www.irf.com 1
02/28/06
IRF6648
DirectFET Power MOSFET
DirectFET
ISOMETRIC
MN
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
Typical values (unless otherwise specified)
Description
The IRF6648 combines the latest HEXFET® power MOSFET silicon technology with advanced DirectFETTM packaging to
achieve the lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET
package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase,
infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods
and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving
previous best thermal resistance by 80%.
The IRF6648 is an optimized switch for use in synchronous rectification circuits with 5-12Vout, and is also ideal for use as a
primary side switch in 24Vin forward converters. The reduced total losses in the device coupled with the high level of thermal
performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this
device ideal for high performance isolated DC-DC converters.
l RoHs Compliant Containing No Lead and Bromide
l Low Profile (<0.7 mm)
l Dual Sided Cooling Compatible
l Ultra Low Package Inductance
l Optimized for High Frequency Switching
l Optimized for Synchronous Rectification for 5V
to 12V outputs
lIdeal for 24V input Primary Side Forward Converters
l Low Conduction Losses
l Compatible with Existing Surface Mount Techniques
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET Website.
Repetitive rating; pulse width limited by max. junction temperature.
TC measured with thermocouple mounted to top (Drain) of part.
Notes:
SH SJ SP MZ MN
VDSS VGS RDS(on) Qg tot Qgd
60V max ±20V max 5.5m@ 10V 36nC 14nC
Absolute Maximum Ratin
g
s
Parameter Units
VDS Drain-to-Source Voltage V
VGS Gate-to-Source Voltage
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V
f
ID @ TC = 70°C Continuous Drain Current, VGS @ 10V
f
IDM Pulsed Drain Current
e
A
IS @ TC = 25°C Continuous Source Current (Body Diode)
f
IS @ TC = 70°C Continuous Source Current (Body Diode)
f
ISM Pulsed Source Current (Body Diode)
e
69
Max.
±20
60
86
260
260
81
52
PD - 97043C
IRF6648
2www.irf.com
Notes:
Pulse width 400µs; duty cycle 2%.
Electrical Characteristic @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
BVDSS Drain-to-Source Breakdown Voltage 60 ––– ––– V
∆ΒVDSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.076 ––– V/°C
RDS(on) Static Drain-to-Source On-Resistance ––– 5.5 7.0 m
VGS(th) Gate Threshold Voltage 3.0 4.0 4.9 V
VGS(th)/TJGate Threshold Voltage Coefficient ––– -11 ––– mV/°C
IDSS Drain-to-Source Leakage Current ––– ––– 20 µA
––– ––– 250
IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA
Gate-to-Source Reverse Leakage ––– ––– -100
gfs Forward Transconductance 31 ––– ––– S
QgTotal Gate Charge ––– 36 50
Qgs1 Pre-Vth Gate-to-Source Charge ––– 7.5 –––
Qgs2 Post-Vth Gate-to-Source Charge ––– 2.7 ––– nC
Qgd Gate-to-Drain Charge ––– 14 21
Qgodr Gate Charge Overdrive ––– 12 ––– See Fig. 14
Qsw Switch Charge (Qgs2 + Qgd)––– 17 –––
Qoss Output Charge ––– 21 ––– nC
RG (Internal) Gate Resistance ––– 1.0 –––
td(on) Turn-On Delay Time ––– 16 –––
trRise Time ––– 29 –––
td(off) Turn-Off Delay Time ––– 28 ––– ns
tfFall Time ––– 13 –––
Ciss Input Capacitance ––– 2120 –––
Coss Output Capacitance ––– 600 ––– pF
Crss Reverse Transfer Capacitance ––– 170 –––
Coss Output Capacitance ––– 2450 –––
Coss Output Capacitance ––– 440 –––
Avalanche Characteristics
Parameter Min. Typ. Max. Units
EAS Single Pulse Avalanche Energy ––– ––– 47 mJ
Diode Characteristics
Parameter Min. Typ. Max. Units
VSD Diode Forward Voltage ––– ––– 1.3 V
trr Reverse Recovery Time ––– 31 47 ns
Qrr Reverse Recovery Charge ––– 37 56 nC
VDS = 25V
Conditions
See Fig. 16
VGS = 0V, VDS = 48V, f=1.0MHz
VGS = 0V, VDS = 1.0V, f=1.0MHz
Conditions
L = 0.082mH. See Fig. 13
TJ = 25°C, IS = 34A, RG = 25
VDS = VGS, ID = 150µA
VDS = 60V, VGS = 0V
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 17A g
TJ = 25°C, IF = 17A, VDD = 30V
di/dt = 100A/µs g
TJ = 25°C, IS = 17A, VGS = 0V g
ID = 17A
VDS = 16V, VGS = 0V
VDD = 30V, VGS = 10Vg
VGS = 0V
ƒ = 1.0MHz
ID = 17A
RG= 6.2
VDS = 48V, VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
VGS = 10V
VDS = 10V, ID = 17A
VDS = 30V
IRF6648
www.irf.com 3
Fig 1. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Note
Surface mounted on 1 in. square Cu, steady state (still air).
Used double sided cooling, mounted on 1 in. square Cu board
PCB with small clip heatsink (still air).
Notes:
Rθ is measured at TJ of approximately 90°C.
Note Note
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.17199 0.000044
0.67673 0.001660
0.54961 0.007649
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τC
τC
Ci= τi/Ri
Ci= τi/Ri
Absolute Maximum Ratin
g
s
Parameter Units
PD @TA = 25°C Power Dissipation
h
W
PD @TA = 70°C Power Dissipation
h
PD @TC = 25°C Power Dissipation
f
TP Peak Soldering Temperature °C
TJ Operating Junction and
TSTG Storage Temperature Range
Thermal Resistance
Parameter Typ. Max. Units
RθJA Junction-to-Ambient
hj
––– 45
RθJA Junction-to-Ambient
ij
12.5 ––– °C/W
RθJC Junction-to-Case
fj
––– 1.4
RθJ-PCB Junction-to-PCB Mounted 1.0 –––
270
-40 to + 150
Max.
2.8
1.8
89
IRF6648
4www.irf.com
Fig 3. Typical Output Characteristics
Fig 2. Typical Output Characteristics
Fig 4. Typical Transfer Characteristics Fig 5. Normalized On-Resistance vs. Temperature
Fig 6. Typical Capacitance vs.Drain-to-Source Voltage Fig 7. Typical Total Gate Charge vs
Gate-to-Source Voltage
0.1 110
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 15V
10V
8.0V
7.0V
BOTTOM 6.0V
60µs PULSE WIDTH
Tj = 25°C
6.0V
0.1 110
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
6.0V
60µs PULSE WIDTH
Tj = 150°C
VGS
TOP 15V
10V
8.0V
7.0V
BOTTOM 6.0V
2 4 6 8 10
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
TJ = 150°C
TJ = 25°C
TJ = -40°C
VDS = 10V
60µs PULSE WIDTH
-60 -40 -20 020 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
Typical RDS(on) (Normalized)
ID = 86A
VGS = 10V
110 100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
C, Capacitance (pF)
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0 5 10 15 20 25 30 35 40
QG, Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
VGS, Gate-to-Source Voltage (V)
VDS= 48V
VDS= 30V
ID= 17A
IRF6648
www.irf.com 5
Fig 11. Typical Threshold Voltage vs.
Junction Temperature
Fig 10. Typical Source-Drain Diode Forward Voltage
Fig 13. Maximum Avalanche Energy vs. Drain Current
Fig12. Maximum Safe Operating Area
Fig 8. Typical On-Resistance vs. Gate Voltage Fig 9. Typical On-Resistance vs. Drain Current
4 6 8 10 12 14 16
VGS, Gate -to -Source Voltage (V)
0
10
20
30
40
50
60
RDS(on), Drain-to -Source On Resistance (m)
ID = 17A
TJ = 25°C
TJ = 125°C
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
VSD, Source-to-Drain Voltage (V)
0
1
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 150°C
TJ = 25°C
TJ = -40°C
VGS = 0V
-75 -50 -25 025 50 75 100 125 150
TJ , Temperature ( °C )
2.0
3.0
4.0
5.0
6.0
Typical VGS(th), Gate threshold Voltage (V)
ID = 150µA
ID = 250µA
ID = 1.0mA
ID = 1.0A
25 50 75 100 125 150
Starting TJ , Junction Temperature (°C)
0
20
40
60
80
100
120
140
160
180
200
EAS , Single Pulse Avalanche Energy (mJ)
IDTOP
12A
18A
BOTTOM 34A
0 1 10 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
OPERATION IN THIS AREA
LIMITED BY RDS(on)
Tc = 25°C
Tj = 150°C
Single Pulse
100µsec
1msec
10msec
020 40 60 80 100
ID, Drain Current (A)
0
5
10
15
20
25
30
Typical RDS(on) (m)
TJ = 25°C
Vgs = 7.0V
Vgs = 8.0V
Vgs = 10V
Vgs = 15V
IRF6648
6www.irf.com
D.U.T. VDS
ID
IG
3mA
VGS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
Fig 14a. Gate Charge Test Circuit Fig 14b. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2 Qgd Qgodr
Fig 15b. Unclamped Inductive Waveforms
tp
V
(BR)DSS
I
AS
Fig 15a. Unclamped Inductive Test Circuit
Fig 16b. Switching Time Waveforms
VGS
VDS
90%
10%
td(on) td(off)
trtf
Fig 16a. Switching Time Test Circuit
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VDS
Pulse Width 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
VGS
IRF6648
www.irf.com 7
DirectFET Substrate and PCB Layout, MN Outline
(Medium Size Can, N-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
VGS=10V
VDD
ISD
Driver Gate Drive
D.U.T. ISD Waveform
D.U.T. VDS Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
Inductor Current
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
+
-
+
+
+
-
-
-
RGVDD
D.U.T
G = GATE
D = DRAIN
S = SOURCE
D
S
D
DD
G
S
IRF6648
8www.irf.com
DirectFET Outline Dimension, MN Outline
(Medium Size Can, N-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DirectFET Part Marking
/#:














/+0














/#:














/+0














%1&'
#
$
%
&
'
(
)
*
,
-
.
/
0
2
&+/'05+105
/'64+% +/2'4+#.
IRF6648
www.irf.com 9
DirectFET Tape & Reel Dimension (Showing component orientation).
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.02/06
METRIC
MIN
330.0
20.2
12.8
1.5
100.0
N.C
12.4
11.9
CODE
A
B
C
D
E
F
G
H
MAX
N.C
N.C
0.520
N.C
N.C
0.724
0.567
0.606
MIN
12.992
0.795
0.504
0.059
3.937
N.C
0.488
0.469
MAX
N.C
N.C
13.2
N.C
N.C
18.4
14.4
15.4
IMPERIAL
STANDARD OPTION (QTY 4800)
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6648). For 1000 parts on 7" reel,
order IRF6648TR1
METRIC IMPERIAL
TR1 OPTION (QTY 1000)
MIN
177.77
19.06
13.5
1.5
58.72
N.C
11.9
11.9
MAX
N.C
N.C
12.8
N.C
N.C
13.50
12.01
12.01
MIN
6.9
0.75
0.53
0.059
2.31
N.C
0.47
0.47
MAX
N.C
N.C
0.50
N.C
N.C
0.53
N.C
N.C
REEL DIMENSIONS
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/