PD - 97043C IRF6648 DirectFET Power MOSFET RoHs Compliant Containing No Lead and Bromide l Low Profile (<0.7 mm) l Dual Sided Cooling Compatible l Ultra Low Package Inductance l Optimized for High Frequency Switching l Optimized for Synchronous Rectification for 5V to 12V outputs l Ideal for 24V input Primary Side Forward Converters l Low Conduction Losses l Compatible with Existing Surface Mount Techniques Typical values (unless otherwise specified) l VDSS VGS RDS(on) 60V max 20V max 5.5m@ 10V Qg tot 36nC Qgd 14nC DirectFET ISOMETRIC MN Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SH SJ SP MZ MN Description The IRF6648 combines the latest HEXFET(R) power MOSFET silicon technology with advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6648 is an optimized switch for use in synchronous rectification circuits with 5-12Vout, and is also ideal for use as a primary side switch in 24Vin forward converters. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance isolated DC-DC converters. Absolute Maximum Ratings Parameter VDS VGS ID @ TC = 25C ID @ TC = 70C IDM IS @ TC = 25C IS @ TC = 70C ISM Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V e f f Pulsed Drain Current Continuous Source Current (Body Diode) Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) e f f Max. Units 60 20 86 69 260 81 52 260 V A Notes: TC measured with thermocouple mounted to top (Drain) of part. Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Repetitive rating; pulse width limited by max. junction temperature. www.irf.com 1 02/28/06 IRF6648 Electrical Characteristic @ TJ = 25C (unless otherwise specified) Parameter Min. Conditions Typ. Max. Units VGS = 0V, ID = 250A BVDSS Drain-to-Source Breakdown Voltage 60 --- --- VDSS/TJ RDS(on) Breakdown Voltage Temp. Coefficient --- 0.076 --- Static Drain-to-Source On-Resistance --- 5.5 7.0 VGS(th) Gate Threshold Voltage 3.0 4.0 4.9 V VGS(th)/TJ IDSS Gate Threshold Voltage Coefficient --- -11 --- mV/C Drain-to-Source Leakage Current --- --- 20 A VDS = 60V, VGS = 0V --- --- 250 IGSS Gate-to-Source Forward Leakage --- --- 100 nA VGS = 20V Gate-to-Source Reverse Leakage --- --- -100 Forward Transconductance 31 --- --- Total Gate Charge --- 36 50 gfs Qg Qgs1 Pre-Vth Gate-to-Source Charge --- 7.5 --- Qgs2 Post-Vth Gate-to-Source Charge --- 2.7 --- V V/C Reference to 25C, ID = 1mA m VGS = 10V, ID = 17A g VDS = VGS, ID = 150A VDS = 48V, VGS = 0V, TJ = 125C VGS = -20V S VDS = 10V, ID = 17A VDS = 30V nC VGS = 10V Qgd Gate-to-Drain Charge --- 14 21 ID = 17A Qgodr --- 12 --- See Fig. 14 Qsw Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) --- 17 --- Qoss Output Charge --- 21 --- nC RG (Internal) Gate Resistance --- 1.0 --- td(on) tr Turn-On Delay Time Rise Time --- --- 16 29 --- --- td(off) Turn-Off Delay Time --- 28 --- tf Fall Time --- 13 --- Ciss Input Capacitance --- 2120 --- Coss Output Capacitance --- 600 --- Crss Reverse Transfer Capacitance --- 170 --- Coss Output Capacitance --- 2450 --- = 1.0MHz VGS = 0V, VDS = 1.0V, f=1.0MHz Coss Output Capacitance --- 440 --- VGS = 0V, VDS = 48V, f=1.0MHz Min. Typ. Max. Units VDS = 16V, VGS = 0V VDD = 30V, VGS = 10Vg ID = 17A ns RG= 6.2 See Fig. 16 VGS = 0V pF VDS = 25V Avalanche Characteristics Parameter EAS Single Pulse Avalanche Energy --- --- 47 mJ Conditions TJ = 25C, IS = 34A, RG = 25 L = 0.082mH. See Fig. 13 Diode Characteristics Conditions Parameter Min. Typ. Max. Units VSD Diode Forward Voltage --- --- 1.3 V TJ = 25C, IS = 17A, VGS = 0V g trr Reverse Recovery Time --- 31 47 ns TJ = 25C, IF = 17A, VDD = 30V Qrr Reverse Recovery Charge --- 37 56 nC di/dt = 100A/s g Notes: Pulse width 400s; duty cycle 2%. 2 www.irf.com IRF6648 Absolute Maximum Ratings h h f Max. Units 2.8 1.8 89 270 -40 to + 150 W Parameter Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range PD @TA = 25C PD @TA = 70C PD @TC = 25C TP TJ TSTG C Thermal Resistance Parameter hj ij fj RJA RJA RJC RJ-PCB Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Typ. Max. --- 12.5 --- 1.0 45 --- 1.4 --- Units C/W Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 0.05 J 0.02 0.01 0.01 R1 R1 J 1 R2 R2 R3 R3 C 1 2 2 Ci= i/Ri Ci= i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 3 3 C Ri (C/W) i (sec) 0.17199 0.000044 0.67673 0.001660 0.54961 0.007649 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 1. Maximum Effective Transient Thermal Impedance, Junction-to-Case Notes: Surface mounted on 1 in. square Cu, steady state (still air). Used double sided cooling, mounted on 1 in. square Cu board R is measured at TJ of approximately 90C. PCB with small clip heatsink (still air). Note www.irf.com Note Note 3 IRF6648 1000 1000 BOTTOM VGS 15V 10V 8.0V 7.0V 6.0V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 100 BOTTOM 100 10 6.0V 6.0V 10 60s PULSE WIDTH 60s PULSE WIDTH Tj = 150C Tj = 25C 1 1 0.1 1 10 0.1 Fig 3. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 2.0 ID = 86A Typical RDS(on) (Normalized) ID, Drain-to-Source Current (A) VDS = 10V 60s PULSE WIDTH 100 T J = 150C T J = 25C T J = -40C 10 1 0.1 VGS = 10V 1.5 1.0 0.5 2 4 6 8 10 12.0 VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED Crss = C gd VGS, Gate-to-Source Voltage (V) ID= 17A Coss = Cds + Cgd Ciss Coss 1000 20 40 60 80 100 120 140 160 Fig 5. Normalized On-Resistance vs. Temperature Fig 4. Typical Transfer Characteristics 10000 -60 -40 -20 0 T J , Junction Temperature (C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) 10 V DS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Crss 100 10.0 VDS= 48V VDS= 30V 8.0 6.0 4.0 2.0 0.0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 6. Typical Capacitance vs.Drain-to-Source Voltage 4 1 0 5 10 15 20 25 30 35 40 QG, Total Gate Charge (nC) Fig 7. Typical Total Gate Charge vs Gate-to-Source Voltage www.irf.com IRF6648 30 RDS(on), Drain-to -Source On Resistance (m ) 60 T J = 25C ID = 17A Vgs = 7.0V Vgs = 8.0V Vgs = 10V Vgs = 15V 25 Typical RDS(on) ( m) 50 40 30 20 T J = 125C 10 4 6 8 15 10 5 T J = 25C 0 20 0 10 12 14 0 16 20 40 Fig 8. Typical On-Resistance vs. Gate Voltage 100 Fig 9. Typical On-Resistance vs. Drain Current 1000 6.0 Typical VGS(th) , Gate threshold Voltage (V) ISD, Reverse Drain Current (A) 80 ID, Drain Current (A) VGS, Gate -to -Source Voltage (V) T J = 150C T J = 25C T J = -40C 100 10 1 VGS = 0V 0 5.0 4.0 ID = 150A ID = 250A 3.0 ID = 1.0mA ID = 1.0A 2.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -75 -50 -25 VSD, Source-to-Drain Voltage (V) 1000 25 50 75 100 125 150 Fig 11. Typical Threshold Voltage vs. Junction Temperature 200 EAS , Single Pulse Avalanche Energy (mJ) OPERATION IN THIS AREA LIMITED BY R DS(on) 100sec 100 0 T J , Temperature ( C ) Fig 10. Typical Source-Drain Diode Forward Voltage ID, Drain-to-Source Current (A) 60 1msec 10 10msec 1 Tc = 25C Tj = 150C Single Pulse ID 180 TOP 12A 18A BOTTOM 34A 160 140 120 100 80 60 40 20 0 0.1 0 1 10 VDS, Drain-to-Source Voltage (V) Fig12. Maximum Safe Operating Area www.irf.com 100 25 50 75 100 125 150 Starting T J , Junction Temperature (C) Fig 13. Maximum Avalanche Energy vs. Drain Current 5 IRF6648 Current Regulator Same Type as D.U.T. Id Vds 50K Vgs .2F 12V .3F D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Qgs1 Qgs2 Qgd Qgodr Current Sampling Resistors Fig 14a. Gate Charge Test Circuit Fig 14b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS D.U.T RG V20V GS tp + V - DD IAS A I AS 0.01 tp Fig 15a. Unclamped Inductive Test Circuit VDS VGS RD VDS 90% D.U.T. RG + - VDD 10V Pulse Width 1 s Duty Factor 0.1 % Fig 16a. Switching Time Test Circuit 6 Fig 15b. Unclamped Inductive Waveforms 10% VGS td(on) tr td(off) tf Fig 16b. Switching Time Waveforms www.irf.com IRF6648 D.U.T Driver Gate Drive + + - * D.U.T. ISD Waveform Reverse Recovery Current + RG * * * * di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer - D= Period P.W. + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent - Ripple 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET(R) Power MOSFETs DirectFET Substrate and PCB Layout, MN Outline (Medium Size Can, N-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D S D G D www.irf.com S D 7 IRF6648 DirectFET Outline Dimension, MN Outline (Medium Size Can, N-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. &+/'05+105 /'64+% +/2'4+#. %1&' /+0 /#: /+0 /#: # $ % & ' ( ) * , - . / 0 2 DirectFET Part Marking 8 www.irf.com IRF6648 DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6648). For 1000 parts on 7" reel, order IRF6648TR1 REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION IMPERIAL METRIC METRIC MIN CODE MAX MAX MAX MIN MIN 12.992 A 330.0 177.77 N.C N.C N.C 0.795 B 20.2 19.06 N.C N.C N.C 0.504 C 12.8 13.5 0.520 13.2 12.8 0.059 D 1.5 1.5 N.C N.C N.C 3.937 E 100.0 58.72 N.C N.C N.C F N.C N.C N.C 0.724 18.4 13.50 G 0.488 12.4 11.9 0.567 14.4 12.01 H 0.469 11.9 11.9 0.606 15.4 12.01 (QTY 1000) IMPERIAL MAX MIN N.C 6.9 0.75 N.C 0.53 0.50 0.059 N.C 2.31 N.C N.C 0.53 0.47 N.C 0.47 N.C Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.02/06 www.irf.com 9 Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/