N
N
on-
I
I
sola
t
BM
A
t
ion
B
2P1
5
A
C/D
C
uck
2.
6
5
9T1
F
C
Co
n
Con
v
6
W 1
5
F
Ref
e
n
vert
e
v
erte
5
V
e
ren
c
er
r PW
c
e Bo
M m
e
ard
e
tho
d
d
w
w
©
2
w
w.rohm.co
m
2
018 ROH
M
High Vo
ۍ Read
a
Please
(BM2P
1
datash
e
To ens
u
handlin
g
Before
U
[1] Verify
t
[2] Check
[3] Be car
e
splash
[4] Check
During
U
[5] Be car
e
[6] Brief
a
disch
a
Therefore,
In add ition ,
tweezers a
n
[7] If used
depen
d
[8] Be sur
e
After Us
e
[9] The R
O
charge
s
it, and
p
[10] Protec
t
This eval
u
should by
procedur
e
We r ec o
m
voltage si
g
m
M
Co., Ltd. A
ltage Sa
f
a
ll safety p
r
note tha
t
1
59T1F-E
V
e
et.
u
re safe
g
the ev
a
Dep
e
Pot
e
Ther
e
the r
e
U
se
t
hat the part
that there a
e
ful when p
e
does not o
c
that there i
s
U
se
e
ful to not a
a
ccidental
c
a
rge and le
a
DO NOT t
o
as mention
e
n
d screwdri
v
under con
d
d
ing on the
c
e
to wear in
s
e
O
HM Evalua
t
s
even after
p
lease deal
w
t
against el
e
u
ation boa
r
handled
o
e
s.
m
mend car
r
g
nage at a
ll rights res
e
f
ety Pre
c
r
ecautions
t
this do
c
V
K-001) an
operati
o
a
luation
b
e
nding on
t
e
ntially l
e
fore, please
e
d box belo
w
s/compone
n
re no cond
u
e
rforming s
o
c
cur.
s
no conden
s
llow conduc
c
ontact or
e
a
d to sever
e
o
uch the bo
a
e
d above pl
e
v
ers.
d
itions beyo
n
c
ircumstanc
s
ulated glo
v
t
ion Board
c
the connec
t
w
ith it after
c
e
ctric shock
s
r
d is inten
d
o
nly by q
u
r
ying out o
ll entranc
e
e
rved.
c
autions
before us
e
c
ument c
o
d its functi
o
o
n, pleas
b
oard
the config
u
ethal vo
l
make sure t
w
.
n
ts are not d
u
ctive foreig
n
o
ldering on t
s
ation or w
a
tive objects
e
ven bringi
n
e
injury or
d
a
rd with yo
e
ase exerci
s
n
d its rated
v
es, explosi
o
v
es when ha
c
ontains the
t
ed power ci
c
onfirmi ng s
s
by wearin
g
d
ed for us
e
u
alified p
e
peration i
n
e
s, sa fety i
n
e
o
vers only
o
ns. For a
d
e caref
u
u
ration of t
l
tages m
o read and
o
amaged or
m
n
objects on
he module
a
a
ter droplets
to come int
o
n
g your ha
n
d
eath.
ur bare ha
n
s
e extrem e
c
v
oltage, it m
a
o
n or other p
ndling is re
q
circui ts whi
c
rcuits are c
u
uch electric
g
insulated g
e
only in r
e
e
rsonnel f
a
n
a safe en
n
terlocks,
a
the BM
2
d
ditional in
u
lly read
he board
a
ay be g
e
o
bserve all s
a
m
issing (i.e.
the board.
a
nd/or evalu
on the circ
u
o
contact wi
t
n
d close to
t
n
ds or brin
g
c
aution whe
n
a
y cause d
e
ermanent d
a
q
uired durin
g
c
h store the
u
t, please di
s
discharge.
loves when
e
search a
n
a
miliar wi
vironment
a
nd protec
t
2
P159T1F
formation,
all prec
a
nd voltag
e
e
nerated
.
a
fety precaut
due to the
d
ation board
u
it board.
t
h the board
t
he board
m
g
them too
c
n
using con
d
e
fects such
a
a
mages.
g
oper ation.
high voltag
e
s
charge the
handling.
n
d develo
p
th all saf
e
that inclu
d
t
ive glass
e
evaluatio
n
please re
autions
e
s used,
.
ions describ
e
d
rops).
to ensure t
h
.
m
ay result i
n
c
lose to th
e
d
uctive tool
s
a
s short-circ
e
. Since it st
o
electricity a
f
p
ment facili
e
ty and o
p
d
es the us
e
e
s.
Noti
c
HV
B
n
board
f
er to th e
before
e
d in
h
at solder
n
e
board.
s
such as
uit or,
o
res the
f
ter using
ties and
p
erating
e
of high
c
e
B
01E
©
2
A
C
N
o
B
B
M
Th
e
up
Th
e
co
m
Cu
r
Th
e
fre
q
co
n
El
e
2
018 ROHM
C
C
/DC Con
v
o
n-Isola
t
B
M2P
M
2P159T1
e
BM2P159T1
to 0.175 A. B
M
e
BM2P159T1
m
pact power
s
rrent mode co
e
switching fr
e
q
uency hoppi
n
n
sumption an
d
e
ctronics
Not guar
a
Unless ot
h
(NOTE1)
(NOTE2)
Input Volt
a
Input Fre
q
Output V
o
Maximum
Output C
u
(NOTE1)
Stand-by
P
Efficiency
Output Ri
p
(NOTE2)
Operating
C
o., Ltd.
v
erter
t
ion Buc
k
159T
F-EVK-00
F-EVK-001 e
v
M
2P159T1F
w
F contributes
s
upply design.
ntrol imposes
e
quency is 10
0
n
g function co
n
d
easy design.
Characte
r
a
ntee the char
a
h
erwise noted
Please adjust
Not include s
p
Parameter
a
ge Range
q
uency
o
ltage
Output Powe
r
u
rrent Range
P
ower
p
ple Voltage
Temperature
k
Conve
r
1F R
e
1
v
aluation boa
r
w
hich is PWM
m
to low power
current limita
t
0
kHz in fixed
m
n
tributes to lo
w
r
istics
a
cteristics, is
r
d
:V
IN
= 230 V
a
operating tim
e
p
ike noise
r
Range
r
ter PW
M
e
fere
r
d outputs 15
V
m
ethod DC/D
C
consumption
b
t
ion on every
c
m
ode. At light
w
EMI. Low o
n
Figure 1
r
epresentativ
e
a
c, I
OUT
= 175
m
e
, within any
p
Min
90
47
13.5
-
2
-
-
-
-10

M
metho
d
nce
B
V
voltage fro
m
C
converter I
C
b
y built-in a 6
5
c
ycle, providin
g
load, frequen
c
n
-resistance 9
. BM2P159T1
e
value.
m
A, Ta:25 °C
p
arts surface t
Typ
230
50/60
15.0
-
2
175
40
81.0
31
+25
d
Outpu
t
B
oar
d
m
the input of
9
C
built-in 650
V
5
0 V starting
c
g superior pe
r
c
y is reduced
.5 ȍ 650 V M
O
F-EVK-001
emperature u
n
Max
U
264
V
63
16.5
2
.625
175
m
-
m
-
-
m
+65
U
s
t
2.6 W 1
5
d
9
0 Vac to 264
V
V
MOSFET is
c
ircuit. Built-in
r
formance in b
and high effic
i
O
SFET built-i
n
n
der 105 °C
U
nits
V
ac
Hz
V
W I
OUT
=
mA
m
W I
OUT
=
%
m
Vpp
°C
s
ers
G
No. 60U
G
5
V
V
ac. The outp
used.
current detec
t
andwidth and
i
ency is realiz
e
n
contributes t
o
Conditi
o
=
175 mA
=
0 A
G
uide
G
074E Rev.00
3
2018.
3
ut current sup
t
ion resistor re
transient res
p
e
d. Built-in
o
low power
o
ns
3
3
plies
alizes
p
onse.
©
2
%
O
p
1.
O
2.
C
D
e
2
018 ROHM
C
03
7
p
eration
P
O
peration Eq
u
(1) AC Powe
r
(2) Electroni
c
(3) Multi met
e
C
onnect meth
o
(1) AC powe
r
(2) Load setti
(3) AC powe
r
(4) Load + te
r
(5) AC powe
r
(6) Output te
s
(7) AC powe
r
(8) Check th
a
(9) Electroni
c
(10) Check o
u
e
leting
Maximum
O
Please adj
u
$&
3RZHU
6XSSO\
C
o., Ltd.
7
)(9.
P
rocedure
u
ipment
r
supply 90 Va
c
Load capacit
y
e
r
o
d
r
supply prese
t
ng under 0.1
7
r
supply N ter
m
r
minal conne
c
r
meter conne
c
s
t equipment
c
r
supply switc
h
a
t output volta
g
c
load switch
O
u
tput voltage
d
O
utput Power
P
u
st load contin
3RZHU
0HWHU

cع264 Vac,
o
y
0.175 A
t
ting range 90
~
7
5 A. Load swi
t
m
inal connect
t
c
t to VOUT, G
N
c
t between A
C
c
onnects to o
u
h
ON.
g
e is 15 V.
O
N
d
rop by load
c
P
o of this refe
uous time b
y
o
CN
o
ver 10W
~
264 Vac, Ou
t
tch is off.
t
o the board
A
N
D terminal c
o
C
power suppl
y
u
tput terminal
c
onnect wire r
e
Figur
e
rence board i
s
o
ver 105 °C o
f
Figure
3








2XWSXW3RZHU3R>:@
1 : from the to

t
put switch is
o
A
C (N) of CN1,
o
nnect to GN
D
y
and board.
e
sistance
e
2. Connecti
o
s
2.625 W. Th
e
f
any parts su
r
3
. Temperatur
e

$PELHQW7HP
S
o
p 1: AC (L), 2
:
o
ff.
and L termin
a
D
terminal
o
n Circuit
e
derating cur
v
r
face tempera
t
e
Deleting cur
v
 
S
DUDWXUH7D>٦@
:
AC (N)
a
l connect to
A
v
e is shown o
n
t
ure.
v
e

Us
e
No. 60U
G
A
C(L).
n
the right.
+
í
'&0
X
V
e
r’s Guid
e
G
074E Rev.00
3
2018.
3
X
OWL0HWHU
(OHFWUR
Q
/RDG
e
3
3
Q
LF

Users Guide
© 2018 ROHM Co., Ltd. No. 60UG074E Rev.003
2018.3
%037)(9.
Application Circuit
VIN = 90 ~ 264 Vac, VOUT = 15 V
Figure 4. BM2P159T1F-EVK-001Application Circuit
The BM2P159T1F is non-insulation method without opto-coupler and feeds back the VCC voltage to 15.0 V typ. This VCC voltage is
the voltage between the VCC pin and the GND_IC pin.
The output voltage VOUT is defined by the following equation.
 ܸ஼ே் ൅ܸ
ி஽ଶ െܸ
ி஽ଵ
VCNT: VCC Control Voltage
VFD1: Forward Voltage of diode D1
VFD2: Forward Voltage of diode D2
Figure 5. General Buck converter application circuit
Compared to the general Buck converter as shown above, the number of parts is reduced because the feedback circuit is not
required. However, the output voltage may rise at light load because the VCC voltage and the output voltage that are fed back are
different. In that case, please put a resistance on the output terminal and lower the output voltage.
VCC
1
N.C
N.C.
DRAIN
N.C.
GND_IC
N.C.
N.C.
2
3
4
8
7
6
5
*1'
9287
,&
/
1
$&9
'
'
*1'
/
1
VCC
5
DRAIN
DRAIN
FB
GND
SOURCE
6
7
4
3
2
1
BB
9287
$&9
©
2
%
B
M
F
(*)
(*)
or
a
ad
d
2
018 ROHM
C
03
7
M
2P159T1
F
eature
PWM Fr
e
PWM cu
Frequen
c
Burst op
e
Built-in
6
Built-in
6
VCC pin
VCC pin
Over cu
r
Soft star
t
Product struc
t
Operating the
a
n open circui
t
d
ing a fuse, in
C
o., Ltd.
7
)(9.
F Overvi
e
e
quenc
y
=10
0
rrent mode m
e
c
y hopping fu
n
e
ration at ligh
t
6
50 start circui
t
6
50V switchin
g
under voltag
e
over voltage
p
r
rent limiter fu
n
t
function
t
ure؟Silicon
m
IC over the a
b
t between pin
s
case the IC i
s
No.
1
2
3
4
5
6
7
8

e
w
0
kHz
e
thod
n
ction
t
load
t
g
MOSFET
e
protection
p
rotection
n
ction per cycl
m
onolithic inte
b
solute maxi
m
s
and the inte
r
s
operated ov
e
Name
VCC
-
-
DRAIN
-
-.
GND_IC
-.
e
grated circuit
m
um ratings m
r
nal circuitry.
T
e
r the absolut
e
Table 1. B
M
I/O
I
P
- -
- -
I/O
M
- -
- -
I/O
G
- -

K
e
A
p
LE
:
This product
ay damage th
T
herefore, it is
e
maximum ra
t
M
2P159T1F
P
P
ower Supply
i
M
OSFET DR
A
G
ND pin
ey
specifica
t
Power Sup
p
Normal Op
e
Burst Oper
a
Oscillation
Operation
T
MOSFET
R
p
plication
D lights, air c
o
7\S['7
\
SOP-J8
has no desig
n
e IC. The da
m
important to
c
t
ings.
P
in description
Function
input pin
A
IN pin
t
ions
p
ly Voltage O
p
e
ration Curre
n
a
tion Current:
Frequency:
T
emperature
R
R
on:
o
nditioners, a
n
\
S[+7\S
n
ed protection
m
age can eith
e
c
onsider circu
i
Us
e
No. 60U
G
p
eration Rang
VCC: 10.
6
DRAIN:
n
t:
R
ange: -4
0
n
d cleaners, (
e
5.00 mm x
6
Figure 6. S
O
against radio
a
e
r be a short c
i
t protection
m
ESD Diod
e
V
CC G
N
-
ط
-
-
-
-
-
ط
-
-
-
-
ط
-
-
e
r’s Guid
e
G
074E Rev.00
3
2018.
3
e:
6
0 V to 16.21
V
to 650
V
0.85 mA(Ty
p
0.45 mA(Ty
p
100 kHz(Ty
p
0
°C ~ +105 °
C
9.5 ê (Typ
.
e
tc.). 
6
.20 mm x 1.
7
Pitch 1.
2

O
P8 Package
a
ctive rays
ircuit between
m
easures, suc
h
e
N
D
ط
-
-
ط
-
-
-
e
3
3
V
V
p
)
p
)
p
)
C
.
)

7
1 mm
2
7 mm

n
pins
h
as
©
2
%
D
e
1
2
2
.
2
018 ROHM
C
03
7
e
sign Ove
Important Pa
r
V
IN
V
OUT
I
OUT
(Ty
p
I
OUT
(Ma
x
f
SW
Ipeak(
M
Coil Selectio
n
.
1 Determini
n
The switc
h
continuou
s
Furthermo
increases.
ܫ
ܤ
It tends to
drops. Ca
l
From the
o
Calculate

From the
m
Calculate
o

Calculate
L
൏
Then, the
C
o., Ltd.
7
)(9.
rview
r
ameter
: Input V
o
: Output
V
p
) : Consta
n
x
) : Max Ou
: Switchi
n
M
in) : Over C
u
n
n
g coil inducta
h
ing operation
s
mode (CCM
)
o
re, this revers
The constant
ܤ
ܥܯൌܫ
be in continu
o
l
culate with in
p
o
utput voltag
e
the maximum
݉ܽݔ
ܸ
m
inimum swit
c
o
n time ton (
M
ܯܽݔ
L
value to op
e
ܯܽݔ
L value is pro
v

o
ltage Range
A
V
oltage DC 1
5
n
t Output Curr
tput Current
0
n
g Frequency
u
rrent Limit Mi
nce
mode determ
)
, reverse cur
r
e current bec
o
load current I
ܶݕ݌
ʹ
o
us mode (C
C
p
ut voltage mi
e
V
OUT
: 15 V a
n
value of Dut
y
ܸ
ை௎்
൅ܸܨ
ܸ
ூே
ܯ݅݊
c
hing frequen
c
M
ax)
௧௬ெ௔௫
ெ௜௡
ͳ
e
rate in discon
t
಺ಿ
ெ௜௡ି
v
isionally sele
c
A
C 90 V ~ 26
4
5
V
ent 0.175 A
0
.175 A
Min:94 kHz,
T
n:0.395 A, Ty
p
ines the L val
u
r
ent in trr of th
e
o
mes the pea
k
OUT
(Typ): 0.1
7
ʹ
ൌͲǤ͵ͷ
C
M) when the
nimum voltag
e
n
d the diode
V
y
: Duty (Max).
c
y f
SW
(Min) =
9
ͳ
Ǥ͹Ͳ
[ȝs
t
inuous mode
.
ೀೆ೅
ൌͶͳ
͵
c
ted to be 33
0

4
Vac (DC 10
0
T
yp:100 kHz,
M
p
:0.450 A, Ma
x
u
e so that it b
e
e
diode flows,
k
current when
7
5 A, the pea
k
[A]
input voltage
e
100 Vdc.
V
F
: 1 V,
9
4 kHz,
ec]
.
͵
ǤͶ
[ȝH]
0
ȝH in consid
e
0
V ~ 380 V)
M
ax:106 kHz
x
:0.505A
e
comes as di
s
which leads t
o
the MOSFE
T
k
current I
L
flo
w
Fig
u
e
ration of gen
e
s
continuous m
o
o
an increase
T
is ON, and th
e
w
ing through t
u
re 7. Coil cur
r
e
ralit
y
.
Us
e
No. 60U
G
o
de (DCM) a
s
in power loss
e power loss
o
he inductor is
:
r
ent wavefor
m
e
r’s Guid
e
G
074E Rev.00
3
2018.
3
s
possible. In t
h
of diode.
o
f the MOSFE
T
:
m
in BCM
e
3
3
he
T
also
©
2
%
2
.
2
018 ROHM
C
03
7
.
1 Determini
n
Also, calc
u
detection i
switching
f
exceeds t
h
delay of a
p
becomes I
The peak
c
ܫ
ܫ
Assuming
ݐ
ைே
ܦ
ݐ
ைிி
ݐ
ைே
ܦ
Since the
t
when dete
ܫ
ை௎்
It is confir
m
C
o., Ltd.
7
)(9.
n
g coil inducta
u
late L value
s
s calculated b
f
requency f
SW
h
e minimum v
a
p
proximately t
d
p. The peak
c
c
urrent I
P
at t
h
ܫ
௉ா஺௄
ሺܯ݅
݊
ܫ
௉ா஺௄
ሺܯ݅
݊
the discontin
u
ܦ
ܥܯ
ܦܥܯሻ
ܦ
ܥܯݐ
t
otal of ON ti
m
cting over cur
ܮܫܯ
m
ed that the
m

nce - Continu
e
s
o that the ove
y the current
f
(Min) = 94 kH
a
lue Ipeak (M
i
d
ly = 0.1 ȝse
c
c
urrent Ip is o
b
Fi
g
h
e time of ove
r
݊
ሻ൅οܫ
ݐ
݊
ሻ൅
಺ಿ
ெ௜
u
ous mode (D
C
ൈ௅
ಿ
ெ௜௡ି௏
ೀೆ
ൈ௅
ೀೆ೅
ା௏
ͺ
ிி
ሺܦܥܯሻ
m
e and OFF ti
m
rent. The curr
e
ൈ݂
ௌௐ
ݐ
m
inimum over
e
d
e
rcurrent dete
c
f
lowing throug
z. When the
c
i
n): 0.395 A of
c
occurs, in re
a
b
tained by sett
g
ure 8. Coil w
a
r
current dete
c
ݐ
݈݀ݕ
ି௏
ೀೆ೅
ൈݐ
݀
C
M), Switchin
g
ൌͳǤ͸͵
[μ
ͺ
Ǥ͸ͺ
[μsec]
ͳͲǤ͵ͳ [
μ
s
m
e is less tha
n
e
nt at the tim
e
ݐ
ைே
൅ݐ
ைிி
current detec
t

c
tion becomes
h the MOSFE
T
c
urrent flowing
the overcurre
a
lity, the peak
ing the curren
t
a
veform at ov
e
c
tion is
݀
݈ݕ Ͷʹͳ
g
ON time: to
n
sec]
s
ec]
n
10.64 ȝsec i
n
e
of overcurre
n
ʹͲͶǤͲ
[
t
ion current is
2
maximum lo
a
T
when opera
t
through the
M
nt detection c
u
current excee
t slope at swit
e
rcurrent dete
c
[mA]
n
, OFF time: t
o
n
switching c
y
n
t detection in
[
mA]
2
04 mA and t
h
a
d current I
OU
T
t
ing in contin
u
M
OSFET ( th
e
u
rrent, the M
O
ds the Ipeak
v
ching ON to
ǻ
c
tion (DCM)
o
ff are
y
cle, it becom
e
discontinuou
s
h
e maximum l
o
Us
e
No. 60U
G
T
: 175 mA or
m
u
ous mode at
t
e
coil current
a
O
SFET is turn
e
v
alue and the
p
ǻ
I
L
,
e
s discontinuo
u
s
mode (DCM
)
o
ad current is
e
r’s Guid
e
G
074E Rev.00
3
2018.
3
m
ore. Overcur
r
t
he minimum
a
t switching O
e
d OFF. Since
p
eak current
u
s mode (DC
M
)
: IOUT (LIM)
i
175 mA or m
o
e
3
3
r
ent
N)
a
M
)
i
s
o
re.

Users Guide
© 2018 ROHM Co., Ltd. No. 60UG074E Rev.003
2018.3
%037)(9.
2 Coil Selection - Continued
2.2 Inductor Current Calculation
Calculate the maximum peak current of the inductor. The condition where the peak current is maximized is when the input
voltage is the maximum voltage VIN (Max): 380 V, the maximum load current Io (Max): 0.175 A, and the switching frequency is
106 kHz at the minimum. The peak current IP of the coil is given by the following formula.
ܫʹൈܫൈ݂
௦௪ܯܽݔൈܮൈ ಺ಿெ௔௫ା௏
಺ಿெ௔௫ା௏ା௏͵͸ͺ[mA]
Select a coil with an rated current of 0.37 A or more.
In this EVK, we use inductance value: 150 μH, rated: 0.65A product
Radial inductor (closed magnetic circuit type) Core Size 7.8mm x 7.5mm
Product: 744 731 331
Manufacture: Wurth Electronix
3 Diode Selection
3.1 Flywheel Diode: D1
Flywheel diode uses fast diode (fast recovery diode).The reverse voltage of the diode is VIN (Max): 380 V when the output
voltage at startup is 0 V. Consider the derating and select 600 V diode. The condition where the effective current of the diode is
maximized is when the input voltage is the maximum voltage VIN (Max): 380 V, the maximum load current Io (Max): 0.175 A,
and the switching frequency is 94 kHz at the minimum.
ܦݑݐݕ ೀೆ೅ା௏
಺ಿெ௔௫ൌͶǤʹ [%]
The average current ID of the diode is calculated from the peak current IP: 0.368 A by the following formula
ܫݎ݉ݏൌܫ
ଵି஽௨௧௬
ͲǤʹͲͺ [A]
Select the rated current of 0.208 A or more.
In fact, we used RFN1LAM6S of 0.8 A / 600 V product as a result of mounting the board and considering the parts temperature.
3.2 VCC Rectifier Diode: D2
Rectifier diodes are used for diodes to supply VCC. The reverse voltage applied to the diode is VIN (Max): 380 V. Consider the
derating and select 600 V diodeSince the current flowing to the IC is small enough, we use the 0.2 A / 600 V RRE02VSM6S.


Users Guide
© 2018 ROHM Co., Ltd. No. 60UG074E Rev.003
2018.3
%037)(9.
Design Overview – Continued
4 Capacitor Selection
4.1 Input Capacitor: C1
The input capacitor is determined by input voltage VI and output power POUT. As a guide, for an input voltage of 90 to 264 Vac, 2
x POUT [W] ȝF. For 176 to 264 Vac, set 1 x POUT [W] ȝF. Since the output power POUT = 2.63 W, 4.7 ȝF / 400 V is selected with a
guidline of 5.38 ȝF.
4.2 VCC Capacitor: C3
The VCC capacitor C3 is required for stable operation of the device and stable feedback of the output voltage. A withstand
voltage of 25 V or more is required, and 1.0 ȝF to 4.7 ȝF is recommended. 1 ȝF / 50 V is selected.
4.3 Output Capacitor: C2, C4
For the output capacitor, select output voltage VO of 25 V or more in consideration of derating. For C2 electrolytic capacitors,
capacitance, impedance and rated ripple current must be taken into consideration.
The output ripple voltage is a composite waveform generated by electrostatic capacity: COUT, impedance: ESR when the ripple
component of inductor current: ǻIL flows into the output capacitor and is expressed by the following formula.
οܸݎ݅݌݌݈݁ οܫൈ൬ ͳ
ͺൈܥ݋ݑݐൈ݂
௦௪൰൅ܧܴܵ
The inductor ripple current is
οܫൌʹܫെܫ
ை௎்݉ܽݔሻሽൌʹͲǤ͵͸ͺͲǤͳ͹ͷ ͲǤ͵ͺ͸ [A]
For this EVK, we use electrostatic capacity: 220 ȝF, ESR: 0.075 ȍ, and the design value of output ripple voltage is less than
100 mV.
οܸݎ݅݌݌݈݁ οܫൈቄ
଼ൈ஼௢௨௧ൈ௙ೞೢܧܴܵ ͲǤ͵ͺ͸
଼ൈଶଶ଴ఓൈଵ଴଴௞ͲǤͲ͹ͷቅ͵ͳǤͳ [mV]
Next, check whether the ripple current of the capacitor satisfies the rated ripple current.
Inductor ripple current RMS conversion,
ܫݎ݉ݏൌοܫ
ͲǤʹʹ͵ [A]
The ripple current of the capacitor is
ܫݎ݉ݏܫെܫ
ை௎்ξͲǤʹʹ͵ͲǤͳ͹ͷ ͲǤͳ͵ͺ [A]

Users Guide
© 2018 ROHM Co., Ltd. No. 60UG074E Rev.003
2018.3
%037)(9.
4.3 Output Capacitor C2, C4 - Continued
Select a rated current of 0.138 A or more.
The output capacitor C2 used a rated ripple current of 0.75 A at 220 ȝF / 25 V.
C8 has added a 0.1 ȝF ceramic capacitor to reduce switching noise.຅ಿ峘৭৒
5. Resistor Selection
5.1 Bleeder Resister: R1
Because it is indirectly fed back to the output voltage, the output voltage increases at light load. This board uses bleeder
resistance for its improvement. Reducing the resistance value improves the rise in the output voltage of the light load, but
increases the power loss. 10 kȍ / 0.1 W is used.


Users Guide
© 2018 ROHM Co., Ltd. No. 60UG074E Rev.003
2018.3
%037)(9.
Performance Data
Constant Load Regulation
Figure 9. Load Regulation (IOUT vs VOUT) Figure 10. Load Regulation (IOUT vs Efficiency)
Table 2. Load Regulation (VIN=100 Vac) Table 3. Load Regulation (VIN=230 Vac)
IOUT VOUT Efficiency IOUT VOUT Efficiency
44 mA 14.791 V 78.32 % 44 mA 14.792 V 72.08 %
88 mA 14.671 V 81.99 % 88 mA 14.671 V 77.17 %
132 mA 14.630 V 83.14 % 132 mA 14.630 V 79.87 %
175 mA 14.604 V 83.24 % 175 mA 14.604 V 81.03 %
Figure 11. Load Regulation (IOUT vs PLOSS) Figure 12. Load Regulation (IOUT vs PLOSS)
13.5
14.0
14.5
15.0
15.5
16.0
16.5
0 100 200 300 400
Output Voltage [V]
Output Current [mA]
-VIN= 100 Vac
-VIN=230 Vac
0
10
20
30
40
50
60
70
80
90
100
0 25 50 75 100 125 150 175
Efficiency [%]
Output Current [mA]
-VIN=100 Vac
-VIN=230 Vac
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0 25 50 75 100 125 150 175
Power Loss [W]
Output Current [mA]
-VIN=100 Vac
-VIN=230 Vac
0.0
0.1
0.2
0.3
0.4
0.5
110100
Power Loss [W]
Output Current [mA]
-VIN=100 Vac
-VIN= 230 Vac

Users Guide
© 2018 ROHM Co., Ltd. No. 60UG074E Rev.003
2018.3
%037)(9.
3HUIRUPDQFH'DWD&RQWLQXHG
Table 4. Load Regulation : VIN=100 Vac㻌㻌㻌㻌㻌㻌㻌 Table 5. Load Regulation: VIN=230 Vac


9
,1
>9DF@
3
,1
>:@
9
287
>9@
,
287
>P$@
3
287
>:@
3
/266
>:@
(IILFLHQF\
>@
     
     
     
     
     
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
9
,1
>9DF@
3
,1
>:@
9
287
>9@
,
287
>P$@
3
287
>:@
3
/266
>:@
(IILFLHQF\
>@
     
     
     
     
     
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      

Users Guide
© 2018 ROHM Co., Ltd. No. 60UG074E Rev.003
2018.3
%037)(9.
Performance Data - Continued
Line Regulation
Figure 13. Line Regulation (VIN vs VOUT) Figure 14. Line Regulation (VIN vs Efficiency)
Switching Frequency Coil Peak Current
Figure 15. Switching Frequency (IOUT vs fSW) Figure 16. Coil Peak Current (IOUT vs IP)

13.5
14.0
14.5
15.0
15.5
16.0
16.5
80 100 120 140 160 180 200 220 240 260 280
Output Voltage [V]
Input Voltage [Vac]
-IOUT= 10 mA
-IOUT= 50 mA
-IOUT=100 mA
-IOUT=175 mA
0
10
20
30
40
50
60
70
80
90
80 100 120 140 160 180 200 220 240 260 280
Efficiency [%]
Input Voltage [Vac]
-IOUT= 10 mA
-IOUT=50 mA
-IOUT=100 mA
-IOUT=175 mA
0
20
40
60
80
100
120
0 25 50 75 100 125 150 175
Switching Frequency [kHz]
Output Current [mA]
-VIN=115 Vac
VIN=230 9DF
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0 255075100125150175
Coil Peak Current [A]
Output Current [mA]
-VIN=115 Vac
-VIN=230 Vac
©
2
%
3
H
O
2
018 ROHM
C
03
7
H
UIRUPDQ
O
utput Ripple
V
Figure
1
Figure
1
Figure
2
V
OUT
V
OUT
V
OUT
Vo: 20
m
Vo: 20
m
Vo: 20
m
C
o., Ltd.
7
)(9.
FH'DWD
V
oltage
1
7. V
IN
= 115
V
1
9. V
IN
= 115
V
2
1. V
IN
= 115
V
Ripple Volta
g
Ripple Volt
a
Ripple Volta
g
m
V/div
m
V/div
m
V/div

&RQWLQ
X
V
ac, I
OUT
= 10
m
V
ac, I
OUT
= 0.1
5
V
ac, I
OUT
= 0.1
7
g
e: 22 mVpp
a
ge: 27 mVpp
g
e: 18 mVpp
X
HG
m
A
5
0 A
7
5 A

Fi
g
Fi
g
Fi
g
V
O
V
O
V
O
g
ure 18. V
IN
=
2
g
ure 20. V
IN
=
2
g
ure 22. V
IN
=
2
O
UT
UT
O
UT
Ripple
V
Ripple Vol
t
Ripple Volt
a
2
30 Vac, I
OUT
=
2
30 Vac, I
OUT
=
2
30 Vac, I
OUT
=
V
oltage: 33 m
V
t
age: 29 mVp
p
a
ge: 26 mVpp
Us
e
No. 60U
G
=
10 mA
=
0.150 A
=
0.175 A
V
pp
p
e
r’s Guid
e
G
074E Rev.00
3
2018.
3
e
3
3

Users Guide
© 2018 ROHM Co., Ltd. No. 60UG074E Rev.003
2018.3
%037)(9.
3HUIRUPDQFH'DWDt&RQWLQXHG
Parts surface temperature
Table 6. Parts surface temperature پTa = 25 °C, measured 30 minutes after setup
Part Condition
V
IN = 90 Vac,
IOUT = 0.175 A
V
IN = 264
V
ac,
IOUT = 0.175 A
IC1 54.0 °C 64.3 °C
D1 56.3 °C 61.3 °C
L1 54.3 °C 64.9 °C


Users Guide
© 2018 ROHM Co., Ltd. No. 60UG074E Rev.003
2018.3
%037)(9.
6FKHPDWLFV
VIN = 90 ~ 264 Vac, VOUT = 15 V
Figure 23. BM2P159T1F-EVK-001 Schematics
%LOORI0DWHULDOV
Table 7. BoM of BM2P159T1F-EVK-001

VCC
1
N.C
N.C.
DRAIN
N.C.
GND_IC
N.C.
N.C.
2
3
4
8
7
6
5
*1'
9287
,&
%037)
/
1
'%
5
.
0&5
/
+
$
&
)
9
&
)
9
)
$$&9
'
$9
55(96 06
'
)5'$9
5)1/$06
&
)
9
&
)
9
&1B
&1B
$&9
9$
3DUW
5HIHUHQFH 4W\ 7\SH 9DOXH 'HVFULSWLRQ 3DUW1XPEHU 0DQXIDFWXUH &RQILJXUDWLRQ
PP
LQFK
& (OHFWURO\WLF ) 9  :XUWK
& (OHFWURO\WLF ) 9  :XUWK
& &HUDPLF ) 9;5 70.%0$7 7DL\R<XGHQ 
& &HUDPLF ) 9;5 +0.%0$7 7DL\R<XGHQ 
&1 &RQQHFWRU SLQ %39+ -67
' )5' $ 9 5)1/$0675 52+0 30'6
' 'LRGH $ 9 55(9606 52+0 780'60
'% %ULGJH $ 9 '8%$ 6KLQGHQJHQ 623$
) )XVH $ 9  /LWWHOIXVH
,& $&'&&RQYHUWHU %037) 52+0 623
/ &RLO + $  :XUWK
5 5HVLVWRU Nê : 0&5(=3- 52+0 
©
2
%
/
D
Si
z
2
018 ROHM
C
03
7
D
\RXW

z
e: 18 mm x 4
0
C
o., Ltd.
7
)(9.
0
mm

Figure 24.
Figure 25.

TOP Silkscre
e
Bottom Layo
u
e
n (Top view)
u
t (TOP View)
Us
e
No. 60U
G
e
r’s Guid
e
G
074E Rev.00
3
2018.
3
e
3
3
5
%
ZZZURKPFRP
52+0&R/WG$OOULJKWVUHVHUYHG
Notice
ROHM Customer Support System
http://www.rohm.com/contact/
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.
Notes
The information contained herein is subject to change without notice.
Before you use our Products, please contact our sales representative
and verify the latest specifica-
tions :
Although ROHM is continuously working to improve product reliability and quality, semicon-
ductors can break down and malfunction due to various factors.
Therefore, in order to prevent personal injury or fire arising from failure, please take safety
measures such as complying with the derating characteristics, implementing redundant and
fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no
responsibility for any damages arising out of the use of our Poducts beyond the rating specified by
ROHM.
Examples of application circuits, circuit constants and any other information contained herein are
provided only to illustrate the standard usage and operations of the Products. The peripheral
conditions must be taken into account when designing circuits for mass production.
The technical information specified herein is intended only to show the typical functions of and
examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly,
any license to use or exercise intellectual property or other rights held by ROHM or any other
parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of
such technical information.
The Products specified in this document are not designed to be radiation tolerant.
For use of our Products in applications requiring a high degree of reliability (as exemplified
below), please contact and consult with a ROHM representative : transportation equipment (i.e.
cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety
equipment, medical systems, servers, solar cells, and power transmission systems.
Do not use our Products in applications requiring extremely high reliability, such as aerospace
equipment, nuclear power control systems, and submarine repeaters.
ROHM shall have no responsibility for any damages or injury arising from non-compliance with
the recommended usage conditions and specifications contained herein.
ROHM has used reasonable care to ensurH the accuracy of the information contained in this
document. However, ROHM does not warrants that such information is error-free, and ROHM
shall have no responsibility for any damages arising from any inaccuracy or misprint of such
information.
Please use the Products in accordance with any applicable environmental laws and regulations,
such as the RoHS Directive. For more details, including RoHS compatibility, please contact a
ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting
non-compliance with any applicable laws or regulations.
When providing our Products and technologies contained in this document to other countries,
you must abide by the procedures and provisions stipulated in all applicable export laws and
regulations, including without limitation the US Export Administration Regulations and the Foreign
Exchange and Foreign Trade Act.
This document, in part or in whole, may not be reprinted or reproduced without prior consent of
ROHM.
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)