January 2007 Rev 4 1/41
41
TS4962M
3W filter-free class D audio power amplifier
Features
Operating from VCC = 2.4V to 5.5V
Standby mode active low
Output power: 3W into 4Ω and 1.75W into 8Ω
with 10% THD+N max and 5V power supply.
Output power: 2.3W @5V or 0.75W @ 3.0V
into 4Ω with 1% THD+N max.
Output power: 1.4W @5V or 0.45W @ 3.0V
into 8Ω with 1% THD+N max.
Adjustable gain via external resistors
Low current consump tion 2mA @ 3V
Efficiency: 88% typ.
Signal to noise ratio: 85dB typ.
PSRR: 63dB typ. @217Hz with 6dB gain
PWM base frequency: 250kHz
Low pop & click noise
Thermal shutdown protection
Available in flip-chip 9 x 300μm (Pb-free)
Description
The TS4962M is a diff erential Class-D BTL p ower
amplifier. It is able to drive up to 2.3W into a 4Ω
load and 1.4W into a 8Ω load at 5V. It achieves
outstanding efficiency (88%typ.) compared to
classical Class-AB audio amps.
The gain of the device can be controlled via two
external gain-setting resistors. Pop & click
reduction circuitry provides low on/off switch noise
while allowing the device to start within 5ms. A
standb y function (active low) allows the reduction
of current consumption to 10nA typ.
Applications
Cellular phone
PDA
Notebook PC
Block diagram
In-
Stdby
In+
Out-
Out+
Vcc
C2
C1
A1
A2
A3
B1 B2
B3
C3
GND
Internal
Bias
PWM
Output
Bridge
H
Oscillator
150k
150k
+
-
300k
VDD
1/A1
7/C1 8/C2 9/C3
4/B1 6/B3
2/A2 3/A3
5/B2
VDD
IN-
IN+GND
STBY
GND
OUT+
OUT-
VDD
1/A1
7/C1 8/C2 9/C3
4/B1 6/B3
2/A2 3/A3
5/B2
VDD
IN-
IN+GND
STBY
GND
OUT+
OUT-
IN+: positive differential input
IN-: negative differential input
VDD: analog power supply
GND: power supply ground
STBY: standby pin (activ e l ow)
OUT+: positive differential output
OUT-: negative differential output
Pin connections
www.st.com
Contents TS4962M
2/41
Contents
1 Absolute maxim u m ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Application component information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Electrical characteristic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1 Differential configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Gain in typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Common mode feedback loop limitations . . . . . . . . . . . . . . . . . . . . . . . . . 29
For example: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 Low frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.5 Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.6 Wake-up time: (tWU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.7 Shutdown time (tSTBY) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.8 Consumption in shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.9 Single-ended input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.10 Output filter considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.11 Different examples with summed inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Example 1: Dual differential inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Example 2: One differential input plus one single-ended input . . . . . . . . . . . . . . . 34
6 Demoboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7 Footprint recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
TS4962M Absolute maximum ratings
3/41
1 Absolute maximum ratings
Table 1. Absolute maximum ratings
Symbol Parameter Value Unit
VCC Supply voltage(1), (2)
1. Caution: This device is not protected in the event of abnormal operating conditions, such as for example,
short-circuiting between any one output pin and ground, between any one output pin and VCC, and
between individual output pins.
2. All voltage values are measured with respect to the ground pin.
6V
Vin Input voltage (3)
3. The magnitude of the input signal must never exceed VCC + 0.3V / GND - 0.3V.
GND to VCC V
Toper Operating free-air temperature range -40 to + 85 °C
Tstg Storage temperature -65 to +150 °C
TjMaximum junction temperatu r e 150 °C
Rthja Thermal resi stance junction to ambient (4)
4. The device is protected in case of over temperature by a thermal shutdown active @ 150°C.
200 °C/W
Pdiss Power dissipation Internally Limited(5)
5. Exceeding the power derating curves during a long period causes abnormal operation.
ESD Human body model 2 kV
ESD Machine model 200 V
Latch-up Latch-up immunity 200 mA
VSTBY Standby pin voltage maximum voltage (6)
6. The magnitude of the standby signal must never exceed VCC + 0.3V / GND - 0.3V.
GND to VCC V
Lead temperature (soldering, 10sec) 260 °C
Table 2. Operating conditions
Symbol Parameter Value Unit
VCC Supply voltage(1)
1. For VCC from 2.4V to 2.5V, the operating temperature range is reduced to 0°C Tamb 70°C.
2.4 to 5.5 V
VIC Common mode input voltage range(2)
2. For VCC from 2.4V to 2.5V, the common mode input range must be set at VCC/2.
0.5 to VCC - 0.8 V
VSTBY
Standby voltage input: (3)
Device ON
Device OFF
3. Without any signal on VSTBY, the device will be in standby.
1.4 V
STBY VCC
GND VSTBY 0.4 (4)
4. Minimum current consumption is obtained when VSTBY = GND.
V
RLLoad resistor 4 Ω
Rthja Thermal resistance junction to ambient (5)
5. With heat sink surface =125mm2.
90 °C/W
Application comp onent information TS4962M
4/41
2 Application component information
Figure 1. Typical application schematics
Table 3. Component information
Component Functional descripti on
CsBypass supply capacitor. Install as close as possible to the TS4962M to
minimize high-frequency ripple. A 100nF ceramic capacitor should be
added to enhance the power supply filtering at high frequency.
Rin Input resistor to program the TS4962M differential gain (gain =300kΩ/Rin
with Rin in kΩ).
Input
capacitor
Due to common mode feedback, these input capacitors are optional.
Howe v er , the y can be added to form with Rin a 1st order high pass filter with
-3dB cut-off frequency =1/(2*π*Rin*Cin).
Rin
Rin
Cs
1u
GND
GND
GND
Vcc
Vcc
SPEAKER
In-
Stdby
In+
Out-
Out+
Vcc
C2
C1
A1
A2
A3
B1 B2
B3
C3
GND
Internal
Bias
PWM
Output
Bridge
H
Oscillator
150k
150k
+
-
300k
TS4962
capacitors
Input
are optional
+
-
Differential
Input
In+
GND
In-
GND
Rin
Rin
Cs
1u
GND
GND
GND
Vcc
Vcc
+
-
Differential
Input
capacitors
Input
are optional
In+
GND
In-
GND
2µF
15µH
15µH
Load
4 Ohms LC Output Filter
8 Ohms LC Output Filter
2µF
GND
1µF
30µH
30µH1µF
GND
In-
Stdby
In+
Out-
Out+
Vcc
C2
C1
A1
A2
A3
B1 B2
B3
C3
GND
Internal
Bias
PWM
Output
Bridge
H
Oscillator
150k
150k
+
-
300k
TS4962
TS4962M Electrical characteristics
5/41
3 Electrical characteristics
Table 4. VCC = +5V, GND = 0V, VIC =2.5V, t
amb = 25°C (unless otherwise specifie d)
Symbol Parameter Conditions Min. Typ. Max. Unit
ICC Supply current No input signal, no load 2.3 3.3 mA
ISTBY Standby current (1) No input signal, VSTBY = GND 10 1000 nA
VOO Output offset voltage No input signal, RL=8Ω325mV
Pout Output pow er
G=6dB
THD = 1% max, F = 1kHz, RL=4Ω
THD = 10% max, F = 1kHz, RL=4Ω
THD = 1% max, F = 1kHz, RL=8Ω
THD = 10% max, F = 1kHz, RL=8Ω
2.3
3
1.4
1.75
W
THD + N Total harmonic
distortion + noise
Pout = 900mWRMS, G = 6dB, 20Hz < F < 20kHz
RL=8Ω + 15µH, BW < 30kHz
Pout =1W
RMS, G = 6dB, F = 1kHz,
RL=8Ω + 15µH, BW < 30kHz
1
0.4
%
Efficiency Efficiency Pout =2W
RMS, RL=4Ω +15µH
Pout =1.2WRMS, RL=8Ω+15µH 78
88 %
PSRR Power supply
rejection ratio with
inputs grounded (2) F = 217Hz, RL=8Ω, G=6dB,
Vripple = 200mVpp 63 dB
CMRR Common mode
rejection ratio F = 217Hz, RL=8Ω, G = 6dB,
ΔVicm = 200mVpp 57 dB
Gain Gain value Rin in kΩV/V
RSTBY Internal resistance
from Standby to GND 273 300 327 kΩ
FPWM Pulse width modulator
base frequency 180 250 320 kHz
SNR Signal to noise ratio A-weighting, Pout = 1.2W, RL=8Ω85 dB
tWU Wake-up time 5 10 ms
tSTBY Standby time 5 10 ms
273k
Ω
Rin
----------------- 300k
Ω
Rin
----------------- 327k
Ω
Rin
-----------------
Electrical characteristics TS4962M
6/41
VNOutput voltage noise
F = 20Hz to 20kHz, G = 6d B
Unweighted RL=4Ω
A-weighted RL=4Ω
85
60
μVRMS
Unweighted RL=8Ω
A-weighted RL=8Ω
86
62
Unweighted RL=4Ω + 15µH
A-weighted RL=4Ω + 15µH 83
60
Unweighted RL=4Ω + 30µH
A-weighted RL=4Ω + 30µH 88
64
Unweighted RL=8Ω + 30µH
A-weighted RL=8Ω + 30µH 78
57
Unweighted RL=4Ω + Filter
A-weighted RL=4Ω + Filter 87
65
Unweighted RL=4Ω + Filter
A-weighted RL=4Ω + Filter 82
59
1. Standby mode is active when VSTBY is tied to GND.
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to VCC @ F =217Hz.
Table 4. VCC = +5V, GND = 0V, VIC =2.5V, t
amb = 25°C (unless otherwise specifie d) (continued )
Symbol Parameter Conditions Min. Typ. Max. Unit
TS4962M Electrical characteristics
7/41
Table 5. VCC = +4.2V, GND = 0V, VIC =2.5V, T
amb = 25°C (unless otherw is e sp e ci fie d)(1)
Symbol Parameter Conditions Min. Typ. Max. Unit
ICC Supply current No input signal, no load 2.1 3 mA
ISTBY Standby current (2) No input signal, VSTBY = GND 10 1000 nA
VOO Output offset voltage No input signal, RL=8Ω325mV
Pout Output pow er
G=6dB
THD = 1% max, F = 1kHz, RL=4Ω
THD = 10% max, F = 1kHz, RL=4Ω
THD = 1% max, F = 1kHz, RL=8Ω
THD = 10% max, F = 1kHz, RL=8Ω
1.6
2
0.95
1.2
W
THD + N Total harmonic
distortion + noise
Pout = 600mWRMS, G = 6dB, 20Hz < F < 20kHz
RL=8Ω + 15µH, BW < 30kHz
Pout = 700mWRMS, G = 6dB, F = 1kHz,
RL=8Ω + 15µH, BW < 30kHz
1
0.35
%
Efficiency Efficiency Pout =1.45W
RMS, RL=4Ω +15µH
Pout =0.9WRMS, RL=8Ω+15µH 78
88 %
PSRR Power supply
rejection ratio with
inputs grounded (3) F = 217Hz, RL=8Ω, G=6dB,
Vripple = 200mVpp 63 dB
CMRR Common mode
rejection ratio F = 217Hz, RL=8Ω, G=6dB,
ΔVicm =200mV
pp 57 dB
Gain Gain value Rin in kΩV/V
RSTBY Internal resistance
from Standby to GND 273 300 327 kΩ
FPWM Pulse width modulator
base frequency 180 250 320 kHz
SNR Signal to noise ratio A-weighting, Pout = 0.9W, RL=8Ω85 dB
tWU Wake-uptime 5 10 ms
tSTBY Standby time 5 10 ms
273k
Ω
Rin
----------------- 300k
Ω
Rin
----------------- 327k
Ω
Rin
-----------------
Electrical characteristics TS4962M
8/41
VNOutput voltage noise
F = 20Hz to 20kHz, G = 6dB
Unweighted RL=4Ω
A-weighted RL=4Ω
85
60
μVRMS
Unweighted RL=8Ω
A-weighted RL=8Ω
86
62
Unweighted RL=4Ω + 15µH
A-weighted RL=4Ω + 15µH 83
60
Unweighted RL=4Ω + 30µH
A-weighted RL=4Ω + 30µH 88
64
Unweighted RL=8Ω + 30µH
A-weighted RL=8Ω + 30µH 78
57
Unweighted RL=4Ω + Filter
A-weighted RL=4Ω + Filter 87
65
Unweighted RL=4Ω + Filter
A-weighted RL=4Ω + Filter 82
59
1. All electrical values are guaranteed with correlation measurements at 2.5V and 5V.
2. Standby mode is active when VSTBY is tied to GND.
3. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to VCC @ F =217Hz.
Table 5. VCC = +4.2V, GND = 0V, VIC =2.5V, T
amb = 25°C (unless otherw is e sp e ci fie d)(1)
Symbol Parameter Conditions Min. Typ. Max. Unit
TS4962M Electrical characteristics
9/41
Table 6. VCC = +3.6V, GND = 0V, VIC = 2.5V, Tamb = 25°C (unless otherwise specified)(1)
Symbol Parameter Conditions Min. Typ. Max. Unit
ICC Supply current No input signal, no load 2 2.8 mA
ISTBY Standby current (2) No input signal, VSTBY = GND 10 1000 nA
VOO Output offset voltage No input signal, RL=8Ω325mV
Pout Output pow er
G=6dB
THD = 1% max, F = 1kHz, RL=4Ω
THD = 10% max, F = 1kHz, RL=4Ω
THD = 1% max, F = 1kHz, RL=8Ω
THD = 10% max, F = 1kHz, RL=8Ω
1.15
1.51
0.7
0.9
W
THD + N Total harmonic
distortion + noise
Pout = 500mWRMS, G = 6dB, 20Hz < F< 20kHz
RL=8Ω + 15µH, BW < 30kHz
Pout = 500mWRMS, G = 6dB, F = 1kHz,
RL=8Ω + 15µH, BW < 30kHz
1
0.27
%
Efficiency Efficiency Pout =1W
RMS, RL=4Ω +15µH
Pout =0.65WRMS, RL=8Ω+15µH 78
88 %
PSRR Power supply
rejection ratio with
inputs grounded (3) F = 217Hz, RL=8Ω, G=6dB,
Vripple = 200mVpp 62 dB
CMRR Common mode
rejection ratio F = 217Hz, RL=8Ω, G=6dB,
ΔVicm = 200mVpp 56 dB
Gain Gain value Rin in kΩV/V
RSTBY Internal resistance
from Standby to GND 273 300 327 kΩ
FPWM Pulse width modulator
base frequency 180 250 320 kHz
SNR Signal to noise ratio A-weighting, Pout = 0.6W, RL=8Ω83 dB
tWU Wake-uptime 5 10 ms
tSTBY Standby time 5 10 ms
273k
Ω
Rin
----------------- 300k
Ω
Rin
----------------- 327k
Ω
Rin
-----------------
Electrical characteristics TS4962M
10/41
VNOutput voltage noise
F = 20Hz to 20kHz, G = 6dB
Unweighted RL=4Ω
A-weighted RL=4Ω
83
57
μVRMS
Unweighted RL=8Ω
A-weighted RL=8Ω
83
61
Unweighted RL=4Ω + 15µH
A-weighted RL=4Ω + 15µH 81
58
Unweighted RL=4Ω + 30µH
A-weighted RL=4Ω + 30µH 87
62
Unweighted RL=8Ω + 30µH
A-weighted RL=8Ω + 30µH 77
56
Unweighted RL=4Ω + Filter
A-weighted RL=4Ω + Filter 85
63
Unweighted RL=4Ω + Filter
A-weighted RL=4Ω + Filter 80
57
1. All electrical values are guaranteed with correlation measurements at 2.5V and 5V.
2. Standby mode is active when VSTBY is tied to GND.
3. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to VCC @ F =217Hz.
Table 6. VCC = +3.6V, GND = 0V, VIC = 2.5V, Tamb = 25°C (unless otherwise specified)(1)
Symbol Parameter Conditions Min. Typ. Max. Unit
TS4962M Electrical characteristics
11/41
Table 7. VCC = +3V, GND = 0V, VIC =2.5V, T
amb = 25°C (unless o th erw is e sp e ci fie d)(1)
Symbol Parameter Conditions Min. Typ. Max. Unit
ICC Supply current No input signal, no load 1.9 2.7 mA
ISTBY Standby current (2) No input signal, VSTBY = GND 10 1000 nA
VOO Output offset voltage No input signal, RL=8Ω325mV
Pout Output pow er
G=6dB
THD = 1% max, F = 1kHz, RL=4Ω
THD = 10% max, F = 1kHz, RL=4Ω
THD = 1% max, F = 1kHz, RL=8Ω
THD = 10% max, F = 1kHz, RL=8Ω
0.75
1
0.5
0.6
W
THD + N Total harmonic
distortion + noise
Pout = 350mWRMS, G = 6dB, 20Hz < F < 20kHz
RL=8Ω + 15µH, BW < 30kHz
Pout =350mW
RMS, G = 6dB, F = 1kHz,
RL=8Ω + 15µH, BW < 30kHz
1
0.21
%
Efficiency Efficiency Pout =0.7W
RMS, RL=4Ω +15µH
Pout =0.45W
RMS, RL=8Ω+15µH 78
88 %
PSRR Power supply
rejection ratio with
inputs grounded (3) F = 217Hz, RL=8Ω, G=6dB,
Vripple = 200mVpp 60 dB
CMRR Common mode
rejection ratio F = 217Hz, RL=8Ω, G=6dB,
ΔVicm =200mV
pp 54 dB
Gain Gain value Rin in kΩV/V
RSTBY Internal resistance
from Standby to GND 273 300 327 kΩ
FPWM Pulse width modulator
base frequency 180 250 320 kHz
SNR Signal to noise ratio A-weighting, Pout = 0.4W, RL=8Ω82 dB
tWU Wake-up time 5 10 ms
tSTBY Standby time 5 10 ms
273k
Ω
Rin
----------------- 300k
Ω
Rin
----------------- 327k
Ω
Rin
-----------------
Electrical characteristics TS4962M
12/41
VNOutput Voltage Noise
f = 20Hz to 20kHz, G = 6dB
Unweighted RL=4Ω
A-weighted RL=4Ω
83
57
μVRMS
Unweighted RL=8Ω
A-weighted RL=8Ω
83
61
Unweighted RL=4Ω + 15µH
A-weighted RL=4Ω + 15µH 81
58
Unweighted RL=4Ω + 30µH
A-weighted RL=4Ω + 30µH 87
62
Unweighted RL=8Ω + 30µH
A-weighted RL=8Ω + 30µH 77
56
Unweighted RL=4Ω + Filter
A-weighted RL=4Ω + Filter 85
63
Unweighted RL=4Ω + Filter
A-weighted RL=4Ω + Filter 80
57
1. All electrical values are guaranteed with correlation measurements at 2.5V and 5V.
2. Standby mode is active when VSTBY is tied to GND.
3. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to VCC @ F =217Hz.
Table 7. VCC = +3V, GND = 0V, VIC =2.5V, T
amb = 25°C (unless o th erw is e sp e ci fie d)(1)
Symbol Parameter Conditions Min. Typ. Max. Unit
TS4962M Electrical characteristics
13/41
Table 8. VCC = +2.5V, GND = 0V, VIC = 2.5V, Tamb = 25°C (unle ss otherwise specifie d)
Symbol Parameter Conditions Min. Typ. Max. Unit
ICC Supply current No input signal, no load 1.7 2.4 mA
ISTBY Standby current (1) No input signal, VSTBY = GND 10 1000 nA
VOO Output offset voltage No input signal, RL=8Ω325mV
Pout Output pow er
G=6dB
THD = 1% max, F = 1kHz, RL=4Ω
THD = 10% max, F = 1kHz, RL=4Ω
THD = 1% max, F = 1kHz, RL=8Ω
THD = 10% max, F = 1kHz, RL=8Ω
0.52
0.71
0.33
0.42
W
THD + N Total harmonic
distortion + noise
Pout = 200mWRMS, G = 6dB, 20Hz < F< 20kHz
RL=8Ω + 15µH, BW < 30kHz
Pout = 200WRMS, G = 6dB, F = 1kHz,
RL=8Ω + 15µH, BW < 30kHz
1
0.19
%
Efficiency Efficiency Pout =0.47W
RMS, RL=4Ω +15µH
Pout =0.3W
RMS, RL=8Ω+15µH 78
88 %
PSRR Power supply
rejection ratio with
inputs grounded (2) F = 217Hz, RL=8Ω, G=6dB,
Vripple = 200mVpp 60 dB
CMRR Common mode
rejection ratio F = 217Hz, RL=8Ω, G=6dB,
ΔVicm = 200mVpp 54 dB
Gain Gain value Rin in kΩV/V
RSTBY Internal resistance
from Standby to GND 273 300 327 kΩ
FPWM Pulse width modulator
base frequency 180 250 320 kHz
SNR Signal to noise ratio A-weighting, Pout = 1.2W, RL=8Ω80 dB
tWU Wake-up time 5 10 ms
tSTBY Standby time 5 10 ms
273k
Ω
Rin
----------------- 300k
Ω
Rin
----------------- 327k
Ω
Rin
-----------------
Electrical characteristics TS4962M
14/41
VNOutput Voltage Noise
F = 20Hz to 20kHz, G = 6dB
Unweighted RL=4Ω
A-weighted RL=4Ω
85
60
μVRMS
Unweighted RL=8Ω
A-weighted RL=8Ω
86
62
Unweighted RL=4Ω + 15µH
A-weighted RL=4Ω + 15µH 76
56
Unweighted RL=4Ω + 30µH
A-weighted RL=4Ω + 30µH 82
60
Unweighted RL=8Ω + 30µH
A-weighted RL=8Ω + 30µH 67
53
Unweighted RL=4Ω + Filter
A-weighted RL=4Ω + Filter 78
57
Unweighted RL=4Ω + Filter
A-weighted RL=4Ω + Filter 74
54
1. Standby mode is active when VSTBY is tied to GND.
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to VCC @ F =217Hz.
Table 8. VCC = +2.5V, GND = 0V, VIC = 2.5V, Tamb = 25°C (unle ss otherwise specifie d)
Symbol Parameter Conditions Min. Typ. Max. Unit
TS4962M Electrical characteristics
15/41
Table 9. VCC = +2.4V, GND = 0V, VIC =2.5V, T
amb = 25°C (unless ot h erw is e sp e ci fie d)
Symbol Parameter Conditions Min. Typ. Max. Unit
ICC Supply current No input signal, no load 1.7 mA
ISTBY Standby current (1) No input signal, VSTBY = GND 10 nA
VOO Output offset voltage No input signal, RL=8Ω3mV
Pout Output pow er
G=6dB
THD = 1% max, F = 1kHz, RL=4Ω
THD = 10% max, F = 1kHz, RL=4Ω
THD = 1% max, F = 1kHz, RL=8Ω
THD = 10% max, F = 1kHz, RL=8Ω
0.48
0.65
0.3
0.38
W
THD + N Total harmonic
distortion + noise Pout = 200mWRMS, G = 6dB, 20Hz < F< 20kHz
RL=8Ω + 15µH, BW < 30kHz 1%
Efficiency Efficiency Pout =0.38W
RMS, RL=4Ω +15µH
Pout =0.25W
RMS, RL=8Ω+15µH 77
86 %
CMRR Common mode
rejection ratio F = 217Hz, RL=8Ω, G=6dB,
ΔVicm = 200mVpp 54 dB
Gain Gain value Rin in kΩV/V
RSTBY Internal resistance
from Standby to GND 273 300 327 kΩ
FPWM Pulse width modulator
base frequency 250 kHz
SNR Signal to noise ratio A Weighting, Pout = 1.2W, RL=8Ω80 dB
tWU Wake-up time 5 ms
tSTBY Standby time 5 ms
VNOutput voltage noise
F = 20Hz to 20kHz, G = 6dB
Unweighted RL=4Ω
A-weighted RL=4Ω
85
60
μVRMS
Unweighted RL=8Ω
A-weighted RL=8Ω
86
62
Unweighted RL=4Ω + 15µH
A-weighted RL=4Ω + 15µH 76
56
Unweighted RL=4Ω + 30µH
A-weighted RL=4Ω + 30µH 82
60
Unweighted RL=8Ω + 30µH
A-weighted RL=8Ω + 30µH 67
53
Unweighted RL=4Ω + Filter
A-weighted RL=4Ω + Filter 78
57
Unweighted RL=4Ω + Filter
A-weighted RL=4Ω + Filter 74
54
1. Standby mode is active when VSTBY is tied to GND.
273k
Ω
Rin
----------------- 300k
Ω
Rin
----------------- 327k
Ω
Rin
-----------------
Electrical characteristic curves TS4962M
16/41
4 Electrical characteristic curves
The graphs included in this section use the following abbreviat ions:
RL + 15μH or 30μH = pure resistor + very low series resist ance inductor
Filter = LC output filter (1µF+30µH for 4Ω and 0.5µF+60µH for 8Ω)
All measurements done with Cs1=1µF and Cs2=100nF except for PSRR where Cs1 is
removed.
Figure 2. Test diagram for measurements
Figure 3. Test diagram for PSRR measurements
In+
In-
Rin
150k
Rin
150k
Cin
Cin
GND
Vcc
+
Cs1
1uF
GND
Cs2
100nF
GND
RL
4 or 8 Ohms
15uH or 30uH
or
LC Filter
5th order
50kHz low pass
filter
Audio Measurement
Bandwidth < 30kHz
Out+
Out-
TS4962
In+
In-
Rin
150k
Rin
150k
4.7uF
4.7uF
GND
Cs2
100nF
GND
RL
4 or 8 Ohms
15uH or 30uH
or
LC Filter
5th order
50kHz low pass
filter
RMS Selective Measurement
Bandwidth=1% of Fmeas
Out+
Out-
TS4962
GND
5th order
50kHz low pass
filter
Reference
20Hz to 20kHz Vcc
GND
TS4962M Electrical characteristic curves
17/41
Figure 4. Current consumption vs. power
supply voltage Figure 5. Current consumption vs. standby
voltage
012345
0.0
0.5
1.0
1.5
2.0
2.5 No load
Tamb=25°C
Current Consumption (mA)
Power Supply Voltage ( V)
012345
0.0
0.5
1.0
1.5
2.0
2.5
Vcc = 5V
No load
Tamb=25
°
C
Current Consumption (mA)
Standby Voltage (V)
Figure 6. Current consumption vs. st andby
voltage Figure 7. Output offset voltage vs. common
mode input voltage
0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
0.5
1.0
1.5
2.0
Vcc = 3V
No load
Tamb=25
°
C
Current Consumption (mA)
Standby Voltage (V)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0
2
4
6
8
10
Vcc=3.6V
Vcc=2.5V
Vcc=5V
G = 6dB
Tamb = 25
°
C
Voo (mV)
Common Mode Input Voltage (V)
Figure 8. Efficiency vs. output power Figure 9. Efficiency vs. output power
0.0 0.5 1.0 1.5 2.0
0
20
40
60
80
100
0
100
200
300
400
500
600
Vcc=5V
RL=4
Ω
+
15
μ
H
F=1kHz
THD+N
1%
Power
Dissipation
Efficiency
Efficiency ( % )
Output Power (W) 2.3
Power Dissipation ( m W)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0
20
40
60
80
100
0
50
100
150
200
Vcc=3V
RL=4Ω + 15μH
F=1kHz
THD+N1%
Power
Dissipation
Efficiency
Efficiency ( % )
Output Power (W)
Power Dissipation ( m W)
Electrical characteristic curves TS4962M
18/41
Figure 10. Efficiency vs. output power Figure 11. Efficiency vs. output power
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0
20
40
60
80
100
0
50
100
150
Vcc=5V
RL=8
Ω
+
15
μ
H
F=1kHz
THD+N
1%
Power
Dissipation
Efficiency
Efficiency ( % )
Output Power (W)
Power Dissipation ( m W)
0.0 0.1 0.2 0.3 0.4 0.5
0
20
40
60
80
100
0
25
50
75
Vcc=3V
RL=8
Ω
+
15
μ
H
F=1kHz
THD+N
1%
Power
Dissipation
Efficiency
Efficiency (%)
Output Power (W)
Power Dissipation (mW)
Figure 12. Output power vs. power supply
voltage Figure 13. Output power vs. power supply
voltage
2.5 3.0 3.5 4.0 4.5 5.0 5.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
THD+N=10%
RL = 4
Ω
+
15
μ
H
F = 1kHz
BW < 30kHz
Tamb = 25
°
C
THD+N=1%
Output power (W)
Vcc (V)
2.5 3.0 3.5 4.0 4.5 5.0 5.5
0.0
0.5
1.0
1.5
2.0
THD+N=10%
RL = 8
Ω
+
15
μ
H
F = 1kHz
BW < 30kHz
Tamb = 25
°
C
THD+N=1%
Output power (W)
Vcc (V)
Figure 14. PSRR vs. frequency Figure 15. PSRR vs. frequency
100 1000 10000
-80
-70
-60
-50
-40
-30
-20
-10
0
Vcc=5V, 3.6V, 2.5V
20k
20
Vripple = 200mVpp
Inputs = Grounded
G = 6dB, Cin = 4.7
μ
F
RL = 4
Ω
+ 15
μ
H
Δ
R/R
0.1%
Tamb = 25
°
C
PSRR (dB)
Frequency (Hz)
100 1000 10000
-80
-70
-60
-50
-40
-30
-20
-10
0
Vcc=5V, 3.6V, 2.5V
20k
20
Vripple = 200mVpp
Inputs = Grounded
G = 6dB, Cin = 4.7
μ
F
RL = 4
Ω
+ 30
μ
H
Δ
R/R
0.1%
Tamb = 25
°
C
PSRR (dB)
Frequency (Hz)
TS4962M Electrical characteristic curves
19/41
Figure 16. PSRR vs. frequency Figure 17. PSRR vs. frequency
100 1000 10000
-80
-70
-60
-50
-40
-30
-20
-10
0
Vcc=5V, 3.6V, 2.5V
20k
20
Vripple = 200mVpp
Inputs = Grounded
G = 6dB, Cin = 4.7
μ
F
RL = 4
Ω
+ Filter
Δ
R/R
0.1%
Tamb = 25
°
C
PSRR (dB)
Frequency (Hz)
100 1000 10000
-80
-70
-60
-50
-40
-30
-20
-10
0
Vcc=5V, 3.6V, 2.5V
20k
20
Vripple = 200mVpp
Inputs = Grounded
G = 6dB, Cin = 4.7
μ
F
RL = 8
Ω
+ 15
μ
H
Δ
R/R
0.1%
Tamb = 25
°
C
PSRR (dB)
Frequency (Hz)
Figure 18. PSRR vs. frequency Figure 19. PSRR vs. frequency
100 1000 10000
-80
-70
-60
-50
-40
-30
-20
-10
0
Vcc=5V, 3.6V, 2.5V
20k
20
Vripple = 200mVpp
Inputs = Grounded
G = 6dB, Cin = 4.7
μ
F
RL = 8
Ω
+ 30
μ
H
Δ
R/R
0.1%
Tamb = 25
°
C
PSRR (dB)
Frequency (Hz)
100 1000 10000
-80
-70
-60
-50
-40
-30
-20
-10
0
Vcc=5V, 3.6V, 2.5V
20k
20
Vripple = 200mVpp
Inputs = Grounded
G = 6dB, Cin = 4.7
μ
F
Δ
R/R
0.1%
RL = 8
Ω
+ Filter
Tamb = 25
°
C
PSRR (dB)
Frequency (Hz)
Figure 20. PSRR vs. common mode input
voltage Figure 21. CMRR vs. frequency
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
-80
-70
-60
-50
-40
-30
-20
-10
0
Vcc=3.6V
Vcc=2.5V
Vcc=5V
Vripple = 200mVpp
F = 217Hz, G = 6dB
RL
4
Ω
+
15
μ
H
Tamb = 25
°
C
PSRR(dB)
Common Mode Input Voltage (V)
100 1000 10000
-60
-40
-20
0
Vcc=5V, 3.6V, 2.5V
RL=4
Ω
+ 15
μ
H
G=6dB
Δ
Vicm=200mVpp
Δ
R/R
0.1%
Cin=4.7
μ
F
Tamb = 25
°
C
20k20
CMRR (dB)
Frequency (Hz)
Electrical characteristic curves TS4962M
20/41
Figure 22. CMRR vs. frequency Figure 23. CMRR vs. frequency
100 1000 10000
-60
-40
-20
0
Vcc=5V, 3.6V, 2.5V
RL=4
Ω
+ 30
μ
H
G=6dB
Δ
Vicm=200mVpp
Δ
R/R
0.1%
Cin=4.7
μ
F
Tamb = 25
°
C
20k20
CMRR (dB)
Frequency (Hz)
100 1000 10000
-60
-40
-20
0
Vcc=5V, 3.6V, 2.5V
RL=4
Ω
+ Filter
G=6dB
Δ
Vicm=200mVpp
Δ
R/R
0.1%
Cin=4.7
μ
F
Tamb = 25
°
C
20k20
CMRR (dB)
Frequency (Hz)
Figure 24. CMRR vs. frequency Figure 25. CMRR vs. frequency
100 1000 10000
-60
-40
-20
0
Vcc=5V, 3.6V, 2.5V
RL=8
Ω
+ 15
μ
H
G=6dB
Δ
Vicm=200mVpp
Δ
R/R
0.1%
Cin=4.7
μ
F
Tamb = 25
°
C
20k20
CMRR (dB)
Frequency (Hz)
Figure 26. CMRR vs. frequency Figure 27. CMRR vs. common mode input
voltage
100 1000 10000
-60
-40
-20
0
Vcc=5V, 3.6V, 2.5V
RL=8
Ω
+ Filter
G=6dB
Δ
Vicm=200mVpp
Δ
R/R
0.1%
Cin=4.7
μ
F
Tamb = 25
°
C
20k20
CMRR (dB)
Frequency (Hz) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
-70
-60
-50
-40
-30
-20
Vcc=3.6V
Vcc=2.5V
Vcc=5V
Δ
Vicm = 200mVpp
F = 217Hz
G = 6dB
RL
4
Ω
+
15
μ
H
Tamb = 25
°
C
CMRR(dB)
Common Mode Input Voltage (V)
TS4962M Electrical characteristic curves
21/41
Figure 28. THD+N vs. output power Figure 29. THD+N vs. output power
1E-3 0.01 0.1 1
0.1
1
10
3
Vcc=3.6V
Vcc=5V
Vcc=2.5V
RL = 4Ω + 15μH
F = 100Hz
G = 6dB
BW < 30kHz
Tamb = 25°C
THD + N (%)
Output Power (W)
1E-3 0.01 0.1 1
0.1
1
10
Vcc=3.6V
3
Vcc=5V
Vcc=2.5V
RL = 4Ω + 30μH or Filter
F = 100Hz
G = 6dB
BW < 30kHz
Tamb = 25°C
THD + N (%)
Output Power (W)
Figure 30. THD+N vs. output power Figure 31. THD+N vs. output power
1E-3 0.01 0.1 1
0.1
1
10
2
Vcc=5V
Vcc=2.5V
Vcc=3.6V
RL = 8
Ω
+ 15
μ
H
F = 100Hz
G = 6dB
BW < 30kHz
Tamb = 25
°
C
THD + N (%)
Output Power (W)
1E-3 0.01 0.1 1
0.1
1
10
2
Vcc=5V
Vcc=2.5V
Vcc=3.6V
RL = 8
Ω
+ 30
μ
H or Filter
F = 100Hz
G = 6dB
BW < 30kHz
Tamb = 25
°
C
THD + N (%)
Output Power (W)
Figure 32. THD+N vs. output power Figure 33. THD+N vs. output power
1E-3 0.01 0.1 1
0.1
1
10
3
Vcc=3.6V
Vcc=5V
Vcc=2.5V
RL = 4Ω + 15μH
F = 1kHz
G = 6dB
BW < 30kHz
Tamb = 25°C
THD + N (%)
Output Power (W)
1E-3 0.01 0.1 1
0.1
1
10
Vcc=3.6V
3
Vcc=5V
Vcc=2.5V
RL = 4
Ω
+ 30
μ
H or Filter
F = 1kHz
G = 6dB
BW < 30kHz
Tamb = 25
°
C
THD + N (%)
Output Power (W)
Electrical characteristic curves TS4962M
22/41
Figure 34. THD+N vs. output power Figure 35. THD+N vs. output power
1E-3 0.01 0.1 1
0.1
1
10
2
Vcc=5V
Vcc=2.5V
Vcc=3.6V
RL = 8
Ω
+ 15
μ
H
F = 1kHz
G = 6dB
BW < 30kHz
Tamb = 25
°
C
THD + N (%)
Output Power (W)
1E-3 0.01 0.1 1
0.1
1
10
2
Vcc=5V
Vcc=2.5V
Vcc=3.6V
RL = 8
Ω
+ 30
μ
H or Filter
F = 1kHz
G = 6dB
BW < 30kHz
Tamb = 25
°
C
THD + N (%)
Output Power (W)
Figure 36. THD+N vs. frequency Figure 37. THD+N vs. frequency
100 1000 10000
0.1
1
10
Po=0.75W
Po=1.5W
RL=4Ω + 15μH
G=6dB
Bw < 30kHz
Vcc=5V
Tamb = 25°C
20k50
THD + N (%)
Frequency (Hz) 100 1000 10000
0.1
1
10
Po=0.75W
Po=1.5W
RL=4Ω + 30μH or Filter
G=6dB
Bw < 30kHz
Vcc=5V
Tamb = 25°C
20k50
THD + N (%)
Frequency (Hz)
Figure 38. THD+N vs. frequency Figure 39. THD+N vs. frequency
100 1000 10000
0.1
1
10
Po=0.45W
Po=0.9W
RL=4
Ω
+ 15
μ
H
G=6dB
Bw < 30kHz
Vcc=3.6V
Tamb = 25
°
C
20k50
THD + N (%)
Frequency (Hz)
100 1000 10000
0.1
1
10
Po=0.45W
Po=0.9W
RL=4Ω + 30μH or Filter
G=6dB
Bw < 30kHz
Vcc=3.6V
Tamb = 25°C
20k50
THD + N (%)
Frequency (Hz)
TS4962M Electrical characteristic curves
23/41
Figure 40. THD+N vs. frequency Figure 41. THD+N vs. frequency
1000 10000
0.1
1
10
Po=0.2W
Po=0.4W
RL=4Ω + 15μH
G=6dB
Bw < 30kHz
Vcc=2.5V
Tamb = 25°C
20k200
THD + N (%)
Frequency (Hz)
100 1000 10000
0.1
1
10
Po=0.2W
Po=0.4W
RL=4Ω + 30μH or Filter
G=6dB
Bw < 30kHz
Vcc=2.5V
Tamb = 25°C
20k50
THD + N (%)
Frequency (Hz)
Figure 42. THD+N vs. frequency Figure 43. THD+N vs. frequency
100 1000 10000
0.1
1
10
Po=0.45W
Po=0.9W
RL=8Ω + 15μH
G=6dB
Bw < 30kHz
Vcc=5V
Tamb = 25°C
20k50
THD + N (%)
Frequency (Hz)
100 1000 10000
0.1
1
10
Po=0.45W
Po=0.9W
RL=8Ω + 30μH or Filter
G=6dB
Bw < 30kHz
Vcc=5V
Tamb = 25°C
20k50
THD + N (%)
Frequency (Hz)
Figure 44. THD+N vs. frequency Figure 45. THD+N vs. frequency
100 1000 10000
0.1
1
10
Po=0.25W
Po=0.5W
RL=8Ω + 15μH
G=6dB
Bw < 30kHz
Vcc=3.6V
Tamb = 25°C
20k50
THD + N (%)
Frequency (Hz) 100 1000 10000
0.1
1
10
Po=0.25W
Po=0.5W
RL=8
Ω
+ 30
μ
H or Filter
G=6dB
Bw < 30kHz
Vcc=3.6V
Tamb = 25
°
C
20k50
THD + N (%)
Frequency (Hz)
Electrical characteristic curves TS4962M
24/41
Figure 46. THD+N vs. frequency Figure 47. THD+N vs. frequency
100 1000 10000
0.01
0.1
1
10
Po=0.1W
Po=0.2W
RL=8
Ω
+ 15
μ
H
G=6dB
Bw < 30kHz
Vcc=2.5V
Tamb = 25
°
C
20k50
THD + N (%)
Frequency (Hz) 100 1000 10000
0.01
0.1
1
10
Po=0.1W
Po=0.2W
RL=8
Ω
+ 30
μ
H or Filter
G=6dB
Bw < 30kHz
Vcc=2.5V
Tamb = 25
°
C
20k50
THD + N (%)
Frequency (Hz)
Figure 48. Gain vs. frequency Figure 49. Gain vs. frequency
100 1000 10000
0
2
4
6
8
Vcc=5V, 3.6V, 2. 5V
RL=4
Ω
+ 15
μ
H
G=6dB
Vin=500mVpp
Cin=1
μ
F
Tamb = 25
°
C
20k20
Differential Gain (dB)
Frequency (Hz)
100 1000 10000
0
2
4
6
8
Vcc=5V, 3.6V, 2.5V
RL=4Ω + 30μH
G=6dB
Vin=500mVpp
Cin=1μF
Tamb = 25°C
20k20
Differential Gain (dB)
Frequency (Hz)
Figure 50. Gain vs. frequency Figure 51. Gain vs. frequency
100 1000 10000
0
2
4
6
8
Vcc=5V, 3.6V, 2. 5V
RL=4
Ω
+ Filter
G=6dB
Vin=500mVpp
Cin=1
μ
F
Tamb = 25
°
C
20k20
Differential Gain (dB)
Frequency (Hz)
100 1000 10000
0
2
4
6
8
Vcc=5V, 3.6V, 2.5V
RL=8Ω + 15μH
G=6dB
Vin=500mVpp
Cin=1μF
Tamb = 25°C
20k20
Differential Gain (dB)
Frequency (Hz)
TS4962M Electrical characteristic curves
25/41
Figure 52. Gain vs. frequency Figure 53. Gain vs. frequency
100 1000 10000
0
2
4
6
8
Vcc=5V, 3.6V, 2. 5V
RL=8Ω + 30μH
G=6dB
Vin=500mVpp
Cin=1μF
Tamb = 25°C
20k20
Differential Gain (dB)
Frequency (Hz)
100 1000 10000
0
2
4
6
8
Vcc=5V, 3.6V, 2. 5V
RL=8Ω + Filter
G=6dB
Vin=500mVpp
Cin=1μF
Tamb = 25°C
20k20
Differential Gain (dB)
Frequency (Hz)
Figure 54. Gain vs. frequency Figure 55. Startup & shutdown time
VCC =5V, G=6dB, C
in =1µF
(5ms/div)
100 1000 10000
0
2
4
6
8
Vcc=5V, 3.6V, 2. 5V
RL=No Load
G=6dB
Vin=500mVpp
Cin=1μF
Tamb = 25°C
20k20
Differential Gain (dB)
Frequency (Hz)
Vo1
Vo2
Vo1-Vo2
Standby
Electrical characteristic curves TS4962M
26/41
Figure 56. Startup & shutdown time
VCC =3V, G =6dB, Cin =1µF
(5ms/div)
Figure 57. Startup & shutdown time
VCC =5V, G =6dB, Cin =100nF
(5ms/div)
Vo1
Vo2
Vo1-Vo2
Standby
Vo1
Vo2
Vo1-Vo2
Standby
Figure 58. Startup & shutdown time
VCC =3V, G =6dB, Cin =100nF
(5ms/div)
Figure 59. Startup & shutdown time
VCC =5V, G =6dB, No Cin (5ms/div)
Vo1
Vo2
Vo1-Vo2
Standby
Vo1
Vo2
Vo1-Vo2
Standby
TS4962M Electrical characteristic curves
27/41
Figure 60. Startup & shutdown time
VCC = 3V, G = 6dB, No Cin (5ms/div)
Vo1
Vo2
Vo1-Vo2
Standby
Application in formation TS4962M
28/41
5 Application information
5.1 Differential configuration principle
The TS4962M is a monolithic fully-differ ential input/output class D po wer amplifier. The
TS4962M also includes a commo n-mode feedback loop that controls the output bias value
to average it at VCC/2 for an y DC common mode input voltage. This allows the device to
always have a maximum output voltage swing, and by consequence, maximizes the output
power. Moreover, as the load is connected differentially compared to a single-ended
topology, the output is four times higher for the same power supply voltage.
The advantages of a full-differential amplifier are:
High PSRR (power supply rejection ratio).
High common mode noise rejection.
Virtually zero pop without additional circuitry, giving a faster start-up time compared to
conventional single -ended input amplifiers.
Easier interfacing with differential output audio DAC.
No input coupling capacitors required due to common mode feedback loop.
The main disadvantage is:
As the differential function is directly linked to external resistor mismatching, paying
particular attention to this mismatching is mandatory in order to obtain the best
performance from the amplifier.
5.2 Gain in typical application schematic
Typical differential applications are shown in Figure 1 on page 4.
In the flat region of the frequency-response curve (no input coupling capacitor effect), the
differential gain is expressed by the relation:
with Rin expressed in kΩ.
Due to the tolerance of the inte rnal 150kΩ feedback resistor, the differential gain will be in
the range (no tolerance on Rin):
AVdiff Out+Out-
In+In-
------------------------------- 300
Rin
----------==
273
Rin
---------- AVdiff 327
Rin
----------
≤≤
TS4962M Application information
29/41
5.3 Common mode feedback loop limitations
As e xplained pre viously, the common mode fe edback loop allo ws the output DC bias v oltage
to be averaged at VCC/2 for any DC common mode bias input voltage.
However, due to Vicm limitation in the input stage (see Table 2: Operating conditions on
page 3), the common mode feedback loop can ensure its role only within a defined range.
This range depends upon the values of VCC and Rin (AVdiff). To hav e a good estimation of
the Vicm value, we can apply this formula (no tolerance on Rin):
with
and the result of the calculation must be in the range:
Due to the +/-9% tolerance on the 150k Ω resistor, it’s also important to check Vicm in these
conditions:
If the result of Vicm calculation is not in the previous range, input coupling capacitors must
be used (with VCC from 2.4V to 2.5V, input coupling capacitors are mandat ory).
For example:
With VCC =3V, R
in = 150k and VIC = 2.5V, we typically find Vicm = 2V and this is lower than
3V- 0.8V = 2.2V. With 136.5kΩ we find 1.97V, and with 163.5kΩ we ha v e 2.02V. So , no input
coupling capacitors are required.
5.4 Low frequency response
If a low frequency bandwidth limitation is requested, it is possible to use input coupling
capacitors.
In the low frequency region, Cin (input coupling capacitor) starts to hav e an eff ect. C in forms,
with Rin, a first order high-pass filter with a -3dB cut-off frequency:
So, for a desired cut-off frequency we can calculate Cin,
with Rin in Ω and FCL in Hz.
Vicm VCC Rin
×2V
IC
×150kΩ×+
2R
in 150kΩ+()×
------------------------------------------------------------------------------ (V)=
VIC In+In-
+
2
--------------------- (V)=
0.5 V Vicm VCC 0.8V≤≤
VCC Rin
×2V
IC
×136.5kΩ×+
2R
in 136.5kΩ+()×
----------------------------------------------------------------------------------- Vicm VCC Rin
×2V
IC
×163.5kΩ×+
2R
in 163.5kΩ+()×
-----------------------------------------------------------------------------------
≤≤
FCL 1
2πRin
×Cin
×
-------------------------------------- (Hz)=
Cin 1
2πRin
×FCL
×
---------------------------------------- (F)=
Application in formation TS4962M
30/41
5.5 Decoupling of the cir cuit
A power supply capacitor, referred to as CS, is needed to correctly bypass the TS4962M.
The TS4962M has a typical switching frequency at 250kHz and output fall and rise time
about 5ns. Due to these very fast transients, careful decoupling is mandatory.
A 1µF ceramic capacitor is enough, but it must be located very close to the TS4962M in
order to avo id any extra parasitic inductance created an overly long track wire. In relation
with dI/dt, this par asitic inductance introduces an overvoltage that decreases the global
efficiency and, if it is too high, may cause a breakdown of the device.
In addition, even if a ceramic capacitor has an adequate high frequency ESR value, its
current capability is also important. A 0603 size is a good compromise, particularly when a
4Ω load is used.
Another important parameter is the rated voltage of the capacitor. A 1µF/6.3V capacitor
used at 5V, loses about 50% of its value. In fact, with a 5V power supply voltage, the
decoupling value is about 0.5µF inst ead of 1µF. As CS has particular influence on the
THD+N in the medium-high frequency region, this capacitor variation becomes decisive. In
addition, less decoupling means higher overshoots, which can be problematic if they reach
the power supply AMR value (6V).
5.6 Wake-up time (tWU)
When the standby is released to se t the device ON, there is a wait of about 5ms. The
TS4962M has an inte rnal digital delay that mutes the outputs and releases them after this
time in order to avoid any pop noise.
5.7 Shutdown time (tSTBY)
When the standby command is set, the time required to put the two output stages into high
impedance and to put the inter nal circuitry in shutdown mode, is about 5ms. This time is
used to decrease the gain and avoid any pop noise during shutdown.
5.8 Consumption in shutdown mode
Between th e shut d o wn pin a nd G ND there is an int ernal 300kΩ resistor . This resistor forces
the TS4962M to be in standby mode when th e standby input pin is left floating.
How ever, this re sistor also introduces additional power consumption if the shutdown pin
voltage is not 0V.
For example, with a 0.4V standby voltage pin, Table 2: Operating conditions on page 3,
shows that y o u m ust a dd 0.4V/ 300kΩ= 1.3µA in typical (0.4V/273kΩ=1.46µA in maximum)
to the shutdown current specified in Table 4 on page 5.
5.9 Single-ended input configuration
It is possib le to use the TS4962M in a single-ended input configuration. However, input
coupling capacitors are needed in this configuration. The schematic in Figure 61 shows a
single-ended input typical application.
TS4962M Application information
31/41
Figure 61. Single-ended input typical application
All formulas are identica l except for the gain (w it h R in in kΩ) :
And, due to the internal resistor tolerance we have:
In the event that multiple single-ended inputs are summed, it is important that the
impedance on both TS4 962M inputs (In- and In+) are equal.
Figure 62. Typical application schematic with multiple single-ended inputs
Rin
Rin
Cs
1u
GND
GND
Vcc
SPEAKER
In-
Stdby
In+
Out-
Out+
Vcc
C2
C1
A1
A2
A3
B1 B2
B3
C3
GND
Internal
Bias
PWM
Output
Bridge
H
Oscillator
150k
150k
+
-
300k
TS4962
Cin
Cin
Ve
GND
GND
Standby
AVglesin
Ve
Out+Out-
------------------------------- 300
Rin
----------==
273
Rin
---------- AVglesin 327
Rin
----------
≤≤
Rin1
Req
Cs
1u
GND
GND
Vcc
SPEAKER
Cin1
Ceq
Ve1
GND
GND
Standby
Rink
Cink
Vek
GND
In-
Stdby
In+
Out-
Out+
Vcc
C2
C1
A1
A2
A3
B1 B2
B3
C3
GND
Internal
Bias
PWM
Output
Bridge
H
Oscillator
150k
150k
+
-
300k
TS4962
Application in formation TS4962M
32/41
We hav e the following equations:
In general, fo r mixed situations (single-ended and differential inputs), it is best to use the
same rule, that is, to equalize impedance on both TS4962M inputs.
5.10 Output filter considerations
The TS4962M is designed to operate with out an output filter. However, due to very sharp
transients on the TS4962M output, EMI radiated emissions may cause some standard
compliance issues.
These EMI standard compliance issues can appear if the distance between the TS4962M
outputs and loudspeaker terminal is long (typically more than 50mm, or 100mm in both
directions, to the speaker terminals). As the PCB layout and internal equipment device are
different for each configuration, it is difficult to provide a one-size-fits-all solution.
However, to decrease the probability of EMI issues, there are several simple rules to follow:
Reduce, as much as possible, the dist ance between the TS4962M output pins and the
speaker terminals.
Use ground p lanes for “shielding” sensitive wires.
Place, as close as possible to the TS4962M and in series with each output, a ferrite
bead with a rat ed current at minimum 2A and impedance greater than 50Ω at
frequencies above 30 MHz. If, after testing, these ferrite beads are not necessary,
replace them by a short-circuit. Murata BLM18EG221SN1 or BLM18EG121SN1 are
possible examples of devices you can use.
Allow enough footprint to place, if necessary, a capacitor to short perturbations to
ground (see the schematics in Figure 63).
Figure 63. Method for shorting pertubations to ground
Out+Out-
Ve1 300
Rin1
-------------
×…Vek 300
Rink
-------------
× (V)++=
Ceq
k
Σ
j1=Cinj
=
Cinj 1
2πRinj F××× CLj
------------------------------------------------------- (F)=
Req 1
1
Rinj
----------
j1=
k
-------------------=
Ferrite chip bead
ab out 10 0pF
Gnd
F r om T S4962 output T o speak er
TS4962M Application information
33/41
In the case where the distance between the TS4962M outputs and speaker terminals is
high, it is possib le to ha v e lo w frequency EMI issues due to the f act that the typical oper ating
frequency is 250kHz. In this configuration, we recommend using an output filter (as shown
in Figure 1: Typical application schematics on page 4). It should be placed as close as
possible to the device.
5.11 Different examples with summed inputs
Example 1: Dual differential inputs
Figure 64. Typical application schematic with dual differential inputs
With (Ri in kΩ):
R1
R1
Cs
1u
GND
GND
Vcc
SPEAKER
Standby
R2
R2
E1+
E1-
E2-
E2+
In-
Stdby
In+
Out-
Out+
Vcc
C2
C1
A1
A2
A3
B1 B2
B3
C3
GND
Internal
Bias
PWM
Output
Bridge
H
Oscillator
150k
150k
+
-
300k
TS4962
AV1Out+Out-
E1+E1-
------------------------------- 300
R1
----------==
AV2Out+Out-
E2+E2-
------------------------------- 300
R2
----------==
0.5V VCC R1
×R2300 VIC1 R2VIC2
+×R1
×()×+×
300 R1R2
+()2R
1
×R2
×+×
-------------------------------------------------------------------------------------------------------------------------------- VCC 0.8V≤≤
VIC1
E1+E1-
+
2
------------------------= and VIC2
E2+E2-
+
2
------------------------=
Application in formation TS4962M
34/41
Example 2: One differential input plus one single-ended input
Figure 65. Typical application schematic with one differential input plus one singl e-
ended input
With (Ri in kΩ):
R1
R2
Cs
1u
GND
GND
Vcc
SPEAKER
Standby
R2
R1
E1+
E2-
E2+
In-
Stdby
In+
Out-
Out+
Vcc
C2
C1
A1
A2
A3
B1 B2
B3
C3
GND
Internal
Bias
PWM
Output
Bridge
H
Oscillator
150k
150k
+
-
300k
TS4962
C1
C1
GND
AV1Out+Out-
E1+
------------------------------- 300
R1
----------==
AV2Out+Out-
E2+E2-
------------------------------- 300
R2
----------==
C11
2πR1
×FCL
×
-------------------------------------- (F)=
TS4962M Demoboard
35/41
6 Demoboard
A demoboard for the TS4962M is available with a flip-chip to DIP adapter. For more
information about this demoboard, refer to Application Note AN2134.
Figure 66. Schematic diagram of mono class D demoboard for TS4962M
Figure 67. Diagram for flip-chip-to-DIP adapter
In-
Stdby
In+
Out-
Out+
Vcc
4
5
1
2
10
38
3
6
GND
Internal
Bias
PWM
Output
Bridge
H
Oscillator
150k
150k
+
-
300k
U1
TS4962 Flip-Chip to DIP Adapter
GND
Vcc
R1
150k
R2
150k
C2
100nF
C3
100nF
Cn3 Cn6
Cn2
1
2
3
Cn1 + J1
GND GND
Vcc Vcc
+
C1
2.2uF/10V
GND
Cn4 + J2
Cn5 + J3
Positive Output
Negative Output
Positive Input
Negative input
In-
Stdby
In+
Out-
Out+
Vcc
C2
C1
A1
A2
A3
B1 B2
B3
C3
GND
Internal
Bias
PWM
Output
Bridge
H
Oscillator
150k
150k
+
-
300k
TS4962
R1
OR
R2
OR
C1
100nF
+
C2
1uF
Pin4
Pin5
Pin1
Pin6
Pin10
Pin3
pin8
Pin2
Pin9
Demoboard TS4962M
36/41
Figure 68. Top view
Figure 69. Bottom layer
Figure 70. Top layer
TS4962M Footprint recommendations
37/41
7 Footprint recommendations
Figure 71. Footprint recommendations
Pad in Cu 18μm with Flash NiAu (2-6μm, 0.2μm max.)
150μm min.
500μm
500μm
500μm
500μm
Φ=250μm
Φ=400μm typ.
75µm min.
100μm max.
Track
Non Solder mask opening
Φ=340μm min.
Pad in Cu 18μm with Flash NiAu (2-6μm, 0.2μm max.)
150μm min.
500μm
500μm
500μm
500μm
Φ=250μm
Φ=400μm typ.
75µm min.
100μm max.
Track
Non Solder mask opening
Φ=340μm min.
Package information TS4962M
38/41
8 Package information
In order to meet environmental requirements, STMicroelectronics offers these devices in
ECOPACK® packages. These packages have a lead-free second level interconnect. The
category of second level intercon nect is marke d on the pa ckage and on the inner box label,
in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics
tradema rk. ECOPACK specifications are available at: www.st.com.
Figure 72. Pin-out for 9-bump flip-chip (top view)
Figure 73. Marking for 9-bump flip-chip (top view)
Figure 74. Mechanical data for 9-bump flip-chip
VDD
1/A1
7/C1 8/C2 9/C3
4/B1 6/B3
2/A2 3/A3
5/B2
VDD
IN-
IN+GND
STBY
GND
OUT+
OUT-
VDD
1/A1
7/C1 8/C2 9/C3
4/B1 6/B3
2/A2 3/A3
5/B2
VDD
IN-
IN+GND
STBY
GND
OUT+
OUT-
Bumps are underneath
Bump diameter = 300μm
ST Logo
Symbol for lead-free: E
Two first XX product code: 62
third X: Assembly code
Three digits d ate code: Y for ye ar - WW for week
The dot is for marking pin A1
XXX
YWW
E
XXX
YWW
E
Die size: 1.6mm x 1.6mm ±3 0 μm
Die height (includin g bum ps ): 600μm
Bump diamete r: 315μm ±50μm
Bump diameter before reflow: 300μm ±10μm
Bump height: 250μm ±4 0μm
Die height: 350μm ±2 0μm
Pitch: 500μm ±50μm
Coplanarity: 50μm max
1.60 mm
1.60 mm
0.5mm
0.5mm
0.25mm
1.60 mm
1.60 mm
0.5mm
0.5mm
0.25mm
600µm600µm
TS4962M Ordering information
39/41
9 Ordering information
Table 10. Ord er codes
Part number Temperature
range Package Packing Marking
TS4962MEIJT -40°C to +85°C Lead-free flip-chip Tape & reel 62
Revision history TS4962M
40/41
10 Revision history
Date Revision Changes
Oct. 2005 1 First release corresponding to the product preview version.
Nov. 2005 2 Electrical data updated for output voltage noise, see Table 4, Table 5,
Table 6, Table 7, Table 8 andTable 9
Formatting changes th roughout.
Dec. 2005 3 Product in full production.
10-Jan-2007 4 Template update, no technical changes.
TS4962M
41/41
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’ s terms and conditions of sale.
Purchasers a re so lel y res ponsibl e fo r th e choic e, se lecti on an d use o f th e ST pr oduc ts and s ervi ces d escr ibed he rein , and ST as sumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document ref er s to an y t hi rd pa rt y p roduc t s or serv ic es it sh al l n ot be dee med a li ce nse gr an t by ST for t he use of su ch t hi rd party products
or services, or any intel lectual pro perty conta ined therei n or considere d as a warranty covering the use in any mann er whatsoev er of such
third party products or services or an y intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTAB ILIT Y, FITNESS F OR A PARTI CULAR PURPOS E (AND THEIR EQUIVALE NTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warrant y granted by ST for the S T product or se rvice descr ibed herein a nd shall no t create or e xtend in any manner whatsoe ver, any
liability of ST.
ST and the ST lo go are tradema rks or registered trademarks of ST in vari ous countri es.
Information in this document supers edes and replaces all information previously sup plied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved
STMicroele ctr on ic s gr ou p of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Ho ng Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com