January 1999 TOKO, Inc. Page 1
TK119xx
VIN VOUT
THERMAL
PROTECTION
BANDGAP
REFERENCE
CONTROL
GND
SHUT
DOWN
NOISE
BYPASS
RESET
OUTPUT
ERROR
DETECTION
FEATURES
Very Low Dropout Voltage
Reset Output for Microprocessor
Very Low Quiescent Current (No Load)
Internal Thermal/Overload Shutdown
Low Noise Voltage
Input and Output Voltage Sense
± 2.5 % Output Voltage Accuracy
CMOS or TTL On/Off Control
High Speed On/Off Transient (50 µs typ.)
BLOCK DIAGRAM
TK119xx
DESCRIPTION
The TK119xx series are low power, linear regulators with
built-in electronic switches. Built-in voltage comparators
provide a reset logic ”low” level whenever the input or
output voltage falls outside internally preset limits. The
internal electronic switch can be controlled by CMOS or
TLL levels. The device is in the “off” state when the control
pin is biased “high”.
An internal PNP pass-transistor is used in order to achieve
low dropout voltage (typically 200 mV at 50 mA load
current). The device has very low quiescent current
(130 µA) in the “on” mode with no load and 2 mA with 30
mA load. The quiescent current is typically 4 mA at 60 mA
load. The current consumption in the “off” mode is 65 µA.
An internal thermal shutdown circuit limits the junction
temperature to below 150 oC. The load current is internally
monitored and the device will shut down (no load current)
in the presence of a short circuit at the output. The output
noise is very low at 100 dB down from VOUT when an
external noise bypass capacitor is used. The TK119xx is
available in a miniature SOT-23L surface mount package.
FEATURES
Battery Powered Systems
Cellular Telephones
Pagers
Personal Communications Equipment
Portable Instrumentation
Portable Consumer Equipment
Radio Control Systems
Toys
Low Voltage Systems
ORDERING INFORMATION
TAPE/REEL CODE
TL: Tape Left
Tape/Reel Code
TK119 M
Voltage Code
VOLTAGE CODE
22 = 2.25 V 35 = 2.5 V
27 = 2.75 V 40 = 4.0 V
30 = 3.00 V 48 = 4.8 V
32 = 3.25 V 50 = 5.0 V
CONTROL
NOISE
BYPASS
VOUT
VIN
RESET
OUTPUT
GND
01S
VOLTAGE REGULATOR WITH RESET OUTPUT
Page 2 January 1999 TOKO, Inc.
TK119xx
LOBMYSRETEMARAPSNOITIDNOCTSETNIMPYTXAMSTINU
I
Q
tnerruCtnecseiuQ I
TUO
Am0=041003Aµ
V
NI
I,V52.1=
TUO
Am0=083009Aµ
I
DNG
tnerruCdnuorGI
TUO
Am06=5.201Am
I
YBTS
tnerruCybdnatSFFOtuptuO59061Aµ
V
TUO
egatloVtuptuO I
TUO
T,Am1=
A
C°52=71.252.233.2V
I
TUO
03-,Am1= T
A
C°0831.252.273.2V
V
PORD
egatloVtuoporDI
TUO
Am03=061053Vm
I
TUO
tnerruCtuptuO 001Am
geReniLnoitalugeReniLV
NI
V52.21ot52.3=505Vm
geRdaoLnoitalugeRdaoLI
TUO
Am08ot1=02001Vm
V
TUO
/TtneiciffeoCerutarepmeT 2.0±C°/Vm
RRnoitcejeRelppiRC,zH004=f
L
Fµ01=86Bd
V
ON
egatloVesioNtuptuO zH01 fC,zHk001
L
,Fµ01=
C
N
Fµ10.0= 05smrVµ
V
TED
dlohserhTrotceteDegatloVwoL V
TUO
59.0xV
V
)RRE(TED
dlohserhTrotceteDegatloV ecnareloT 4-V
TED
4+%
V
TESER
egatloVnoitarutaSI
GALF
Aµ001=2.04.0V
SNOITACIFICEPSLANIMRETLORTNOC
I
TNOC
tnerruClanimreTlortnoC V
TNOC
V5=52001Aµ
V
TNOC
V61=54051Aµ
V
)NO(TNOC
)NO(egatloVlortnoCNOtuptuO6.0V
V
)FFO(TNOC
)FFO(egatloVlortnoCFFOtuptuO2.2V
T
R
emiTesiRtuptuO
)NOotFFO(
I
TUO
C,Am03=
L
,Fµ1.0=
C
N
Fµ1.0= 05sµ
ABSOLUTE MAXIMUM RATINGS Operating Temperature Range ...................-30 to +80 °C
Junction Temperature .......................................... 150 °C
Lead Soldering Temperature (10 s) ..................... 235 °C
TK11922 ELECTRICAL CHARACTERISTICS
Test conditions: VIN = 3.25 V, CL = 10 µF, CN = 0.01 µF, TA = 25 °C, unless otherwise specified.
Note 1: Power dissipation is 400 mW when mounted as recommended. Derate at 3.2 mW/°C for operation above 25°C.
Supply Voltage ......................................................... 17 V
Operating Voltage Range............................... 1.8 to 16 V
Power Dissipation (Note 1) ................................ 400 mW
Storage Temperature Range ................... -55 to +150 °C
January 1999 TOKO, Inc. Page 3
TK119xx
TK11927 ELECTRICAL CHARACTERISTICS
Test conditions: VIN = 3.75 V, CL = 10 µF, CN = 0.01 µF, TA = 25 °C, unless otherwise specified.
LOBMYSRETEMARAPSNOITIDNOCTSETNIMPYTXAMSTINU
I
Q
tnerruCtnecseiuQ I
TUO
Am0=041003Aµ
V
NI
I,V57.1=
TUO
Am0=083009Aµ
I
DNG
tnerruCdnuorGI
TUO
Am06=5.201Am
I
YBTS
tnerruCybdnatSFFOtuptuO59061Aµ
V
TUO
egatloVtuptuO I
TUO
T,Am1=
A
C°52=76.257.238.2V
I
TUO
03-,Am1= T
A
C°0836.257.278.2V
V
PORD
egatloVtuoporDI
TUO
Am03=061053Vm
I
TUO
tnerruCtuptuO 001Am
geReniLnoitalugeReniLV
NI
V57.21ot57.3=505Vm
geRdaoLnoitalugeRdaoLI
TUO
Am08ot1=02001Vm
V
TUO
/TtneiciffeoCerutarepmeT 2.0±C°/Vm
RRnoitcejeRelppiRC,zH004=f
L
Fµ01=86Bd
V
ON
egatloVesioNtuptuO zH01 fC,zHk001
L
,Fµ01=
C
N
Fµ10.0= 05smrVµ
V
TED
dlohserhTrotceteDegatloVwoL V
TUO
59.0xV
V
)RRE(TED
dlohserhTrotceteDegatloV ecnareloT 4-V
TED
4+%
V
TESER
egatloVnoitarutaSI
GALF
Aµ001=2.04.0V
SNOITACIFICEPSLANIMRETLORTNOC
I
TNOC
tnerruClanimreTlortnoC V
TNOC
V5=52001Aµ
V
TNOC
V61=54051Aµ
V
)NO(TNOC
)NO(egatloVlortnoCNOtuptuO6.0V
V
)FFO(TNOC
)FFO(egatloVlortnoCFFOtuptuO4.2V
T
R
emiTesiRtuptuO
)NOotFFO(
I
TUO
C,Am03=
L
,Fµ1.0=
C
N
Fµ1.0= 05sµ
Page 4 January 1999 TOKO, Inc.
TK119xx
TK11930 ELECTRICAL CHARACTERISTICS
Test conditions: VIN = 4.0 V, CL = 10 µF, CN = 0.01 µF, TA = 25 °C, unless otherwise specified.
LOBMYSRETEMARAPSNOITIDNOCTSETNIMPYTXAMSTINU
I
Q
tnerruCtnecseiuQ I
TUO
Am0=041003Aµ
V
NI
I,V0.2=
TUO
Am0=083009Aµ
I
DNG
tnerruCdnuorGI
TUO
Am06=5.201Am
I
YBTS
tnerruCybdnatSFFOtuptuO59061Aµ
V
TUO
egatloVtuptuO I
TUO
T,Am1=
A
C°52=29.20.380.3V
I
TUO
03-,Am1= T
A
C°0888.20.321.3V
V
PORD
egatloVtuoporDI
TUO
Am03=061053Vm
I
TUO
tnerruCtuptuO 001Am
geReniLnoitalugeReniLV
NI
V0.31ot0.4=505Vm
geRdaoLnoitalugeRdaoLI
TUO
Am08ot1=02001Vm
V
TUO
/TtneiciffeoCerutarepmeT 2.0±C°/Vm
RRnoitcejeRelppiRC,zH004=f
L
Fµ01=86Bd
V
ON
egatloVesioNtuptuO zH01 fC,zHk001
L
,Fµ01=
C
N
Fµ10.0= 05smrVµ
V
TED
dlohserhTrotceteDegatloVwoL V
TUO
59.0xV
V
)RRE(TED
dlohserhTrotceteDegatloV ecnareloT 4-V
TED
4+%
V
TESER
egatloVnoitarutaSI
GALF
Aµ001=2.04.0V
SNOITACIFICEPSLANIMRETLORTNOC
I
TNOC
tnerruClanimreTlortnoC V
TNOC
V5=52001Aµ
V
TNOC
V61=54051Aµ
V
)NO(TNOC
)NO(egatloVlortnoCNOtuptuO6.0V
V
)FFO(TNOC
)FFO(egatloVlortnoCFFOtuptuO4.2V
T
R
emiTesiRtuptuO
)NOotFFO(
I
TUO
C,Am03=
L
,Fµ1.0=
C
N
Fµ1.0= 05sµ
January 1999 TOKO, Inc. Page 5
TK119xx
TK11932 ELECTRICAL CHARACTERISTICS
Test conditions: VIN = 4.25 V, CL = 10 µF, CN = 0.01 µF, TA = 25 °C, unless otherwise specified.
LOBMYSRETEMARAPSNOITIDNOCTSETNIMPYTXAMSTINU
I
Q
tnerruCtnecseiuQ I
TUO
Am0=041003Aµ
V
NI
I,V52.2=
TUO
Am0=083009Aµ
I
DNG
tnerruCdnuorGI
TUO
Am06=5.201Am
I
YBTS
tnerruCybdnatSFFOtuptuO59061Aµ
V
TUO
egatloVtuptuO I
TUO
T,Am1=
A
C°52=71.352.333.3V
I
TUO
03-,Am1= T
A
C°0831.352.373.3V
V
PORD
egatloVtuoporDI
TUO
Am03=061053Vm
I
TUO
tnerruCtuptuO 001Am
geReniLnoitalugeReniLV
NI
V52.31ot52.4=505Vm
geRdaoLnoitalugeRdaoLI
TUO
Am08ot1=02001Vm
V
TUO
/TtneiciffeoCerutarepmeT 2.0±C°/Vm
RRnoitcejeRelppiRC,zH004=f
L
Fµ01=86Bd
V
ON
egatloVesioNtuptuO zH01 fC,zHk001
L
,Fµ01=
C
N
Fµ10.0= 05smrVµ
V
TED
dlohserhTrotceteDegatloVwoL V
TUO
59.0xV
V
)RRE(TED
dlohserhTrotceteDegatloV ecnareloT 4-V
TED
4+%
V
TESER
egatloVnoitarutaSI
GALF
Aµ001=2.04.0V
SNOITACIFICEPSLANIMRETLORTNOC
I
TNOC
tnerruClanimreTlortnoC V
TNOC
V5=52001Aµ
V
TNOC
V61=54051Aµ
V
)NO(TNOC
)NO(egatloVlortnoCNOtuptuO6.0V
V
)FFO(TNOC
)FFO(egatloVlortnoCFFOtuptuO4.2V
T
R
emiTesiRtuptuO
)NOotFFO(
I
TUO
C,Am03=
L
,Fµ1.0=
C
N
Fµ1.0= 05sµ
Page 6 January 1999 TOKO, Inc.
TK119xx
TK11935 ELECTRICAL CHARACTERISTICS
Test conditions: VIN = 4.5 V, CL = 10 µF, CN = 0.01 µF, TA = 25 °C, unless otherwise specified.
LOBMYSRETEMARAPSNOITIDNOCTSETNIMPYTXAMSTINU
I
Q
tnerruCtnecseiuQ I
TUO
Am0=041003Aµ
V
NI
I,V5.2=
TUO
Am0=083009Aµ
I
DNG
tnerruCdnuorGI
TUO
Am06=5.201Am
I
YBTS
tnerruCybdnatSFFOtuptuO59061Aµ
V
TUO
egatloVtuptuO I
TUO
T,Am1=
A
C°52=14.305.395.3V
I
TUO
03-,Am1= T
A
C°0873.305.336.3V
V
PORD
egatloVtuoporDI
TUO
Am03=061053Vm
I
TUO
tnerruCtuptuO 001Am
geReniLnoitalugeReniLV
NI
V5.31ot5.4=505Vm
geRdaoLnoitalugeRdaoLI
TUO
Am08ot1=02001Vm
V
TUO
/TtneiciffeoCerutarepmeT 2.0±C°/Vm
RRnoitcejeRelppiRC,zH004=f
L
Fµ01=86Bd
V
ON
egatloVesioNtuptuO zH01 fC,zHk001
L
,Fµ01=
C
N
Fµ10.0= 05smrVµ
V
TED
dlohserhTrotceteDegatloVwoL V
TUO
59.0xV
V
)RRE(TED
dlohserhTrotceteDegatloV ecnareloT 4-V
TED
4+%
V
TESER
egatloVnoitarutaSI
GALF
Aµ001=2.04.0V
SNOITACIFICEPSLANIMRETLORTNOC
I
TNOC
tnerruClanimreTlortnoC V
TNOC
V5=52001Aµ
V
TNOC
V61=54051Aµ
V
)NO(TNOC
)NO(egatloVlortnoCNOtuptuO6.0V
V
)FFO(TNOC
)FFO(egatloVlortnoCFFOtuptuO4.2V
T
R
emiTesiRtuptuO
)NOotFFO(
I
TUO
C,Am03=
L
,Fµ1.0=
C
N
Fµ1.0= 05sµ
January 1999 TOKO, Inc. Page 7
TK119xx
TK11940 ELECTRICAL CHARACTERISTICS
Test conditions: VIN = 5.0 V, CL = 10 µF, CN = 0.01 µF, TA = 25 °C, unless otherwise specified.
LOBMYSRETEMARAPSNOITIDNOCTSETNIMPYTXAMSTINU
I
Q
tnerruCtnecseiuQ I
TUO
Am0=041003Aµ
V
NI
I,V0.3=
TUO
Am0=083009Aµ
I
DNG
tnerruCdnuorGI
TUO
Am06=5.201Am
I
YBTS
tnerruCybdnatSFFOtuptuO59061Aµ
V
TUO
egatloVtuptuO I
TUO
T,Am1=
A
C°52=09.300.401.4V
I
TUO
03-,Am1= T
A
C°0868.300.441.4V
V
PORD
egatloVtuoporDI
TUO
Am03=061053Vm
I
TUO
tnerruCtuptuO 001Am
geReniLnoitalugeReniLV
NI
V0.41ot0.5=505Vm
geRdaoLnoitalugeRdaoLI
TUO
Am08ot1=02001Vm
V
TUO
/TtneiciffeoCerutarepmeT 2.0±C°/Vm
RRnoitcejeRelppiRC,zH004=f
L
Fµ01=86Bd
V
ON
egatloVesioNtuptuO zH01 fC,zHk001
L
,Fµ01=
C
N
Fµ10.0= 05smrVµ
V
TED
dlohserhTrotceteDegatloVwoL V
TUO
59.0xV
V
)RRE(TED
dlohserhTrotceteDegatloV ecnareloT 4-V
TED
4+%
V
TESER
egatloVnoitarutaSI
GALF
Aµ001=2.04.0V
SNOITACIFICEPSLANIMRETLORTNOC
I
TNOC
tnerruClanimreTlortnoC V
TNOC
V5=52001Aµ
V
TNOC
V61=54051Aµ
V
)NO(TNOC
)NO(egatloVlortnoCNOtuptuO6.0V
V
)FFO(TNOC
)FFO(egatloVlortnoCFFOtuptuO4.2V
T
R
emiTesiRtuptuO
)NOotFFO(
I
TUO
C,Am03=
L
,Fµ1.0=
C
N
Fµ1.0= 05sµ
Page 8 January 1999 TOKO, Inc.
TK119xx
TK11948 ELECTRICAL CHARACTERISTICS
Test conditions: VIN = 5.8 V, CL = 10 µF, CN = 0.01 µF, TA = 25 °C, unless otherwise specified.
LOBMYSRETEMARAPSNOITIDNOCTSETNIMPYTXAMSTINU
I
Q
tnerruCtnecseiuQ I
TUO
Am0=041003Aµ
V
NI
I,V8.3=
TUO
Am0=083009Aµ
I
DNG
tnerruCdnuorGI
TUO
Am06=5.201Am
I
YBTS
tnerruCybdnatSFFOtuptuO59061Aµ
V
TUO
egatloVtuptuO I
TUO
T,Am1=
A
C°52=86.408.429.4V
I
TUO
03-,Am1= T
A
C°0836.408.479.4V
V
PORD
egatloVtuoporDI
TUO
Am03=061053Vm
I
TUO
tnerruCtuptuO 001Am
geReniLnoitalugeReniLV
NI
V8.41ot8.5=505Vm
geRdaoLnoitalugeRdaoLI
TUO
Am08ot1=02001Vm
V
TUO
/TtneiciffeoCerutarepmeT 2.0±C°/Vm
RRnoitcejeRelppiRC,zH004=f
L
Fµ01=86Bd
V
ON
egatloVesioNtuptuO zH01 fC,zHk001
L
,Fµ01=
C
N
Fµ10.0= 05smrVµ
V
TED
dlohserhTrotceteDegatloVwoL V
TUO
59.0xV
V
)RRE(TED
dlohserhTrotceteDegatloV ecnareloT 4-V
TED
4+%
V
TESER
egatloVnoitarutaSI
GALF
Aµ001=2.04.0V
SNOITACIFICEPSLANIMRETLORTNOC
I
TNOC
tnerruClanimreTlortnoC V
TNOC
V5=52001Aµ
V
TNOC
V61=54051Aµ
V
)NO(TNOC
)NO(egatloVlortnoCNOtuptuO6.0V
V
)FFO(TNOC
)FFO(egatloVlortnoCFFOtuptuO4.2V
T
R
emiTesiRtuptuO
)NOotFFO(
I
TUO
C,Am03=
L
,Fµ1.0=
C
N
Fµ1.0= 05sµ
January 1999 TOKO, Inc. Page 9
TK119xx
TK11950 ELECTRICAL CHARACTERISTICS
Test conditions: VIN = 6.0 V, CL = 10 µF, CN = 0.01 µF, TA = 25 °C, unless otherwise specified.
LOBMYSRETEMARAPSNOITIDNOCTSETNIMPYTXAMSTINU
I
Q
tnerruCtnecseiuQ I
TUO
Am0=041003Aµ
V
NI
I,V0.4=
TUO
Am0=083009Aµ
I
DNG
tnerruCdnuorGI
TUO
Am06=5.201Am
I
YBTS
tnerruCybdnatSFFOtuptuO59061Aµ
V
TUO
egatloVtuptuO I
TUO
T,Am1=
A
C°52=578.4000.5521.5V
I
TUO
03-,Am1= T
A
C°08528.4000.5571.5V
V
PORD
egatloVtuoporDI
TUO
Am03=061053Vm
I
TUO
tnerruCtuptuO 001Am
geReniLnoitalugeReniLV
NI
V0.51ot0.6=505Vm
geRdaoLnoitalugeRdaoLI
TUO
Am08ot1=02001Vm
V
TUO
/TtneiciffeoCerutarepmeT 2.0±C°/Vm
RRnoitcejeRelppiRC,zH004=f
L
Fµ01=86Bd
V
ON
egatloVesioNtuptuO zH01 fC,zHk001
L
,Fµ01=
C
N
Fµ10.0= 05smrVµ
V
TED
dlohserhTrotceteDegatloVwoL V
TUO
59.0xV
V
)RRE(TED
dlohserhTrotceteDegatloV ecnareloT 4-V
TED
4+%
V
TESER
egatloVnoitarutaSI
GALF
Aµ001=2.04.0V
SNOITACIFICEPSLANIMRETLORTNOC
I
TNOC
tnerruClanimreTlortnoC V
TNOC
V5=52001Aµ
V
TNOC
V61=54051Aµ
V
)NO(TNOC
)NO(egatloVlortnoCNOtuptuO6.0V
V
)FFO(TNOC
)FFO(egatloVlortnoCFFOtuptuO4.2V
T
R
emiTesiRtuptuO
)NOotFFO(
I
TUO
C,Am03=
L
,Fµ1.0=
C
N
Fµ1.0= 05sµ
Page 10 January 1999 TOKO, Inc.
TK119xx
TEST CIRCUIT
IOUT
CONT
NOISE BYPASS
VCONT
VIN VOUT
+CL
10 µF
+
1 µF
CN
0.01 µF
RESET OUTPUT
220 k
ICONT
+
VOUT
+
+
TIMING DIAGRAM
PRINCIPLE OF OPERATION
OUTPUT VOLTAGE 5 V
INPUT VOLTAGE
RESET OUTPUT
~5 V ~5 V
NOT
VALID
NOT
VALID
GLITCH
GLITCH
t
January 1999 TOKO, Inc. Page 11
TK119xx
TYPICAL PERFORMANCE CHARACTERISTICS
TA = 25 °C, unless otherwise specified.
IGND (mA)
10
GROUND CURRENT
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
0
5
IIN (µA)
200
INPUT CURRENT AND CONTROL
CURRENT
VS.
CONTROL VOLTAGE
VCONT (V)
0 2.5 5.0
0
100 SHUTDOWN POINT
IIN
ICONT
ICONT (µA)
100
50
0
VDROP (mV)
500
DROPOUT VOLTAGE VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
0
200
400
300
100
VSAT (mV)
250
SATURATION VOLTAGE
VS.
RESET OUTPUT CURRENT
IFLAG (mA)
0 0.5 1.0
0
100
200
150
50
2 V
3 V
VIN = 1 V
6 V
5 V
VOUT (V)
5
OUTPUT VOLTAGE VS.
OUTPUT CURRENT
IOUT (mA)
0 100 200
0
3
4
2
1
LINE VOLTAGE STEP RESPONSE
VIN
7 V
6 V
VOUT
TIME (50 µs/DIV)
VOUT (20 mV / DIV)
LOAD CURRENT STEP RESPONSE
IOUT
50 mA
0 mA
VOUT
TIME (50 µs/DIV)
VOUT (100 mV / DIV)
TURN-ON TIME VS. OUTPUT
CAPACITOR
1 µF
TIME (50 µs/DIV)
VOUT (1 V / DIV)
CL = .1 µF
4.7 µF
15 µF
10 µF
2.4 V
0 V
VCONT
VOUT
IOUT = 30 mA
NOISE (dB)
-50
NOISE LEVEL
VS.
FREQUENCY (TK11950)
f (Hz)
0 500 k 1 M
-100
IOUT = 25 mA
CL = 0.1 µF
CN = 0.1 µF
CL = 3.3 µF
CN = 0.1 µF
Page 12 January 1999 TOKO, Inc.
TK119xx
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TA = 25 °C, unless otherwise specified.
NOISE (µVrms)
300
NOISE
VS.
BYPASS
CAPACITOR VALUE
CN
1 pF 10 pF 100 pF1000 pF 0.01 µF0.1 µF
0
100
200
150
50
I
GND
(
m
A)
GROUND CURRENT (ON MODE)
VS.
TEMPERATURE
TA (°C)
-50 0 50 100
5
0
10
IOUT = 60 mA
IOUT = 30 mA
I
STBY
(
µ
A)
STANDBY CURRENT (OFF MODE)
VS.
TEMPERATURE
TA (°C)
-50 0 50 100
50
0
100
I
CONT
(
µ
A)
CONTROL CURRENT
VS.
TEMPERATURE
TA (°C)
-50 0 50 100
0
50
VCONT = 5 V
40
30
20
10 VCONT = 2.5 V
V
CONT
(V)
CONTROL VOLTAGE (OFF POINT)
VS. TEMPERATURE
TA (°C)
-50 0 50 100
0
2.0
1.0
V
DET
(V)
VOLTAGE DETECTOR
VS. TEMPERATURE
TA (°C)
-50 0 50 100
4.65
4.85
4.75
V
DROP
(
m
V)
DROPOUT VOLTAGE
VS.
TEMPERATURE
TA (°C)
-50 0 50 100
0
500
IOUT = 30 mA
400
300
200
100
IOUT = 60 mA
RR (dB)
0
RIPPLE REJECTION
VS.
FREQUENCY
f (Hz)
100 1 k 10 k 100 k
-100
-50
CL = 0.1 µF
CL = 10 µF
119xx
CL
10 F
VOUT
VIN
0.1 F
RIPPLE REJECTION CIRCUIT
CN
0.01 F
SW +
January 1999 TOKO, Inc. Page 13
TK119xx
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TA = 25 °C, unless otherwise specified.
VOUT (V)
2.45
OUTPUT VOLTAGE
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
2.05
2.25
VDET (V)
5.0
LOW VOLTAGE DETECTOR
VS.
INPUT VOLTAGE
VIN (V)
0 2.5 5.0
0
2.5 VOUT
VOUT (V)
VOUT (V)
2.35
OUTPUT VOLTAGE VS.
INPUT VOLTAGE
VIN (V)
0 10 20
1.85
2.05
2.25
2.15
1.95
IQ (mA)
500
QUIESCENT CURRENT
VS.
INPUT VOLTAGE
VIN (V)
0 10 20
0
250
VOUT (V)
2.75
OUTPUT VOLTAGE
VS.
INPUT VOLTAGE
VIN (V)
1.75 2.25 3.75
1.75
2.25 IOUT = 0 mA
60 mA
30 mA
VOUT (V)
2.25
OUTPUT VOLTAGE VS.
AMBIENT TEMPERATURE
TA (°C)
-50 0 50 100
2.15
2.20
VOUT (V)
2.95
OUTPUT VOLTAGE
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
2.55
2.75
VDET (V)
5.0
LOW VOLTAGE DETECTOR
VS.
INPUT VOLTAGE
VIN (V)
0 2.5 5.0
0
2.5
VOUT
VOUT (V)
VOUT (V)
2.85
OUTPUT VOLTAGE
VS.
INPUT VOLTAGE
VIN (V)
0 10 20
2.35
2.55
2.75
2.65
2.45
TK11922
TK11927
Page 14 January 1999 TOKO, Inc.
TK119xx
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TA = 25 °C, unless otherwise specified.
IQ (mA)
500
QUIESCENT CURRENT
VS.
INPUT VOLTAGE
VIN (V)
0 10 20
0
250
VOUT (V)
3.25
OUTPUT VOLTAGE
VS.
INPUT VOLTAGE
VIN (V)
2.25 2.75 3.25
2.25
2.75 IOUT = 0 mA
60 mA
30 mA
VOUT (V)
2.80
OUTPUT VOLTAGE
VS.
AMBIENT TEMPERATURE
TA (°C)
-50 0 50 100
2.70
2.75
VOUT (V)
3.45
OUTPUT VOLTAGE
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
3.05
3.25
VOUT (V)
3.35
OUTPUT VOLTAGE VS.
INPUT VOLTAGE
VIN (V)
0 10 20
2.85
3.05
3.25
3.15
2.95
VDET (V)
5.0
LOW VOLTAGE DETECTOR
VS.
INPUT VOLTAGE
VIN (V)
0 2.5 5.0
0
2.5
VOUT
VOUT (V)
IQ (mA)
500
QUIESCENT CURRENT
VS.
INPUT VOLTAGE
VIN (V)
0 10 20
0
250
VOUT (V)
3.75
OUTPUT VOLTAGE
VS.
INPUT VOLTAGE
VIN (V)
2.75 3.25 3 .75
2.75
3.25 IOUT = 0 mA
60 mA
30 mA
VOUT (V)
3.30
OUTPUT VOLTAGE VS.
AMBIENT TEMPERATURE
TA (°C)
-50 0 50 100
3.20
3.25
TK11927 (CONT.)
TK11930
January 1999 TOKO, Inc. Page 15
TK119xx
VOUT (V)
3.45
OUTPUT VOLTAGE
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
3.05
3.25
VOUT (V)
3.35
OUTPUT VOLTAGE
VS.
INPUT VOLTAGE
VIN (V)
0 10 20
2.85
3.05
3.25
3.15
2.95
VDET (V)
5.0
LOW VOLTAGE DETECTOR
VS.
INPUT VOLTAGE
VIN (V)
0 2.5 5.0
0
2.5
VOUT
VOUT (V)
IQ (mA)
500
QUIESCENT CURRENT
VS.
INPUT VOLTAGE
VIN (V)
0 10 20
0
250
VOUT (V)
3.75
OUTPUT VOLTAGE
VS.
INPUT VOLTAGE
VIN (V)
2.75 3.25 3 .75
2.75
3.25 IOUT = 0 mA
60 mA
30 mA
VOUT (V)
3.30
OUTPUT VOLTAGE VS.
AMBIENT TEMPERATURE
TA (°C)
-50 0 50 100
3.20
3.25
TK11932
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TA = 25 °C, unless otherwise specified.
TK11935
VOUT (V)
3.7
OUTPUT VOLTAGE
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
3.3
3.5
VDET (V)
5.0
LOW VOLTAGE DETECTOR
VS.
INPUT VOLTAGE
VIN (V)
0 2.5 5.0
0
2.5
VOUT
VOUT (V)
VOUT (V)
3.6
OUTPUT VOLTAGE
VS.
INPUT VOLTAGE
VIN (V)
0 10 20
3.1
3.3
3.5
3.4
3.2
Page 16 January 1999 TOKO, Inc.
TK119xx
IQ (mA)
500
QUIESCENT CURRENT
VS.
INPUT VOLTAGE
VIN (V)
0 10 20
0
250
VOUT (V)
4.5
OUTPUT VOLTAGE
VS.
INPUT VOLTAGE
VIN (V)
3.5 4.0 4.5
3.5
4.0 IOUT = 0 mA
60 mA
30 mA
VOUT (V)
4.05
OUTPUT VOLTAGE VS.
AMBIENT TEMPERATURE
TA (°C)
-50 0 50 100
3.95
4.00
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TA = 25 °C, unless otherwise specified.
IQ (mA)
500
QUIESCENT CURRENT
VS.
INPUT VOLTAGE
VIN (V)
0 10 20
0
250
VOUT (V)
4.0
OUTPUT VOLTAGE VS.
INPUT VOLTAGE
VIN (V)
3.0 3.5 4.0
3.0
3.5 IOUT = 0 mA
60 mA
30 mA
VOUT (V)
3.55
OUTPUT VOLTAGE
VS.
AMBIENT TEMPERATURE
TA (°C)
-50 0 50 100
3.45
3.50
TK11935 (CONT.)
VOUT (V)
4.2
OUTPUT VOLTAGE
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
3.8
4.0
VDET (V)
5.0
LOW VOLTAGE DETECTOR
VS.
INPUT VOLTAGE
VIN (V)
0 2.5 5.0
0
2.5
VOUT
VOUT (V)
VOUT (V)
4.1
OUTPUT VOLTAGE VS.
INPUT VOLTAGE
VIN (V)
0 10 20
3.6
3.8
4.0
3.9
3.7
TK11940
January 1999 TOKO, Inc. Page 17
TK119xx
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TA = 25 °C, unless otherwise specified.
VOUT (V)
5.0
OUTPUT VOLTAGE
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
4.6
4.8
VDET (V)
5.0
LOW VOLTAGE DETECTOR
VS.
INPUT VOLTAGE
VIN (V)
0 2.5 5.0
0
2.5 VOUT
VOUT (V)
VOUT (V)
4.9
OUTPUT VOLTAGE VS.
INPUT VOLTAGE
VIN (V)
0 10 20
4.4
4.6
4.8
4.7
4.5
IQ (mA)
500
QUIESCENT CURRENT
VS.
INPUT VOLTAGE
VIN (V)
0 10 20
0
250
VOUT (V)
5.3
OUTPUT VOLTAGE
VS.
INPUT VOLTAGE
VIN (V)
4.3 4.8 5.3
4.3
4.8 IOUT = 0 mA
60 mA
30 mA
VOUT (V)
4.85
OUTPUT VOLTAGE VS.
AMBIENT TEMPERATURE
TA (°C)
-50 0 50 100
4.75
4.80
TK11948
TK11950
VOUT (V)
5.2
OUTPUT VOLTAGE
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
4.8
5.0
VDET (V)
5.0
LOW VOLTAGE DETECTOR
VS.
INPUT VOLTAGE
VIN (V)
0 2.5 5.0
0
2.5 VOUT
VOUT (V)
VOUT (V)
5.1
OUTPUT VOLTAGE
VS.
INPUT VOLTAGE
VIN (V)
0 10 20
4.6
4.8
5.0
4.9
4.7
Page 18 January 1999 TOKO, Inc.
TK119xx
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TA = 25 °C, unless otherwise specified.
IQ (mA)
500
QUIESCENT CURRENT
VS.
INPUT VOLTAGE
VIN (V)
0 10 20
0
250
VOUT (V)
5.5
OUTPUT VOLTAGE
VS.
INPUT VOLTAGE
VIN (V)
4.5 5.0 5.5
4.5
5.0 IOUT = 0 mA
60 mA
30 mA
VOUT (V)
5.05
OUTPUT VOLTAGE
VS.
AMBIENT TEMPERATURE
TA (°C)
-50 0 50 100
4.95
5.00
TK11950 (CONT.)
January 1999 TOKO, Inc. Page 19
TK119xx
PACKAGE POWER DISSIPATION (PD)
This is the power dissipation level at which the thermal
sensor is activated. The IC contains an internal thermal
sensor which monitors the junction temperature. When
the junction temperature exceeds the monitor threshold of
150 °C, the IC is shut down. The junction temperature
rises as the difference between the input power (VIN x IIN)
and the output power (VOUT x IOUT) increases. The rate of
temperature rise is greatly affected by the mounting pad
configuration on the PCB, the board material, and the
ambient temperature. When the IC mounting has good
thermal conductivity, the junction temperature will be low
even if the power dissipation is great. When mounted on
the recommended mounting pad, the power dissipation of
the SOT-23L is increased to 400 mW. For operation at
ambient temperatures over 25 °C, the power dissipation of
the SOT-23L device should be derated at 3.2 mW/°C. To
determine the power dissipation for shutdown when
mounted, attach the device on the actual PCB and
deliberately increase the output current (or raise the input
voltage) until the thermal protection circuit is activated.
Calculate the power dissipation of the device by subtracting
the output power from the input power. These
measurements should allow for the ambient temperature
of the PCB. The value obtained from PD /(150 °C - TA) is the
derating factor. The PCB mounting pad should provide
maximum thermal conductivity in order to maintain low
device temperatures. As a general rule, the lower the
temperature, the better the reliability of the device. The
thermal resistance when mounted is expressed as follows:
Tj = 0jA x PD + TA
For Toko ICs, the internal limit for junction temperature is
150 °C. If the ambient temperature (TA) is 25 °C, then:
150 °C = 0jA x PD + 25 °C
0jA = 125 °C/ PD
PD is the value when the thermal sensor is activated. A
simple way to determine PD is to calculate VIN x IIN when
the output side is shorted. Input current gradually falls as
temperature rises. You should use the value when thermal
equilibrium is reached.
DEFINITION AND EXPLANATION OF TECHNICAL TERMS
QUIESCENT CURRENT (IQ)
The quiescent current is the current which flows through
the ground terminal under no load conditions (IOUT = 0 mA).
GROUND CURRENT (IGND)
Ground current is the current which flows through the
ground pin(s). It is defined as IIN - IOUT, excluding control
current.
LINE REGULATION (LINE REG)
Line regulation is the relationship between change in
output voltage due to a change in input voltage.
LOAD REGULATION (LOAD REG)
Load regulation is the relationship between change in
output voltage due to a change in load current.
DROPOUT VOLTAGE (VDROP)
This is a measure of how well the regulator performs as the
input voltage decreases. The smaller the number, the
further the input voltage can decrease before regulation
problems occur. Nominal output voltage is first measured
when VIN = VOUT(TYP) + 1 at a chosen load current. When
the output voltage has dropped 100 mV from the nominal,
VIN - VOUT is the dropout voltage. This voltage is affected
by load current and junction temperature.
OUTPUT NOISE VOLTAGE
This is the effective AC voltage that occurs on the output
voltage under the condition where the input noise is low
and with a given load, filter capacitor, and frequency
range.
THERMAL PROTECTION
This is an internal feature which turns the regulator off
when the junction temperature rises above 150 °C. After
the regulator turns off, the temperature drops and the
regulator output turns back on. Under certain conditions,
the output waveform may appear to be an oscillation as the
output turns off and on and back again in succession.
Page 20 January 1999 TOKO, Inc.
TK119xx
DEFINITION AND EXPLANATION OF TECHNICAL TERMS (CONT.)
SOT-23L POWER DISSIPATION
The range of usable currents can also be found from the
graph below.
Procedure:
1) Find PD
2) PD1 is taken to be PD x (~ 0.8 - 0.9)
3) Plot PD1 against 25 °C
4) Connect PD1 to the point corresponding to the 150 °C
with a straight line.
5) In design, take a vertical line from the maximum
operating temperature (e.g., 75 °C) to the derating
curve.
6) Read off the value of PD against the point at which the
vertical line intersects the derating curve. This is taken
as the maximum power dissipation, DPD.
The maximum operating current is:
IOUT = (DPD / (VIN(MAX) - VOUT)
PD
DPD
25 50 75 150
(mW)
TA (°C)
3
6
5
4
0 50 100
TA (°C)
PD (mW)
150
0
300
500
100
200
400 MOUNTED
FREE AIR
January 1999 TOKO, Inc. Page 21
TK119xx
VMAX
VMIN
RMAX
RMIN
SOT-23L BOARD LAYOUT
NOISE BYPASS CAPACITOR SECTION
The noise bypass capacitor (CN) should be connected as
close as possible to pin 1 and ground. The recommended
value for CN is 0.01 µF. The noise bypass terminal has a
high impedance and care should be taken if the noise
bypass capacitor is not used. This terminal is susceptible
to external noise, and oscillation can occur when CN is not
used and the solder pad for this pin is too large.
RESET OUTPUT CONSIDERATIONS
It is important to note the accuracy of the regulator and
voltage detector functions when they are combined within
one IC. The figure below illustrates the voltage regulator
and voltage detector implemented with individual reference
voltages.
NON-TOKO APPROACH
INPUT/OUTPUT DECOUPLING CAPACITOR
CONSIDERATIONS
Voltage regulators require input and output decoupling
capacitors. The required values of these capacitors vary
with application. Capacitors made by different
manufacturers can have different characteristics,
particularly with regard to high frequencies and Equivalent
Series Resistance (ESR) over temperature. The type of
capacitor is also important. For example, a 4.7 µF aluminum
electrolytic may be required for a certain application. If a
tantalum capacitor is used, a lower value of 2.2 µF would
be adequate. It is important to consider the temperature
characteristics of the decoupling capacitors. While Toko
regulators are designed to operate as low as -30 °C, many
capacitors will not operate properly at this temperature.
The capacitance of aluminum electrolytic capacitors may
decrease to 0 at low temperatures. This may cause
oscillation on the output of the regulator since some
capacitance is required to guarantee stability. Thus, it is
important to consider the characteristics of the capacitor
over temperature when selecting decoupling capacitors.
The ESR is another important parameter. The ESR will
increase with temperature but low ESR capacitors are
often larger and more costly. In general, tantalum capacitors
offer lower ESR than aluminum electrolytic, but new low
ESR aluminum electrolytic capacitors are now available
from several manufacturers. Usually a bench test is
sufficient to determine the minimum capacitance required
for a particular application. After taking thermal
characteristics and tolerance into account, the minimum
capacitance value should be approximately two times the
value. The recommended minimum capacitance for the
TK119xx is 2.2 µF for a tantalum capacitor or 3.3 µF for an
aluminum electrolytic. Please note that linear regulators
with a low dropout voltage have high internal loop gains
which require care in guarding against oscillation caused
by insufficient decoupling capacitance. The use of high
quality decoupling capacitors suited for your application
will guarantee proper operation of the circuit.
BOARD LAYOUT
Copper pattern should be as large as possible. Power
dissipation is 400 mW for the SOT-23L package. A low
ESR capacitor is recommended. For low temperature
operation, select a capacitor with a low ESR at the lowest
operating temperature to prevent oscillation, degradation
of ripple rejection and increase in noise. The minimum
recommended capacitance is 2.2 µF.
GND
VIN VOUT
CONTROL
RESET
+
+
GND
APPLICATION INFORMATION
Page 22 January 1999 TOKO, Inc.
TK119xx
VMAX
VMIN
RMAX
RMIN
Note: VMIN - RMAX 0 is possible, meaning the two ranges
may overlap.
The figure below illustrates the TK119xx. The TK119xx
utilizes the same reference voltage for both the voltage
regulator and the voltage detector functions. As a result,
the detector voltage is always constant (VOUT x 0.95 %)
from the output voltage. With this approach, the two
ranges do not overlap.
TOKO APPROACH
APPLICATION INFORMATION (CONT.)
HANDLING MOLDED RESIN PACKAGES
All plastic molded packages absorb some moisture from
the air. If moisture absorption occurs prior to soldering the
device into the printed circuit board, increased separation
of the lead from the plastic molding may occur, degrading
the moisture barrier characteristics of the device. This
property of plastic molding compounds should not be
overlooked, particularly in the case of very small packages,
where the plastic is very thin.
In order to preserve the original moisture barrier properties
of the package, devices are stored and shipped in moisture
proof bags filled with dry air. The bags should not be
opened or damaged prior to the actual use of the devices.
If this is unavoidable, the devices should be stored in a low
relative humidity environment (40 to 65%) or in an enclosed
environment with desiccant.
CONTROL FUNCTION UTILIZED
TYPICAL APPLICATIONS
RESET OUTPUT
VIN
1 µF
CN
0.01 µF
+
LOW = ON
CMOS OR
TTL GATE
RRESET
4.7 µF
+VOUT
RESET OUTPUT
VIN
1 µF
CN
0.01 µF
+
RRESET
+4.7 µF
VOUT
VIN
1 µF
CN
0.01 µF
+
RESET
SW
4.7 µF
+VOUT
Note: Parallel connection
of control pins is allowed
if all devices use identical
input voltages.
39 K RRESET 220 K
Choose for correct High
Logic level.
CONTROL FUNCTION NOT UTILIZED
LOW VOLTAGE SHUTDOWN
January 1999 TOKO, Inc. Page 23
TK119xx
0.95 0.95
0.32
e e M
0.1
(3.4)
1.2
0.15 0.3
3.3
2.2
0.4
0.95 0.95
3.0
ee
e1
0.6
1.0
Recommended Mount Pad
123
456
0 - 0.1
0.4 M
0.1
15 max
1.4 max
Marking
+0.15
- 0.05
+0.15
- 0.05
+ 0.3
Dimensions are shown in millimeters
Tolerance: x.x = ± 0.2 mm (unless otherwise specified)
Voltage Code
Product Code
5 PL
3.5 +0.3
- 0.1
+0.15
- 0.05
Marking Information
Marking
TK11922 G22
TK11927 G27
TK11930 G30
TK11932 G3
TK11935 G35
TK11940 G40
TK11948 G4
TK11950 G5
SOT-23L (SOT-23L-6)
PACKAGE OUTLINE
Printed in the USA© 1999 Toko, Inc.
All Rights Reserved
TOKO AMERICA REGIONAL OFFICES
Toko America, Inc. Headquarters
1250 Feehanville Drive, Mount Prospect, Illinois 60056
Tel: (847) 297-0070 Fax: (847) 699-7864
IC-119-TK119xx
0798O0.0K
Visit our Internet site at http://www.tokoam.com
The information furnished by TOKO, Inc. is believed to be accurate and reliable. However, TOKO reserves the right to make changes or improvements in the design, specification or manufacture of its
products without further notice. TOKO does not assume any liability arising from the application or use of any product or circuit described herein, nor for any infringements of patents or other rights of
third parties which may result from the use of its products. No license is granted by implication or otherwise under any patent or patent rights of TOKO, Inc.
Western Regional Office
Toko America, Inc.
2480 North First Street , Suite 260
San Jose, CA 95131
Tel: (408) 432-8281
Fax: (408) 943-9790
Midwest Regional Office
Toko America, Inc.
1250 Feehanville Drive
Mount Prospect, IL 60056
Tel: (847) 297-0070
Fax: (847) 699-7864
Eastern Regional Office
Toko America, Inc.
107 Mill Plain Road
Danbury, CT 06811
Tel: (203) 748-6871
Fax: (203) 797-1223
Semiconductor Technical Support
Toko Design Center
4755 Forge Road
Colorado Springs, CO 80907
Tel: (719) 528-2200
Fax: (719) 528-2375