P2N2222A Amplifier Transistors NPN Silicon Features * Pb-Free Packages are Available* http://onsemi.com MAXIMUM RATINGS (TA = 25C unless otherwise noted) Characteristic Symbol Value Unit Collector -Emitter Voltage VCEO 40 Vdc Collector -Base Voltage VCBO 75 Vdc Emitter -Base Voltage VEBO 6.0 Vdc Collector Current - Continuous IC 600 mAdc Total Device Dissipation @ TA = 25C Derate above 25C PD 625 5.0 mW mW/C Total Device Dissipation @ TC = 25C Derate above 25C PD 1.5 12 W mW/C TJ, Tstg -55 to +150 C Operating and Storage Junction Temperature Range 2 BASE 3 EMITTER MARKING DIAGRAM 1 THERMAL CHARACTERISTICS Characteristic COLLECTOR 1 Symbol Max Unit Thermal Resistance, Junction to Ambient RqJA 200 C/W Thermal Resistance, Junction to Case RqJC 83.3 C/W Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 2 3 P2N2 222A AYWW G G TO-92 (T0-226AA) CASE 29-11 STYLE 17 P2N2 = Device Code 222A = Specific Device A = Assembly Location Y = Year WW = Work Week G = Pb-Free Package (Note: Microdot may be in either location) ORDERING INFORMATION Device P2N2222A P2N2222AG P2N2222ARL1 P2N2222ARL1G P2N2222AZL1 Package Shipping TO-92 5000 Units / Bulk TO-92 (Pb-Free) 5000 Units / Bulk TO-92 2000 / Tape & Ammo TO-92 2000 / Tape & Ammo (Pb-Free) TO-92 2000 / Tape & Reel P2N2222AZL1G TO-92 2000 Units / Tube (Pb-Free) For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. (c) Semiconductor Components Industries, LLC, 2006 March, 2006 - Rev. 3 1 Publication Order Number: P2N2222A/D P2N2222A ELECTRICAL CHARACTERISTICS (TA = 25C unless otherwise noted) Symbol Min Max Unit Collector -Emitter Breakdown Voltage (IC = 10 mAdc, IB = 0) V(BR)CEO 40 - Vdc Collector -Base Breakdown Voltage (IC = 10 mAdc, IE = 0) V(BR)CBO 75 - Vdc Emitter -Base Breakdown Voltage (IE = 10 mAdc, IC = 0) V(BR)EBO 6.0 - Vdc Collector Cutoff Current (VCE = 60 Vdc, VEB(off) = 3.0 Vdc) ICEX - 10 nAdc Collector Cutoff Current (VCB = 60 Vdc, IE = 0) (VCB = 60 Vdc, IE = 0, TA = 150C) ICBO - - 0.01 10 Emitter Cutoff Current (VEB = 3.0 Vdc, IC = 0) IEBO - 10 nAdc Collector Cutoff Current (VCE = 10 V) ICEO - 10 nAdc Base Cutoff Current (VCE = 60 Vdc, VEB(off) = 3.0 Vdc) IBEX - 20 nAdc 35 50 75 35 100 50 40 - - - - 300 - - - - 0.3 1.0 0.6 - 1.2 2.0 fT 300 - MHz Output Capacitance (VCB = 10 Vdc, IE = 0, f = 1.0 MHz) Cobo - 8.0 pF Input Capacitance (VEB = 0.5 Vdc, IC = 0, f = 1.0 MHz) Cibo - 25 pF 2.0 0.25 8.0 1.25 - - 8.0 4.0 50 75 300 375 5.0 25 35 200 Characteristic OFF CHARACTERISTICS mAdc ON CHARACTERISTICS DC Current Gain (IC = 0.1 mAdc, VCE = 10 Vdc) (IC = 1.0 mAdc, VCE = 10 Vdc) (IC = 10 mAdc, VCE = 10 Vdc) (IC = 10 mAdc, VCE = 10 Vdc, TA = -55C) (IC = 150 mAdc, VCE = 10 Vdc) (Note 1) (IC = 150 mAdc, VCE = 1.0 Vdc) (Note 1) (IC = 500 mAdc, VCE = 10 Vdc) (Note 1) hFE Collector -Emitter Saturation Voltage (Note 1) (IC = 150 mAdc, IB = 15 mAdc) (IC = 500 mAdc, IB = 50 mAdc) VCE(sat) Base -Emitter Saturation Voltage (Note 1) (IC = 150 mAdc, IB = 15 mAdc) (IC = 500 mAdc, IB = 50 mAdc) VBE(sat) - Vdc Vdc SMALL-SIGNAL CHARACTERISTICS Current -Gain - Bandwidth Product (Note 2) (IC = 20 mAdc, VCE = 20 Vdc, f = 100 MHz)C Input Impedance (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz) (IC = 10 mAdc, VCE = 10 Vdc, f = 1.0 kHz) hie Voltage Feedback Ratio (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz) (IC = 10 mAdc, VCE = 10 Vdc, f = 1.0 kHz) hre Small-Signal Current Gain (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz) (IC = 10 mAdc, VCE = 10 Vdc, f = 1.0 kHz) hfe Output Admittance (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz) (IC = 10 mAdc, VCE = 10 Vdc, f = 1.0 kHz) hoe Collector Base Time Constant (IE = 20 mAdc, VCB = 20 Vdc, f = 31.8 MHz) rbCc - 150 ps NF - 4.0 dB Noise Figure (IC = 100 mAdc, VCE = 10 Vdc, RS = 1.0 kW, f = 1.0 kHz) 1. Pulse Test: Pulse Width v 300 ms, Duty Cycle v 2.0%. 2. fT is defined as the frequency at which |hfe| extrapolates to unity. http://onsemi.com 2 kW X 10- 4 - mMhos P2N2222A ELECTRICAL CHARACTERISTICS (TA = 25C unless otherwise noted) (Continued) Characteristic Symbol Min Max Unit td tr ts tf - - - - 10 25 225 60 ns ns ns ns SWITCHING CHARACTERISTICS Delay Time Rise Time Storage Time Fall Time (VCC = 30 Vdc, VBE(off) = -2.0 Vdc, IC = 150 mAdc, IB1 = 15 mAdc) (Figure 1) (VCC = 30 Vdc, IC = 150 mAdc, IB1 = IB2 = 15 mAdc) (Figure 2) SWITCHING TIME EQUIVALENT TEST CIRCUITS +30 V +30 V 1.0 to 100 ms, DUTY CYCLE 2.0% +16 V 0 -2 V 200 1.0 to 100 ms, DUTY CYCLE 2.0% +16 V 0 1 kW < 2 ns 1k -14 V CS* < 10 pF < 20 ns Figure 1. Turn-On Time CS* < 10 pF 1N914 Scope rise time < 4 ns *Total shunt capacitance of test jig, connectors, and oscilloscope. -4 V Figure 2. Turn-Off Time 1000 700 500 hFE , DC CURRENT GAIN 200 TJ = 125C 300 200 25C 100 70 50 -55C 30 VCE = 1.0 V VCE = 10 V 20 10 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 IC, COLLECTOR CURRENT (mA) 50 70 100 200 300 500 700 1.0 k VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS) Figure 4. DC Current Gain 1.0 TJ = 25C 0.8 0.6 IC = 1.0 mA 10 mA 150 mA 500 mA 0.4 0.2 0 0.005 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1.0 IB, BASE CURRENT (mA) 2.0 Figure 3. Collector Saturation Region http://onsemi.com 3 3.0 5.0 10 20 30 50 P2N2222A 200 500 IC/IB = 10 TJ = 25C tr @ VCC = 30 V td @ VEB(off) = 2.0 V td @ VEB(off) = 0 30 20 10 7.0 5.0 200 ts = ts - 1/8 tf 100 70 50 tf 30 20 10 7.0 5.0 3.0 2.0 5.0 7.0 10 200 300 20 30 50 70 100 IC, COLLECTOR CURRENT (mA) 500 5.0 7.0 10 20 30 50 70 100 200 IC, COLLECTOR CURRENT (mA) Figure 5. Turn -On Time IC = 1.0 mA, RS = 150 W 500 mA, RS = 200 W 100 mA, RS = 2.0 kW 50 mA, RS = 4.0 kW 8.0 6.0 f = 1.0 kHz 8.0 NF, NOISE FIGURE (dB) NF, NOISE FIGURE (dB) 500 10 RS = OPTIMUM RS = SOURCE RS = RESISTANCE 4.0 IC = 50 mA 100 mA 500 mA 1.0 mA 6.0 4.0 2.0 2.0 0 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 100 200 500 1.0 k 2.0 k 5.0 k 10 k 20 k 50 k 100 k RS, SOURCE RESISTANCE (OHMS) Figure 7. Frequency Effects Figure 8. Source Resistance Effects Ceb 10 7.0 5.0 Ccb 3.0 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 REVERSE VOLTAGE (VOLTS) 20 30 50 f T, CURRENT-GAIN BANDWIDTH PRODUCT (MHz) f, FREQUENCY (kHz) 20 0.2 0.3 0 50 50 100 20 30 CAPACITANCE (pF) 300 Figure 6. Turn -Off Time 10 2.0 0.1 VCC = 30 V IC/IB = 10 IB1 = IB2 TJ = 25C 300 t, TIME (ns) t, TIME (ns) 100 70 50 500 VCE = 20 V TJ = 25C 300 200 100 70 50 1.0 Figure 9. Capacitances 2.0 3.0 5.0 7.0 10 20 30 IC, COLLECTOR CURRENT (mA) 50 70 100 Figure 10. Current-Gain Bandwidth Product http://onsemi.com 4 P2N2222A 1.0 +0.5 TJ = 25C 0 VBE(sat) @ IC/IB = 10 0.6 COEFFICIENT (mV/ C) V, VOLTAGE (VOLTS) 0.8 1.0 V VBE(on) @ VCE = 10 V 0.4 0.2 RqVC for VCE(sat) -0.5 -1.0 -1.5 RqVB for VBE -2.0 VCE(sat) @ IC/IB = 10 0 0.1 0.2 50 100 200 0.5 1.0 2.0 5.0 10 20 IC, COLLECTOR CURRENT (mA) -2.5 500 1.0 k 0.1 0.2 Figure 11. "On" Voltages 0.5 1.0 2.0 5.0 10 20 50 100 200 IC, COLLECTOR CURRENT (mA) Figure 12. Temperature Coefficients http://onsemi.com 5 500 P2N2222A PACKAGE DIMENSIONS TO-92 (TO-226) CASE 29-11 ISSUE AL A NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. B R P L SEATING PLANE K D X X G J H V C 1 N SECTION X-X DIM A B C D G H J K L N P R V INCHES MIN MAX 0.175 0.205 0.170 0.210 0.125 0.165 0.016 0.021 0.045 0.055 0.095 0.105 0.015 0.020 0.500 --- 0.250 --- 0.080 0.105 --- 0.100 0.115 --- 0.135 --- MILLIMETERS MIN MAX 4.45 5.20 4.32 5.33 3.18 4.19 0.407 0.533 1.15 1.39 2.42 2.66 0.39 0.50 12.70 --- 6.35 --- 2.04 2.66 --- 2.54 2.93 --- 3.43 --- STYLE 17: PIN 1. COLLECTOR 2. BASE 3. EMITTER N ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850 http://onsemi.com 6 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative. P2N2222A/D