15V, RG = 7,
Dynamic test circuit in Figure E)
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, TJ = 175°C,
VCE= 400V, VGE = 0/15V, IC = 50A,
Dynamic test circuit in Figure E)
t, SWITCHING TIMES
25°C 50°C 75°C 100°C 125°C 150°C
10ns
100ns
tr
td(on)
tf
td(off)
VGE(th), GATE-EMITT TRSHOLD VOLTAGE
-50°C C 50°C 100°C 150°C
0V
1V
2V
3V
4V
5V
6V
7V
min.
typ.
max.
TJ, JUNCTION TEMPERATURE TJ, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE = 400V,
VGE = 0/15V, IC = 50A, RG=7,
Dynamic test circuit in Figure E)
Figure 12. Gate-emitter threshold voltage as
a function of junction temperature
(IC = 0.8mA)
http://store.iiic.cc/
IKW50N60T
TrenchStop® Series q
Power Semiconductors 7 Rev. 2.4 Sep 08
E, SWITCHING ENERGY LOSSES
0A 20A 40A 60A 80A
0.0mJ
2.0mJ
4.0mJ
6.0mJ
8.0mJ
Ets*
Eoff
*) Eon and Ets include losses
due to diode recovery
Eon*
E, SWITCHING ENERGY LOSSES
0Ω 10Ω 20Ω
0.0mJ
1.0mJ
2.0mJ
3.0mJ
4.0mJ
5.0mJ
6.0mJ
Ets*
Eoff
*) Eon and Ets include losses
due to diode recovery
Eon*
IC, COLLECTOR CURRENT RG, GATE RESISTOR
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, TJ = 175°C,
VCE = 400V, VGE = 0/15V, RG = 7,
Dynamic test circuit in Figure E)
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, TJ = 175°C,
VCE = 400V, VGE = 0/15V, IC = 50A,
Dynamic test circuit in Figure E)
E, SWITCHING ENERGY LOSSES
25°C 50°C 75°C 100°C 125°C 150°C
0.0mJ
1.0mJ
2.0mJ
3.0mJ
Ets*
Eoff
*) Eon and Ets include losses
due to diode recovery
Eon*
E, SWITCHING ENERGY LOSSES
300V 350V 400V 450V 500V 550V
0mJ
1mJ
2mJ
3mJ
4mJ
Ets*
Eon*
*) Eon and Ets include losses
due to diode recovery
Eoff
TJ, JUNCTION TEMPERATURE VCE, COLLECTOR-EMITTER VOLTAGE
Figure 15. Typical switching energy losses
as a function of junction
temperature
(inductive load, VCE = 400V,
VGE = 0/15V, IC = 50A, RG = 7,
Dynamic test circuit in Figure E)
Figure 16. Typical switching energy losses
as a function of collector emitter
voltage
(inductive load, TJ = 175°C,
VGE = 0/15V, IC = 50A, RG = 7,
Dynamic test circuit in Figure E)
http://store.iiic.cc/
IKW50N60T
TrenchStop® Series q
Power Semiconductors 8 Rev. 2.4 Sep 08
VGE, GATE-EMITTER VOLTAGE
0nC 100nC 200nC 300nC
0V
5V
10V
15V
480V
120V
c, CAPACITANCE
0V 10V 20V 30V 40V
100pF
1nF
Crss
Coss
Ciss
QGE, GATE CHARGE VCE, COLLECTOR-EMITTER VOLTAGE
Figure 17. Typical gate charge
(IC=50 A)
Figure 18. Typical capacitance as a function
of collector-emitter voltage
(VGE=0V, f = 1 MHz)
IC
(
sc
)
, short circuit COLLECTOR CURRENT
12V 14V 16V 18V
0A
100A
200A
300A
400A
500A
600A
700A
800A
tSC, SHORT CIRCUIT WITHSTAND TIME
10V 11V 12V 13V 14V
0µs
2µs
4µs
6µs
8µs
10µs
12µs
VGE, GATE-EMITTETR VOLTAGE VGE, GATE-EMITETR VOLTAGE
Figure 19. Typical short circuit collector
current as a function of gate-
emitter voltage
(VCE 400V, Tj 150°C)
Figure 20. Short circuit withstand time as a
function of gate-emitter voltage
(VCE=600V, start at TJ=25°C,
TJmax<150°C)
http://store.iiic.cc/
IKW50N60T
TrenchStop® Series q
Power Semiconductors 9 Rev. 2.4 Sep 08
ZthJC, TRANSIENT THERMAL RESISTANCE
1
µ
s10
µ
s100
µ
s 1ms 10ms 100ms
10-2K/W
10-1K/W
single pulse
0.01
0.02
0.05
0.1
0.2
D=0.5
ZthJC, TRANSIENT THERMAL RESISTANCE
1
µ
s10
µ
s 100
µ
s 1ms 10ms 100ms
10-2K/W
10-1K/W
10
K/W
single pulse
0.01
0.02
0.05
0.1
0.2
D=0.5
tP, PULSE WIDTH tP, PULSE WIDTH
Figure 21. IGBT transient thermal resistance
(D = tp / T)
Figure 22. Diode transient thermal
impedance as a function of pulse
width
(D=tP/T)
trr, REVERSE RECOVERY TIME
700A/
s800A/
s900A/
s 1000A/
µ
s
0ns
50ns
100ns
150ns
200ns
250ns
300ns
TJ=25°C
TJ=175°C
Qrr, REVERSE RECOVERY CHARGE
700A/µs 800A/µs 900A/µs 1000A/µs
0.0µC
0.5µC
1.0µC
1.5µC
2.0µC
2.5µC
3.0µC
3.5µC
4.0µC
TJ=25°C
TJ=175°C
diF/dt, DIODE CURRENT SLOPE diF/dt, DIODE CURRENT SLOPE
Figure 23. Typical reverse recovery time as
a function of diode current slope
(VR=400V, IF=50A,
Dynamic test circuit in Figure E)
Figure 24. Typical reverse recovery charge
as a function of diode current
slope
(VR = 400V, IF = 50A,
Dynamic test circuit in Figure E)
R,(K/W)
τ
, (s)
0.18355 7.425*10-2
0.12996 8.34*10-3
0.09205 7.235*10-4
0.03736 1.035*10-4
0.00703 4.45*10-5
C1=
τ
1/R1
R1R2
C2=
τ
2
/
R2
R,(K/W)
τ
, (s)
0.2441 7.037*10-2
6
0.2007 7.312*10-3
0.1673 6.431*10-4
0.1879 4.79*10-5
C1=
τ
1/R1
R1R2
C2=
τ
2
/
R2
http://store.iiic.cc/
IKW50N60T
TrenchStop® Series q
Power Semiconductors 10 Rev. 2.4 Sep 08
Irr, REVERSE RECOVERY CURRENT
700A/µs 800A/µs 900As 1000A/µs
0A
10A
20A
30A
40A
TJ=25°C
TJ=175°C
d
i
rr/dt, DIODE PEAK RATE OF FALL
OF REVERSE RECOVERY CURRENT
700A/µs 800A/µs 900A/µs 1000A/µs
0A/µs
-150A/µs
-300A/µs
-450A/µs
-600A/µs
-750A/µs
TJ=25°C
TJ=175°C
diF/dt, DIODE CURRENT SLOPE diF/dt, DIODE CURRENT SLOPE
Figure 25. Typical reverse recovery current
as a function of diode current
slope
(VR = 400V, IF = 50A,
Dynamic test circuit in Figure E)
Figure 26. Typical diode peak rate of fall of
reverse recovery current as a
function of diode current slope
(VR=400V, IF=50A,
Dynamic test circuit in Figure E)
IF, FORWARD CURRENT
0V 1V 2V
0A
20A
40A
60A
80A
100A
120A
175°C
TJ=25°C
VF, FORWARD VOLTAGE
0°C 50°C 100°C 150°C
0.0V
0.5V
1.0V
1.5V
2.0V
50A
IF=100A
25A
VF, FORWARD VOLTAGE TJ, JUNCTION TEMPERATURE
Figure 27. Typical diode forward current as
a function of forward voltage
Figure 28. Typical diode forward voltage as a
function of junction temperature
http://store.iiic.cc/
IKW50N60T
TrenchStop® Series q
Power Semiconductors 11 Rev. 2.4 Sep 08
5.44
0.55
6.04
5.49
1.68
3.68
4.17
20.82
16.25
15.70
1.05
3.50
19.80
13.10
3
MIN
1.90
4.90
2.27
1.07
1.85
1.90
0.238
0.216
0.066
0.145
0.164
0.075
0.820
0.640
0.618
0.022
0.193
0.089
0.042
0.073
0.041
0.075
0.138
0.780
0.516
0.68
6.30
6.00
17.65
2.60
5.10
14.15
3.70
21.10
16.03
20.31
1.35
4.47
2.41
5.16
2.53
1.33
2.11
MAX
2.16
0.027
0.214
3
0.248
0.236
0.695
0.557
0.102
0.201
0.831
0.631
0.053
0.146
0.799
0.176
MIN MAX
0.095
0.203
0.099
0.052
0.083
0.085
0
7.5mm
55
0
17-12-2007
03
Z8B00003327
2.87
2.87
0.113
0.113
3.38
3.13
0.133
0.123
M
M
PG-TO247-3
http://store.iiic.cc/
IKW50N60T
TrenchStop® Series q
Power Semiconductors 12 Rev. 2.4 Sep 08
Figure A. Definition of switching times
Figure B. Definition of switching losses
I
rrm
90% I
rrm
10% I
rrm
di /dt
F
t
rr
I
F
i,
v
t
Q
S
Q
F
t
S
t
F
V
R
di /dt
rr
Q=Q Q
rr S F
+
t=t t
rr S F
+
Figure C. Definition of diodes
switching characteristics
p(t)
12 n
T(t)
j
τ
1
1
τ
2
2
n
n
τ
T
C
rr
r
r
rr
Figure D. Thermal equivalent
circuit
Figure E. Dynamic test circuit
http://store.iiic.cc/
IKW50N60T
TrenchStop® Series q
Power Semiconductors 13 Rev. 2.4 Sep 08
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2008 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or
any information regarding the application of the device, Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual
property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the
types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies
components may be used in life-support devices or systems only with the express written approval of
Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of
that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and
sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other
persons may be endangered.
http://store.iiic.cc/