BR1100/D
REV 22
Reliability and Quality Report
Third Quarter 1996
Microprocessor and Memory
Technologies Group
MICROPROCESSOR
AND MEMORY
TECHNOLOGIES GROUP
RELIABILITY AND QUALITY
REPORT
QUARTER 3, 1996
MOTOROLA INC., 1996
To Our Valued Customers:
Thank You! Thank you for selecting Motorola as your supplier of Microprocessor and Memory Products.
We in Motorola’s Microprocessor and Memory Technologies Group (MMTG) are dedicated to delivering
the products you, our customers, need to be successful — since we cannot hope to succeed unless you
succeed. A key to our combined success is for us to deliver to you products that are as high in quality as
they are in performance. To help you understand the quality and reliability of our products I am glad to
present to you MMTG’s Quarterly Reliability and Quality Report.
At Motorola we have one overriding goal — Total Customer Satisfaction. We want to deliver the
products you need, when you need them, made with the most appropriate technology available. To serve
your needs MMTG’s technology portfolio is extremely broad — we have products built with technologies
ranging from 5.0 µm NMOS to 0.5 µm BiCMOS. Over the past several years our rate of new product and
technology introductions has increased substantially, and we have no intention of slowing down now.
Even though our technology and products become more complex with each new generation, our
expectations for their performance, quality, and reliability continue to increase. We are very proud of the
quality and reliability of our products, but we are not satisfied with it. The goal for our products, the only
appropriate goal, is zero defects!
I hope that you find this report useful and will remain our partner as we progress into a future filled with
products of ever increasing performance, quality, and reliability.
Sincerely,
Barry Waite
Senior Vice President and General Manager
Microprocessor and Memory Technologies Group
Austin, Texas, USA
Semiconductor Products Sector
Microprocessor and Memory Technologies Group
6501 William Cannon Drive West, Austin, Texas 78735-8598 (512) 891-2000
To Our Valued Customers:
A total commitment to quality is an integral part of Motorola’s culture. That commitment has been
highlighted publicly in many different ways from our receiving the first annual Malcolm Baldrige National
Quality Award in 1988 to our industry leading 6-Sigma Quality Program. However, it is the unseen
constant efforts of individual Motorolans striving to make incremental improvements that drive the
continuous improvement of our products’ quality and reliability.
We know that your requirements for the quality and reliability of our products are constantly increasing
because the requirements of your customers for the reliability and quality of your products are also
increasing. We, therefore, engage in a never ending cycle of measuring our performance, determining
the root cause of any failures that occur, correcting those root causes, and then beginning again to
measure our performance.
Each quarter we share the results of these continuous improvement efforts in this publication. We report
to you the trends and current levels of reliability and quality for our broad portfolio of Microprocessor and
Memory products. We also include an overview of our reliability and quality philosophy, as well as short
sections on reliability data analysis and process control techniques.
This report is for you, and we welcome your comments and suggestions to help us improve it. We have
attached a postage paid Customer Response Form to the inside cover of this report to solicit your
feedback. Thank you for choosing Motorola.
Sincerely,
Janet Brown
Group Director of Reliability and Quality Assurance
Microprocessor and Memory Technologies Group
Austin, Texas, USA
Semiconductor Products Sector
Microprocessor and Memory Technologies Group
6501 William Cannon Drive West, Austin, Texas 78735-8598 (512) 891-2000
MOTOROLA
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
WORLD WIDE — WORLD CLASS
MICROPROCESSOR AND
MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY
REPORT
TECHNICAL INFORMATION 1-1. . . . . . . . .
WORLD-WIDE CUSTOMER
SUPPORT 2-1. . . . . . . . . . . . . . . . . . . . . . . . .
FAST STATIC RAMs 3-1. . . . . . . . . . . . . . . .
DYNAMIC RAMs 4-1. . . . . . . . . . . . . . . . . . .
MICROPROCESSOR PRODUCTS 5-1. . . .
QUALITY 6-1. . . . . . . . . . . . . . . . . . . . . . . . . .
PRODUCT PORTFOLIO 7-1. . . . . . . . . . . . .
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
WORLD WIDE — WORLD CLASS
MOTOROLA
1–1
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
Section 1
TECHNICAL INFORMATION
RELIABILITY AND QUALITY
PHILOSOPHY 1–3. . . . . . . . . . . . . . . . . . . . . . . . .
RELIABILITY DATA ANALYSIS 1–4. . . . . . . . . .
RELIABILITY STRESS TESTS 1–8. . . . . . . . . .
STATISTICAL PROCESS
CONTROL 1–9. . . . . . . . . . . . . . . . . . . . . . . . . . . .
MOTOROLA
1–2 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
MOTOROLA
1–3
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
MOTOROLA’S RELIABILITY AND QUALITY PHILOSOPHY
In order to guarantee that the high standards of reliability and quality required by Motorola, an
ongoing Reliability Audit Program has been established.
Individual product and package monitors are generally developed by identifying a process driv-
er device (in most cases the same device used to qualify a process / product / package family).
Once the process driver device is identified, the appropriate stress test programs are put in
place to adequately monitor the ongoing process average of the specific family. This process
average measurement is made by understanding the reliability and quality results of individual
samples from production material. These samples are pulled at the outgoing QA gate portion
of the production flow, then randomly sourced into specified reliability tests. These tests include
Early Fail Studies, Dynamic and Static Long Term Lifetest (which includes Read and Record
Parametric Characterization Samples), Temperature Humidity Bias, Pressure Temperature
Humidity Bias, Autoclave, and Temperature Cycle, as well as preconditioning stress testing on
plastic surface mount packaging technology.
Monitor testing is completed on an ongoing four week cycle. Test results are subsequently
made available in quarterly cycles. This report details all test results received for the previous
quarter, outlining the reliability data associated with all process / package family types.
With all of this data, an effective ongoing monitoring method is established which is capable
of identifying reliability trends associated with all process / product / package families.
MOTOROLA
1–4 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
RELIABILITY DATA ANALYSIS
Reliability is the probability that a semiconductor device will
perform its specified function in a given environment for a spe-
cified period. In other words, reliability is quality over time and
environmental conditions. The most frequently used reliabiity
measure for semiconductor devices is the failure rate ( λ ). The
failure rate is obtained by dividing the number of failures ob-
served by the product of the number of devices on test and the
interval in hours, usually expressed as percent per thousand
hours or failures per billion device hours (FITS). This is called
a point estimate because it is obtained from observations on
a portion (sample) of the population of devices.
T o project from the sample to the population in general, one
must establish confidence intervals. The application of confi-
dence intervals is a statement of how ‘‘confident’’ one is that
the sample failure rate approximates that for the population.
To obtain failure rates at different confidence levels, it is nec-
essary to make use of specific probability distributions. The
chi–square (χ2) distribution that relates observed and ex-
pected frequencies of an event is frequently used to establish
confidence intervals. The relationship between failure rate
and the chi–square distribution is as follows:
λ = χ2 (α, d. f.)
2t
where:
λ= failure rate
χ2 = chi–square function
α= (100 – confidence level) / 100
d.f. = degrees of freedom = 2r + 2
r = number of failures
t = device hours
Chi–square values for 60% and 90% confidence intervals
for up to 12 failures are shown in Table 1–1.
Table 1–1 – Chi–Square Table
Chi–Square Distribution Function
60% Confidence Level 90% Confidence Level
No. Fails χ2 Quantity No. Fails χ2 Quantity
0
1
2
3
4
5
6
7
8
9
10
11
12
1.833
4.045
6.211
8.351
10.473
12.584
14.685
16.780
18.868
20.951
23.031
25.106
27.179
0
1
2
3
4
5
6
7
8
9
10
11
12
4.605
7.779
10.645
13.362
15.987
18.549
21.064
23.542
25.989
28.412
30.813
33.196
35.563
The failure rate of semiconductor devices is inherently low .
As a result, the industry uses a technique called accelerated
testing to assess the reliability of semiconductors. During
accelerated tests, elevated stresses are used to produce, in
a short period, the same failure mechanisms as would be ob-
served under normal use conditions. The objective of this test-
ing is to identify these failure mechanisms and eliminate them
as a cause of failure during the useful life of the product.
Temperature, relative humidity, and voltage are the most
frequently used stresses during accelerated testing. Their re-
lationship to failure rates has been shown to follow an Eyring
type of equation of the form:
λ = A exp(φkT) exp(B/RH) exp(CE)
Where A, B, C, φ, and k are constants, more specifically B,
C, and φ are numbers representing the apparent energy at
which various failure mechanisms occur. These are called
activation energies. ‘‘T’’ is the temperature, ‘‘RH’’ is the
relative humidity , and ‘‘E’’ is the electric field. The most familiar
form of this equation (shown on following page) deals with the
first exponential term that shows an Arrhenius type
relationship of the failure rate versus the junction temperature
of semiconductors. The junction temperature is related to the
ambient temperature through the thermal resistance and
power dissipation. Thus, we can test devices near their
maximum junction temperatures, analyze the failures to
assure that they are the types that are accelerated by
temperature and then by applying known acceleration factors,
estimate the failure rates for lower junction.
Figure 1–1 shows a curve that gives estimates of typical
failure rates versus temperature for semiconductors.
Figure 1–1 – Typical Failure Rate versus
Junction Temperature
90% CONFIDENCE LEVEL
% FAILURE
1000 HOURS
1
0.1
0.01
0.001
0.0001
0.7 eV
1.0 eV
(3.5)(2.5)(2.0)(1.5)
0
2565
100
150
200
250450 350
400500
(3.0)
MOTOROLA
1–5
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
Arrhenius type of equation:
λ = φ
kT
A exp
where:
λ= failure rate
A = constant
φ= activation energy
k = Boltzman’ s constant, 8.62 × 10–5 e/V/°K
T = temperature in degrees Kelvin (TJ°C + 273.15)
Temperature acceleration factors for a particular failure
mechanism can be expressed as the ratio of the failure rates
at two different levels of stress:
1
Tt
1
Tr
Fa = exp( φ /k)
where:
Fa = acceleration factor
φ= activation energy
k = Boltzman’ s constant, 8.62 × 10–5 eV/°K
Tr = junction temperature, °K at the rated ambient
temperature
Since device junction temperature and activation energy
for observed failure mechanisms are ‘‘critical’’ parameters in
estimating failure rate, the following additional information on
these two parameters is presented below.
Tt = junction temperature, °K at the life test ambient
temperature
See Figure 1–2 as an example.
Circuit performance and long–term circuit reliabiity are af-
fected by die temperature. Normally, both are improved by
keeping the junction temperatures low.
Electrical power dissipated in any semiconductor device is
a source of heat. This heat source increases the temperature
of the die about some reference point, normally the ambient
temperature of 25°C in still air. The temperature increase,
then, depends on the amount of power dissipated in the circuit
and on the net thermal resistance between the heat source
and the reference point.
The temperature at the junction depends on the packaging
and mounting system’s ability to remove heat generated in the
circuit from the junction region to the ambient environment.
The basic formula for converting power dissipation to esti-
mated junction temperature is:
TJ = TA + PD (θJC + θCA) (1)
or
TJ = TA + PD (θJA) (2)
where:
TJ= maximum junction temperature
TA= maximum ambient temperature
PD= calculated maximum power dissipation, including
effects of external loads when applicable
θJC = average thermal resistance, junction to case
θCA = average thermal resistance, case to ambient
θJA = average thermal resistance, junction to ambient
This Motorola recommended formula has been approved
by RADC and DESC for calculating a ‘‘practical’’ maximum op-
erating junction temperature for MIL–M–38510 devices.
Figure 1–2 – Example of Temperature Acceleration Factor (0.7 eV Activation Energy)
70
60
50
40
30
20
10
0
70
60
50
40
30
20
10
0
400 800 1200 1400 TESTING TIME (HRS) @ 167.5°C (TJ)
8.6 17 2
630
ACCELERATION
FACTOR
FR (FIT)
FR (FIT)
MOTOROLA
1–6 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
Only two terms on the right side of equation (1) can be var-
ied by the user, the ambient temperature and the device case–
to–ambient thermal resistance, θCA. (To some extent the
device power dissipation can also be controlled, but under
recommended use the supply voltage and loading dictate a
fixed power dissipation.) Both system air flow and the package
mounting technique affect the θCA thermal resistance term.
θJC is essentially independent of air flow and external mount-
ing method, but is sensitive to package material, die bonding
method, and die area.
For applications where the case is held at essentially a
fixed temperature by mounting on a large or temperature con-
trolled heat sink, the estimated junction temperature is calcu-
lated by:
TJ = TC + PD (θJC) (3)
where TC = maximum case temperature and the other
parameters are as previously defined.
AIR FLOW
Air flow over the packages (due to a decrease in θJC)
reduces the thermal resistance of the package, therefore
permitting a corresponding increase in power dissipation
without exceeding the maximum permissible operating junc-
tion temperature.
For thermal resistance values for specific packages, see
the Motorola Data Book or Design Manual for the appropriate
device family or contact your local Motorola sales office.
ACTIVATION ENERGY
Determination of activation energies is accomplished by
testing randomly selected samples from the same population
at various stress levels and comparing failure rates due to the
same failure mechanism. The activation energy is repre-
sented by the slope of the curve relating to the natural
logarithm of the failure rate to the various stress levels.
In calculating failure rates, the comprehensive method is to
use the specific activation energy for each failure mechanism
applicable to the technology and circuit under consideration.
A common alternative method is to use a single activation en-
ergy value for the ‘‘expected’’ failure mechanism(s) with the
lowest activation energy.
Table 1–2, on the following page, shows observed activa-
tion energies with reference.
MOTOROLA
1–7
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
Table 1–2 – Time Dependent Failure Mechanisms in Semiconductor Devices
(Applicable to Discrete and Integrated Circuits)
Device
Association Process Relevant
Factors Accelerating
Factors
Typical
Activation
Energy in eV Model Reference
Silicon Oxide
Silicon–Silicon
Oxide Interface
Metallization
Bond and Other
Mechanical Interfaces
Various Water Fab,
Assembly, and
Silicon Defects
Surface Charges
Inversion, Accumulation
Oxide Pinholes
Dielectric Breakdown
(TDDB)
Charge Loss
Electromigration
Corrosion
Chemical
Galvanic
Electrolytic
Intermetallic
Growth
Metal Scratches
Mask Defects, etc.
Silicon Defects
Mobile Ions
E/V, T
E/V, T
E/V, T
E, T
T, J
Grain Size
Doping
Contamination
T, Impurities
Bond Strength
T, V
T, V
E, T
E, T
E, T
J, T
H, E/V, T
T
T, V
1.0
0.7–1.0 (Bipolar)
1.0 (Bipolar)
0.3–0.4 (MOS)
0.3 (MOS)
0.8 (MOS)
EPROM
1.0 Large grain Al
(glassivated)
0.5
Small grain Al
0.7 Cu–Al/Cu–Si–
Al
(sputtered)
0.6–0.7
(for electrolysis)
E/V may have
thresholds
1.0 (Au/Al)
0.5–0.7 eV
0.5 eV
Fitch, et al.
Peck
1984 WRS
Hokari, et al.
Domangue, et al.
Crook, D.L.
Gear, G.
Nanda, et al.
Black, J.R.
Black, J.R.
L ycoudes, N.E.
Fitch, W.T
Howes, et al.
MMPD
1A
2
18
5
3
4
11
6
7
12
8
9
10
13
V = voltage; E = electric field; T = temperature; J = current density; H = humidity
NO. REFERENCE
1A 1.0 eV activation for leakage type failures.
Fitch, W .T.; Greer , P.; Lycoudes, N.; ‘‘Data to Support 0.001%/1000
Hours for Plastic I/C’s.’ ’ Case study on linear product shows 0.914 eV
activation energy which is within experimental error of 0.9 to 1.3 eV
activation energies for reversible leakage (inversion) failures reported
in the literature.
1B 0.7 To 1.0 eV for oxide defect failures for bipolar structures. This is
under investigation subsequent to information obtained from 1984
W afer Reliability Symposium, especially for bipolar capacitors with
silicon nitride as dielectric.
2 1.0 eV activation for leakage type failures.
Peck, D.S.; ‘‘New Concerns About Integrated Circuit Reliability’’ 1978
Reliability Physics Symposium.
3 0.36 eV for dielectric breakdown for MOS gate structures.
Domangue, E.; Rivera, R.; Shedard, C.; ‘‘Reliability Prediction Using
Large MOS Capacitors’’, 1984 Reliability Physics Symposium.
4 0.3 eV for dielectric breakdown.
Crook, D.L.; ‘‘Method of Determining Reliability Screens for T ime
Dependent Dielectric Breakdown’ ’, 1979 Reliability Physics Sympo-
sium.
5 1.0 eV for dielectric breakdown.
Hokari, Y.; et al.; IEDM Technical Digest, 1982.
6 1.0 eV for large grain Al–Si (compared to line width).
Nanda, Vangard, Gj–P; Black, J.R.; ‘‘Electromigration of Al–Si Alloy
Films’’, 1978 Reliability Physics Symposium.
7 0.5 eV Al, 0.7 eV Cu–Al small grain (compared to line width).
Black, J.R.; ‘‘Current Limitation of Thin Film Conductor’’ 1982 Reliabil-
ity Physics Symposium.
8 0.65 eV for corrosion mechanism.
L ycoudes, N.E.; ‘ ‘The Reliability of Plastic Microcircuits in Moist Envi-
ronments’ ’, 1978 Solid State Technology.
9 1.0 eV for open wires or high resistance bonds at the pad bond due to
Au–Al intermetallics.
Fitch, W .T.; ‘‘Operating Life vs Junction Temperatures for Plastic En-
capsulated I/C (1.5 mil Au wire)’’, unpublished report.
10 0.7 eV for assembly related defects.
Howes, M.G.; Morgan, D.V.; ‘‘Reliability and Degradation, Semicon-
ductor Devices and CIrcuits’’ John Wiley and Sons, 1981.
11 Gear, G.; ‘‘F AMOUS PROM Reliability Studies’ ’, 1976 Reliability Phys-
ics Symposium.
12 Black, J.R.: unpublished report.
13 Motorola Memory Products Division; unpublished report.
MOTOROLA
1–8 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
RELIABILITY STRESS TESTS
The following summary briefly describes the various
reliability tests included in the Motorola reliability monitor
program.
DYNAMIC EARLY FAIL STUDY
This stress is performed to accelerate infant mortality fail-
ure mechanisms, which are defects that occur within the first
year of normal device operation. Typical stress is a tempera-
ture of 125°C, nominal voltage (6 V), and a duration of 168
hours. All devices used in this test are sampled directly after
the standard production final test flow with no prior burn–in or
other prescreening, unless called out in the normal production
flow.
DYNAMIC AND STATIC
LONG TERM LIFETEST
Both Dynamic and Static Long Term Lifetests are per-
formed to accelerate failure mechanisms and access para-
metric shifts, which are voltage and thermally activated. This
is done through the application of extreme temperatures and
the use of biased operating conditions. T ypical stress temper-
ature is 125°C with the bias applied being equal to or greater
than the data sheet nominal value. All memory devices used
in the long term lifetest are sampled from the Dynamic Early
Fail Study. Testing is either performed with dynamic signals
applied to the devices or in a static bias configuration for a test
duration of 1008 hours.
TEMPERATURE CYCLE
This test accelerates the effects of thermal expansion
mismatch among the different components within a specific
die and packaging system. This test is typically performed to
minimum and maximum temperatures of – 65°C to + 150°C for
a duration of 500 or 1000 cycles. During temperature cycle
testing, devices are inserted into a cycling system and held at
cold dwell temperature for at least ten minutes. Following this
cold dwell, the devices are heated to the hot dwell where they
remain for another ten minutes. The system employs a
circulating air environment to assure rapid stabilization at the
specified temperature.
THERMAL SHOCK
The objective of this test is the same as that for Tempera-
ture Cycle testing: to emphasize differences in expansion co-
efficients for components of the packaging system. However,
thermal shock provides additional stress because the device
is exposed to a sudden change in temperature due to the
transfer time of ten seconds maximum as well as the
increased thermal conductivity of a liquid ambient. This test is
typically performed to minimum and maximum temperatures
of – 65°C to + 150°C for a duration of 500 or 1000 cycles.
Devices are placed in a fluorocarbon bath and cooled to
minimum specified temperature. After being held in the cold
chamber for five minutes, the devices are transferred to an
adjacent chamber filled with fluorocarbon at the maximum
specified temperature for an equivalent time. Two five–minute
dwells plus two ten–second transitions constitute one cycle.
TEMPERATURE HUMIDITY BIAS (THB)
This is an environmental test performed at a temperature
of 85°C and a relative humidity of 85%. The test is designed
to measure the moisture resistance of plastic encapsulated
circuits. A nominal static bias is applied to the device to create
the electrolytic cells necessary to accelerate corrosion of the
metalization. Typical stress duration is 1008 hours.
PRESSURE TEMPERATURE HUMIDITY
BIAS (PTHB)
This Test is performed to accelerate the effects of moisture
penetration with the dominant effect being corrosion. This test
detects similar failure mechanisms as THB but at a greatly ac-
celerated rate. Conditions employed during this test are a tem-
perature of 148°C, humidity of 90%, 44 psig, and a nominal
static bias voltage. Typical stress duration is 72 hours.
SMT PRECONDITIONING STRESS
The purpose of this test is to simulate the shipping, storage,
and solder attach steps involved in mounting and reworking a
surface mount device. The preconditioning flow begins with
ten temperature cycles (– 65°C/150°C) and is followed by a
moisture soak. The soak may involve simulating a worst case
“no Dry Pack” condition in an 85°C/85% RH environment, a
worst case Dry Pack condition of 85°C/60% RH, or a typical
manufacturing environment condition of 30°C/60% RH. The
duration of the moisture condition will vary depending on the
moisture level tested. Moisture exposure is followed by multi-
ple passes of vapor phase reflow (215°C) for 120 seconds per
pass. This test method meets all requirements of Jedec A1 13.
AUTOCLAVE
Autoclave is an environmental test that measures devices
resistance to moisture penetration and the resultant effects of
galvanic corrosion. Conditions employed during the test in-
clude 121°C, 100% relative humidity, and 15 psig. Corrosion
of the die is the expected failure mechanism. Autoclave is a
highly accelerated and destructive test. Typical test duration
is 96 hours.
MOTOROLA
1–9
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
STATISTICAL PROCESS CONTROL
Motorola’s Microprocessor and Memory Technologies
Group is continually pursuing new ways to improve product
quality. Initial design improvement is one method that can be
used to produce a superior product. Equally important to
outgoing product quality is the ability to produce product that
consistently conforms to specification. Process variability is
the basic enemy of semiconductor manufacturing since it
leads to product variability. Used in all phases of Motorola’s
product manufacturing, STATISTICAL PROCESS CONTROL
(SPC) replaces variability with predictability. The traditional
philosophy in the semiconductor industry has been adher-
ence to the data sheet specification. Using SPC methods
ensures that the product will meet specific process require-
ments throughout the manufacturing cycle. The emphasis is
on defect prevention, not detection. Predictability through
SPC methods requires the manufacturing culture to focus on
constant and permanent improvements. Usually, these im-
provements cannot be bought with state–of–the–art equip-
ment or automated factories. With quality in design, process,
and material selection, coupled with manufacturing predict-
ability, Motorola produces world class products.
The immediate effect of SPC manufacturing is
predictability through process controls. Product centered and
distributed well within the product specification benefits
Motorola with fewer rejects, improved yields, and lower cost.
The direct benefit to Motorola’s customers includes better
incoming quality levels, less inspection time, and
ship–to–stock capability. Circuit performance is often
dependent on the cumulative effect of component variability.
Tightly controlled component distributions give the customer
greater circuit predictability. Many customers are also
converting to just–in–time (JIT) delivery programs. These
programs require improvements in cycle time and yield
predictability achievable only through SPC techniques. The
benefit derived from SPC helps the manufacturer meet the
customer’s expectations of higher quality and lower cost
product.
Ultimately, Motorola will have Six Sigma capability on all
products. This means parametric distributions will be centered
within the specification limits, with a product distribution of plus
or minus Six Sigma about mean. Six Sigma capability , shown
graphically in Figure 1–3, details the benefit in terms of yield
and outgoing quality levels. This compares a centered distri-
bution versus a 1.5 sigma worst case distribution shift.
New product development at Motorola requires more
robust design features that make them less sensitive to minor
variations in processing. These features make the implemen-
tation of SPC much easier.
A complete commitment to SPC is present throughout
Motorola. All managers, engineers, production operators, su-
pervisors, and maintenance personnel have received multiple
training courses on SPC techniques. Manufacturing has iden-
tified 22 wafer processing and 8 assembly steps considered
critical to the processing of semiconductor products. Pro-
cesses controlled by SPC methods that have shown signifi-
cant improvement are in the diffusion, photolithography, and
metallization areas.
To better understand SPC principles, brief explanations
have been provided. These cover process capability, imple-
mentation, and use.
PROCESS CAPABILITY
Figure 1–3 – AOQL and Yield from a Normal
Distribution of Product With 6σ Capability
Standard Deviations From Mean
Distribution Centered Distribution Shifted ± 1.5
At ±3σ2700 ppm defective
99.73% yield
At ±4σ63 ppm defective
99.9937% yield
At ±5σ0.57 ppm defective
99.999943% yield
At ±6σ0.002 ppm defective
99.9999998% yield
66810 ppm defective
93.32% yield
6210 ppm defective
99.379% yield
233 ppm defective
99.9767% yield
3.4 ppm defective
99.99966% yield
–6σ–5σ–4σ–3σ–2σ–1σ01σ2σ3σ4σ5σ6σ
One goal of SPC is to ensure a process is CAPABLE. Pro-
cess capability is the measurement of a process to produce
products consistently to specification requirements. The pur-
pose of a process capability study is to separate the inherent
RANDOM VARIABILITY from ASSIGNABLE CAUSES.
Once completed, steps are taken to identify and eliminate the
most significant assignable causes. Random variability is
generally present in the system and does not fluctuate. Some-
times, the random variability is due to basic limitations asso-
ciated with the machinery , materials, personnel skills, or man-
ufacturing methods. Assignable cause inconsistencies relate
to time variations in yield, performance, or reliability.
T raditionally, assignable causes appear to be random due
to the lack of close examination or analysis. Figure 1–4 shows
the impact on predictability that assignable cause can have.
Figure 1–5 shows the difference between process control and
process capability.
A process capability study involves taking periodic sam-
ples from the process under controlled conditions. The per-
formance characteristics of these samples are charted
against time. In time, assignable causes can be identified and
engineered out. Careful documentation of the process is the
key to accurate diagnosis and successful removal of the
assignable causes. Sometimes, the assignable causes will
remain unclear, requiring prolonged experimentation.
Elements which measure process variation control and ca-
pability are Cp and Cpk, respectively. Cp is the specification
width divided by the process width or Cp = (specification
width) / 6σ. Cpk is the absolute value of the closest specifica-
tion value to the mean, minus the mean, divided by half the
process width or Cpk = closest specification – X/3σ.
MOTOROLA
1–10 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
Figure 1–4 – Impact of Assignable Causes
on Process Predictable Figure 1–5 – Difference Between Process
Control and Process Capability
?
?
?
?
?
?
?
?
?
Process “under control” – all assignable causes are
removed and future distribution is predictable.
PREDICTION
TIME
SIZE
SIZE
TIME
PREDICTION
SIZE
TIME
Out of control
(assignable causes present)
In control assignable
causes eliminated
SIZE
TIME
In control but not capable
(variation from random variability
excessive)
Lower
Specification Limit Upper
Specification Limit
In control and capable
(variation from random
variability reduced)
??
At Motorola, for critical parameters, the process capability
is acceptable with a Cpk = 1.33. The desired process
capability is a Cpk = 2 and the ideal is a Cpk = 5. Cpk, by
definition, shows where the current production process fits
with relationship to the specification limits. Off center distribu-
tions or excessive process variability will result in less than
optimum conditions.
SPC IMPLEMENTATION AND USE
MMTG uses many parameters that show conformance to
specification. Some parameters are sensitive to process vari-
ations while others remain constant for a given product line.
Often, specific parameters are influenced when changes to
other parameters occur. It is both impractical and unneces-
sary to monitor all parameters using SPC methods. Only criti-
cal parameters that are sensitive to process variability are
chosen for SPC monitoring. The process steps affecting these
critical parameters must be identified as well. It is equally im-
portant to find a measurement in these process steps that cor-
relates with product performance. This measurement is called
a critical process parameter.
Once the critical process parameters are selected, a sam-
ple plan must be determined. The samples used for measure-
ment are organized into RA TIONAL SUBGROUPS of approx-
imately two to five pieces. The subgroup size should be such
that variation among the samples within the subgroup remain
small. All samples must come from the same source e.g., the
same mold press operator, etc. Subgroup data should be
collected at appropriate time intervals to detect variations in
the process. As the process begins to show improved stability ,
the interval may be increased. The data collected must be
carefully documented and maintained for later correlation.
Examples of common documentation entries are operator,
machine, time, settings, product type, etc.
Once the plan is established, data collection may begin.
The data collected with generate X and R values that are
plotted with respect to time. X refers to the mean of the values
within a given subgroup, while R is the range or greatest value
minus least value. When approximately 20 or more X and R
values have been generated, the average of these values is
computed as follows:
X = (X + X2 + X3 + . . .)/K
R = (R1 + R2 + R2 + . . .)/K
where K = the number of subgroups measured.
The values of X and R are used to create the process con-
trol chart. Control charts are the primary SPC tool used to sig-
nal a problem. Shown in Figure 1–6, process control charts
show X and R values with respect to time and concerning ref-
erence to upper and lower control limit values. Control limits
are computed as follows:
R upper control limit = UCLR = D4 R
R lower control limit = LCLR = D3 R
X upper control limit = UCLX = X + A2 R
X lower control limit = LCL X = X – A2 R
MOTOROLA
1–11
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
147
148
149
150
151
152
153
154
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
0
1
2
3
4
5
6
7
UCL = 152.8
= 150.4
LCL = 148.0
UCL = 7.3
= 3.2
LCL = 0
X
R
Figure 1–6 – Example of Process Control Chart Showing Oven Temperature Data
Where D4, D3, and A2 are constants varying by sample size,
with values for sample sizes from 2 to 10 shown in the follow-
ing partial table:
n2345678910
D43.27 2.57 2.28 2.11 2.00 1.92 1.86 1.82 1.78
D3* * * * * 0.08 0.14 0.18 0.22
A21.88 1.02 0.73 0.58 0.48 0.42 0.37 0.34 0.31
*For sample sizes below 7, the LCLR would technically be a negative number;
in those cases there is no lower control limit; this means that for a subgroup size
6, six ‘‘identical’ ’ measurements would not be unreasonable.
Control charts are used to monitor the variability of critical
process parameters. The R chart shows basic problems with
piece to piece variability related to the process. The X chart
can often identify changes in people, machines, methods, etc.
The source of the variability can be difficult to find and may re-
quire experimental design techniques to identify assignable
causes.
Some general rules have been established to help deter-
mine when a process is OUT–OF–CONTROL. Figure 1–7
shows a control chart subdivided into zones A, B, and C corre-
sponding to 3 sigma, 2 sigma, and 1 sigma limits respectively .
In Figures 1–8 through 1–1 1 four of the tests that can be used
to identify excessive variability and the presence of assign-
able causes are shown. As familiarity with a given process in-
creases, more subtle tests may be employed successfully.
Once the variability is identified, the cause of the variability
must be determined. Normally, only a few factors have a sig-
nificant impact on the total variability of the process. The im-
portance of correctly identifying these factors is stressed in the
following example. Suppose a process variability depends on
the variance of five factors A, B, C, D, and E. Each has a vari-
ance of 5, 3, 2, 1, and 0.4, respectively.
SInce:
σ tot = σ A2 + σ B2 + σ C2 + σ D2 + σ E2
σ tot = 52 + 32 + 22 + 12 +(0.4)2 = 6.3
If only D is identified and eliminated, then:
σ tot = 52 + 32 + 22 + (0.4)2 = 6.2
This results in less than 2% total variability improvement.
If B, C, and D were eliminated, then:
σ tot = 52 + (0.4)2 = 5.02
This gives a considerably better improvement of 23%. If
only A is identified and reduced from 5 to 2, then:
σ tot = 22 + 32 + 22 + 12 + (0.4)2 = 4.3
Identifying and improving the variability from 5 to 2 yields
a total variability improvement of nearly 40%.
Most techniques may be employed to identify the primary
assignable cause(s). Out–of–control conditions may be corre-
lated to documented process changes. The product may be
analyzed in detail using best versus worst part comparisons
or Product Analysis Lab equipment. Multi–variance analysis
can be used to determine the family of variation (positional,
critical, or temporal). Lastly, experiments may be run to test
theoretical or factorial analysis. Whatever method is used, as-
signable causes must be identified and eliminated in the most
expeditious manner possible.
MOTOROLA
1–12 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
UCL
LCL
UCL
UCL
UCL
UCL
LCL
LCL
LCL
LCL
CENTERLINE
A
B
C
C
B
A
A
B
C
C
B
A
A
B
C
C
B
A
A
B
C
C
B
A
ZONE A (+ 3 SIGMA)
ZONE B (+ 2 SIGMA)
ZONE C (+ 1 SIGMA)
ZONE C (– 1 SIGMA)
ZONE B (– 2 SIGMA)
ZONE A (– 3 SIGMA)
Figure 1–7 – Control Chart Zones Figure 1–8 – One Point Outside Control
Limit Indicating Excessive Variability
Figure 1–9 – Two Out of Three Points in Zone A
or Beyond Indicating Excessive Variability Figure 1–10 – Four Out of Five Points in Zone B
or Beyond Indicating Excessive Variability
Figure 1–11 – Seven Out of Eight Points in Zone
C or Beyond Indicating Excessive Variability
After assignable causes have been eliminated, new control
limits are calculated to provide a more challenging variability
criteria for the process. As yields and variability improve, it
may become more difficult to detect improvements because
they become much smaller. When all assignable causes have
been eliminated and the points remain within control limits for
25 groups, the process is said to be in a state of control.
SUMMARY
Motorola is committed to the use of STATISTICAL PRO-
CESS CONTROLS. These principles, used throughout man-
ufacturing have already resulted in many significant improve-
ments to the processes. Continued dedication to the SPC
culture will allow Motorola to reach the Six Sigma and zero de-
fect capability goals. SPC will further enhance the commit-
ment to TOTAL CUSTOMER SATISFACTION.
WORLD WIDE — WORLD CLASS
MOTOROLA
2–1
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
Section 2
WORLD WIDE CUSTOMER SUPPORT
WORLD WIDE SERVICE CENTERS 2–2. . . . .
CAPABILITIES CHART BY REGION 2–3. . . . .
MOTOROLA
2–2 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
CUSTOMER FAILURE ANALYSIS SUPPORT WORLD WIDE
The following map and chart show the location of our worldwide MMTG support facilities and outline the customer
return failure analysis support status of each of these facilities. While each facility supports the customers located
in the immediate region, all facilities work together to produce detailed and accurate analyses. As can be seen in the
chart, all offshore locations have some level of test and physical failure analysis capabiities. These capabilities are
continually increasing. The North American support site in Austin, Texas, is fully resourced for comprehensive,
detailed electrical and physical analysis of all Memory products and most High Performance and RISC MPUs. In addi-
tion to local customer return analysis, the Austin facility provides expert analysis assistance to all offshore regions
through technical information and data communications as well as electrical and physical analysis on the most difficult
of the offshore returns.
Austin
Kuala Lumpur
NORTH AMERICA
Semiconductor Sales Office
11120 Metric Blvd.
Austin, TX 78758
All Memories
Most MPUs
Sendai
NORTH
AMERICA
EUROPE
ASIA PACIFIC
East
Kilbride
EUROPE
Motorola LTD
Colvilles Road
Kelvin Industrial Estate
UK–East Kilbride
Glasgow, G75 OTG
All Memories
Some MPUs
ASIA PACIFIC
Motorola Malaysia SDU. BHD.
No. 2 Jalan SS 8/2
47300 Petaling Jaya
Selangor, Malaysia
All Memories
JAPAN
Nippon Motorola LTD. (NML)
3–2–1, Akedori, Izumi–Ku,
Sendai–Shi
981–31, Japan
All Memories
Some MPUs
JAPAN
WORLD WIDE SERVICE CENTERS
HONG KONG
Motorola Semiconductors Hong Kong Ltd.
2 Dai King Street
Tai PC Industrial Estate,
Tai PD, NT.
Hong Kong
Some MPUs
HONG
KONG
MOTOROLA
2–3
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
FAILURE ANALYSIS CAPABILITIES BY REGION
Customer North America
Austin, Texas Japan
Sendai, Japan
Europe
East Kilbride, Scot-
land
Asia/Pacific
Kuala Lumpur,
Malaysia Hong Kong
Electrical
Test and
Analysis
Dedicated QA Tera-
dyne Testers for
Electrical Verification
and Characterization
of Memories
Dedicated DRAM
and FSRAM QA
Engineers and MPU
Failure Analysis
Engineers Perform
Electrical Device
Investigation
Dedicated QA Tera-
dyne Testers for
Electrical Verification
and Characterization
of Some Memories
Failure Analysis
Engineers Perform
Electrical Test
Verification
Dedicated QA Tera-
dyne Testers for
Electrical Verification
and Characterization
of Some Memories
Failure Analysis
Engineers Perform
Electrical Test
Verification
Dedicated QA Tera-
dyne Testers for
Electrical Verification
and Characterization
of Memories
Failure Analysis
Engineers Perform
Electrical Test
Verification
Failure Analysis
Engineers Perform
Electrical Test
Verification
Production Testers
Available for Correla-
tion Activities of all
Memories and Most
MPUs
Additional Design
Engineering Analysis
if Required
Production Testers
Available for Correla-
tion Activities of Most
MPUs
Production Testers
Available for Correla-
tion Activities of all
Memories and Most
MPUs
Production Testers
Available for Correla-
tion Activities of
Some MPUs
Physical
Test and
Analysis
Chip and Package
Areas
Dedicated DRAM
and FSRAM Failure
Analysis Engineers
Complete Electrical
V erification Bench
Equipment
Full Wet Lab for
Deprocessing
E–Beam Testing
Chip and Package
Areas
Shared Failure
Analysis Engineers
Electrical Verification
Bench Equipment
Wet Lab for
Deprocessing
E–Beam Testing
Chip and Package
Areas
Dedicated QA
Failure Analysis
Engineers
Electrical Verification
Bench Equipment
Wet Lab for
Deprocessing
Package Area
Dedicated QA
Failure Analysis
Engineers
Electrical Verification
Bench Equipment
Wet Lab for
Deprocessing
Package Area
Dedicated QA
Failure Analysis
Engineers
Electrical Verification
Bench Equipment
Wet Lab for
Deprocessing
Emission Microscopy
SEM/EDS
TEM, Auger, SIMS,
ESCA
Emission Microscopy
SEM/EDS Emission Microscopy
SEM/EDS Emission Microscopy
SEM/EDS Emission Microscopy
SEM/EDS
Acoustic
Microscopies
FIB
Additional R&D Diag-
nostic Analysis if
Required
Acoustic
Microscopies
FIB
Acoustic
Microscopies Acoustic
Microscopies Acoustic
Microscopies
FIB
NOTE: All W orld Wide Failure Analysis Labs are linked together with Motorola’ s Peer–to–Peer Network for instantaneous data transmission.
MOTOROLA
2–4 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
WORLD WIDE — WORLD CLASS
MOTOROLA
3-1
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
Section 3
FAST STATIC RAMs
BiCMOS PROCESS MONITORS
0.8µ Double Level Metal BiCMOS Process
5 V 256K Density Process 3-3. . . . . . . . . . . . . .
0.8µ Double Level Metal BiCMOS Process
5 V 1 Meg Density Process 3-6. . . . . . . . . . . . .
0.5µ Double Level Metal BiCMOS Process
3.3 V 1 Meg Density Process 3-8. . . . . . . . . . .
5 V 1 Meg Density Process 3-10. . . . . . . . . . . . .
CMOS PROCESS MONITORS
0.8µ Double Level Metal CMOS Process
5 V 1 Meg Density Process 3-13. . . . . . . . . . . . .
0.65µ Double Level Metal CMOS Process
5 V 256K Density Process 3-15. . . . . . . . . . . . . .
0.5µ Double Level Metal CMOS Process
5 V 256K Density Process 3-18. . . . . . . . . . . . . .
5 V 1 Meg Density Process 3-21. . . . . . . . . . . . .
5 V 4 Meg Density Process 3-24. . . . . . . . . . . . .
PACKAGE MONITORS
300 mil, 24, 28, 32 pin
Plastic SOJ Package 3-27. . . . . . . . . . . . . . . . . . . . . .
400 mil, 28, 32 pin
Plastic SOJ Package 3-30. . . . . . . . . . . . . . . . . . . . . .
44, 52 pin
Plastic Leaded Chip Carrier Package 3-33. . . . . . .
64 – 160 pin
Modules 3-35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TECHNOLOGY DRAWINGS 3-37. . . . . . . . . . . . .
MOTOROLA
3-2 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
Case 724
Case 738
Case 710
Case 777 Case 778
Case 810 Case 853 Case 857
Case 710A Case 710B
Case 724A Case 736A
Case 810A Case 810B
Mesa
Austin
East
Kilbride Anam
Tokyo
Kuala Lumpur
Anam, Korea
Austin, Texas
East Kilbride, Scotland
Kuala Lumpur , Malaysia
Mesa, Arizona
Penang, Malaysia
Tokyo, Japan
Penang
MOTOROLA
3-3
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
BiCMOS PROCESS MONITORS
0.8µ Double Level Metal, BiCMOS FSRAM Process / 5 V 256K Density Process
Applicable Devices:
Part Number Organization Speed
MCM6706A
MCM6708A
MCM6709A
MCM6705
MCM6706R
MCM6709R
32K x 8
64K x 4
64K x 4
32K x 9
32K x 8
64K x 4
10, 12 ns
10, 12 ns
10, 12 ns
10, 12 ns
6, 7, 8 ns
6, 7, 8 ns
MOTOROLA
3-4 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
0.8µ Double Level Metal, BiCMOS FSRAM Process / 5 V 256K Density Process (cont.)
Dynamic Early Fail Study
125°C, 6.5 volts, 72 Hours
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
4th Quarter 1995
Last 4 Quarters 0/883
0/883 0
0
Dynamic Early Fail Study Results by Quarter
PPM FAIL
5000
4000
3000
2000
1000
04Q95
MOTOROLA
3-5
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
0.8µ Double Level Metal, BiCMOS FSRAM Process / 5 V 256K Density Process (cont.)
Dynamic Long Term Lifetest
125°C, 6.5 volts, 1008 Hours
Time Period Results:
Rejects/Devices Total
Device Hours EA
(eV) Reject Information
2nd Quarter 1996
1st Quarter 1996
Last 4 Quarters
0/130
0/127
0/257
131040
128016
259056
Static Long Term Lifetest
125°C, 6.5 volts, 1008 Hours
Time Period Results:
Rejects/Devices Total
Device Hours EA
(eV) Reject Information
2nd Quarter 1996
1st Quarter 1996
Last 4 Quarters
0/128
0/126
0/254
129024
127008
256032
MOTOROLA
3-6 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
BiCMOS PROCESS MONITORS
0.8µ Double Level Metal, BiCMOS FSRAM Process / 5 V 1 Meg Density Process
Applicable Devices:
Part Number Organization Speed
MCM6726
MCM6727
MCM6728
MCM6729
MCM6726A
MCM6728A
MCM6729A
MCM67B618
MCM67C618
MCM67H618
MCM67J618
MCM67M618
MCM67A618
MCM67D709
128K x 8
1M x 1
256K x 4
256K x 4
128K x 8
256K x 4
256K x 4
64K x 18
64K x 18
64K x 18
64K x 18
64K x 18
64K x 18
128K x 9
10, 12, 15 ns
10, 12, 15 ns
10, 12, 15 ns
10, 12, 15 ns
8, 10, 12, 15 ns
8, 10, 12, 15 ns
8, 10, 12, 15 ns
9, 10, 12 ns
6, 7, 9 ns
9, 10, 12 ns
6, 7, 9 ns
9, 11, 14 ns
10, 12, 15 ns
6, 7.5 ns
MOTOROLA
3-7
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
0.8µ Double Level Metal, BiCMOS FSRAM Process / 5 V 1 Meg Density Process (cont.)
Dynamic Early Fail Study
125°C, 6.0 volts, 168 Hours/125°C, 6.5 volts, 72 Hours
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/205
0/767
0/1488
0/2460
0
0
0
0
Dynamic Early Fail Study Results by Quarter
4Q95
PPM FAIL
5000
4000
3000
2000
1000
02Q961Q96
MOTOROLA
3-8 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
BiCMOS PROCESS MONITORS
0.5µ Double Level Metal, Double Level Poly BiCMOS FSRAM Process /
3.3 V 1 Meg Density Process
Applicable Devices:
Part Number Organization Speed
MCM6926
MCM6929
MCM69P531
MCM69F536A
MCM69F536B
MCM69P536A
MCM69P536B
MCM69F618A
MCM69P618A
128K x 8
256K x 4
32K x 32
32K x 32
32K x 32
32K x 32
32K x 32
64K x 18
64K x 18
8, 10, 12, 15 ns
8, 10, 12, 15 ns
4.5, 7, 8, 9 ns
8.5, 9, 10, 12 ns
8.5, 9, 10, 12 ns
4.5, 5, 6, 7 ns
4.5, 5, 6, 7 ns
8.5, 9, 10, 12 ns
8.5, 9, 10, 12 ns
MOTOROLA
3-9
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
0.5µ Double Level Metal, Double Level Poly BiCMOS FSRAM Process / 3.3 V 1 Meg Density Pro-
cess (cont.)
Dynamic Early Fail Study
125°C, 4.5 volts, 72 Hours
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
Last 4 Quarters 1/2291
1/2291 436
436 1 – In Analysis
Dynamic Early Fail Study Results by Quarter
PPM FAIL
5000
4000
3000
2000
1000
03Q96
MOTOROLA
3-10 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
BiCMOS PROCESS MONITORS
0.5µ Double Level Metal, Double Level Poly BiCMOS FSRAM Process /
5 V 1 Meg Density Process
Applicable Devices:
Part Number Organization Speed
MCM6726B
MCM6726C
MCM6728B
MCM6729B
MCM6729C
MCM67A618A
MCM67B618A
MCM67C618A
MCM67M618A
128K x 8
128K x 8
256K x 4
256K x 4
256K x 4
64K x 18
64K x 18
64K x 18
64K x 18
8, 10, 12 ns
6, 7 ns
8, 10, 12 ns
8, 10, 12 ns
6, 7 ns
9, 10, 12 ns
9, 10, 12 ns
5, 7 ns
9, 10, 12 ns
MOTOROLA
3-11
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
0.5µ Double Level Metal, Double Level Poly BiCMOS FSRAM Process / 5 V 1 Meg Density Pro-
cess (cont.)
Dynamic Early Fail Study
125°C, 6.5 volts, 72 Hours
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
1/9927
0/1898
1/2227
2/1777
4/15829
101
0
449
1125
253
1 – In Analysis
1 – Foreign Matter
1 – Foreign Matter
1 – No Defect Found
Dynamic Early Fail Study Results by Quarter
PPM FAIL
5000
4000
3000
2000
1000
02Q96 3Q964Q95 1Q96
MOTOROLA
3-12 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
0.5µm Double Level Metal, Double Level Poly BiCMOS FSRAM Process / 5 V 1 Meg Density Pro-
cess (cont.)
Dynamic Long Term Lifetest
125°C, 6.5 volts, 1008 Hours
Time Period Results:
Rejects/Devices Total
Device Hours EA
(eV) Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/623
0/75
0/186
0/64
0/948
313992 @ 504 Hrs
75600
187488
64512
641592
Static Long Term Lifetest
125°C, 6.5 volts, 1008 Hours
Time Period Results:
Rejects/Devices Total
Device Hours EA
(eV) Reject Information
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/75
0/261
0/64
0/400
75600
263088
64512
403200
FIT Rate Derating Graph to Users Voltage / Temperature for Most Recent Quarter
Dynamic Long Term Lifetest
4.50 V
5.00 V
5.50 V
FITS @ 60% C.L.
100
80
90
70
50
40
30
20
10
025 30 35 40 45 50 55 60 65 70
USERS TEMPERATURE (CELSIUS)
60
MOTOROLA
3-13
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
CMOS PROCESS MONITORS
0.8µ Double Level Metal CMOS FSRAM Process / 5 V 1 Meg Density Process
Applicable Devices:
Part Number Organization Speed
MCM6226
MCM6226A
MCM6227A
MCM6229
MCM6229A
128K x 8
128K x 8
1M x 1
256K x 4
256K x 4
25, 30 ns
20, 25, 30, 35, 45 ns
25, 30 ns
20, 25, 30, 35, 45 ns
20, 25, 30, 35, 45 ns
MOTOROLA
3-14 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
0.8µ Double Level Metal CMOS FSRAM Process / 5 V 1 Meg Density Process (cont.)
Dynamic Early Fail Study
125°C, 6.0 volts, 168 Hours/125°C, 6.5 volts, 168 Hours/125°C, 6.5 volts, 72 Hours
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/575
0/45
0/620
0
0
0
Dynamic Early Fail Study Results by Quarter
4Q95
PPM FAIL
5000
4000
3000
2000
1000
01Q96
MOTOROLA
3-15
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
CMOS PROCESS MONITORS
0.65µ Double Level Metal CMOS FSRAM Process / 5 V 256K Density Process
Applicable Devices:
Part Number Organization Speed
MCM6205D
MCM6206D
MCM62486B
MCM62940B
32K x 9
32K x 8
32K x 9
32K x 9
15, 17, 20, 25 ns
15, 17, 20, 25 ns
11, 12, 14, 19, 24 ns
11, 12, 14, 19, 24 ns
MOTOROLA
3-16 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
0.65µ Double Level Metal CMOS FSRAM Process / 5 V 256K Density Process (cont.)
Dynamic Early Fail Study
125°C, 6.0 volts, 168 Hours/125°C, 6.5 volts, 168 Hours/125°C, 6.5 volts, 72 Hours
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/390
0/208
0/2600
0/156
0/3354
0
0
0
0
0
Dynamic Early Fail Study Results by Quarter
4Q95
PPM FAIL
5000
4000
3000
2000
1000
02Q96 3Q961Q96
MOTOROLA
3-17
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
0.65µ Double Level Metal CMOS FSRAM Process / 5 V 256K Density Process (cont.)
Dynamic Long Term Lifetest
125°C, 6.5 volts, 1008 Hours
Time Period Results:
Rejects/Devices Total
Device Hours EA
(eV) Reject Information
2nd Quarter 1996
1st Quarter 1996
Last 4 Quarters
0/91
0/78
0/169
91728
78624
170352
Static Long Term Lifetest
125°C, 6.5 volts, 1008 Hours
Time Period Results:
Rejects/Devices Total
Device Hours EA
(eV) Reject Information
2nd Quarter 1996
1st Quarter 1996
Last 4 Quarters
0/91
0/78
0/169
91728
78624
170352
MOTOROLA
3-18 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
CMOS PROCESS MONITORS
0.5µ Double Level Metal CMOS FSRAM Process / 5 V 256K Density Process
Applicable Devices:
Part Number Organization Speed
MCM6206BA 32K x 8 12, 15, 17, 20, 25, 35 ns
MOTOROLA
3-19
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
0.5µ Double Level Metal CMOS FSRAM Process / 5 V 256K Density Process (cont.)
Dynamic Early Fail Study
125°C, 6.5 volts, 72 Hours
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
4th Quarter 1995
Last 4 Quarters 0/235
0/235 0
0
Dynamic Early Fail Study Results by Quarter
PPM FAIL
5000
4000
3000
2000
1000
04Q95
MOTOROLA
3-20 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
0.5µ Double Level Metal, Double Level Poly CMOS FSRAM Process / 5 V 256K Density Process
(cont.)
Dynamic Long Term Lifetest
125°C, 6.5 volts, 1008 Hours
Time Period Results:
Rejects/Devices Total
Device Hours EA
(eV) Reject Information
4th Quarter 1995
Last 4 Quarters 0/247
0/247 248976
248976
Static Long Term Lifetest
125°C, 6.5 volts, 1008 Hours
Time Period Results:
Rejects/Devices Total
Device Hours EA
(eV) Reject Information
4th Quarter 1995
Last 4 Quarters 0/252
0/252 254016
254016
MOTOROLA
3-21
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
CMOS PROCESS MONITORS
0.5µ Double Level Metal CMOS FSRAM Process / 5 V 1 Meg Density Process
Applicable Devices:
Part Number Organization Speed
MCM6226B
MCM6227B
MCM6229B
MCM6226BB
MCM6229BB
128K x 8
1M x 1
256K x 4
128K x 8
256K x 4
15, 20, 25 ns
15, 20, 25, 35 ns
15, 20, 25 ns
15, 17, 20, 25 ns
15, 17, 20, 25 ns
MOTOROLA
3-22 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
0.5µ Double Level Metal CMOS FSRAM Process / 1 Meg Density Process (cont.)
Dynamic Early Fail Study
125°C, 6.5 volts, 72 Hours
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
4/2433
0/161
5/2877
9/5521
1644
0
1738
1630
4 – In Analysis
5 – No Defect Found
Dynamic Early Fail Study Results by Quarter
PPM FAIL
5000
4000
3000
2000
1000
04Q95 2Q96
6000
1Q96
MOTOROLA
3-23
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
0.5µ Double Level Metal, Double Level Poly CMOS FSRAM Process / 5 V 1M Density Process
(cont.)
Dynamic Long Term Lifetest
125°C, 6.5 volts, 1008 Hours
Time Period Results:
Rejects/Devices Total
Device Hours EA
(eV) Reject Information
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/213
0/288
0/501
214703
290304
505008
Static Long Term Lifetest
125°C, 6.5 volts, 1008 Hours
Time Period Results:
Rejects/Devices Total
Device Hours EA
(eV) Reject Information
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/115
0/265
0/380
115920
267120
383040
MOTOROLA
3-24 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
CMOS PROCESS MONITORS
0.5µ Double Level Metal CMOS FSRAM Process / 5 V 4 Meg Density Process
Applicable Devices:
Part Number Organization Speed
MCM6246
MCM6249
512K x 8
1M x 4
20, 25, 35 ns
20, 25, 35 ns
MOTOROLA
3-25
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
0.5µ Double Level Metal CMOS FSRAM Process / 5 V 4 Meg Density Process (cont.)
Dynamic Early Fail Study
125°C, 6.5 volts, 72 Hours
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/50
1/1412
0/176
0/211
1/1849
0
708
0
0
540
1 – No Defect Found
Dynamic Early Fail Study Results by Quarter
PPM FAIL
5000
4000
3000
2000
1000
03Q96
4Q95 2Q961Q96
MOTOROLA
3-26 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
0.5µ Double Level Metal CMOS FSRAM Process / 5 V 4 Meg Density Process (cont.)
Dynamic Long Term Lifetest
125°C, 6.5 volts, 1008 Hours
Time Period Results:
Rejects/Devices Total
Device Hours EA
(eV) Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/148
0/60
0/60
0/70
0/338
149184
60480
60480
70560
340704
Static Long Term Lifetest
125°C, 6.5 volts, 1008 Hours
Time Period Results:
Rejects/Devices Total
Device Hours EA
(eV) Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/148
0/60
0/60
0/70
0/338
149184
60480
60480
70560
340704
FIT Rate Derating Graph to Users Voltage / Temperature for Most Recent Quarter
FITS @ 60% C.L.
100
80
90
70
60
50
40
30
20
10
0
Dynamic Long Term Lifetest Static Long Term Lifetest
4.50 V
5.00 V
5.50 V
25 30 35 40 45 50 55 60 65 70
USERS TEMPERATURE (CELSIUS)
FITS @ 60% C.L.
100
80
90
70
60
50
40
30
20
10
025 30 35 40 45 50 55 60 65 70
USERS TEMPERATURE (CELSIUS)
MOTOROLA
3-27
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
PACKAGE MONITORS
300 mil, 24, 28, 32 pin Plastic SOJ Package
Applicable Devices:
Part Number Package Width / Pin Count
MCM4180
MCM6205
MCM6206
MCM6207
MCM6208
MCM6209
MCM62350
MCM62351
MCM6264
MCM6268
MCM6269
MCM6270
MCM6287
MCM6288
MCM6290
MCM6705A
MCM6706A
MCM6708A
MCM6709A
300 mil / 24 pin
300 mil / 32 pin
300 mil / 28 pin
300 mil / 24 pin
300 mil / 24 pin
300 mil / 28 pin
300 mil / 24 pin
300 mil / 24 pin
300 mil / 28 pin
300 mil / 24 pin
300 mil / 24 pin
300 mil / 24 pin
300 mil / 24 pin
300 mil / 24 pin
300 mil / 24 pin
300 mil / 32 pin
300 mil / 28 pin
300 mil / 28 pin
300 mil / 28 pin
MOTOROLA
3-28 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
300 mil, 24, 28, 32 pin Plastic SOJ Package
Preconditioning Stress
Temperature Cycle (–65 to +150°C, 10 Cycles) + Bake (125°C, 24 Hrs) + Temperature Humidity
Soak (85°C, 60% RH, 168 Hrs) + Vapor Phase (215°C, 60 seconds, 3 Passes)
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/845
0/300
0/1145
0
0
0
Pressure Temperature Humidity Bias
148°C, 90% RH, 44 psig, 5 V, 72 Hrs
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
4th Quarter 1995
Last 4 Quarters 0/60
0/60 0
0
Temperature Humidity Bias
85°C, 85% RH, 5V, 1008 Hours
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/150
0/60
0/210
0
0
0
NOTE: The above SOJ package stresses are sourced from preconditioning stress samples.
MOTOROLA
3-29
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
300 mil, 24, 28, 32 pin Plastic SOJ Package (cont.)
Temperature Cycle
65 to + 150°C, Air to Air, 500 Cycles
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/144
0/60
0/204
0
0
0
Thermal Shock
65 to + 150°C, Liquid to Liquid, 500 Cycles
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
4th Quarter 1995
Last 4 Quarters 0/45
0/45 0
0
Autoclave
121°C, 15 psig, 100% RH, 96 Hrs
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
4th Quarter 1995
Last 4 Quarters 0/60
0/60 0
0
NOTE: The above SOJ package stresses are sourced from preconditioning stress samples.
MOTOROLA
3-30 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
PACKAGE MONITORS
400 mil, 28, 32 pin Plastic SOJ Package
Applicable Devices:
Part Number Package Width / Pin Count
MCM6226
MCM6229
MCM6206
MCM6264
MCM6293
MCM6294
MCM6295
MCM6726
MCM6727
MCM6728
MCM6729
400 mil / 32 pin
400 mil / 28 pin
400 mil / 28 pin
400 mil / 28 pin
400 mil / 28 pin
400 mil / 28 pin
400 mil / 28 pin
400 mil / 32 pin
400 mil / 28 pin
400 mil / 28 pin
400 mil / 32 pin
MOTOROLA
3-31
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
400 mil, 28, 32 pin Plastic SOJ Package
Preconditioning Stress
Temperature Cycle (–65 to +150°C, 10 Cycles) + Bake (125°C, 24 Hrs) + Temperature Humidity
Soak (85°C, 60% RH, 168 Hrs) + Vapor Phase (215°C, 60 seconds, 3 Passes)
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/395
0/30
0/137
0/731
0/1293
0
0
0
0
0
Pressure Temperature Humidity Bias
148°C, 90% RH, 44 psig, 5 V, 72 Hrs
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/56
0/30
0/15
0/101
0
0
0
0
Temperature Humidity Bias
85°C, 85% RH, 5V, 1008 Hours
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/148
0/45
0/27
0/220
0
0
0
0
NOTE: The above SOJ package stresses are sourced from preconditioning stress samples.
MOTOROLA
3-32 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
400 mil, 28, 32 pin Plastic SOJ Package (cont.)
Temperature Cycle
65 to + 150°C, Air to Air, 500 Cycles
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/56
0/72
0/135
0/263
0
0
0
0
Thermal Shock
65 to + 150°C, Liquid to Liquid, 500 Cycles
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/56
0/60
0/132
0/248
0
0
0
0
Autoclave
121°C, 15 psig, 100% RH, 96 Hrs
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/101
0/117
0/218
0
0
0
NOTE: The above SOJ package stresses are sourced from preconditioning stress samples.
MOTOROLA
3-33
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
PACKAGE MONITORS
44, 52 pin Plastic Leaded Chip Carrier Package
Applicable Devices:
Part Number Package Width / Pin Count
MCM56824A
MCM62110
MCM62486A
MCM62820A
MCM62940A
MCM62950A
MCM62963A
MCM62973A
MCM62974A
MCM62975A
MCM62990A
MCM62995A
MCM67B618
MCM67C618
MCM67H618
MCM67J618
MCM67M618
MCM67A618
MCM67D709
52 pin
52 pin
44 pin
52 pin
44 pin
44 pin
44 pin
44 pin
44 pin
44 pin
52 pin
52 pin
52 pin
52 pin
52 pin
52 pin
52 pin
52 pin
52 pin
MOTOROLA
3-34 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
44, 52 pin Plastic Leaded Chip Carrier Package
Preconditioning Stress
30°C, 60% RH, 192 Hrs, Vapor Phase (215°C) 4 Passes
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/230
0/210
0/207
0/180
0/827
0
0
0
0
0
Pressure Temperature Humidity Bias
148°C, 90% RH, 44 psig, 5 V, 72 Hrs
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/46
0/60
0/106
0
0
0
Temperature Cycle
65 to + 150°C, Air to Air, 500 Cycles
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/46
0/45
0/60
0/151
0
0
0
0
Thermal Shock
65 to + 150°C, Liquid to Liquid, 500 Cycles
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/105
0/45
0/60
0/210
0
0
0
0
Autoclave
121°C, 15 psig, 100% RH, 96 Hrs
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
1st Quarter 1996
Last 4 Quarters 0/45
0/45 0
0
NOTE: The above PLCC package stresses are sourced from preconditioning stress samples.
MOTOROLA
3-35
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
PACKAGE MONITORS
64 – 160 pin Modules
Applicable Devices:
Part Number Package Width / Pin Count
MCM72MS32
MCM72MS64
MCM4464
MCM44256
MCM32257
MCM32128
MCM3264A
MCM32A32
MCM32A64
MCM32Ax32
MCM32Ax64
MCM32Ax128
MCM64AA32
MCM72BA32
MCM72BA64
MCM64BA32
MCM72BB32
MCM72BB64
DIMM / 136 pin
DIMM / 136 pin
SIMM / 80 pin
SIMM / 80 pin
ZIP / 64 pin
SIMM, ZIP / 64 pin
ZIP / 64 pin
DIMM / 128 pin
DIMM / 128 pin
Card Edge Connector / 112 pin
Card Edge Connector / 112 pin
Card Edge Connector / 112 pin
DIMM / 136 pin
DIMM / 136 pin
DIMM / 136 pin
Card Edge Connector / 160 pin
Card Edge Connector / 160 pin
Card Edge Connector / 160 pin
MOTOROLA
3-36 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
64 – 160 pin Modules
Temperature Humidity Bias
85°C, 85% RH, 5.0 V, 504 Hrs
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/49
0/22
0/71
0/94
0/236
0
0
0
0
0
Thermal Shock
25 to + 125°C, Liquid to Liquid, 500 Cycles
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/22
0/22
0/66
0/22
0/132
0
0
0
0
0
Flex Test
5 mm Flexes Per Side, 5 Cycles
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/5
0/5
0/15
0/5
0/30
0
0
0
0
0
Temperature Cycle
0°C to + 100°C, Air to Air, 500 Cycles
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/22
0/22
0/66
0/22
0/132
0
0
0
0
0
MOTOROLA
3-37
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
TECHNOLOGY DRAWINGS
Double Level Metal Double Level Poly 0.8µ and 1.0µ CMOS FSRAM Technology
Double Level Metal, Double Level Poly 0.8µ BiCMOS FSRAM Technology
MOTOROLA
3-38 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
WORLD WIDE — WORLD CLASS
MOTOROLA
4-1
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
Section 4
DYNAMIC RAMs
PROCESS MONITORS
4 MEGABIT DRAM
0.7µ Single Level Metal, Triple Level Poly
CMOS DRAM Process 4-3. . . . . . . . . . . . . . . . . . . . .
16 MEGABIT DRAM
0.5µ Double Level Metal, Triple Level Poly
CMOS DRAM Process 4-6. . . . . . . . . . . . . . . . . . . . .
PACKAGE MONITORS
4 MEGABIT DRAM
300 mil 20/26 pin Plastic SOJ Package 4-9. . . . . .
4 MEGABIT DRAM
400 mil 28 pin Plastic SOJ Package 4-11. . . . . . . . .
16 MEGABIT DRAM
400 mil 24/28 pin Plastic SOJ Package 4-13. . . . . .
DRAM MODULE
30 – 168 pin Module 4-15. . . . . . . . . . . . . . . . . . . . . . .
TECHNOLOGY DRAWING 4-17. . . . . . . . . . . . . .
MOTOROLA
4-2 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
Case 822
Case 810
Case 810C
Mesa
Austin
East
Kilbride
Sendai
Aizu
Kuala Lumpur
Aizu, Japan
Austin, Texas
East Kilbride, Scotland
Kuala Lumpur , Malaysia
Mesa, Arizona
Oita, Japan
Sendai, Japan
Oita
MOTOROLA
4-3
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
PROCESS MONITORS
4 MEGABIT DRAM
0.7µ Single Level Metal, Triple Level Poly CMOS DRAM Process
Part Number Organization Speed
MCM54100A
MCM54400A
MCM54800A
4M x 1 Page Mode
1M x 4 Page Mode
512K x 8 Page Mode
70, 80, 100 ns
70, 80, 100 ns
70, 80, 100 ns
MOTOROLA
4-4 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
0.7µ Single Level Metal, Triple Level Poly CMOS DRAM Process (cont.)
Dynamic Early Fail Study
125°C, 6.5 volts, 72 Hours
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/9766
0/12382
0/4339
0/14551
0/41038
0
0
0
0
0
Dynamic Early Fail Study Results by Quarter
4Q95 1Q96 2Q96
PPM FAIL
5000
4000
3000
2000
1000
03Q96
MOTOROLA
4-5
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
0.7µ Single Level Metal, Triple Level Poly CMOS DRAM Process (cont.)
Dynamic Long Term Lifetest
125°C, 6.5 volts, 1008 Hours
Time Period Results:
Rejects/Devices Total
Device Hours EA
(eV) Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/650
0/750
0/600
0/924
0/2924
655200
756000
604800
931392
2947392
Static Long Term Lifetest
125°C, 6.5 volts, 1008 Hours
Time Period Results:
Rejects/Devices Total
Device Hours EA
(eV) Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/650
0/750
0/600
0/1025
0/3025
655200
756000
604800
1033200
3049200
FIT Rate Derating Graph to Users Voltage / Temperature for Most Recent Quarter
Dynamic Long Term Lifetest Static Long Term Lifetest
4.50 V
5.00 V
5.50 V
FITS @ 60% C.L.
100
80
90
70
60
50
40
30
20
10
025 30 35 40 45 50 55 60 65 70
USERS TEMPERATURE (CELSIUS)
FITS @ 60% C.L.
100
80
90
70
60
50
40
30
20
10
025 30 35 40 45 50 55 60 65 70
USERS TEMPERATURE (CELSIUS)
MOTOROLA
4-6 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
PROCESS MONITORS
16 MEGABIT DRAM
0.5µ Double Level Metal, Triple Level Poly CMOS DRAM Process
Part Number Organization Speed
MCM517400B 4M x 4 Page Mode Extended
Data Out 60 ns
MOTOROLA
4-7
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
0.5µ Double Level Metal, Triple Level Poly CMOS DRAM Process (cont.)
Dynamic Early Fail Study
125°C, 7.0 volts, 72 Hours
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
3/2952
0/2958
3/7459
0/1534
6/14903
1016
0
402
0
403
3 – In Analysis
3 – No Defect Found
Dynamic Early Fail Study Results by Quarter
4Q95 1Q96 2Q96
PPM FAIL
5000
4000
3000
2000
1000
03Q96
NOTE: All data for 1995 was .6µ 16M product. The monitor has been converted to the next generation .5µ 16M starting
first quarter 1996.
MOTOROLA
4-8 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
0.5µ Double Level Metal, Triple Level Poly CMOS DRAM Process (cont.)
Dynamic Long Term Lifetest
125°C, 7.0 volts, 1008 Hours
Time Period Results:
Rejects/Devices Total
Device Hours EA
(eV) Reject Information
4th Quarter 1995
Last 4 Quarters 0/150
0/150 151200
151200
Static Long Term Lifetest
125°C, 7.0 volts, 1008 Hours
Time Period Results:
Rejects/Devices Total
Device Hours EA
(eV) Reject Information
4th Quarter 1995
Last 4 Quarters 0/150
0/150 151200
151200
FIT Rate Derating Graph to Users Voltage / Temperature for Most Recent Quarter
Dynamic Long Term Lifetest Static Long Term Lifetest
4.50 V
5.00 V
5.50 V
FITS @ 60% C.L.
100
80
90
70
60
50
40
30
20
10
025 30 35 40 45 50 55 60 65 70
USERS TEMPERATURE (CELSIUS)
FITS @ 60% C.L.
100
80
90
70
60
50
40
30
20
10
025 30 35 40 45 50 55 60 65 70
USERS TEMPERATURE (CELSIUS)
MOTOROLA
4-9
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
PACKAGE MONITORS
4 MEGABIT DRAM
300 mil, 20/26 pin Plastic SOJ Package
Applicable Devices:
Part Number Package Width / Pin Count
MCM54100A
MCM54400A
300 mil / 20/26 pin
300 mil / 20/26 pin
MOTOROLA
4-10 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
4 MEGABIT DRAM
300 mil, 20/26 pin Plastic SOJ Package
Preconditioning Stress
30°C, 60% RH, 192 Hrs, Vapor Phase (215°C) 4 Passes
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/924
0/925
0/350
0/2020
0/4219
0
0
0
0
0
Pressure Temperature Humidity Bias
148°C, 90% RH, 44 psig, 5 V, 72 Hrs
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/200
0/71
0/100
0/350
0/721
0
0
0
0
0
Temperature Cycle
– 65 to + 150°C, Air to Air, 500 Cycles
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/200
0/75
0/100
0/300
0/675
0
0
0
0
0
Thermal Shock (Moist PC)
– 65 to + 150°C, Liquid to Liquid, 500 Cycles
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/100
0/40
0/50
0/223
0/413
0
0
0
0
0
NOTE: All SOJ package stresses are sourced from 30/60 preconditioned material.
MOTOROLA
4-11
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
PACKAGE MONITORS
4 MEGABIT DRAM
400 mil, 28 pin Plastic SOJ Package
Applicable Devices:
Part Number Package Width / Pin Count
MCM54800A 400 mil / 28 pin
*Product is end of life, monitor will be ceased after third quarter 1996.
MOTOROLA
4-12 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
4 MEGABIT DRAM
400 mil, 28 pin Plastic SOJ Package
Preconditioning Stress
30°C, 60% RH, 192 Hrs, Vapor Phase (215°C) 4 Passes
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/1006
0/700
0/1400
0/3106
0
0
0
0
Pressure Temperature Humidity Bias
148°C, 90% RH, 44 psig, 5 V, 72 Hrs
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/50
0/150
0/100
0/150
0/450
0
0
0
0
0
Temperature Cycle
– 65 to + 150°C, Air to Air, 500 Cycles
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/50
0/125
0/50
0/200
0/425
0
0
0
0
0
Thermal Shock (Moist PC)
– 65 to + 150°C, Liquid to Liquid, 500 Cycles
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/6
0/50
0/25
0/75
0/156
0
0
0
0
0
NOTE: All SOJ package stresses are sourced from 30/60 preconditioned material.
MOTOROLA
4-13
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
PACKAGE MONITORS
16 MEGABIT DRAM
400 mil, 24/28 pin Plastic SOJ Package
Applicable Devices:
Part Number Package Width / Pin Count
MCM517400 400 mil / 24/28 pin
MOTOROLA
4-14 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
16 MEGABIT DRAM
400 mil, 24/28 pin Plastic SOJ Package
Preconditioning Stress
85°C, 60% RH, 168 Hrs, Vapor Phase (215°C) 4 Passes
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
4th Quarter 1995
Last 4 Quarters 0/400
0/400 0
0
Pressure Temperature Humidity Bias
148°C, 90% RH, 44 psig, 5 V, 72 Hrs
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
4th Quarter 1995
Last 4 Quarters 0/75
0/75 0
0
Temperature Cycle
– 65 to + 150°C, Air to Air, 500 Cycles
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
4th Quarter 1995
Last 4 Quarters 0/50
0/50 0
0
Thermal Shock (Moist PC)
– 65 to + 150°C, Liquid to Liquid, 500 Cycles
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
4th Quarter 1995
Last 4 Quarters 0/75
0/75 0
0
NOTE: All SOJ package stresses are sourced from 85/60 preconditioned material.
MOTOROLA
4-15
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
PACKAGE MONITORS
DRAM MODULES
The following monitor results are determined by stressing modules representative of all possible product families
(30 pad SIMM to 168 pin DIMM).
MOTOROLA
4-16 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
DRAM MODULE MONITOR
Temperature Cycle
0 to + 125°C, Air to Air, 500 Cycles
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
Last 4 Quarters
0/44
0/44
0/44
0/132
0
0
0
0
Temperature Humidity Bias
85°C, 85% RH, 5 V, 504 Hrs
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
Last 4 Quarters
1/44
0/44
0/44
1/132
22727
0
0
7576
1 – Defective Capacitor
Flex Test
7.88” Flexes per Side, 5 Cycles
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
Last 4 Quarters
0/10
0/20
0/20
0/50
0
0
0
0
Variable Frequency Vibration
20g, 20 – 2000 Hz, 4 Cycles per Axis
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
Last 4 Quarters
0/10
0/20
0/20
0/50
0
0
0
0
MOTOROLA
4-17
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
TECHNOLOGY DRAWINGS
p-SUBSTRATE
p-WELL
n
POLYCIDE (BL) 1ST POLY (CAP.) 2ND POLY (WL)
Al (WL)
0.7µ Single Level Metal, Triple Level Poly CMOS DRAM Process
0.5µ Double Level Metal, Triple Level Poly CMOS DRAM Process
MOTOROLA
4-18 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
WORLD WIDE — WORLD CLASS
MOTOROLA
5-1
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
Section 5
MICROPROCESSOR PRODUCTS
PROCESS MONITORS
1.0 – 1.5 µm PROCESS FAMILY 5-3. . . . . . . . . . . . .
0.7 – 0.8 µm PROCESS FAMILY 5-7. . . . . . . . . . . . .
0.65 µm PROCESS F AMILY 5-11. . . . . . . . . . . . . . . . .
0.5 µm PROCESS F AMILY 5-15. . . . . . . . . . . . . . . . . .
0.35 µm PROCESS F AMILY 5–19. . . . . . . . . . . . . . . . .
PACKAGES
CBGA (RS, RX) 5-22. . . . . . . . . . . . . . . . . . . . . . . . . . . .
CQFP (FE, FX) 5-26. . . . . . . . . . . . . . . . . . . . . . . . . . . .
CPGA (R/RC) 5-30. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PBGA (ZP) 5-32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PQFP (FC/FG/FT/PB) 5-34. . . . . . . . . . . . . . . . . . . . . .
TQFP (PV) 5-37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PLCC (FN) 5-39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PDIP (P) 5-42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PPGA (RP) 5-44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
5-2
FC = Plastic Quad (Gull Wing) FE = Ceramic Quad (Gull Wing) FG = Plastic Quad Flat Pack (PQFP)
FN = Plastic Quad Pack (PLCC) FT = Plastic Flat Pack (28 x 28 mm) FU = Plastic Quad Flat Pack (14 x 14 mm)
KB = Ceramic PGA with Ceramic Lid PU = Thin Quad Flat Pack P = Plastic DIP
PB = QFP (10 x 10 mm) PV = TQFP (20 x 20 mm) R = Pin Grid Array, Solder Lead Finish
RC = Pin Grid Array, Gold Lead Finish RP = Plastic Pin Grid Array ZP = Ball Grid Array, 357 Lead
MOTOROLA
5-3
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
1.0 – 1.5 µm HCMOS PROCESS MONITORS
Applicable Devices:
Part Number Fab Technology
MC68020
MC68030
MC68605
MC68606
MC68824
MC68882
MC68EC000
MC68EC020
MC68HC000/1
MC88100
MC88200
TSC
TSC
MOS8
MOS8
MOS8
MOS8
TSC
TSC
TSC
MOS8
MOS8
1µ
1µ
1.5µ
1.5µ
1.5µ
1µ
1.2µ
1µ
1.2µ
1µ
1µ
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
5-4
Dynamic Early Fail Study
125°C, 6.0 volts, 168 Hours
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/221
0/668
0/101
0/475
0/1465
0
0
0
0
0
Rolling Year Dynamic Early Life Fail Study Results
1Q96 3Q96
PPM for Past Year
500
400
300
200
100
04Q95
50
150
250
350
450
Quarter Ending2Q96
MOTOROLA
5-5
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
High Temperature Dynamic Operating Life Test
125°C, 6.0 Volts, 1008 Hours
Time Period Results:
Rejects/Devices Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/125
0/97
0/101
0/75
0/398
Failure Rate Calculation Information
Device Hours Number of Failures
594000 0
FIT Rate Derating Graph to Users Temperature for Last Four Quarters
Activation Energy = 0.7 eV
Dynamic Long Term Life Test
3525 30
400
300
200
100
0
FITS @ 60% C.L.
50
150
250
350
500
450
4540 5550 6560 70
AMBIENT TEMPERATURE (CELSIUS)
FITS @ 90% C.L.
550
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
5-6
1996: 1.0 – 1.5 µm HCMOS Life Test Data
Device
Fab
Pkg
Date
Read Points: Fails/SS
Lot #
Device
Type Leff
Fab
Site Assy
Pkg
Typ
Date
Code 24 Hrs 168 Hrs 504 Hrs 1008 Hrs
ÁÁÁÁÁ
ÁÁÁÁÁ
115292–1
ÁÁÁÁÁ
ÁÁÁÁÁ
68882
ÁÁÁ
ÁÁÁ
1.0
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁÁÁ
ÁÁÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FN
ÁÁÁ
ÁÁÁ
9529
0/154
0/29
0/29
0/29
ÁÁÁÁÁ
ÁÁÁÁÁ
111336–1
ÁÁÁÁÁ
ÁÁÁÁÁ
68HC000
ÁÁÁ
ÁÁÁ
1.2
ÁÁÁÁ
ÁÁÁÁ
TSC
ÁÁÁÁÁ
ÁÁÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FN
ÁÁÁ
ÁÁÁ
9527
0/180
0/30
0/30
0/30
ÁÁÁÁÁ
ÁÁÁÁÁ
113065–1
ÁÁÁÁÁ
ÁÁÁÁÁ
68HC001
ÁÁÁ
ÁÁÁ
1.2
ÁÁÁÁ
ÁÁÁÁ
TSC
ÁÁÁÁÁ
ÁÁÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FN
ÁÁÁ
ÁÁÁ
9528
0/217
0/42
0/42
0/42
ÁÁÁÁÁ
ÁÁÁÁÁ
117239–1
ÁÁÁÁÁ
ÁÁÁÁÁ
68606
ÁÁÁ
ÁÁÁ
1.5
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁÁÁ
ÁÁÁÁÁ
BUCH
ÁÁÁ
ÁÁÁ
FN
ÁÁÁ
ÁÁÁ
9539
0/143
0/143
0/23
0/23
ÁÁÁÁÁ
ÁÁÁÁÁ
113460–1
ÁÁÁÁÁ
ÁÁÁÁÁ
68605
ÁÁÁ
ÁÁÁ
1.5
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁÁÁ
ÁÁÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
RC
ÁÁÁ
ÁÁÁ
9531
0/175
0/175
0/24
0/24
ÁÁÁÁÁ
ÁÁÁÁÁ
106866–1
ÁÁÁÁÁ
ÁÁÁÁÁ
68605
ÁÁÁ
ÁÁÁ
1.5
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁÁÁ
ÁÁÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
RC
ÁÁÁ
ÁÁÁ
9507
0/175
0/175
0/25
0/25
ÁÁÁÁÁ
ÁÁÁÁÁ
119401–1
ÁÁÁÁÁ
ÁÁÁÁÁ
68605
ÁÁÁ
ÁÁÁ
1.5
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁÁÁ
ÁÁÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
RC
ÁÁÁ
ÁÁÁ
9543
0/175
0/175
0/25
0/25
ÁÁÁÁÁ
ÁÁÁÁÁ
110542–1
ÁÁÁÁÁ
ÁÁÁÁÁ
68606
ÁÁÁ
ÁÁÁ
1.5
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁÁÁ
ÁÁÁÁÁ
BUCH
ÁÁÁ
ÁÁÁ
FN
ÁÁÁ
ÁÁÁ
9515
0/131
0/30
0/30
0/30
ÁÁÁÁÁ
ÁÁÁÁÁ
K39609
ÁÁÁÁÁ
ÁÁÁÁÁ
68HC000
ÁÁÁ
ÁÁÁ
1.2
ÁÁÁÁ
ÁÁÁÁ
TSC
ÁÁÁÁÁ
ÁÁÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FN
ÁÁÁ
ÁÁÁ
9605
0/96
0/96
0/48
0/48
ÁÁÁÁÁ
ÁÁÁÁÁ
K39617
ÁÁÁÁÁ
ÁÁÁÁÁ
68HC000
ÁÁÁ
ÁÁÁ
1.2
ÁÁÁÁ
ÁÁÁÁ
TSC
ÁÁÁÁÁ
ÁÁÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FN
ÁÁÁ
ÁÁÁ
9616
0/95
0/95
0/48
0/47
ÁÁÁÁÁ
ÁÁÁÁÁ
1996 TOTALS
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
0/1541
0/990
0/324
0/323
MOTOROLA
5-7
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
0.7 – 0.8 µm HCMOS PROCESS MONITORS
Applicable Devices:
Part Number Fab Technology
MC68030
MC68302
MC68340/9
MC68837
MC68840
MC68EC000
MC68HC000/1
MC88410
XC68306/7
XC68322
XC68341
MC68SEC000
MOS8
MOS8
MOS8
MOS8
MOS8
MOS8
MOS8
MOS8
MOS8
MOS8
MOS8
MOS10
0.8µ
0.8µ
0.8µ
0.8µ
0.71µ
0.71µ/0.8µ
0.8µ
0.8µ
0.8µ
0.8µ
0.8µ
0.8µ
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
5-8
Dynamic Early Fail Study
125°C, 6.0 volts, 168 Hours
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/135
0/150
0/29
0/170
0/484
0
0
0
0
0
Rolling Year Dynamic Early Life Fail Study Results
1Q96 3Q96
PPM for Past Year
500
400
300
200
100
04Q95
50
150
250
350
450
Quarter Ending
2Q96
MOTOROLA
5-9
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
High Temperature Dynamic Operating Life Test
125°C, 6.0 Volts, 1008 Hours
Time Period Results:
Rejects/Devices Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/129
0/150
0/29
0/70
0/378
Failure Rate Calculation Information
Device Hours Number of Failures
413760 0
FIT Rate Derating Graph to Users Temperature for Last Four Quarters
Activation Energy = 0.7 eV
Dynamic Long Term Lifetest
3525 30
400
300
200
100
0
FITS @ 60% C.L.
50
150
250
350
500
450
4540 5550 6560 70
AMBIENT TEMPERATURE (CELSIUS)
FITS @ 90% C.L.
550
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
5-10
1996: 0.7 – 0.8 µm HCMOS Life Test Data
Device
Fab
Pkg
Date
Read Points: Fails/SS
Lot #
Device
Type Leff
Fab
Site Assy
Pkg
Typ
Date
Code 24 Hrs 168 Hrs 504 Hrs 1008 Hrs
ÁÁÁÁÁ
ÁÁÁÁÁ
124134–1
ÁÁÁÁÁ
ÁÁÁÁÁ
68HC000
ÁÁÁ
ÁÁÁ
0.8
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁÁÁ
ÁÁÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FN
ÁÁÁ
ÁÁÁ
9545
0/216
ÁÁÁÁÁ
ÁÁÁÁÁ
117398–1
ÁÁÁÁÁ
ÁÁÁÁÁ
68HC001
ÁÁÁ
ÁÁÁ
0.8
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁÁÁ
ÁÁÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FN
ÁÁÁ
ÁÁÁ
9544
0/154
0/29
0/29
0/29
ÁÁÁÁÁ
ÁÁÁÁÁ
119609–1
ÁÁÁÁÁ
ÁÁÁÁÁ
68SEC000
ÁÁÁ
ÁÁÁ
0.8
ÁÁÁÁ
ÁÁÁÁ
MS10
ÁÁÁÁÁ
ÁÁÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FN
ÁÁÁ
ÁÁÁ
9548
0/75
0/75
0/75
0/75
ÁÁÁÁÁ
ÁÁÁÁÁ
119609–17
ÁÁÁÁÁ
ÁÁÁÁÁ
68SEC000
ÁÁÁ
ÁÁÁ
0.8
ÁÁÁÁ
ÁÁÁÁ
MS10
ÁÁÁÁÁ
ÁÁÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FN
ÁÁÁ
ÁÁÁ
9548
0/75
0/75
0/75
0/75
ÁÁÁÁÁ
ÁÁÁÁÁ
119609–9
ÁÁÁÁÁ
ÁÁÁÁÁ
65SEC000
ÁÁÁ
ÁÁÁ
0.8
ÁÁÁÁ
ÁÁÁÁ
MS10
ÁÁÁÁÁ
ÁÁÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FN
ÁÁÁ
ÁÁÁ
9548
0/65
0/65
0/65
0/65
ÁÁÁÁÁ
ÁÁÁÁÁ
125752–1
ÁÁÁÁÁ
ÁÁÁÁÁ
68030
ÁÁÁ
ÁÁÁ
0.8
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁÁÁ
ÁÁÁÁÁ
SHC
ÁÁÁ
ÁÁÁ
PV
ÁÁÁ
ÁÁÁ
9615
0/70
0/70
0/69
0/64
ÁÁÁÁÁ
ÁÁÁÁÁ
1996 TOTALS
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
0/655
0/314
0/313
0/308
MOTOROLA
5-11
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
0.65 µm HCMOS PROCESS MONITORS
Applicable Devices:
Part Number Fab Technology
MC68302
MC68302
XC68328
MC68340
MC68340
MC68356
MC68356
MC68360
MC68360
MC68SEC000
MC88110
XC68040/EC040/LC040
SC414310
MOS11
MOS12
MOS8
MOS8
MOS11
MOS11
MOS12
MOS11
TSC
MOS8
MOS8
MOS11
TSC
0.65µ
0.65µ
0.65µ
0.65µ
0.65µ
0.65µ
0.65µ
0.65µ
0.65µ
0.65µ
0.65µ
0.65µ
0.65µ
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
5-12
Dynamic Early Fail Study
125°C, 6.0 volts, 168 Hours
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
4/3125
0/252
0/321
2/727
6/4425
1280
0
0
2751
1356
2 – Function, 1 – Passes After Depot,
1 – Gate Rupture
Tristate Leak
Rolling Year Dynamic Early Life Fail Study Results
1Q96 3Q96
PPM for Past Year
2000
1600
1200
800
400
04Q95
200
600
1000
1400
1800
Quarter Ending2Q96
MOTOROLA
5-13
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
High Temperature Dynamic Operating Life Test
125°C, 6.0 Volts, 1008 Hours
Time Period Results:
Rejects/Devices Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
2/897
0/97
0/229
0/464
2/1687
1 – Marginal Idd, 1 – Functional
Failure Rate Calculation Information
Device Hours Number of Failures
2171352 8
FIT Rate Derating Graph to Users Temperature for Last Four Quarters
Activation Energy = 0.7 eV
Dynamic Long Term Lifetest
3525 30
400
300
200
100
0
FITS @ 60% C.L.
50
150
250
350
500
450
4540 5550 6560 70
AMBIENT TEMPERATURE (CELSIUS)
FITS @ 90% C.L.
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
5-14
1995: 0.65 µm HCMOS LIFE TEST DATA
Device
Fab
Pkg
Date
Read Points: Fails/SS
Lot #
Device
Type Leff
Fab
Site Assy
Pkg
Typ
Date
Code 24 Hrs 168 Hrs 504 Hrs 1008 Hrs
ÁÁÁÁÁ
ÁÁÁÁÁ
109693–19
ÁÁÁÁ
ÁÁÁÁ
68SEC000
ÁÁÁÁ
ÁÁÁÁ
0.65
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FN
ÁÁÁ
ÁÁÁ
9526
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
120886–3
ÁÁÁÁ
ÁÁÁÁ
68PM302
ÁÁÁÁ
ÁÁÁÁ
0.65
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁÁ
ÁÁÁÁ
SHC
ÁÁÁ
ÁÁÁ
PV
ÁÁÁ
ÁÁÁ
9601
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
120798–1
ÁÁÁÁ
ÁÁÁÁ
68302
ÁÁÁÁ
ÁÁÁÁ
0.65
ÁÁÁÁ
ÁÁÁÁ
MS12
ÁÁÁÁ
ÁÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
RC
ÁÁÁ
ÁÁÁ
9602
ÁÁÁÁ
ÁÁÁÁ
0/84
ÁÁÁÁ
ÁÁÁÁ
0/84
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
109285–1
ÁÁÁÁ
ÁÁÁÁ
68340
ÁÁÁÁ
ÁÁÁÁ
0.65
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁÁ
ÁÁÁÁ
OHT
ÁÁÁ
ÁÁÁ
RC
ÁÁÁ
ÁÁÁ
9520
ÁÁÁÁ
ÁÁÁÁ
0/83
ÁÁÁÁ
ÁÁÁÁ
0/83
ÁÁÁÁ
ÁÁÁÁ
0/82
ÁÁÁÁÁ
ÁÁÁÁÁ
0/75
ÁÁÁÁÁ
ÁÁÁÁÁ
111205–1
ÁÁÁÁ
ÁÁÁÁ
68356
ÁÁÁÁ
ÁÁÁÁ
0.65
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁ
ÁÁÁ
9527
ÁÁÁÁ
ÁÁÁÁ
0/175
ÁÁÁÁ
ÁÁÁÁ
0/175
ÁÁÁÁ
ÁÁÁÁ
0/25
ÁÁÁÁÁ
ÁÁÁÁÁ
0/25
ÁÁÁÁÁ
ÁÁÁÁÁ
118466–10
ÁÁÁÁ
ÁÁÁÁ
68356
ÁÁÁÁ
ÁÁÁÁ
0.65
ÁÁÁÁ
ÁÁÁÁ
MS12
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁ
ÁÁÁ
9546
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/72
ÁÁÁÁÁ
ÁÁÁÁÁ
126353–1
ÁÁÁÁ
ÁÁÁÁ
68360
ÁÁÁÁ
ÁÁÁÁ
0.65
ÁÁÁÁ
ÁÁÁÁ
TSC
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
RC
ÁÁÁ
ÁÁÁ
9618
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
126353–2
ÁÁÁÁ
ÁÁÁÁ
68360
ÁÁÁÁ
ÁÁÁÁ
0.65
ÁÁÁÁ
ÁÁÁÁ
TSC
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
RC
ÁÁÁ
ÁÁÁ
9618
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
126353–3
ÁÁÁÁ
ÁÁÁÁ
68360
ÁÁÁÁ
ÁÁÁÁ
0.65
ÁÁÁÁ
ÁÁÁÁ
TSC
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
RC
ÁÁÁ
ÁÁÁ
9618
ÁÁÁÁ
ÁÁÁÁ
0/76
ÁÁÁÁ
ÁÁÁÁ
0/76
ÁÁÁÁ
ÁÁÁÁ
0/76
ÁÁÁÁÁ
ÁÁÁÁÁ
0/76
ÁÁÁÁÁ
ÁÁÁÁÁ
110117–1
ÁÁÁÁ
ÁÁÁÁ
68356
ÁÁÁÁ
ÁÁÁÁ
0.65
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁ
ÁÁÁ
9508
ÁÁÁÁ
ÁÁÁÁ
0/176
ÁÁÁÁ
ÁÁÁÁ
1/27
ÁÁÁÁ
ÁÁÁÁ
0/25
ÁÁÁÁÁ
ÁÁÁÁÁ
0/25
ÁÁÁÁÁ
ÁÁÁÁÁ
109693–1
ÁÁÁÁ
ÁÁÁÁ
68SEC000
ÁÁÁÁ
ÁÁÁÁ
0.65
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FN
ÁÁÁ
ÁÁÁ
9518
ÁÁÁÁ
ÁÁÁÁ
0/76
ÁÁÁÁ
ÁÁÁÁ
0/76
ÁÁÁÁ
ÁÁÁÁ
0/76
ÁÁÁÁÁ
ÁÁÁÁÁ
0/76
ÁÁÁÁÁ
ÁÁÁÁÁ
109693–11
ÁÁÁÁ
ÁÁÁÁ
68SEC000
ÁÁÁÁ
ÁÁÁÁ
0.65
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FN
ÁÁÁ
ÁÁÁ
9522
ÁÁÁÁ
ÁÁÁÁ
0/75
ÁÁÁÁ
ÁÁÁÁ
0/75
ÁÁÁÁ
ÁÁÁÁ
0/75
ÁÁÁÁÁ
ÁÁÁÁÁ
0/75
ÁÁÁÁÁ
ÁÁÁÁÁ
S39601–1
ÁÁÁÁ
ÁÁÁÁ
68328
ÁÁÁÁ
ÁÁÁÁ
0.65
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁÁ
ÁÁÁÁ
SHC
ÁÁÁ
ÁÁÁ
PV
ÁÁÁ
ÁÁÁ
9540
ÁÁÁÁ
ÁÁÁÁ
0/557
ÁÁÁÁ
ÁÁÁÁ
1/557
ÁÁÁÁ
ÁÁÁÁ
0/80
ÁÁÁÁÁ
ÁÁÁÁÁ
1/80
ÁÁÁÁÁ
ÁÁÁÁÁ
S39601–2
ÁÁÁÁ
ÁÁÁÁ
68328
ÁÁÁÁ
ÁÁÁÁ
0.65
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁÁ
ÁÁÁÁ
SHC
ÁÁÁ
ÁÁÁ
PV
ÁÁÁ
ÁÁÁ
9615
ÁÁÁÁ
ÁÁÁÁ
0/480
ÁÁÁÁ
ÁÁÁÁ
0/480
ÁÁÁÁ
ÁÁÁÁ
0/80
ÁÁÁÁÁ
ÁÁÁÁÁ
0/80
ÁÁÁÁÁ
ÁÁÁÁÁ
S39601–3
ÁÁÁÁ
ÁÁÁÁ
68328
ÁÁÁÁ
ÁÁÁÁ
0.65
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁÁ
ÁÁÁÁ
SHC
ÁÁÁ
ÁÁÁ
PV
ÁÁÁ
ÁÁÁ
9615
ÁÁÁÁ
ÁÁÁÁ
0/478
ÁÁÁÁ
ÁÁÁÁ
1/477
ÁÁÁÁ
ÁÁÁÁ
0/79
ÁÁÁÁÁ
ÁÁÁÁÁ
0/79
ÁÁÁÁÁ
ÁÁÁÁÁ
S39601–4
ÁÁÁÁ
ÁÁÁÁ
68328
ÁÁÁÁ
ÁÁÁÁ
0.65
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁÁ
ÁÁÁÁ
SHC
ÁÁÁ
ÁÁÁ
PV
ÁÁÁ
ÁÁÁ
9626
ÁÁÁÁ
ÁÁÁÁ
0/474
ÁÁÁÁ
ÁÁÁÁ
0/473
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
S39601–5
ÁÁÁÁ
ÁÁÁÁ
68328
ÁÁÁÁ
ÁÁÁÁ
0.65
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁÁ
ÁÁÁÁ
SHC
ÁÁÁ
ÁÁÁ
PV
ÁÁÁ
ÁÁÁ
9626
ÁÁÁÁ
ÁÁÁÁ
0/477
ÁÁÁÁ
ÁÁÁÁ
0/477
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
118814–1
ÁÁÁÁ
ÁÁÁÁ
414310
ÁÁÁÁ
ÁÁÁÁ
0.65
ÁÁÁÁ
ÁÁÁÁ
TSC
ÁÁÁÁ
ÁÁÁÁ
SHC
ÁÁÁ
ÁÁÁ
PV
ÁÁÁ
ÁÁÁ
9548
ÁÁÁÁ
ÁÁÁÁ
0/93
ÁÁÁÁ
ÁÁÁÁ
0/93
ÁÁÁÁ
ÁÁÁÁ
0/93
ÁÁÁÁÁ
ÁÁÁÁÁ
1/93
ÁÁÁÁÁ
ÁÁÁÁÁ
S39602–1
ÁÁÁÁ
ÁÁÁÁ
414310
ÁÁÁÁ
ÁÁÁÁ
0.65
ÁÁÁÁ
ÁÁÁÁ
TSC
ÁÁÁÁ
ÁÁÁÁ
SHC
ÁÁÁ
ÁÁÁ
PV
ÁÁÁ
ÁÁÁ
9625
ÁÁÁÁ
ÁÁÁÁ
0/80
ÁÁÁÁ
ÁÁÁÁ
0/80
ÁÁÁÁ
ÁÁÁÁ
0/80
ÁÁÁÁÁ
ÁÁÁÁÁ
0/80
ÁÁÁÁÁ
ÁÁÁÁÁ
S39602–2
ÁÁÁÁ
ÁÁÁÁ
414310
ÁÁÁÁ
ÁÁÁÁ
0.65
ÁÁÁÁ
ÁÁÁÁ
TSC
ÁÁÁÁ
ÁÁÁÁ
SHC
ÁÁÁ
ÁÁÁ
PV
ÁÁÁ
ÁÁÁ
9625
ÁÁÁÁ
ÁÁÁÁ
0/80
ÁÁÁÁ
ÁÁÁÁ
1/80
ÁÁÁÁ
ÁÁÁÁ
0/79
ÁÁÁÁÁ
ÁÁÁÁÁ
0/79
ÁÁÁÁÁ
ÁÁÁÁÁ
1996 TOTALS
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/3849
ÁÁÁÁ
ÁÁÁÁ
4/3698
ÁÁÁÁ
ÁÁÁÁ
0/1235
ÁÁÁÁÁ
ÁÁÁÁÁ
2/1223
Failure Summary
Job # Device Package Qty Rdpt Failure Mode/Mechanism
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
110117–1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
68356
ÁÁÁÁÁ
ÁÁÁÁÁ
ZP
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁ
ÁÁÁÁÁ
168H
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
RECOVERED AFTER DEPOTTING
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
S39601–1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
68328
ÁÁÁÁÁ
ÁÁÁÁÁ
PV
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁ
ÁÁÁÁÁ
168H
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
LOW VDD FUNCTIONAL FAILURE
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
S39601–2
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
68328
ÁÁÁÁÁ
ÁÁÁÁÁ
PV
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁ
ÁÁÁÁÁ
1008H
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
MARGINAL IDD (1.21MA,SPEC IS 1.2)
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
S39601–3
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
68328
ÁÁÁÁÁ
ÁÁÁÁÁ
PV
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁ
ÁÁÁÁÁ
168H
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
LOW VOH FUNCTIONAL FAILURE
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
118814–1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
414310
ÁÁÁÁÁ
ÁÁÁÁÁ
PV
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁ
ÁÁÁÁÁ
1008H
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
GATE OXIDE RUPTURE
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
S39602–2
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
414310
ÁÁÁÁÁ
ÁÁÁÁÁ
PV
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁ
ÁÁÁÁÁ
168H
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
FUNCTIONAL FAILURE
MOTOROLA
5-15
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
0.5 µm HCMOS PROCESS MONITORS
Applicable Devices:
Part Number Fab Technology
PC105 MOS11 0.5µ
PC106 MOS11 0.5µ
PC603 MOS11 0.5µ
PC603 MOS13 0.5µ
PC603E MOS11 0.5µ
PC603E MOS13 0.5µ
MCM602A MOS11 0.5µ
PC604 MOS11 0.5µ
XCF5102 MOS11 0.5µ
Dynamic Early Fail Study
125°C, 4.1 – 4.5 Volts, 168 Hours
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
3/3379
2/931
2/2290
3/1632
10/8232
888
2148
873
1838
1215
ABIST, DCACHE, Function
1 – Function, 1 – Gate Defect
1 – Poly Defect, 1 – Leak
2 – EZF, 1 – Function
Rolling Year Dynamic Early Life Fail Study Results
1Q96 2Q96
PPM per Quarter
5000
4000
3000
2000
1000
03Q96
500
1500
2500
3500
4500
Quarter Ending
4Q95
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
5-16
High Temperature Dynamic Operating Life Test
125°C, 6.0 Volts, 1008 Hours
Time Period Results:
Rejects/Devices Reject Information
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
3/839
0/0
1/654
2/689
6/2182
2 – Function, 1 – Leak
1 – Functional
1 – EZF, 1 – ABIST
Failure Rate Calculation Information
Device Hours Number of Failures
3709104 16
FIT Rate Derating Graph to Users Temperature for Last Four Quarters
Activation Energy = 0.7 eV
Dynamic Long Term Lifetest
3525 30
800
600
400
200
0
FITS @ 60% C.L.
100
300
500
700
1000
900
4540 5550 6560 70
AMBIENT TEMPERATURE (CELSIUS)
FITS @ 90% C.L.
MOTOROLA
5-17
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
1996: 0.5 µm HCMOS LIFE TEST DATA
Lot # Device
Type
Leff Fab
Site
Assy Pkg
Typ
Date
Code
Read Points: Fails/SS
T
ype
Sit
e
T
yp
C
o
d
e168 Hrs 504 Hrs 1008 Hrs
ÁÁÁÁÁ
ÁÁÁÁÁ
106917–1
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9506
ÁÁÁÁÁ
ÁÁÁÁÁ
0/48
ÁÁÁÁ
ÁÁÁÁ
0/24
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
122659–1
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9602
ÁÁÁÁÁ
ÁÁÁÁÁ
0/76
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
122659–6
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9602
ÁÁÁÁÁ
ÁÁÁÁÁ
0/76
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
122659–11
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9602
ÁÁÁÁÁ
ÁÁÁÁÁ
0/76
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
122659–16
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9602
ÁÁÁÁÁ
ÁÁÁÁÁ
0/76
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
120140–1
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9552
ÁÁÁÁÁ
ÁÁÁÁÁ
1/311
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/75
ÁÁÁÁÁ
ÁÁÁÁÁ
120140–2
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9552
ÁÁÁÁÁ
ÁÁÁÁÁ
0/5
ÁÁÁÁ
ÁÁÁÁ
0/5
ÁÁÁÁÁ
ÁÁÁÁÁ
0/5
ÁÁÁÁÁ
ÁÁÁÁÁ
120140–8
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9552
ÁÁÁÁÁ
ÁÁÁÁÁ
0/336
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/72
ÁÁÁÁÁ
ÁÁÁÁÁ
120140–9
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9552
ÁÁÁÁÁ
ÁÁÁÁÁ
0/4
ÁÁÁÁ
ÁÁÁÁ
0/4
ÁÁÁÁÁ
ÁÁÁÁÁ
0/4
ÁÁÁÁÁ
ÁÁÁÁÁ
120140–15
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9601
ÁÁÁÁÁ
ÁÁÁÁÁ
0/335
ÁÁÁÁ
ÁÁÁÁ
0/73
ÁÁÁÁÁ
ÁÁÁÁÁ
0/71
ÁÁÁÁÁ
ÁÁÁÁÁ
120140–16
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9601
ÁÁÁÁÁ
ÁÁÁÁÁ
0/5
ÁÁÁÁ
ÁÁÁÁ
0/5
ÁÁÁÁÁ
ÁÁÁÁÁ
0/5
ÁÁÁÁÁ
ÁÁÁÁÁ
118468–4
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9548
ÁÁÁÁÁ
ÁÁÁÁÁ
0/5
ÁÁÁÁ
ÁÁÁÁ
0/5
ÁÁÁÁÁ
ÁÁÁÁÁ
0/5
ÁÁÁÁÁ
ÁÁÁÁÁ
118468–5
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9548
ÁÁÁÁÁ
ÁÁÁÁÁ
0/5
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
118468–6
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9548
ÁÁÁÁÁ
ÁÁÁÁÁ
0/5
ÁÁÁÁ
ÁÁÁÁ
0/5
ÁÁÁÁÁ
ÁÁÁÁÁ
0/5
ÁÁÁÁÁ
ÁÁÁÁÁ
118468–7
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9548
ÁÁÁÁÁ
ÁÁÁÁÁ
0/110
ÁÁÁÁ
ÁÁÁÁ
0/110
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
118468–8
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9548
ÁÁÁÁÁ
ÁÁÁÁÁ
1/93
ÁÁÁÁ
ÁÁÁÁ
0/92
ÁÁÁÁÁ
ÁÁÁÁÁ
0/92
ÁÁÁÁÁ
ÁÁÁÁÁ
118468–9
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9548
ÁÁÁÁÁ
ÁÁÁÁÁ
0/271
ÁÁÁÁ
ÁÁÁÁ
0/271
ÁÁÁÁÁ
ÁÁÁÁÁ
1/76
ÁÁÁÁÁ
ÁÁÁÁÁ
118468–11
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9548
ÁÁÁÁÁ
ÁÁÁÁÁ
0/5
ÁÁÁÁ
ÁÁÁÁ
0/5
ÁÁÁÁÁ
ÁÁÁÁÁ
0/4
ÁÁÁÁÁ
ÁÁÁÁÁ
118468–12
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9548
ÁÁÁÁÁ
ÁÁÁÁÁ
0/88
ÁÁÁÁ
ÁÁÁÁ
0/81
ÁÁÁÁÁ
ÁÁÁÁÁ
0/78
ÁÁÁÁÁ
ÁÁÁÁÁ
118468–13
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9550
ÁÁÁÁÁ
ÁÁÁÁÁ
0/355
ÁÁÁÁ
ÁÁÁÁ
0/80
ÁÁÁÁÁ
ÁÁÁÁÁ
0/80
ÁÁÁÁÁ
ÁÁÁÁÁ
118468–14
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9550
ÁÁÁÁÁ
ÁÁÁÁÁ
0/5
ÁÁÁÁ
ÁÁÁÁ
0/5
ÁÁÁÁÁ
ÁÁÁÁÁ
0/5
ÁÁÁÁÁ
ÁÁÁÁÁ
125734–1
ÁÁÁÁÁ
ÁÁÁÁÁ
604
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
9615
ÁÁÁÁÁ
ÁÁÁÁÁ
1/150
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
125734–4
ÁÁÁÁÁ
ÁÁÁÁÁ
604
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
9614
ÁÁÁÁÁ
ÁÁÁÁÁ
1/79
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
125734–6
ÁÁÁÁÁ
ÁÁÁÁÁ
604
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
9613
ÁÁÁÁÁ
ÁÁÁÁÁ
0/221
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
126189–1
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9617
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
126189–2
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9617
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
126189–3
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9617
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
126190–1
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9616
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
126190–2
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9616
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
122979–1
ÁÁÁÁÁ
ÁÁÁÁÁ
106
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
9606
ÁÁÁÁÁ
ÁÁÁÁÁ
0/96
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
115648–1
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9539
ÁÁÁÁÁ
ÁÁÁÁÁ
0/299
ÁÁÁÁ
ÁÁÁÁ
0/80
ÁÁÁÁÁ
ÁÁÁÁÁ
0/80
ÁÁÁÁÁ
ÁÁÁÁÁ
115648–2
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9539
ÁÁÁÁÁ
ÁÁÁÁÁ
0/5
ÁÁÁÁ
ÁÁÁÁ
0/5
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
115648–8
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9542
ÁÁÁÁÁ
ÁÁÁÁÁ
1/287
ÁÁÁÁ
ÁÁÁÁ
0/80
ÁÁÁÁÁ
ÁÁÁÁÁ
0/80
ÁÁÁÁÁ
ÁÁÁÁÁ
115648–9
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9542
ÁÁÁÁÁ
ÁÁÁÁÁ
0/5
ÁÁÁÁ
ÁÁÁÁ
0/5
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
115648–15
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9542
ÁÁÁÁÁ
ÁÁÁÁÁ
1/320
ÁÁÁÁ
ÁÁÁÁ
0/302
ÁÁÁÁÁ
ÁÁÁÁÁ
0/79
ÁÁÁÁÁ
ÁÁÁÁÁ
115648–16
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9542
ÁÁÁÁÁ
ÁÁÁÁÁ
0/5
ÁÁÁÁ
ÁÁÁÁ
0/5
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
111263–4
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9534
ÁÁÁÁÁ
ÁÁÁÁÁ
0/72
ÁÁÁÁ
ÁÁÁÁ
0/71
ÁÁÁÁÁ
ÁÁÁÁÁ
0/70
ÁÁÁÁÁ
ÁÁÁÁÁ
111263–6
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9534
ÁÁÁÁÁ
ÁÁÁÁÁ
0/72
ÁÁÁÁ
ÁÁÁÁ
1/47
ÁÁÁÁÁ
ÁÁÁÁÁ
0/46
ÁÁÁÁÁ
ÁÁÁÁÁ
111263–16
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9534
ÁÁÁÁÁ
ÁÁÁÁÁ
0/72
ÁÁÁÁ
ÁÁÁÁ
0/72
ÁÁÁÁÁ
ÁÁÁÁÁ
0/71
ÁÁÁÁÁ
ÁÁÁÁÁ
111263–22
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9534
ÁÁÁÁÁ
ÁÁÁÁÁ
0/72
ÁÁÁÁ
ÁÁÁÁ
0/72
ÁÁÁÁÁ
ÁÁÁÁÁ
0/72
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
5-18
Lot # Read Points: Fails/SSDate
Code
Pkg
Typ
AssyFab
Site
LeffDevice
Type
Lot #
1008 Hrs504 Hrs168 Hrs
Date
Code
Pkg
Typ
AssyFab
Site
LeffDevice
Type
ÁÁÁÁÁ
ÁÁÁÁÁ
111263–29
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9536
ÁÁÁÁÁ
ÁÁÁÁÁ
0/72
ÁÁÁÁ
ÁÁÁÁ
0/72
ÁÁÁÁÁ
ÁÁÁÁÁ
0/71
ÁÁÁÁÁ
ÁÁÁÁÁ
111263–35
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9536
ÁÁÁÁÁ
ÁÁÁÁÁ
0/45
ÁÁÁÁ
ÁÁÁÁ
0/45
ÁÁÁÁÁ
ÁÁÁÁÁ
0/44
ÁÁÁÁÁ
ÁÁÁÁÁ
111263–39
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9536
ÁÁÁÁÁ
ÁÁÁÁÁ
0/48
ÁÁÁÁ
ÁÁÁÁ
0/48
ÁÁÁÁÁ
ÁÁÁÁÁ
0/48
ÁÁÁÁÁ
ÁÁÁÁÁ
111263–45
ÁÁÁÁÁ
ÁÁÁÁÁ
603
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9536
ÁÁÁÁÁ
ÁÁÁÁÁ
0/23
ÁÁÁÁ
ÁÁÁÁ
0/22
ÁÁÁÁÁ
ÁÁÁÁÁ
0/22
ÁÁÁÁÁ
ÁÁÁÁÁ
124607–1
ÁÁÁÁÁ
ÁÁÁÁÁ
MCM603A
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
IBM
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
9608
ÁÁÁÁÁ
ÁÁÁÁÁ
0/45
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
124607–2
ÁÁÁÁÁ
ÁÁÁÁÁ
MCM603A
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
IBM
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
9608
ÁÁÁÁÁ
ÁÁÁÁÁ
0/45
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
124607–3
ÁÁÁÁÁ
ÁÁÁÁÁ
MCM603A
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
IBM
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
9608
ÁÁÁÁÁ
ÁÁÁÁÁ
0/45
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
127509–1
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9625
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
127509–2
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9625
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
127509–3
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9625
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
127509–4
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9625
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
1/77
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
127509–5
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9625
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
127509–6
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9625
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
127509–7
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9625
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
1/77
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
127509–8
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9625
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
127509–9
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9625
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
128038–1
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9626
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
128038–2
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9626
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
R39601
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9626
ÁÁÁÁÁ
ÁÁÁÁÁ
0/539
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
127050–1
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9620
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/67
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
127050–2
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9619
ÁÁÁÁÁ
ÁÁÁÁÁ
1/77
ÁÁÁÁ
ÁÁÁÁ
0/65
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
127050–3
ÁÁÁÁÁ
ÁÁÁÁÁ
603E
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9619
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/67
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
126588–1
ÁÁÁÁÁ
ÁÁÁÁÁ
602
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ANAM
ÁÁÁ
ÁÁÁ
FC
ÁÁÁÁ
ÁÁÁÁ
9615
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/76
ÁÁÁÁÁ
ÁÁÁÁÁ
0/76
ÁÁÁÁÁ
ÁÁÁÁÁ
126588–2
ÁÁÁÁÁ
ÁÁÁÁÁ
602
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ANAM
ÁÁÁ
ÁÁÁ
FC
ÁÁÁÁ
ÁÁÁÁ
9615
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
126588–3
ÁÁÁÁÁ
ÁÁÁÁÁ
602
ÁÁÁÁ
ÁÁÁÁ
0.5
ÁÁÁÁÁ
ÁÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ANAM
ÁÁÁ
ÁÁÁ
FC
ÁÁÁÁ
ÁÁÁÁ
9626
ÁÁÁÁÁ
ÁÁÁÁÁ
0/76
ÁÁÁÁ
ÁÁÁÁ
0/76
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
1996 TOTALS
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
7/6600
ÁÁÁÁ
ÁÁÁÁ
3/2966
ÁÁÁÁÁ
ÁÁÁÁÁ
1/1490
Failure Summary
Job # Device Package Qty Rdpt Failure Mode/Mechanism
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
120140–1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
603E
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
168H
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
DEFECT AT POLY/SPACER
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
118468–8
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
603E
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
168H
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
LEAKAGE
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
118468–9
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
603E
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
1008H
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
FUNCTIONAL
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
125734–1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
604
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
168H
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
FUNCTIONAL
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
125734–4
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
604
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
168H
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
GATE DEFECT
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
115648–8
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
603
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
168H
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ABIST: NO DEFECT FOUND
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
115648–15
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
603
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
168H
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
DCACHE: NO DEFECT FOUND
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
111263–6
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
603
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
504H
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
MARGINAL LEAKAGE
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
127509–4
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
603E
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
504H
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
FUNCTIONAL
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
127509–7
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
603E
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
504H
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
FUNCTIONAL
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
127050–2
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
603E
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
168H
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
MARGINAL FUNCTIONAL
MOTOROLA
5-19
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
0.35 µm HCMOS PROCESS MONITORS
Applicable Devices:
Part Number Fab Technology
PC603P MOS13 0.35µ
PC604E MOS13 0.35µ
Dynamic Early Fail Study
125°C, 4.1 – 4.5 Volts, 168 Hours
Time Period Results:
Rejects/Devices Cumulative PPM Fail Reject Information
3rd Quarter 1996
2nd Quarter 1996
Last 4 Quarters
1/1928
2/2778
3/4706
519
720
637
1 – Functional
1 – ICACHE, 1 – Blocked Trench Etch
High Temperature Dynamic Operating Life Test
125°C, 6.0 Volts, 1008 Hours
Time Period Results:
Rejects/Devices Reject Information
3rd Quarter 1996
2nd Quarter 1996
Last 4 Quarters
0/185
0/894
0/1079
Failure Rate Calculation Information
Device Hours Number of Failures
1697640 3
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
5-20
FIT Rate Derating Graph to Users Temperature for Last Four Quarters
Activation Energy = 0.7 eV
Dynamic Long Term Lifetest
3525 30
800
600
400
200
0
FITS @ 60% C.L.
100
300
500
700
1000
900
4540 5550 6560 70
AMBIENT TEMPERATURE (CELSIUS)
FITS @ 90% C.L.
MOTOROLA
5-21
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
1996: 0.35 µm HCMOS LIFE TEST DATA
Lot # Device
Type
Leff Fab
Site
Assy Pkg
Typ
Date
Code
Read Points: Fails/SS
T
ype
Sit
e
T
yp
C
o
d
e168 Hrs 504 Hrs 1008 Hrs
ÁÁÁÁÁ
ÁÁÁÁÁ
126495–1
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
9618
ÁÁÁÁÁ
ÁÁÁÁÁ
0/133
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
126495–2
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
9618
ÁÁÁÁÁ
ÁÁÁÁÁ
0/149
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
125703–1
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9615
ÁÁÁÁÁ
ÁÁÁÁÁ
0/104
ÁÁÁÁ
ÁÁÁÁ
0/102
ÁÁÁÁÁ
ÁÁÁÁÁ
0/100
ÁÁÁÁÁ
ÁÁÁÁÁ
125703–2
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9615
ÁÁÁÁÁ
ÁÁÁÁÁ
1/90
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
125703–3
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9615
ÁÁÁÁÁ
ÁÁÁÁÁ
0/91
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
125703–4
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9615
ÁÁÁÁÁ
ÁÁÁÁÁ
0/146
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
125703–5
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9615
ÁÁÁÁÁ
ÁÁÁÁÁ
0/83
ÁÁÁÁ
ÁÁÁÁ
0/86
ÁÁÁÁÁ
ÁÁÁÁÁ
0/86
ÁÁÁÁÁ
ÁÁÁÁÁ
125703–6
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9615
ÁÁÁÁÁ
ÁÁÁÁÁ
0/105
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
125558–1
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9614
ÁÁÁÁÁ
ÁÁÁÁÁ
0/114
ÁÁÁÁ
ÁÁÁÁ
0/114
ÁÁÁÁÁ
ÁÁÁÁÁ
0/114
ÁÁÁÁÁ
ÁÁÁÁÁ
125558–2
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9614
ÁÁÁÁÁ
ÁÁÁÁÁ
0/291
ÁÁÁÁ
ÁÁÁÁ
0/72
ÁÁÁÁÁ
ÁÁÁÁÁ
0/72
ÁÁÁÁÁ
ÁÁÁÁÁ
125558–3
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9614
ÁÁÁÁÁ
ÁÁÁÁÁ
0/331
ÁÁÁÁ
ÁÁÁÁ
0/72
ÁÁÁÁÁ
ÁÁÁÁÁ
0/72
ÁÁÁÁÁ
ÁÁÁÁÁ
125558–4
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9614
ÁÁÁÁÁ
ÁÁÁÁÁ
0/109
ÁÁÁÁ
ÁÁÁÁ
0/100
ÁÁÁÁÁ
ÁÁÁÁÁ
0/100
ÁÁÁÁÁ
ÁÁÁÁÁ
125558–5
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9614
ÁÁÁÁÁ
ÁÁÁÁÁ
1/274
ÁÁÁÁ
ÁÁÁÁ
0/72
ÁÁÁÁÁ
ÁÁÁÁÁ
0/72
ÁÁÁÁÁ
ÁÁÁÁÁ
125558–6
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9614
ÁÁÁÁÁ
ÁÁÁÁÁ
0/93
ÁÁÁÁ
ÁÁÁÁ
0/93
ÁÁÁÁÁ
ÁÁÁÁÁ
0/93
ÁÁÁÁÁ
ÁÁÁÁÁ
125836–1
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9616
ÁÁÁÁÁ
ÁÁÁÁÁ
0/330
ÁÁÁÁ
ÁÁÁÁ
0/90
ÁÁÁÁÁ
ÁÁÁÁÁ
0/90
ÁÁÁÁÁ
ÁÁÁÁÁ
125836–2
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9616
ÁÁÁÁÁ
ÁÁÁÁÁ
0/335
ÁÁÁÁ
ÁÁÁÁ
0/95
ÁÁÁÁÁ
ÁÁÁÁÁ
0/95
ÁÁÁÁÁ
ÁÁÁÁÁ
128777–1
ÁÁÁÁÁ
ÁÁÁÁÁ
604E
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
9630
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
128777–2
ÁÁÁÁÁ
ÁÁÁÁÁ
604E
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
9630
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
128777–3
ÁÁÁÁÁ
ÁÁÁÁÁ
604E
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
9630
ÁÁÁÁÁ
ÁÁÁÁÁ
0/45
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
R39602–1
ÁÁÁÁÁ
ÁÁÁÁÁ
604E
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
1/283
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
R39602–2
ÁÁÁÁÁ
ÁÁÁÁÁ
604E
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
0/94
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
R39602–3
ÁÁÁÁÁ
ÁÁÁÁÁ
604E
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
0/39
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
R39602–4
ÁÁÁÁÁ
ÁÁÁÁÁ
604E
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
0/72
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
129815–1
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9633
ÁÁÁÁÁ
ÁÁÁÁÁ
0/44
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
129815–2
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9633
ÁÁÁÁÁ
ÁÁÁÁÁ
0/96
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
129815–3
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9633
ÁÁÁÁÁ
ÁÁÁÁÁ
0/70
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
129815–4
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
KLM
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
9633
ÁÁÁÁÁ
ÁÁÁÁÁ
0/83
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
129560–1
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
9632
ÁÁÁÁÁ
ÁÁÁÁÁ
0/96
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
129560–2
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
9632
ÁÁÁÁÁ
ÁÁÁÁÁ
0/96
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
129560–3
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
9633
ÁÁÁÁÁ
ÁÁÁÁÁ
0/96
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
129560–5
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
9632
ÁÁÁÁÁ
ÁÁÁÁÁ
0/91
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
129560–6
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
9633
ÁÁÁÁÁ
ÁÁÁÁÁ
0/96
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
129560–7
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
9634
ÁÁÁÁÁ
ÁÁÁÁÁ
0/96
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
129560–8
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
9637
ÁÁÁÁÁ
ÁÁÁÁÁ
0/96
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
129560–9
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
9637
ÁÁÁÁÁ
ÁÁÁÁÁ
0/96
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
126495–11
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
0.35
ÁÁÁÁÁ
ÁÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
ATX
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
9618
ÁÁÁÁÁ
ÁÁÁÁÁ
0/185
ÁÁÁÁ
ÁÁÁÁ
0/185
ÁÁÁÁÁ
ÁÁÁÁÁ
0/185
ÁÁÁÁÁ
ÁÁÁÁÁ
1996 TOTALS
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
3/4706
ÁÁÁÁ
ÁÁÁÁ
0/1081
ÁÁÁÁÁ
ÁÁÁÁÁ
0/1079
Failure Summary
Job # Device Package Qty Rdpt Failure Mode/Mechanism
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
125703–2
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
603P
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
168H
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ICACHE FAILURE
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
118468–8
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
603P
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
168H
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
BLOCKED TRENCH ETCH
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
R39602–1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
604E
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
168H
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
FUNCTIONAL
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
5-22
CBGA (RS, RX) PACKAGE
NUMBER OF PINS: 361, 303, 255, 360
Applicable Devices:
Part Number Assembly Pin Count
MC88110 ATX 361
MC88410 ATX 361
XPC105 ATX 303
XPC603 ATX 255
XPC604 ATX 255
XPC603E ATX 255
XPC603P ATX 255
XPC604E ATX 255
XPC106 ATX 303
MCM603A PNY 360
BALL GRID ARRAY PACKAGE (RS, RX)
Assembly Site: ATX
Number of Pins: 361, 303, 255, 360
Temperature Humidity Bias
85°C, 85% RH, 5 V, 1008 Hrs
Results: Rejects/Devices
Time Period 168 Hrs 504 Hrs 1008 Hrs Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/75
0/30
0/59
0/89
0/253
0/74
0/30
0/59
0/88
0/251
0/30
0/59
0/88
0/177
0
0
0
0
0
1996 Summary
Lot
#Device
Type Assy
Site Fab
Site Pkg
Typ Date
Code Tech
Typ 168
HRS 504
HRS 1008
HRS
111573–2 PC105 ATX MS11 RX 9525 HCMS 0/29 0/29 0/29
113596–2 PC105 ATX MS11 RX 9533 HCMS 0/30 0/30 0/30
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
116753–2
ÁÁÁÁÁ
ÁÁÁÁÁ
PC105
ÁÁÁÁ
ÁÁÁÁ
ATX
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁÁ
ÁÁÁÁÁ
9538
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/30
ÁÁÁÁÁ
ÁÁÁÁÁ
0/30
ÁÁÁÁ
ÁÁÁÁ
0/30
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
124893–3
ÁÁÁÁÁ
ÁÁÁÁÁ
PC105
ÁÁÁÁ
ÁÁÁÁ
ATX
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁÁ
ÁÁÁÁÁ
9611
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/75
ÁÁÁÁÁ
ÁÁÁÁÁ
0/74
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TOTALS
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/164
ÁÁÁÁÁ
ÁÁÁÁÁ
0/163
ÁÁÁÁ
ÁÁÁÁ
0/89
MOTOROLA
5-23
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
Autoclave
121°C, 100% RH, 15 PSIG, 144 Hrs
Results: Rejects/Devices
Time Period 48 Hrs 96 Hrs 144 Hrs Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/44
0/44
0/135
0/223
0/44
0/44
0/95
0/44
0/32
0/171
0
0
0
1996 Summary
Lot
#Device
Type Assy
Site Fab
Site Pkg
Typ Date
Code Tech
Typ 48
HRS 96
HRS 144
HRS
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126653–3
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603P
ÁÁÁÁ
ÁÁÁÁ
ATX
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁÁ
ÁÁÁÁÁ
9620
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/22
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/22
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126653–7
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603P
ÁÁÁÁ
ÁÁÁÁ
ATX
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁÁ
ÁÁÁÁÁ
9620
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/22
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/22
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
128777–4
ÁÁÁÁÁ
ÁÁÁÁÁ
604E
ÁÁÁÁ
ÁÁÁÁ
ATX
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁÁ
ÁÁÁÁÁ
9630
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/9
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
128777–5
ÁÁÁÁÁ
ÁÁÁÁÁ
604E
ÁÁÁÁ
ÁÁÁÁ
ATX
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁÁ
ÁÁÁÁÁ
9630
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/39
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
128777–6
ÁÁÁÁÁ
ÁÁÁÁÁ
604E
ÁÁÁÁ
ÁÁÁÁ
ATX
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁÁ
ÁÁÁÁÁ
9630
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/35
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
128777–7
ÁÁÁÁÁ
ÁÁÁÁÁ
604E
ÁÁÁÁ
ÁÁÁÁ
ATX
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁÁ
ÁÁÁÁÁ
9630
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/12
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126653–3
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603EV
ÁÁÁÁ
ÁÁÁÁ
ATX
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁÁ
ÁÁÁÁÁ
9620
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/22
ÁÁÁÁÁ
ÁÁÁÁÁ
0/22
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126653–7
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603EV
ÁÁÁÁ
ÁÁÁÁ
ATX
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁÁ
ÁÁÁÁÁ
9620
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/22
ÁÁÁÁÁ
ÁÁÁÁÁ
0/22
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
TOTALS
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
0/88
ÁÁÁÁÁ
0/44
ÁÁÁÁ
0/139
High Temperature Storage Bake
150°C, 1008 Hrs
Results: Rejects/Devices
Time Period 168 Hrs 504 Hrs 1008 Hrs Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/135
0/201
0/336
0/135
0/201
0/336
0/135
0/201
0/336
0
0
0
1996 Summary
Lot
#Device
Type Assy
Site Fab
Site Pkg
Typ Date
Code Tech
Typ 168
HRS 504
HRS 1008
HRS
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
109839–1
ÁÁÁÁÁ
ÁÁÁÁÁ
88410
ÁÁÁÁ
ÁÁÁÁ
ATX
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁ
ÁÁÁ
RS
ÁÁÁÁÁ
ÁÁÁÁÁ
9523
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/45
ÁÁÁÁÁ
ÁÁÁÁÁ
0/45
ÁÁÁÁ
ÁÁÁÁ
0/45
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
109839–9
ÁÁÁÁÁ
ÁÁÁÁÁ
88410
ÁÁÁÁ
ÁÁÁÁ
ATX
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁ
ÁÁÁ
RS
ÁÁÁÁÁ
ÁÁÁÁÁ
9523
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/45
ÁÁÁÁÁ
ÁÁÁÁÁ
0/45
ÁÁÁÁ
ÁÁÁÁ
0/45
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
109839–14
ÁÁÁÁÁ
ÁÁÁÁÁ
88410
ÁÁÁÁ
ÁÁÁÁ
ATX
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁ
ÁÁÁ
RS
ÁÁÁÁÁ
ÁÁÁÁÁ
9523
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/45
ÁÁÁÁÁ
ÁÁÁÁÁ
0/45
ÁÁÁÁ
ÁÁÁÁ
0/45
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TOTALS
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/135
ÁÁÁÁÁ
ÁÁÁÁÁ
0/135
ÁÁÁÁ
ÁÁÁÁ
0/135
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
5-24
Temperature Cycle
–55 to + 125°C, Air to Air, 1000 Cycles
Results: Rejects/Devices
Time Period 100 Cycles 500 Cycles 1000 Cycles Cumulative PPM Failure
3rd Quarter 1996
Last 4 Quarters 0/66
0/66 0/66
0/66 0/66
0/66 0
0
1996 Summary
Lot
#Device
Type Assy
Site Fab
Site Pkg
Typ Date
Code Tech
Typ 100
CYC 500
CYC 1000
CYC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126653–2
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
ATX
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁÁ
ÁÁÁÁÁ
9620
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/22
ÁÁÁÁÁ
ÁÁÁÁÁ
0/22
ÁÁÁÁ
ÁÁÁÁ
0/22
ÁÁÁÁÁÁ
126653–6
ÁÁÁÁÁ
603P
ÁÁÁÁ
ATX
ÁÁÁÁ
MS13
ÁÁÁ
RX
ÁÁÁÁÁ
9620
ÁÁÁ
HCMS
ÁÁÁÁ
0/22
ÁÁÁÁÁ
0/22
ÁÁÁÁ
0/22
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126653–10
ÁÁÁÁÁ
ÁÁÁÁÁ
603P
ÁÁÁÁ
ÁÁÁÁ
ATX
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁÁ
ÁÁÁÁÁ
9620
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/22
ÁÁÁÁÁ
ÁÁÁÁÁ
0/22
ÁÁÁÁ
ÁÁÁÁ
0/22
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TOTALS
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/66
ÁÁÁÁÁ
ÁÁÁÁÁ
0/66
ÁÁÁÁ
ÁÁÁÁ
0/66
Temperature Cycle
0 to + 100°C, Air to Air, 1000 Cycles
Results: Rejects/Devices
Time Period 100 Cycles 500 Cycles 1000 Cycles Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/135
0/668
0/803
0/69
0/547
0/616
1/69
1/332
2/401
7,407
1,497
2,491
1996 Summary
Lot
#Device
Type Assy
Site Fab
Site Pkg
Typ Date
Code Tech
Typ 100
CYC 500
CYC 1000
CYC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
124607–4
ÁÁÁÁÁ
ÁÁÁÁÁ
MCM603A
ÁÁÁÁ
ÁÁÁÁ
IBM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁÁ
ÁÁÁÁÁ
9608
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/45
ÁÁÁÁÁ
ÁÁÁÁÁ
0/23
ÁÁÁÁ
ÁÁÁÁ
0/23
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
124607–5
ÁÁÁÁÁ
ÁÁÁÁÁ
MCM603A
ÁÁÁÁ
ÁÁÁÁ
IBM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁÁ
ÁÁÁÁÁ
9608
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/45
ÁÁÁÁÁ
ÁÁÁÁÁ
0/23
ÁÁÁÁ
ÁÁÁÁ
1/23
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
124607–3
ÁÁÁÁÁ
ÁÁÁÁÁ
MCM603A
ÁÁÁÁ
ÁÁÁÁ
IBM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁÁ
ÁÁÁÁÁ
9608
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/45
ÁÁÁÁÁ
ÁÁÁÁÁ
0/23
ÁÁÁÁ
ÁÁÁÁ
0/23
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TOTALS
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/135
ÁÁÁÁÁ
ÁÁÁÁÁ
0/69
ÁÁÁÁ
ÁÁÁÁ
1/69
Failure Summary
Lot # Device Package Qty Rdpt Failure Mode/Mechanism
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
124607–5
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
MCM603A
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
RX
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
1000CYC
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
FUNCTIONAL FAIL
MOTOROLA
5-25
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
Thermal Shock
– 55 to + 125°C, Liquid to Liquid, 1000 Cycles
Results: Rejects/Devices
Time Period 100 Cycles 500 Cycles 1000 Cycles Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
Last 4 Quarters 0/60
0/60 0/60
0/60 0
0
1996 Summary
Lot
#Device
Type Assy
Site Fab
Site Pkg
Typ Date
Code Tech
Typ 100
CYC 500
CYC 1000
CYC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126653–4
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603P
ÁÁÁÁ
ÁÁÁÁ
ATX
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁÁ
ÁÁÁÁÁ
9620
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/16
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/16
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126653–8
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603P
ÁÁÁÁ
ÁÁÁÁ
ATX
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁÁ
ÁÁÁÁÁ
9620
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/22
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/22
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126653–12
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603P
ÁÁÁÁ
ÁÁÁÁ
ATX
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
RX
ÁÁÁÁÁ
ÁÁÁÁÁ
9620
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/22
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/22
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TOTALS
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/60
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/60
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
5-26
CQFP (FE, FX) PACKAGE
NUMBER OF PINS: 132, 144, 184, 240, 304
Applicable Devices:
Part Number Assembly Pin Count
MC68020
MC68030
MC68EC030
MC68EC/LC040
MC68302
MC68340
MC68839
XC68840
XC68360
MPC603
XPC604
XPC603E
XPC603P
KLM
KLM
KLM
KLM
KLM
KLM
KLM
KLM
KLM
KLM
ATX
ATX
ATX
132
132
132
184
132
144
184
184
240
240
304
240
240
MOTOROLA
5-27
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
CQFP PACKAGE (FE, FX)
Assembly Site: KLM
Number of Pins: 132, 144, 184, 240, 304
Autoclave
121°C, 100% RH, 15 PSIG, 144 Hrs
Results: Rejects/Devices
Time Period 48 Hrs 96 Hrs 144 Hrs Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
1/150
1/58
0/20
2/228
6,667
17,241
0
8,772
1996 Summary
Lot
#Device
Type Assy
Site Fab
Site Pkg
Typ Date
Code Tech
Typ 48
HRS 96
HRS 144
HRS
116459–2 604A ATX MS11 FX 9536 HCMS 1/58
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
116459–1
ÁÁÁÁÁ
ÁÁÁÁÁ
604A
ÁÁÁÁ
ÁÁÁÁ
ATX
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
FX
ÁÁÁÁÁ
ÁÁÁÁÁ
9536
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
1/73
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
116459–6
ÁÁÁÁÁ
ÁÁÁÁÁ
604A
ÁÁÁÁ
ÁÁÁÁ
ATX
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
FX
ÁÁÁÁÁ
ÁÁÁÁÁ
9536
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
TOTALS
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
2/208
ÁÁÁÁÁ
ÁÁÁÁ
Failure Summary
Job# Device Package Qty Rdpt Failure Mode/Mechanism
116459–2 604A FX 1 48HRS TRISTATE LEAKAGE
ÁÁÁÁÁÁÁ
116459–1
ÁÁÁÁÁÁ
604A
ÁÁÁÁÁÁ
FX
ÁÁÁÁ
1
ÁÁÁÁÁÁÁ
48HRS
ÁÁÁÁÁÁÁÁÁ
INPUT LEAKAGE
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
5-28
Temperature Cycle
– 65 to + 150°C, Air to Air, 1000 Cycles
Results: Rejects/Devices
Time Period 100 Cycles 500 Cycles 1000 Cycles Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/126
0/30
0/646
0/347
0/1149
0/45
0/30
0/640
0/347
0/1062
0/30
0/635
0/347
0/1012
0
0
0
0
0
1996 Summary
Lot
#Device
Type Assy
Site Fab
Site Pkg
Typ Date
Code Tech
Typ 100
CYC 500
CYC 1000
CYC
108854–1 68EC030 KLM TSC FE 9515 HCMS 0/22 0/22 0/22
106463–1 68EC040 KLM MS11 FE 9452 HCMS 0/15 0/15 0/15
108296–1 68LC040 KLM MS11 FE 9507 HCMS 0/95 0/94 0/94
115291–1 68340 KLM MS11 FE 9537 HCMS 0/15 0/15 0/15
118468–15 PC603 KLM MS13 FE 9550 HCMS 0/77 0/72 0/71
118468–21 PC603 OHT MS13 FE 9548 HCMS 0/96 0/96 0/95
120140–22 PC603E KLM MS13 FE 9601 HCMS 0/77 0/77 0/74
111263–49 PC603 KLM MS13 FE 9534 HCMS 0/70 0/70 0/70
111263–50 PC603 KLM MS13 FE 9534 HCMS 0/46 0/46 0/46
111263–51 PC603 KLM MS13 FE 9536 HCMS 0/62 0/62 0/62
111263–52 PC603 KLM MS13 FE 9534 HCMS 0/71 0/71 0/71
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
123885–3
ÁÁÁÁÁ
ÁÁÁÁÁ
68060
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁÁ
ÁÁÁÁÁ
9540
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/10
ÁÁÁÁÁ
ÁÁÁÁÁ
0/10
ÁÁÁÁ
ÁÁÁÁ
0/10
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
123885–1
ÁÁÁÁÁ
ÁÁÁÁÁ
68060
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁÁ
ÁÁÁÁÁ
9604
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/10
ÁÁÁÁÁ
ÁÁÁÁÁ
0/10
ÁÁÁÁ
ÁÁÁÁ
0/10
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
123885–2
ÁÁÁÁÁ
ÁÁÁÁÁ
68060
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁÁ
ÁÁÁÁÁ
9604
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/10
ÁÁÁÁÁ
ÁÁÁÁÁ
0/10
ÁÁÁÁ
ÁÁÁÁ
0/10
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K39612
ÁÁÁÁÁ
ÁÁÁÁÁ
68EC040
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁÁ
ÁÁÁÁÁ
9622
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/15
ÁÁÁÁÁ
ÁÁÁÁÁ
0/15
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K39615
ÁÁÁÁÁ
ÁÁÁÁÁ
68EC040
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁÁ
ÁÁÁÁÁ
9625
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/15
ÁÁÁÁÁ
ÁÁÁÁÁ
0/15
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K39616
ÁÁÁÁÁ
ÁÁÁÁÁ
68EC040
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁÁ
ÁÁÁÁÁ
9627
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/15
ÁÁÁÁÁ
ÁÁÁÁÁ
0/15
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
116459–3
ÁÁÁÁÁ
ÁÁÁÁÁ
604A
ÁÁÁÁ
ÁÁÁÁ
ATX
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
FX
ÁÁÁÁÁ
ÁÁÁÁÁ
9536
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/34
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
116459–4
ÁÁÁÁÁ
ÁÁÁÁÁ
604A
ÁÁÁÁ
ÁÁÁÁ
ATX
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
FX
ÁÁÁÁÁ
ÁÁÁÁÁ
9536
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/25
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
116459–7
ÁÁÁÁÁ
ÁÁÁÁÁ
604A
ÁÁÁÁ
ÁÁÁÁ
ATX
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
FX
ÁÁÁÁÁ
ÁÁÁÁÁ
9536
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/22
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TOTALS
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/802
ÁÁÁÁÁ
ÁÁÁÁÁ
0/715
ÁÁÁÁ
ÁÁÁÁ
0/665
MOTOROLA
5-29
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
High Temperature Storage Bake
175°C, 1008 Hrs
Results: Rejects/Devices
Time Period 168 Hrs 504 Hrs 1008 Hrs Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/1128
0/881
0/2009
0/1356
0/879
0/2235
0/1349
0/879
0/2228
0
0
0
1996 Summary
Lot
#Device
Type Assy
Site Fab
Site Pkg
Typ Date
Code Tech
Typ 168
HRS 504
HRS 1008
HRS
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
125558–7
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603P
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
M13
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁÁ
ÁÁÁÁÁ
9614
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
125558–8
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603P
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
M13
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁÁ
ÁÁÁÁÁ
9614
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/76
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
125558–9
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603P
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
M13
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁÁ
ÁÁÁÁÁ
9614
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
120140–3
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603E
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁÁ
ÁÁÁÁÁ
9552
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
120140–10
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603E
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁÁ
ÁÁÁÁÁ
9552
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
120140–17
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603E
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁÁ
ÁÁÁÁÁ
9601
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
118468–1
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁÁ
ÁÁÁÁÁ
9548
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
118468–2
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁÁ
ÁÁÁÁÁ
9548
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
118468–3
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁÁ
ÁÁÁÁÁ
9548
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
118468–10
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁÁ
ÁÁÁÁÁ
9548
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
118468–16
ÁÁÁÁÁ
PC603E
ÁÁÁÁ
KLM
ÁÁÁÁ
MS13
ÁÁÁ
FE
ÁÁÁÁÁ
9550
ÁÁÁ
HCMS
ÁÁÁÁ
0/77
ÁÁÁÁÁ
0/77
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
115648–3
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁÁ
ÁÁÁÁÁ
9539
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
115648–10
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁÁ
ÁÁÁÁÁ
9542
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
115648–16
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁÁ
ÁÁÁÁÁ
9542
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/75
ÁÁÁÁÁ
ÁÁÁÁÁ
0/75
ÁÁÁÁ
ÁÁÁÁ
0/75
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
111263–5
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁÁ
ÁÁÁÁÁ
9534
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/31
ÁÁÁÁÁ
ÁÁÁÁÁ
0/31
ÁÁÁÁ
ÁÁÁÁ
0/27
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
111263–7
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁÁ
ÁÁÁÁÁ
9534
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/31
ÁÁÁÁÁ
ÁÁÁÁÁ
0/29
ÁÁÁÁ
ÁÁÁÁ
0/29
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
111263–17
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁÁ
ÁÁÁÁÁ
9534
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/50
ÁÁÁÁÁ
ÁÁÁÁÁ
0/50
ÁÁÁÁ
ÁÁÁÁ
0/50
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
111263–23
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁÁ
ÁÁÁÁÁ
9534
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/57
ÁÁÁÁÁ
ÁÁÁÁÁ
0/56
ÁÁÁÁ
ÁÁÁÁ
0/54
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
111263–30
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁÁ
ÁÁÁÁÁ
9536
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/62
ÁÁÁÁÁ
ÁÁÁÁÁ
0/62
ÁÁÁÁ
ÁÁÁÁ
0/62
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
111263–40
ÁÁÁÁÁ
ÁÁÁÁÁ
PC603
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS13
ÁÁÁ
ÁÁÁ
FE
ÁÁÁÁÁ
ÁÁÁÁÁ
9536
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/52
ÁÁÁÁÁ
ÁÁÁÁÁ
0/52
ÁÁÁÁ
ÁÁÁÁ
0/52
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TOTALS
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/1128
ÁÁÁÁÁ
ÁÁÁÁÁ
0/1356
ÁÁÁÁ
ÁÁÁÁ
0/1349
Failure Summary
Job# Device Package Qty Rdpt Failure Mode/Mechanism
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
125558–8
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
PC603P
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
FE
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
500CYC
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
LEAKAGE AT HIGH VDD
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
5-30
CPGA (R/RC) PACKAGE
NUMBER OF PINS: 68, 84, 114, 128, 132, 179, 180, 184, 241, 279, 299
Applicable Devices:
Part Number Assembly Pin Count
MC68000
MC68HC000
MC68010
MC68020
MC68030
XC68040
XC68EC/LC040
MC68302
MC68360
MC68440
MC68450
MC68605
MC68606
MC68824
MC68839
MC68882
MC88100
MC88200
MC88410
MC88110
KLM
KLM
KLM
KLM
KLM
KLM
KLM, ATX
KLM
KLM
KLM
KLM
KLM
KLM
KLM
KLM, ATX
KLM
KLM
KLM
ATX
ATX
68
68
68
114
128
179
179
132
241
68
68
84
84
84
184
68
180
180
279
299
MOTOROLA
5-31
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
CPGA PACKAGE (R/RC)
Assembly Site: KLM, ATX
Number of Pins: 68, 84, 114, 128, 132, 179, 180, 184, 241, 279, 299
Temperature Cycle
– 65 to + 150°C, Air to Air, 1000 Cycles
Results: Rejects/Devices
Time Period 100 Cycles 500 Cycles 1000 Cycles Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/249
0/66
0/56
0/371
1/249
0/31
0/56
1/336
0/37
0/56
0/93
4,016
0
0
0
2,695
1996 Summary
Lot
#Device
Type Assy
Site Fab
Site Pkg
Typ Date
Code Tech
Typ 100
CYC 500
CYC 1000
CYC
113459–1 68010 KLM MOS5 R 9521 HMOS 0/31 0/31
111008–2 68020 KLM TSC RC 9523 HCMS 0/35
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
120798–12
ÁÁÁÁÁ
ÁÁÁÁÁ
68302
ÁÁÁÁ
ÁÁÁÁ
ATX
ÁÁÁÁ
ÁÁÁÁ
MS12
ÁÁÁ
ÁÁÁ
RC
ÁÁÁÁÁ
ÁÁÁÁÁ
9602
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/25
ÁÁÁÁÁ
ÁÁÁÁÁ
0/25
ÁÁÁÁ
ÁÁÁÁ
0/24
ÁÁÁÁÁÁ
120798–13
ÁÁÁÁÁ
68302
ÁÁÁÁ
ATX
ÁÁÁÁ
MS12
ÁÁÁ
RC
ÁÁÁÁÁ
9602
ÁÁÁ
HCMS
ÁÁÁÁ
0/14
ÁÁÁÁÁ
1/14
ÁÁÁÁ
0/13
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K39603
ÁÁÁÁÁ
ÁÁÁÁÁ
68020
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
TSC
ÁÁÁ
ÁÁÁ
RC
ÁÁÁÁÁ
ÁÁÁÁÁ
9547
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/30
ÁÁÁÁÁ
ÁÁÁÁÁ
0/30
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K39604
ÁÁÁÁÁ
ÁÁÁÁÁ
68020
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
TSC
ÁÁÁ
ÁÁÁ
RC
ÁÁÁÁÁ
ÁÁÁÁÁ
9623
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/30
ÁÁÁÁÁ
ÁÁÁÁÁ
0/30
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K39605
ÁÁÁÁÁ
ÁÁÁÁÁ
68040
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
RC
ÁÁÁÁÁ
ÁÁÁÁÁ
9633
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/30
ÁÁÁÁÁ
ÁÁÁÁÁ
0/30
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K39610
ÁÁÁÁÁ
ÁÁÁÁÁ
68040
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
RC
ÁÁÁÁÁ
ÁÁÁÁÁ
9624
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/30
ÁÁÁÁÁ
ÁÁÁÁÁ
0/30
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K39611
ÁÁÁÁÁ
ÁÁÁÁÁ
68EC040
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
RC
ÁÁÁÁÁ
ÁÁÁÁÁ
9625
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/30
ÁÁÁÁÁ
ÁÁÁÁÁ
0/30
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K39613
ÁÁÁÁÁ
ÁÁÁÁÁ
68302
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
RC
ÁÁÁÁÁ
ÁÁÁÁÁ
9622
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/30
ÁÁÁÁÁ
ÁÁÁÁÁ
0/30
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K39614
ÁÁÁÁÁ
ÁÁÁÁÁ
68302
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
RC
ÁÁÁÁÁ
ÁÁÁÁÁ
9624
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/30
ÁÁÁÁÁ
ÁÁÁÁÁ
0/30
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TOTALS
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/315
ÁÁÁÁÁ
ÁÁÁÁÁ
1/280
ÁÁÁÁ
ÁÁÁÁ
0/37
Failure Summary
Job# Device Package Qty Rdpt Failure Mode/Mechanism
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
120798–13
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
68302
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
RC
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
500CYC
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
FINE LEAK, HERM FAIL
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
5-32
PBGA (ZP) PACKAGE
NUMBER OF PINS: 357
Applicable Devices:
Part Number Assembly Pin Count
XC68360 Citizen 357
XC68356 Citizen 357
MPC821 Citizen 357
MPC860 Citizen 357
PLASTIC BALL GRID ARRAY PACKAGE (ZP)
Assembly Site: CITIZEN
Number of Pins: 357
Temperature Cycle
– 65 to + 150°C, Air to Air, 1000 Cycles
Results: Rejects/Devices
Time Period 100 Cycles 500 Cycles 1000 Cycles Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/894
0/142
0/1036
0/894
0/142
0/1036
0/890
0/140
0/1030
0
0
0
1996 Summary
Lot
#Device
Type Assy
Site Fab
Site Pkg
Typ Date
Code Tech
Typ 100
CYC 500
CYC 1000
CYC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
103507–26
ÁÁÁÁÁ
ÁÁÁÁÁ
68356
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁÁÁ
ÁÁÁÁÁ
9510
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/66
ÁÁÁÁÁ
ÁÁÁÁÁ
0/66
ÁÁÁÁ
ÁÁÁÁ
0/65
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
103507–28
ÁÁÁÁÁ
ÁÁÁÁÁ
68356
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁÁÁ
ÁÁÁÁÁ
9512
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/76
ÁÁÁÁÁ
ÁÁÁÁÁ
0/76
ÁÁÁÁ
ÁÁÁÁ
0/75
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
125406–7
ÁÁÁÁÁ
ÁÁÁÁÁ
68360
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁÁÁ
ÁÁÁÁÁ
9611
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
125406–10
ÁÁÁÁÁ
ÁÁÁÁÁ
68360
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁÁÁ
ÁÁÁÁÁ
9611
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/6
ÁÁÁÁÁ
ÁÁÁÁÁ
0/6
ÁÁÁÁ
ÁÁÁÁ
0/6
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
125638–7
ÁÁÁÁÁ
ÁÁÁÁÁ
68360
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁÁÁ
ÁÁÁÁÁ
9611
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
125638–10
ÁÁÁÁÁ
ÁÁÁÁÁ
68360
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁÁÁ
ÁÁÁÁÁ
9611
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
127715–2
ÁÁÁÁÁ
ÁÁÁÁÁ
68360
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁÁÁ
ÁÁÁÁÁ
9616
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/68
ÁÁÁÁÁ
ÁÁÁÁÁ
0/68
ÁÁÁÁ
ÁÁÁÁ
0/68
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
127715–5
ÁÁÁÁÁ
ÁÁÁÁÁ
68360
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁÁÁ
ÁÁÁÁÁ
9619
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/66
ÁÁÁÁÁ
ÁÁÁÁÁ
0/66
ÁÁÁÁ
ÁÁÁÁ
0/66
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
127715–8
ÁÁÁÁÁ
ÁÁÁÁÁ
68360
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁÁÁ
ÁÁÁÁÁ
9620
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
124622–9
ÁÁÁÁÁ
ÁÁÁÁÁ
MPC860
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁÁÁ
ÁÁÁÁÁ
9609
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/75
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
125732–7
ÁÁÁÁÁ
ÁÁÁÁÁ
MPC860
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁÁÁ
ÁÁÁÁÁ
9613
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/73
ÁÁÁÁÁ
ÁÁÁÁÁ
0/73
ÁÁÁÁ
ÁÁÁÁ
0/73
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
125732–9
ÁÁÁÁÁ
ÁÁÁÁÁ
MPC860
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁÁÁ
ÁÁÁÁÁ
9613
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
125732–11
ÁÁÁÁÁ
ÁÁÁÁÁ
MPC860
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁÁÁ
ÁÁÁÁÁ
9613
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TOTALS
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/894
ÁÁÁÁÁ
ÁÁÁÁÁ
0/894
ÁÁÁÁ
ÁÁÁÁ
0/890
MOTOROLA
5-33
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
Autoclave
121°C, 100% RH, 15 PSIG, 144 Hrs
Results: Rejects/Devices
Time Period 48 Hrs 96 Hrs 144 Hrs Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/295
0/461
0/226
0/982
0/295
0/461
1/224
1/980
0
0
4,425
1,018
1996 Summary
Lot
#Device
Type Assy
Site Fab
Site Pkg
Typ Date
Code Tech
Typ 48
HRS 96
HRS 144
HRS
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
124622–2
ÁÁÁÁÁ
ÁÁÁÁÁ
MPC821
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁÁÁ
ÁÁÁÁÁ
9606
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
124622–6
ÁÁÁÁÁ
ÁÁÁÁÁ
MPC821
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁÁÁ
ÁÁÁÁÁ
9609
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
124622–10
ÁÁÁÁÁ
ÁÁÁÁÁ
MPC860
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁÁÁ
ÁÁÁÁÁ
9609
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
125732–8
ÁÁÁÁÁ
ÁÁÁÁÁ
MPC860
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁÁÁ
ÁÁÁÁÁ
9613
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/76
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
125732–10
ÁÁÁÁÁ
ÁÁÁÁÁ
MPC860
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁÁÁ
ÁÁÁÁÁ
9613
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
125732–12
ÁÁÁÁÁ
ÁÁÁÁÁ
MPC860
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁÁÁ
ÁÁÁÁÁ
9613
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
125638–9
ÁÁÁÁÁ
ÁÁÁÁÁ
68360
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁÁÁ
ÁÁÁÁÁ
9611
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
125638–12
ÁÁÁÁÁ
ÁÁÁÁÁ
68360
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁÁÁ
ÁÁÁÁÁ
9611
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
127715–6
ÁÁÁÁÁ
ÁÁÁÁÁ
68360
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁÁÁ
ÁÁÁÁÁ
9619
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/64
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/64
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
127715–9
ÁÁÁÁÁ
ÁÁÁÁÁ
68360
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁÁÁ
ÁÁÁÁÁ
9620
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TOTALS
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/756
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/756
Temperature Humidity Bias
85°C, 85% RH, 5 V, 1008 Hrs
Results: Rejects/Devices
Time Period 168 Hrs 504 Hrs 1008 Hrs Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/231
0/153
0/384
0/228
0/153
0/381
0/228
0/153
0/381
0
0
0
1996 Summary
Lot
#Device
Type Assy
Site Fab
Site Pkg
Typ Date
Code Tech
Typ 168
HRS 504
HRS 1008
HRS
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
125638–8
ÁÁÁÁÁ
ÁÁÁÁÁ
68360
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁÁÁ
ÁÁÁÁÁ
9611
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
125638–11
ÁÁÁÁÁ
ÁÁÁÁÁ
68360
ÁÁÁÁ
ÁÁÁÁ
CITI
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
ZP
ÁÁÁÁÁ
ÁÁÁÁÁ
9611
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/76
ÁÁÁÁ
ÁÁÁÁ
0/76
ÁÁÁÁÁÁ
125638–14
ÁÁÁÁÁ
68360
ÁÁÁÁ
CITI
ÁÁÁÁ
MS11
ÁÁÁ
ZP
ÁÁÁÁÁ
9611
ÁÁÁ
HCMS
ÁÁÁÁ
0/77
ÁÁÁÁÁ
0/75
ÁÁÁÁ
0/75
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TOTALS
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/231
ÁÁÁÁÁ
ÁÁÁÁÁ
0/228
ÁÁÁÁ
ÁÁÁÁ
0/228
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
5-34
PQFP (EM/FC/FG/FT/PB) PACKAGE
NUMBER OF PINS: 44, 68, 100, 120, 132, 144, 160, 208, 240
Applicable Devices:
Part Number Assembly Pin Count
MC68HC000/1
MC68020
MC68EC020
MC68302
XC68834
XC68349
XC68307
MC68837
XC68322
MC68847
MC68340
XC68360
KLM
KLM
ANAM
KLM
ASAT
ANAM
ANAM
ANAM
SHC
SHC
ANAM
ANAM
68
132
100
132
44
160
100
120
160
208
144
240
MOTOROLA
5-35
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
PQFP PACKAGE (EM, FC, FG, FT, PB)
Assembly Site: KLM, ANAM
Number of Pins: 44, 68, 100, 120, 132, 144, 160, 208, 240
Temperature Cycle
– 65 to + 150°C, Air to Air, 1000 Cycles
Results: Rejects/Devices
Time Period 100 Cycles 500 Cycles 1000 Cycles Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/545
0/25
0/99
0/261
0/930
0/540
0/24
1/97
0/261
1/922
1/480
0/24
0/58
0/260
1/822
1,835
0
10,309
0
2,151
1996 Summary
Lot
#Device
Type Assy
Site Fab
Site Pkg
Typ Date
Code Tech
Typ 100
CYC 500
CYC 1000
CYC
118707–1 68341 SHC MOS8 FT 9541 HCMS 0/39 1/39
108438–1 68847 SHC MOS8 FC 9512 HCMS 0/30 0/29 0/29
108732–2 68847 SHC MOS8 FC 9515 HCMS 0/30 0/29 0/29
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
109241–2
ÁÁÁÁÁ
ÁÁÁÁÁ
68302
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
FC
ÁÁÁÁÁ
ÁÁÁÁÁ
9519
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/25
ÁÁÁÁÁ
ÁÁÁÁÁ
0/24
ÁÁÁÁ
ÁÁÁÁ
0/24
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126116–7
ÁÁÁÁÁ
ÁÁÁÁÁ
68360
ÁÁÁÁ
ÁÁÁÁ
ANAM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
EM
ÁÁÁÁÁ
ÁÁÁÁÁ
9606
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126116–12
ÁÁÁÁÁ
ÁÁÁÁÁ
68360
ÁÁÁÁ
ÁÁÁÁ
ANAM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
EM
ÁÁÁÁÁ
ÁÁÁÁÁ
9606
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/75
ÁÁÁÁÁ
ÁÁÁÁÁ
0/75
ÁÁÁÁ
ÁÁÁÁ
0/75
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126116–17
ÁÁÁÁÁ
ÁÁÁÁÁ
68360
ÁÁÁÁ
ÁÁÁÁ
ANAM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
EM
ÁÁÁÁÁ
ÁÁÁÁÁ
9606
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126310–2
ÁÁÁÁÁ
ÁÁÁÁÁ
68847
ÁÁÁÁ
ÁÁÁÁ
ANAM
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁ
ÁÁÁ
FC
ÁÁÁÁÁ
ÁÁÁÁÁ
9613
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/75
ÁÁÁÁ
ÁÁÁÁ
1/75
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126310–6
ÁÁÁÁÁ
ÁÁÁÁÁ
68847
ÁÁÁÁ
ÁÁÁÁ
ANAM
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁ
ÁÁÁ
FC
ÁÁÁÁÁ
ÁÁÁÁÁ
9613
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/76
ÁÁÁÁÁ
ÁÁÁÁÁ
0/75
ÁÁÁÁ
ÁÁÁÁ
0/75
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126310–10
ÁÁÁÁÁ
ÁÁÁÁÁ
68847
ÁÁÁÁ
ÁÁÁÁ
ANAM
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁ
ÁÁÁ
FC
ÁÁÁÁÁ
ÁÁÁÁÁ
9613
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/73
ÁÁÁÁÁ
ÁÁÁÁÁ
0/71
ÁÁÁÁ
ÁÁÁÁ
0/71
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
110486–2
ÁÁÁÁÁ
ÁÁÁÁÁ
68847
ÁÁÁÁ
ÁÁÁÁ
SHC
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁ
ÁÁÁ
FC
ÁÁÁÁÁ
ÁÁÁÁÁ
9526
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/30
ÁÁÁÁÁ
ÁÁÁÁÁ
0/30
ÁÁÁÁ
ÁÁÁÁ
0/30
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K39601
ÁÁÁÁÁ
ÁÁÁÁÁ
68302
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
FC
ÁÁÁÁÁ
ÁÁÁÁÁ
9623
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/30
ÁÁÁÁÁ
ÁÁÁÁÁ
0/30
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K39608–1
ÁÁÁÁÁ
ÁÁÁÁÁ
68302
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
FC
ÁÁÁÁÁ
ÁÁÁÁÁ
9624
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/30
ÁÁÁÁÁ
ÁÁÁÁÁ
0/30
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TOTALS
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/669
ÁÁÁÁÁ
ÁÁÁÁÁ
1/661
ÁÁÁÁ
ÁÁÁÁ
1/562
Failure Summary
Lot# Device Package Qty Rdpt Failure Mode/Mechanism
118707–1 68341 FT 1 1000CYC GROSS FUNC EZF
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
126310–2
ÁÁÁÁÁ
ÁÁÁÁÁ
68847
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
FC
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
1000CYC
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
GROSS FUNC EZF
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
5-36
Temperature Humidity Bias
85°C, 85% RH, 5 V, 1008 Hrs
Results: Rejects/Devices
Time Period 168 Hrs 504 Hrs 1008 Hrs Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/411
0/30
0/441
0/406
0/30
0/436
0/400
0/30
0/430
0
0
0
0
1996 Summary
Lot
#Device
Type Assy
Site Fab
Site Pkg
Typ Date
Code Tech
Typ 100
CYC 500
CYC 1000
CYC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
109685–3
ÁÁÁÁÁ
ÁÁÁÁÁ
68847
ÁÁÁÁ
ÁÁÁÁ
SHC
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁ
ÁÁÁ
FC
ÁÁÁÁÁ
ÁÁÁÁÁ
9518
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/30
ÁÁÁÁÁ
ÁÁÁÁÁ
0/30
ÁÁÁÁ
ÁÁÁÁ
0/30
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126116–8
ÁÁÁÁÁ
ÁÁÁÁÁ
68360
ÁÁÁÁ
ÁÁÁÁ
ANAM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
EM
ÁÁÁÁÁ
ÁÁÁÁÁ
9606
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/76
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126116–13
ÁÁÁÁÁ
ÁÁÁÁÁ
68360
ÁÁÁÁ
ÁÁÁÁ
ANAM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
EM
ÁÁÁÁÁ
ÁÁÁÁÁ
9606
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/74
ÁÁÁÁÁ
ÁÁÁÁÁ
0/74
ÁÁÁÁ
ÁÁÁÁ
0/73
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126310–3
ÁÁÁÁÁ
ÁÁÁÁÁ
68847
ÁÁÁÁ
ÁÁÁÁ
ANAM
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁ
ÁÁÁ
FC
ÁÁÁÁÁ
ÁÁÁÁÁ
9613
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126310–7
ÁÁÁÁÁ
ÁÁÁÁÁ
68847
ÁÁÁÁ
ÁÁÁÁ
ANAM
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁ
ÁÁÁ
FC
ÁÁÁÁÁ
ÁÁÁÁÁ
9613
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/76
ÁÁÁÁÁ
ÁÁÁÁÁ
0/75
ÁÁÁÁ
ÁÁÁÁ
0/71
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126310–11
ÁÁÁÁÁ
ÁÁÁÁÁ
68847
ÁÁÁÁ
ÁÁÁÁ
ANAM
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁ
ÁÁÁ
FC
ÁÁÁÁÁ
ÁÁÁÁÁ
9613
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/75
ÁÁÁÁ
ÁÁÁÁ
0/75
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
108732–4
ÁÁÁÁÁ
ÁÁÁÁÁ
68847
ÁÁÁÁ
ÁÁÁÁ
SHC
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁ
ÁÁÁ
FC
ÁÁÁÁÁ
ÁÁÁÁÁ
9515
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/30
ÁÁÁÁÁ
ÁÁÁÁÁ
0/28
ÁÁÁÁ
ÁÁÁÁ
0/28
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TOTALS
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/441
ÁÁÁÁÁ
ÁÁÁÁÁ
0/436
ÁÁÁÁ
ÁÁÁÁ
0/430
Autoclave
121°C, 100% RH, 15 PSIG, 144 Hrs
Results: Rejects/Devices
Time Period 48 Hrs 96 Hrs 144 Hrs Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/470
0/75
0/77
0/622
0/88
0/88
1/403
0/74
0/77
1/554
2,128
0
0
0
1,608
1996 Summary
Lot
#Device
Type Assy
Site Fab
Site Pkg
Typ Date
Code Tech
Typ 48
Hrs 96
Hrs 144
Hrs
118707–2 68341 SHC MOS8 FT 9541 HCMS 0/38
118707–5 68341 SHC MOS8 FT 9541 HCMS 0/39
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126310–8
ÁÁÁÁÁ
ÁÁÁÁÁ
68847
ÁÁÁÁ
ÁÁÁÁ
ANAM
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁ
ÁÁÁ
FC
ÁÁÁÁÁ
ÁÁÁÁÁ
9613
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/75
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/74
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126116–9
ÁÁÁÁÁ
ÁÁÁÁÁ
68360
ÁÁÁÁ
ÁÁÁÁ
ANAM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
EM
ÁÁÁÁÁ
ÁÁÁÁÁ
9606
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/76
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/76
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126116–14
ÁÁÁÁÁ
ÁÁÁÁÁ
68360
ÁÁÁÁ
ÁÁÁÁ
ANAM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
EM
ÁÁÁÁÁ
ÁÁÁÁÁ
9606
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/76
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/76
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126116–19
ÁÁÁÁÁ
ÁÁÁÁÁ
68360
ÁÁÁÁ
ÁÁÁÁ
ANAM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
EM
ÁÁÁÁÁ
ÁÁÁÁÁ
9606
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
1/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126310–4
ÁÁÁÁÁ
ÁÁÁÁÁ
68847
ÁÁÁÁ
ÁÁÁÁ
ANAM
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁ
ÁÁÁ
FC
ÁÁÁÁÁ
ÁÁÁÁÁ
9613
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/76
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/70
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
126310–12
ÁÁÁÁÁ
ÁÁÁÁÁ
68847
ÁÁÁÁ
ÁÁÁÁ
ANAM
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁ
ÁÁÁ
FC
ÁÁÁÁÁ
ÁÁÁÁÁ
9613
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/76
ÁÁÁÁÁÁ
109685–2
ÁÁÁÁÁ
68847
ÁÁÁÁ
SHC
ÁÁÁÁ
MOS8
ÁÁÁ
FC
ÁÁÁÁÁ
9518
ÁÁÁ
HCMS
ÁÁÁÁ
0/28
ÁÁÁÁÁ
0/28
ÁÁÁÁ
0/28
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K39602
ÁÁÁÁÁ
ÁÁÁÁÁ
68302
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
FC
ÁÁÁÁÁ
ÁÁÁÁÁ
9625
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/30
ÁÁÁÁÁ
ÁÁÁÁÁ
0/30
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K39608–2
ÁÁÁÁÁ
ÁÁÁÁÁ
68302
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
FC
ÁÁÁÁÁ
ÁÁÁÁÁ
9624
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/30
ÁÁÁÁÁ
ÁÁÁÁÁ
0/30
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TOTALS
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/622
ÁÁÁÁÁ
ÁÁÁÁÁ
0/88
ÁÁÁÁ
ÁÁÁÁ
1/477
Failure Summary
Job# Device Package Qty Rdpt Failure Mode/Mechanism
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
126116–19
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
68360
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
EM
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
144HRS
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ELEC OPEN PIN(S)
MOTOROLA
5-37
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
TQFP (PV) PACKAGE
NUMBER OF PINS: 144
Applicable Devices:
Part Number Assembly Pin Count
MC68302
MC68340
XCF5102
ANAM, MITSUI
ANAM
ANAM
144
144
144
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
5-38
TQFP PACKAGE (PV)
Assembly Site: ANAM
Number of Pins: 144
Temperature Cycle
– 65 to + 150°C, Air to Air, 1000 Cycles
Results: Rejects/Devices
Time Period 100 Cycles 500 Cycles 1000 Cycles Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/304
0/30
0/334
0/304
0/30
0/334
0/297
0/27
0/324
0
0
0
1996 Summary
Lot
#Device
Type Assy
Site Fab
Site Pkg
Typ Date
Code Tech
Typ 100
CYC 500
CYC 1000
CYC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
118815–1
ÁÁÁÁÁ
ÁÁÁÁÁ
68PM302
ÁÁÁÁ
ÁÁÁÁ
SHC
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
PV
ÁÁÁÁÁ
ÁÁÁÁÁ
9544
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/76
ÁÁÁÁÁ
ÁÁÁÁÁ
0/76
ÁÁÁÁ
ÁÁÁÁ
0/76
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
118815–9
ÁÁÁÁÁ
ÁÁÁÁÁ
68PM302
ÁÁÁÁ
ÁÁÁÁ
SHC
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
PV
ÁÁÁÁÁ
ÁÁÁÁÁ
9544
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/76
ÁÁÁÁÁ
ÁÁÁÁÁ
0/76
ÁÁÁÁ
ÁÁÁÁ
0/74
ÁÁÁÁÁÁ
118815–11
ÁÁÁÁÁ
68PM302
ÁÁÁÁ
SHC
ÁÁÁÁ
MS11
ÁÁÁ
PV
ÁÁÁÁÁ
9544
ÁÁÁ
HCMS
ÁÁÁÁ
0/75
ÁÁÁÁÁ
0/75
ÁÁÁÁ
0/72
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
118815–13
ÁÁÁÁÁ
ÁÁÁÁÁ
68PM302
ÁÁÁÁ
ÁÁÁÁ
SHC
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
PV
ÁÁÁÁÁ
ÁÁÁÁÁ
9544
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁ
ÁÁÁÁÁ
0/77
ÁÁÁÁ
ÁÁÁÁ
0/75
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TOTALS
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/304
ÁÁÁÁÁ
ÁÁÁÁÁ
0/304
ÁÁÁÁ
ÁÁÁÁ
0/297
Autoclave
121°C, 100% RH, 15 PSIG, 144 Hrs
Results: Rejects/Devices
Time Period 48 Hrs 96 Hrs 144 Hrs Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/213
0/213
0/60
0/60
0/195
0/57
0/252
0
0
0
1996 Summary
Lot
#Device
Type Assy
Site Fab
Site Pkg
Typ Date
Code Tech
Typ 48
Hrs 96
Hrs 144
Hrs
108856–3 68EC030 ANAM TSC PV 9516 HCMS 0/30 0/30 0/30
118815–2 68PM302 SHC MS11 PV 9544 HCMS 0/77
118815–6 68PM302 SHC MS11 PV 9544 HCMS 0/76
107547–3 68340 ANAM MOS8 PV 9502 HCMS 0/30 0/30 0/27
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
118815–8
ÁÁÁÁÁ
ÁÁÁÁÁ
68PM302
ÁÁÁÁ
ÁÁÁÁ
SHC
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
PV
ÁÁÁÁÁ
ÁÁÁÁÁ
9544
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/42
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
118815–10
ÁÁÁÁÁ
ÁÁÁÁÁ
68PM302
ÁÁÁÁ
ÁÁÁÁ
SHC
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
PV
ÁÁÁÁÁ
ÁÁÁÁÁ
9544
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/76
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
118815–14
ÁÁÁÁÁ
ÁÁÁÁÁ
68PM302
ÁÁÁÁ
ÁÁÁÁ
SHC
ÁÁÁÁ
ÁÁÁÁ
MS11
ÁÁÁ
ÁÁÁ
PV
ÁÁÁÁÁ
ÁÁÁÁÁ
9544
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/77
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TOTALS
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/213
ÁÁÁÁÁ
ÁÁÁÁÁ
0/60
ÁÁÁÁ
ÁÁÁÁ
0/252
MOTOROLA
5-39
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
PLCC (FN) PACKAGE
NUMBER OF PINS: 44, 52, 68, 84
Applicable Devices:
Part Number Assembly Pin Count
MC68000
MC68HC000
MC68008
MC68010
MC68230
MC68440
MC68605
MC68606
MC68681/2681
MC68824
MC68882
MC68901
MC68EC000
XC68SEC000
KLM, ANAM
KLM, ANAM, ASTRA
KLM
KLM
KLM
KLM
ANAM
ANAM
KLM
ANAM
KLM
BUCH
KLM
KLM
68
68
52
68
52
68
84
84
44
84
68
52
68
68
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
5-40
PLCC PACKAGE (FN)
Assembly Site: KLM, ANAM, ASTRA
Number of Pins: 44, 52, 68, 84
Temperature Cycle
– 65 to + 150°C, Air to Air, 1000 Cycles
Results: Rejects/Devices
Time Period 100 Cycles 500 Cycles 1000 Cycles Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/75
0/215
0/105
0/303
0/698
0/75
0/215
0/101
0/302
0/693
0/45
0/215
0/101
0/302
0/663
0
0
0
0
0
1996 Summary
Lot
#Device
Type Assy
Site Fab
Site Pkg
Typ Date
Code Tech
Typ 100
CYC 500
CYC 1000
CYC
117400–1 68HC000 KLM TSC FN 9521 HCMS 0/43 0/43 0/43
119466–1 68HC001 KLM MOS8 FN 9548 HCMS 0/32 0/32 0/32
111593–1 68605 BUCH MOS8 FN 9525 HCMS 0/30 0/26 0/26
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
119609–2
ÁÁÁÁÁ
ÁÁÁÁÁ
68SEC000
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS10
ÁÁÁ
ÁÁÁ
FN
ÁÁÁÁÁ
ÁÁÁÁÁ
9548
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/75
ÁÁÁÁÁ
ÁÁÁÁÁ
0/75
ÁÁÁÁ
ÁÁÁÁ
0/75
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
119609–10
ÁÁÁÁÁ
ÁÁÁÁÁ
68SEC000
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS10
ÁÁÁ
ÁÁÁ
FN
ÁÁÁÁÁ
ÁÁÁÁÁ
9548
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/65
ÁÁÁÁÁ
ÁÁÁÁÁ
0/65
ÁÁÁÁ
ÁÁÁÁ
0/65
ÁÁÁÁÁÁ
119609–18
ÁÁÁÁÁ
68SEC000
ÁÁÁÁ
KLM
ÁÁÁÁ
MS10
ÁÁÁ
FN
ÁÁÁÁÁ
9548
ÁÁÁ
HCMS
ÁÁÁÁ
0/75
ÁÁÁÁÁ
0/75
ÁÁÁÁ
0/75
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
123228–1
ÁÁÁÁÁ
ÁÁÁÁÁ
68605
ÁÁÁÁ
ÁÁÁÁ
BUCH
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁ
ÁÁÁ
FN
ÁÁÁÁÁ
ÁÁÁÁÁ
9547
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/45
ÁÁÁÁÁ
ÁÁÁÁÁ
0/45
ÁÁÁÁ
ÁÁÁÁ
0/45
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K39607
ÁÁÁÁÁ
ÁÁÁÁÁ
68HC000
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS10
ÁÁÁ
ÁÁÁ
FN
ÁÁÁÁÁ
ÁÁÁÁÁ
9624
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/30
ÁÁÁÁÁ
ÁÁÁÁÁ
0/30
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TOTALS
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/395
ÁÁÁÁÁ
ÁÁÁÁÁ
0/391
ÁÁÁÁ
ÁÁÁÁ
0/361
Temperature Humidity Bias
85°C, 85% RH, 5 V, 1008 Hrs
Results: Rejects/Devices
Time Period 168 Hrs 504 Hrs 1008 Hrs Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/275
0/82
0/244
0/601
0/263
0/82
0/244
0/589
0/262
0/82
0/244
0/588
0
0
0
0
1996 Summary
Lot
#Device
Type Assy
Site Fab
Site Pkg
Typ Date
Code Tech
Typ 168
Hrs 504
Hrs 1008
Hrs
117400–3 68HC000 KLM TSC FN 9521 HCMS 0/30 0/30 0/30
115197–3 68HC000 KLM MOS2 FN 9534 HCMS 0/25 0/25 0/25
113123–3 68HC001 KLM TSC FN 9530 HCMS 0/27 0/27 0/27
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
111593–3
ÁÁÁÁÁ
ÁÁÁÁÁ
68605
ÁÁÁÁ
ÁÁÁÁ
BUCH
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁ
ÁÁÁ
FN
ÁÁÁÁÁ
ÁÁÁÁÁ
9525
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/30
ÁÁÁÁÁ
ÁÁÁÁÁ
0/30
ÁÁÁÁ
ÁÁÁÁ
0/30
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
113121–3
ÁÁÁÁÁ
ÁÁÁÁÁ
68605
ÁÁÁÁ
ÁÁÁÁ
BUCH
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁ
ÁÁÁ
FN
ÁÁÁÁÁ
ÁÁÁÁÁ
9526
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/30
ÁÁÁÁÁ
ÁÁÁÁÁ
0/30
ÁÁÁÁ
ÁÁÁÁ
0/30
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
119609–3
ÁÁÁÁÁ
ÁÁÁÁÁ
68SEC000
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS10
ÁÁÁ
ÁÁÁ
FN
ÁÁÁÁÁ
ÁÁÁÁÁ
9548
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/75
ÁÁÁÁÁ
ÁÁÁÁÁ
0/66
ÁÁÁÁ
ÁÁÁÁ
0/66
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
119609–11
ÁÁÁÁÁ
ÁÁÁÁÁ
68SEC000
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS10
ÁÁÁ
ÁÁÁ
FN
ÁÁÁÁÁ
ÁÁÁÁÁ
9548
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/65
ÁÁÁÁÁ
ÁÁÁÁÁ
0/65
ÁÁÁÁ
ÁÁÁÁ
0/65
ÁÁÁÁÁÁ
119609–19
ÁÁÁÁÁ
68SEC000
ÁÁÁÁ
KLM
ÁÁÁÁ
MS10
ÁÁÁ
FN
ÁÁÁÁÁ
9548
ÁÁÁ
HCMS
ÁÁÁÁ
0/75
ÁÁÁÁÁ
0/72
ÁÁÁÁ
0/71
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TOTALS
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/357
ÁÁÁÁÁ
ÁÁÁÁÁ
0/345
ÁÁÁÁ
ÁÁÁÁ
0/344
MOTOROLA
5-41
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
Autoclave
121°C, 100% RH, 15 PSIG, 144 Hrs
Results: Rejects/Devices
Time Period 48 Hrs 96 Hrs 144 Hrs Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/60
0/40
0/306
0/220
0/626
0/30
0/306
0/220
0/556
0/40
0/42
0/215
0/297
0
0
0
0
1996 Summary
Lot
#Device
Type Assy
Site Fab
Site Pkg
Typ Date
Code Tech
Typ 48
Hrs 96
Hrs 144
Hrs
117400–2 68HC000 KLM TSC FN 9521 HCMS 0/42 0/42 0/42
120872–3 68HC000 KLM TSC FN 9550 HCMS 0/20 0/20
119466–2 68HC001 KLM MOS8 FN 9548 HCMS 0/30 0/30
119609–4 68SEC000 KLM MS10 FN 9548 HCMS 0/74 0/74
119609–12 68SEC000 KLM MS10 FN 9548 HCMS 0/65 0/65
119609–20 68SEC000 KLM MS10 FN 9548 HCMS 0/75 0/75
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
123228–2
ÁÁÁÁÁ
ÁÁÁÁÁ
68605
ÁÁÁÁ
ÁÁÁÁ
BUCH
ÁÁÁÁ
ÁÁÁÁ
MOS8
ÁÁÁ
ÁÁÁ
FN
ÁÁÁÁÁ
ÁÁÁÁÁ
9547
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/40
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/40
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K39606
ÁÁÁÁÁ
ÁÁÁÁÁ
68HC000
ÁÁÁÁ
ÁÁÁÁ
KLM
ÁÁÁÁ
ÁÁÁÁ
MS10
ÁÁÁ
ÁÁÁ
FN
ÁÁÁÁÁ
ÁÁÁÁÁ
9620
ÁÁÁ
ÁÁÁ
HCMS
ÁÁÁÁ
ÁÁÁÁ
0/30
ÁÁÁÁÁ
ÁÁÁÁÁ
0/30
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
K39618
ÁÁÁÁÁ
68HC000
ÁÁÁÁ
KLM
ÁÁÁÁ
MS10
ÁÁÁ
FN
ÁÁÁÁÁ
9633
ÁÁÁ
HCMS
ÁÁÁÁ
0/30
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TOTALS
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0/406
ÁÁÁÁÁ
ÁÁÁÁÁ
0/336
ÁÁÁÁ
ÁÁÁÁ
0/82
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
5-42
PDIP (P) PACKAGE
NUMBER OF PINS: 40, 48, 64
Applicable Devices:
Part Number Assembly Pin Count
MC68HC000/1
MC68000
MC68008
MC68010
MC68440
MC68230
MC68681/2681
MC68901
KLM, ANAM
KLM, ANAM
ANAM
KLM
KLM
ANAM
KLM
ANAM
64
64
48
64
64
48
40
48
PDIP PACKAGE (P)
Assembly Site: KLM, ANAM
Number of Pins: 40, 48, 64
Temperature Cycle
– 65 to + 150°C, Air to Air, 1000 Cycles
Results: Rejects/Devices
Time Period 100 Cycles 500 Cycles 1000 Cycles Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters 0/60
0/60 0/60
0/60 2/60
2/60 33,333
33,333
MOTOROLA
5-43
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
Temperature Humidity Bias
85°C, 85% RH, 5 V, 1008 Hrs
Results: Rejects/Devices
Time Period 168 Hrs 504 Hrs 1008 Hrs Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/30
0/30
0/30
0/30
0/30
0/30
0
0
1996 Summary
Lot
#Device
Type Assy
Site Fab
Site Pkg
Typ Date
Code Tech
Typ 168
Hrs 504
Hrs 1008
Hrs
116150–4 68010 CARS MOS5 P 9526 HMOS 0/30 0/30 0/30
TOTALS 0/30 0/30 0/30
Autoclave
121°C, 100% RH, 15 PSIG, 144 Hrs
Results: Rejects/Devices
Time Period 48 Hrs 96 Hrs 144 Hrs Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters 0/30
0/30 0/30
0/30 0/29
0/29 0
0
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
5-44
PPGA (RP) PACKAGE
NUMBER OF PINS: 100, 114, 124, 145
Applicable Devices:
Part Number Assembly Pin Count
MC68020
MC68EC020
MC68030
MC68EC030
MC68340
CITIZEN
CITIZEN
CITIZEN
CITIZEN
CITIZEN
114
100
124
124
145
MOTOROLA
5-45
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
PPGA PACKAGE (RP)
Assembly Site: CITIZEN
Number of Pins: 100, 114, 124, 145
Autoclave
121°C, 100% RH, 15 PSIG, 144 Hrs
Results: Rejects/Devices
Time Period 48 Hrs 96 Hrs 144 Hrs Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/30
0/30
0/60
0/30
0/30
0/60
0/30
0/29
0/59
0
0
0
1996 Summary
Lot
#Device
Type Assy
Site Fab
Site Pkg
Typ Date
Code Tech
Typ 48
Hrs 96
Hrs 144
Hrs
106738–3 68EC030 CITI TSC RP 9444 HCMS 0/30 0/30 0/30
TOTALS 0/30 0/30 0/30
Temperature Humidity Bias
85°C, 85% RH, 5 V, 1008 Hrs
Results: Rejects/Devices
Time Period 168 Hrs 504 Hrs 1008 Hrs Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
Last 4 Quarters 0/30
0/30 0/30
0/30 0/30
0/30 0
0
1996 Summary
Lot
#Device
Type Assy
Site Fab
Site Pkg
Typ Date
Code Tech
Typ 168
Hrs 504
Hrs 1008
Hrs
107725–3 68340 CITT MOS8 RP 9507 HCMS 0/30 0/30 0/30
TOTALS 0/30 0/30 0/30
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
5-46
Temperature Cycle
– 65 to + 150°C, Air to Air, 1000 Cycles
Results: Rejects/Devices
Time Period 100 Cycles 500 Cycles 1000 Cycles Cumulative PPM Failure
3rd Quarter 1996
2nd Quarter 1996
1st Quarter 1996
4th Quarter 1995
Last 4 Quarters
0/120
0/120
0/120
0/120
0/118
0/118
0
0
1996 Summary
Lot
#Device
Type Assy
Site Fab
Site Pkg
Typ Date
Code Tech
Typ 100
CYC 500
CYC 1000
CYC
106738–2 68EC030 CITI TSC RP 9444 HCMS 0/30 0/30 0/29
108170–1 68030 CITI MOS8 RP 9512 HCMS 0/30 0/30 0/29
108170–3 68030 CITI MOS8 RP 9512 HCMS 0/30 0/30 0/30
107725–1 68340 CITT MOS8 RP 9507 HCMS 0/30 0/30 0/30
TOTALS 0/120 0/120 0/118
WORLD WIDE — WORLD CLASS
MOTOROLA
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT 6-1
Section 6
QUALITY ASSURANCE
QUALITY ASSURANCE
Dynamic RAMs / Fast Static RAMs 6-3. . . . . . . . .
Microprocessor Products 6-4. . . . . . . . . . . . . . . . . .
AVERAGE OUTGOING QUALITY (AOQ)
AOQ Calculation Method 6-6. . . . . . . . . . . . . . . . . .
Fast Static RAMs 6-7. . . . . . . . . . . . . . . . . . . . . . . . . .
Dynamic/General Static RAMs 6-10. . . . . . . . . . . . .
Microprocessors 6-1 1. . . . . . . . . . . . . . . . . . . . . . . . . .
World Wide MMTG 6-14. . . . . . . . . . . . . . . . . . . . . . . .
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
6-2
MOTOROLA
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT 6-3
QUALITY ASSURANCE
DYNAMIC RAMs/FAST STATIC RAMs
SOLDERABILITY
per MIL-STD-883C Method 2003 with 8 Hours Steam Age
Time Period Results:
Rejects/Devices Results:
Cumulative %
3rd Quarter 1996 0/105 0.00%
2nd Quarter 1996 0/360 0.00%
1st Quarter 1996 0/405 0.00%
4th Quarter 1995 0/475 0.00%
Last 4 Quarters 0/1345 0.00%
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
6-4
QUALITY ASSURANCE
MICROPROCESSOR PRODUCTS
SOLDERABILITY
per 12MRE21502W (with 8 Hours Steam Age)
CQFP (FE)
Time Period Results:
Rejects/Devices Results:
Cumulative %
4th Quarter 1995 0/15 0.00%
3rd Quarter 1995 0/110 0.00%
2nd Quarter 1995 0/100 0.00%
1st Quarter 1995 0/380 0.00%
Last 4 Quarters 0/605 0.00%
CDIP (L/LC)
Time Period Results:
Rejects/Devices Results:
Cumulative %
4th Quarter 1995 ——
1st Quarter 1995 0/10 0.00%
Last 4 Quarters 0/10 0.00%
PDIP (P)
Time Period Results:
Rejects/Devices Results:
Cumulative %
4th Quarter 1995 0/5 0.00%
3rd Quarter 1995 0/5 0.00%
2nd Quarter 1995 0/10 0.00%
1st Quarter 1995 0/20 0.00%
Last 4 Quarters 0/40 0.00%
CPGA (R/RC)
Time Period Results:
Rejects/Devices Results:
Cumulative %
4th Quarter 1995 ——
3rd Quarter 1995 0/5 0.00%
2nd Quarter 1995 0/10 0.00%
1st Quarter 1995 0/15 0.00%
Last 4 Quarters 0/30 0.00%
MOTOROLA
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT 6-5
SOLDERABILITY (Continued)
per 12MRE21502W (with 8 Hours Steam Age)
PPGA (RP)
Time Period Results:
Rejects/Devices Results:
Cumulative %
4th Quarter 1995 ——
2nd Quarter 1995 0/10 0.00%
1st Quarter 1995 0/5 0.00%
Last 4 Quarters 0/15 0.00%
MARKING DURABILITY
per 12MRH00154A (Alpha 2110 Solvent Detergent)
PLASTIC PACKAGES
Time Period Results:
Rejects/Devices Results:
Cumulative %
4th Quarter 1995 ——
3rd Quarter 1995 0/50 0.00%
2nd Quarter 1995 0/10 0.00%
1st Quarter 1995 0/110 0.00%
Last 4 Quarters 0/170 0.00%
CERAMIC PACKAGES
Time Period Results:
Rejects/Devices Results:
Cumulative %
4th Quarter 1995 ——
3rd Quarter 1995 0/85 0.00%
2nd Quarter 1995 0/90 0.00%
1st Quarter 1995 0/329 0.00%
Last 4 Quarters 0/504 0.00%
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
6-6
AOQ CALCULATION METHOD
Average Outgoing Quality (AOQ) refers to the number of devices per million that are outside specification limits
at the time of shipment. Motorola has continually improved its outgoing quality , and has established a goal of outgoing
quality to be zero PPM (parts per million). AOQs are calculated for both electrical and visual/mechanical perform-
ances. Motorola’s AOQ is a volume-weighted AOQ, calculated by the following method:
Average Outgoing Quality (AOQ) Calculation:
AOQ = (Process Average) × (Probability of Acceptance) × (106)*
Probability of Acceptance = 1 –Number of Lots Rejected
Number of Lots Tested
Number of Defectives
Sample Size
Process Average =
Projected Reject Devices =
Total Number of Devices = Sum of all the units in each submitted lot.
* 106 – Conversion to parts per million (PPM)
Total Projected Number of Reject Devices
Total Number of Devices
× Lot Size
MOTOROLA
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT 6-7
AVERAGE OUTGOING QUALITY
In Parts per Million
FSRAM
Device Type Category 3rd Quarter
1996 2nd Quarter
1996 1st Quarter
1996 4th Quarter
1995 Total Year
1995
4 MB LATEWRITE Electrical
Vis/Mech 241
0
672XB 0.5U Electrical
Vis/Mech 0
00
00
00
64 0
11
256K 670X .5 Electrical
Vis/Mech 0
00
00
14 0
20 0
19
672XC 0.5U Electrical
Vis/Mech 0
00
042
00
00
0
256K EVOL Electrical
Vis/Mech 0
00
00
00
00
16
32K x 9 EVOL Electrical
Vis/Mech 0
0
0
0
0
0
256K REVOL Electrical
Vis/Mech 0
00
00
11 0
00
10
692X 0.5U 3 V Electrical
Vis/Mech 0
62 0
00
00
015
0
672XA 0.8U Electrical
Vis/Mech
0
00
00
30 11
32
4 MEG PIPELN Electrical
Vis/Mech 99
0284
0453
00
00
0
1 MEG ECL Electrical
Vis/Mech 0
00
398 0
064
42 74
64
6297X 4 x 10/2 Electrical
Vis/Mech 0
78 0
00
35 0
28 0
11
62990 16K x 16 Electrical
Vis/Mech 0
00
00
00
00
0
67804 256K x 4 Electrical
Vis/Mech 0
00
00
00
00
0
62110 32K x 9 Electrical
Vis/Mech 0
00
00
00
00
0
65824 8K x 24 Electrical
Vis/Mech 0
00
00
00
00
20
62980 64K x 4 Electrical
Vis/Mech 0
00
00
00
00
0
62416 16K x 16 Electrical
Vis/Mech 0
0106
416 387
01201
01116
58
7D709 128K x 9 Electrical
Vis/Mech 0
0
7Q709 128K x 9 Electrical
Vis/Mech 0
00
37 0
00
066
0
62308 8K x 8 Electrical
Vis/Mech 0
00
00
147 0
00
1497
69T618 3.3 V Electrical
Vis/Mech 0
00
557 0
0
2604GA GLANC Electrical
Vis/Mech 0
0
67T416 16 x 16 Electrical
Vis/Mech 0
0
67618 5 V 0.8 Electrical
Vis/Mech 0
0413
00
070
018
12
6264 Electrical
Vis/Mech 0
00
00
00
00
0
67618 5 V 0.5 Electrical
Vis/Mech 0
01
02
00
00
11
6205/6A, B, C Electrical
Vis/Mech
0
00
00
127
6205/06D Electrical
Vis/Mech 0
038
81 0
60
32 1
33
6226A Electrical
Vis/Mech 89
00
00
20 35
60 11
26
6229A Electrical
Vis/Mech
0
00
00
00
18
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
6-8
AVERAGE OUTGOING QUALITY
In Parts per Million
FSRAM (continued)
Device Type Category 3rd Quarter
1996 2nd Quarter
1996 1st Quarter
1996 4th Quarter
1995 Total Year
1995
6226B Electrical
Vis/Mech 0
00
00
27 0
09
83
6229B Electrical
Vis/Mech 0
00
00
00
041
52
6227B Electrical
Vis/Mech 0
00
00
00
00
755
4MB 6249 .5 C Electrical
Vis/Mech 0
00
01141
00
00
0
4MB 6246 .5 C Electrical
Vis/Mech 0
00
00
0412
0123
22
67518 Electrical
Vis/Mech 0
65 0
00
38 0
04
21
69618 3.3 V Electrical
Vis/Mech 0
00
00
00
00
0
69536 32x36 Electrical
Vis/Mech 0
00
118 0
00
233 0
229
32K x 32 CMOS Electrical
Vis/Mech 0
00
0
64K x 16 ASYNC Electrical
Vis/Mech 0
0
32K x 8 BS WIN Electrical
Vis/Mech 19
20 0
09
149 0
41 8
33
128K x 8 WB Electrical
Vis/Mech
0
00
0
256K x 4 WB Electrical
Vis/Mech
0
00
89 0
267 0
267
63P532BA 32 x Electrical
Vis/Mech
1756
8430 0
1011 0
00
0
128K x 8 WB Electrical
Vis/Mech 0
00
30
00
00
0
256K x 4 WB Electrical
Vis/Mech 0
59
256 CMOS STD Electrical
Vis/Mech 0
00
03875
1777 1365
1648 1117
787
256 CMOS CST Electrical
Vis/Mech 911
242 119
0358
0833
01006
242
1M CMOS STD Electrical
Vis/Mech 0
00
00
0
0
0
4M CMOS STD Electrical
Vis/Mech 0
00
01497
0
3517
0
256K BRAM STD Electrical
Vis/Mech 2037
509
256K BRAM CS Electrical
Vis/Mech
2531
01589
0909
0950
213
1M BRAM STD Electrical
Vis/Mech 1603
0609
790 493
546 1726
280 1416
847
1M BRAM CSTM Electrical
Vis/Mech 0
0
256 BCMS STD Electrical
Vis/Mech
0
0
256 BCMOS CST Electrical
Vis/Mech
0
00
0405
0
1M BCMOS STD Electrical
Vis/Mech 0
00
00
00
00
0
1M BCMOS CST Electrical
Vis/Mech 5794
0849
6960 215
3317 720
1295 316
634
4M BCMOS CSTM Electrical
Vis/Mech 0
0
MOTOROLA
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT 6-9
FSRAM (continued)
Device Type Category 3rd Quarter
1996 2nd Quarter
1996 1st Quarter
1996 4th Quarter
1995 Total Year
1995
1M ASM CSTM Electrical
Vis/Mech
2631
0746
01438
643
Total FSRAM Electrical
Vis/Mech 26
13 13
29 17
36 44
38 39
41
AVERAGE OUTGOING QUALITY
In Parts per Million
FSRAM
MAY JUNAPR
= Visual
MARFEBJAN
150
140
130
120
110
100
90
80
70
60
50
40
30
20
10
0
KPPB
AUG SEPJULDECNOVOCT 1995
= Electrical 1996
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
6-10
AVERAGE OUTGOING QUALITY
In Parts per Million
DRAM/GSRAM
Device Type Category 3rd Quarter
1996 2nd Quarter
1996 1st Quarter
1996 4th Quarter
1995 Total Year
1995
1 MEG DRAM
MCM511000/514256 Electrical
Vis/Mech
0
00
00
0
4 MEG DRAM
MCM54100A/54400A Electrical
Vis/Mech 0
18 0
10 0
31
72
12
16 MEG DRAM
MCM517400 Electrical
Vis/Mech 0
90
10 19
09
29 26
25
DRAM Modules*
MCM32100/36100/
82000/94000
Electrical
Vis/Mech 0
00
90 0
126 0
148 31
94
Total DRAM Electrical
Vis/Mech 0
17 0
14 4
81
18 4
16
* Module AOQ data reflects board level assembly defects only. For component defect rates, see the appropriate component listing.
= Electrical
150
140
130
120
110
100
90
80
70
60
50
40
30
20
10
0APR MAY JUN
= Visual
KPPB
MARFEBJAN JUL AUG SEPDECNOVOCT 1995 1996
MOTOROLA
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT 6-11
AVERAGE OUTGOING QUALITY
In Parts per Million
MICROPROCESSORS
Device Type Category 3rd Quarter
1996 2nd Quarter
1996 1st Quarter
1996 4th Quarter
1995
MC68000
16/32-Bit MPU Electrical
Vis/Mech 0
00
369.2 0
52 0
56.5
MC68008
8-Bit Version of 68000 Electrical
Vis/Mech
0
00
0
MC68010
Virtual 16/32-Bit MPU Electrical
Vis/Mech 0
262.2 0
1146.5 256.8
411.9 128.4
580.4
MC68HC000
Low Power HCMOS 68000 Electrical
Vis/Mech 88.7
86.9 21.5
22.2 0
38.2 0
11.4
MC68EC000
8/16 Bit Embedded Ctrl MPU Electrical
Vis/Mech 154.9
13.6 0
00
00
3
MC68230
Parallel Interface and T imer Electrical
Vis/Mech 0
00
153 0
235.2 0
0
MC68440
Dual Channel DMA Electrical
Vis/Mech 0
242.0 0
669.3 0
272.9 0
1858.2
MC68450
DMA Controller Electrical
Vis/Mech 1026.1
377.4 899
387.8 0
322 0
479.5
MC68681, MC2681
DUART Electrical
Vis/Mech 0
00
00
32.8 89.6
0
MC68901
Multifunctional Peripheral Electrical
Vis/Mech 0
1012.9 195.3
452.2 506.4
153.8 1199.8
125.3
MC68EC020
32-Bit Embedded Control MPU Electrical
Vis/Mech 0
00
00
00
0
MC68020
Full 32-Bit MPU Electrical
Vis/Mech 0
41 0
00
00
55.3
MC68030
Enhanced 32-Bit MPU w/MMU Electrical
Vis/Mech 0
576.7 44.5
431.9 11.7
272.3 12.4
369.5
XC68040
3rd Gen. 32-Bit MPU Electrical
Vis/Mech 0
00
133.2 0
00
0
XC68341
32-Bit CPU/RTC/QSM/DMA Electrical
Vis/Mech 0
1812.2 0
1592.8 0
00
170.5
MC68349
Integrated Processor DMA & Mem Electrical
Vis/Mech 0
00
00
00
0
XC68060
Superscalar 32–Bit Processor Electrical
Vis/Mech 0
570.5 0
383.5 0
1434.9 0
734.2
MC68882 EFPCP
Enchanced FP Coprocessor Electrical
Vis/Mech 0
91.7 0
804.4 0
138.7 0
553.6
XCF5102
Low Power 3rd Gen. 32–Bit MPU Electrical
Vis/Mech 0
00
115 0
578.2 10.6
421.8
MC68340
Integrated Processor w/DMA Electrical
Vis/Mech 47.3
216.7 18.9
148.3 0
165.7 52.4
276.7
XC68330
Integrated CPU32 Processor Electrical
Vis/Mech 0
01331.8
00
0426.4
393.7
XC68EC/LC040
Embedded 32-Bit High Perf MPU Electrical
Vis/Mech 0
13.8 0
121.6 0
00
0
MC68605
X.25 Protocol Controller Electrical
Vis/Mech 0
155.8 0
852 0
282.6 0
460
MC68606
Multi-Link LAPD Protocol Controller Electrical
Vis/Mech 0
00
886.8 0
1224.4 0
958.7
MC68302
Integrated Multiprotocol Processor Electrical
Vis/Mech 263.9
14 0
751.4 0
430
23.7
MC68824
Token Bus Controller Electrical
Vis/Mech 0
00
312.4 0
424 0
210.2
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
6-12
MICROPROCESSORS (continued)
Device Type Category 3rd Quarter
1996 2nd Quarter
1996 1st Quarter
1996 4th Quarter
1995
MC68836
FDDI Clock Generator Electrical
Vis/Mech 1022.9
00
208.1 0
220.8 0
682.5
MC68837
Elasticity Buffer and Link Manager Electrical
Vis/Mech 0
00
00
00
380
MC68839FSI
FDDI System Interface Electrical
Vis/Mech 0
00
00
84.6 0
0
XC68834
Stream Cipher Chip Electrical
Vis/Mech 0
00
390.6 0
00
253.4
XC68840
Integrated FDDI Electrical
Vis/Mech 0
00
149.2 0
119.0 2120.5
0
MC68847
Quad ELM Electrical
Vis/Mech 0
00
00
650.9 0
518
MC68848
CAMEL Integrated FDDI Electrical
Vis/Mech 0
00
122.9 0
112.8 0
216.8
XC68356
Signal Processing Communications Engine Electrical
Vis/Mech 0
00
201.9 11.2
152.6 40.7
358
XC68360
Int Communication Controller Electrical
Vis/Mech 0
19 46.3
96.5 9.2
158.5 92.9
69.2
XPC603
32–Bit Microprocessor Electrical
Vis/Mech 0
00
280.6 0
549.8 38.5
380.1
XPC604
32–Bit Microprocessor Electrical
Vis/Mech 0
1161.9 324.7
1963.4
XPC105
PCI Bus Electrical
Vis/Mech 0
347 0
00
696.4 154.4
351.1
MC88100
32-Bit RISC Microprocessor Electrical
Vis/Mech 0
00
1089.1 0
00
0
MC88110
2nd Gen. 32-Bit RISC MPU Electrical
Vis/Mech 0
285.2 0
2195.1 0
00
0
MC88200
16K-Byte Cache MMU Electrical
Vis/Mech 0
00
134 222
422.8 0
0
MC88410
Secondary Cache Controller Electrical
Vis/Mech 0
1622.4 0
00
0
Total Microprocessors Electrical
Vis/Mech 47
101 20.6
70 15.2
54.4 31.3
68.1
MOTOROLA
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT 6-13
AVERAGE OUTGOING QUALITY
In Parts per Million
MICROPROCESSORS
= Electrical
2Q95 4Q95
= Visual
2Q94
250
225
200
175
150
125
100
75
50
25
0
KPPB
QUARTER 2Q96 3Q961Q964Q93 1Q94 3Q94 4Q94 1Q95 3Q95
MOTOROLA MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
6-14
AVERAGE OUTGOING QUALITY
In Parts per Million
WORLD WIDE MMTG
= Electrical
= Visual
150
140
130
120
110
100
90
80
70
60
50
40
30
20
10
0
KPPB
2Q95 4Q952Q94 QUARTER 2Q96 3Q961Q964Q93 1Q94 3Q94 4Q94 1Q95 3Q95
WORLD WIDE — WORLD CLASS
MOTOROLA
7-1
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
Section 7
PRODUCT PORTFOLIO
FAST STATIC RAM PORTFOLIO 7-2. . . . . . . . . .
DYNAMIC RAM PORTFOLIO 7-5. . . . . . . . . . . . .
HIGH PERFORMANCE PORTFOLIO 7-10. . . . .
RISC PORTFOLIO 7-14. . . . . . . . . . . . . . . . . . . . . .
PRODUCT PORTFOLIO
FAST STATIC RAMs
MOTOROLA
7–2 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
SYNCHRONOUS
3.3 V Supply
Description Organi–
zation Motorola
Part Number Pin
Count Packaging Access Time
(ns Max) Pro–
duction Comments
BurstRAMs32Kx32 MCM63P531 100 (TQ) TQFP 7/8/9 Now Pipelined BurstRAM for Pentium CPUs.
MCM63P533 100 (TQ) TQFP 3.5/4/4.5/5 4Q96 133 MHz pipelined BurstRAM.
32Kx36 MCM69F536A 100 (TQ) TQFP 8.5/9/10/12 Now Flow–through BurstRAM, 3.3 V only.
MCM69F536B 100 (TQ) TQFP 8.5/9/10/12 Now Flow–through BurstRAM, 5 V tolerant I/Os.
MCM69P536A 100 (TQ) TQFP 4.5/5/6/7 Now Pipelined BurstRAM, 3.3 V only.
MCM69P536B 100 (TQ) TQFP 4.5/5/6/7 Now Pipelined BurstRAM, 5 V tolerant I/Os.
64Kx18 MCM69F618A 100 (TQ) TQFP 8.5/9/10/12 Now Flow–through BurstRAM, 3.3 V only.
MCM69P618A 100 (TQ) TQFP 4.5/5/6/7 Now Pipelined BurstRAM, 3.3 V only.
256Kx18 MCM69F818 119
100 (ZP) PBGA
(TQ) TQFP 7.5/8/8.5 1Q97 For servers, switches, and workstations. Samples. January 1997.
MCM69P818 119
100 (ZP) PBGA
(TQ) TQFP 3.5/3.8/4 1Q97 For servers, switches, and workstations. Samples. January 1997.
128Kx36 MCM69F736 100 (TQ) TQFP 7.5/8/8.5 1Q97 For servers, switches, and workstations. Samples. January 1997.
MCM69P736 119
100 (ZP) PBGA
(TQ) TQFP 3.5/3.8/4 1Q97 For servers, switches, and workstations. Samples. January 1997.
NetRAMs32Kx36 MCM69Q536 176 (TQ) TQFP 8/10 1Q97 Dual address, separate I/O. Samples 1Q97.
MCM69D536 176 (TQ) TQFP 8/10 1Q97 Dual address, dual I/O. Samples 1Q97.
MCM69Q537 176 (TQ) TQFP 5 2Q97 Single address, separate I/O.
64Kx18 MCM69Q618 176 (TQ) TQFP 8/10 1Q97 Dual address, separate I/O. Samples 1Q97.
MCM69D618 176 (TQ) TQFP 8/10 1Q97 Dual address, dual I/O. Samples 1Q97.
MCM69Q619 176 (TQ) TQFP 5 2Q97 Single address, separate I/O.
Tag RAM 64Kx18 MCM69T618 119
100 (ZP) PBGA
(TQ) TQFP 5/6/7 Now
Now 100 MHz Tag RAM. For MIPS R5000, Pentium Pro and Graphics
Accelerators Applications
4M Late Write 256Kx18 MCM69R818 119 (ZP) PBGA 6/7/8 4Q96 Late write interface. HSTL I/Os. Samples 3Q96.
MCM69R819 119 (ZP) PBGA 7/8/9 4Q96 Late write interface. LVTTL I/Os. Samples 3Q96.
MCM69R820 119 (ZP) PBGA 7/8/9 4Q96 Late write interface. 2.5 V I/Os. Samples 3Q96.
MCM69L819 119 (ZP) PBGA 7/8/9 4Q96 Late write interface. Register/Latch LVTTL I/Os. Samples 3Q96.
MCM69L820 119 (ZP) PBGA 7/8/9 4Q96 Late write interface. Register/Latch 2.5 V I/Os. Samples 3Q96.
128Kx36 MCM69R736 119 (ZP) PBGA 6/7/8 4Q96 Late write interface. HSTL I/Os. Samples 3Q96.
MCM69R737 119 (ZP) PBGA 7/8/9 4Q96 Late write interface. LVTTL I/Os. Samples 3Q96.
MCM69R738 119 (ZP) PBGA 7/8/9 4Q96 Late write interface. 2.5 V I/Os. Samples 3Q96.
MCM69L737 119 (ZP) PBGA 7/8/9 4Q96 Late write interface. Register/Latch LVTTL I/Os. Samples 3Q96.
MCM69L738 119 (ZP) PBGA 7/8/9 4Q96 Late write interface. Register/Latch 2.5 V I/Os. Samples 3Q96.
1M Late Write 64Kx18 MCM69R618 119 (ZP) PBGA 6/7/8 1Q97 Late write interface. HSTL I/Os. Samples 4Q96.
32Kx36 MCM69R536 119 (ZP) PBGA 6/7/8 1Q97 Late write interface. HSTL I/Os. Samples 4Q96.
CAMs 4Kx64 MCM69C232 100 (TQ) TQFP 160 ns 1Q97 Content addressable memory for communication applications. 4K
connections.
16Kx64 MCM69C432 100 (TQ) TQFP 160 ns 2Q97 Content addressable memory for communication applications. 16K
connections.
5 V Supply
Description Organi–
zation Motorola
Part Number Pin
Count Packaging Access Time
(ns Max) Pro–
duction Comments
Integrated
Cache 32Kx36 MPC2604GA 357 (ZP) PBGA 66 MHz Now Integrated L2 cache for PowerPC processors.T wo components for
256KB solution, and four for 512KB.
Solutions 32Kx72 MPC2605 357 (ZP) PBGA 66/75 MHz 1Q97 Integrated L2 cache for PowerPC processors.One component for 256KB,
two for 512KB, and four for 1MB L2 cache solutions.
BurstRAMs 64Kx18 MCM67B618A 52 (FN) PLCC 8.5/9/10/12 Now Flow–through BurstRAM for Pentium, MIPS.
MCM67C618A 52 (FN) PLCC 5/7 Now Pipelined BurstRAM for Pentium.
MCM67M618A 52 (FN) PLCC 9/10/12 Now Flow–through BurstRAM for PowerPC.
DSPRAM8Kx24 MCM56824A 52 (FN) PLCC 20/25/35 Now Designed for DSP56001 applications, replaces 3 8Kx8’s.
Tag RAMs 16Kx15 MPC27T415 80 (TQ) TQFP 9/10/12 Now Cache tag RAM for PowerPC. 12 tag bits, 3 status bits. Drop in
replacement for IDT71216. Sampling now.
16Kx16 MPC27T416 80 (TQ) TQFP 9/10/12 Now Cache tag RAM for PowerPC. 14 tag bits, 2 status bits. Sampling now.
MOTOROLA INC., 1996
PRODUCT PORTFOLIO
FAST STATIC RAMs
MOTOROLA
7–3
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
Description Comments
Pro–
duction
Access Time
(ns Max)
Packaging
Pin
Count
Motorola
Part Number
Organi–
zation
General
Synchronous 128Kx9 MCM67Q709 86 (ZP) PBGA 5/6 Now General synchronous separate I/O with write pass through.
3.3 V output levels.
MCM67Q709A 86
100 (ZP) PBGA
(TQ) TQFP 5/6 4Q96
4Q96 General synchronous separate I/O with write pass through.
3.3 V output levels.
256Kx4 MCM67Q804 36 400 (WJ) SOJ 5 Now Graphics; general RISC. Register to register. Revolutionary pinout. 3.3 V
output levels. Write pass through. Separate I/O.
16Kx16 MCM62990A 52 (FN) PLCC 15/20/25 Now Late write RAM for telecom switches and buffers.
8Kx8 MCM62X308 28 300 (J) SOJ 15/17 Now Line buffer for processing digital data.
4Kx12 MCM62973A 44 (FN) PLCC 18/20 Now Pipelined SRAM with chip select.
MCM62974A 44 (FN) PLCC 18/20 Now Pipelined SRAM with output enable.
MCM62975A 44 (FN) PLCC 25/30 Now Output enable.
ASYNCHRONOUS
3.3 V Supply
Density Organi–
zation Motorola
Part Number Pin
Count Packaging
Package width in mils Access TIme
(ns Max) Pro–
duction Comments
1M 64Kx16 MCM6323 44 400 (YJ) SOJ 12/15 Now Revolutionary pinout.
128Kx8 MCM6326 32 400 (YJ) SOJ 12/15 4Q96 Revolutionary pinout. Samples 3Q96.
MCM6926 32 400 (WJ) SOJ 8/10/12/15 Now Revolutionary pinout.
256Kx4 MCM6929 32 400 (WJ) SOJ 8/10/12/15 Now Revolutionary pinout.
256K 32Kx8 MCM6306D 28 300 (J) SOJ 15/20/25 Now 3.3 V Fast SRAM
5 V Supply
Density Organi–
zation Motorola
Part Number Pin
Count Packaging
Package width in mils Access TIme
(ns Max) Pro–
duction Comments
4M 512Kx8 MCM6246 36 400 (WJ) SOJ 20/25/35 Now Output enable. Revolutionary pinout.
1Mx4 MCM6249 32 400 (WJ) SOJ 20/25/35 Now Output enable. Revolutionary pinout.
1M 64Kx16 MCM6223 44 400 (YJ) SOJ 12/15 4Q96 Revolutionary pinout. Samples 3Q96.
64Kx18 MCM67A618A 52 (FN) PLCC 10/12/15 Now General asynchronous, latched address and data.
128Kx8 MCM6226B 32 400 (WJ) SOJ 15/17/20/25 Now Evolutionary pinout.
MCM6226BA 32 400 (WJ) SOJ 17/20/25 Now Not for new designs.
MCM6226BB 32 300 (EJ), 400 (XJ) SOJ 15/17/20/25 Now Evolutionary pinout.
MCM6726B 32 400 (WJ) SOJ 8/10/12 Now Revolutionary pinout.
MCM6726C 32 400 (WJ) SOJ 6/7 Now Revolutionary pinout.
MCM6726D 32 400 (WJ) SOJ 7.5/8/10/12 4Q96 Revolutionary pinout. Samples 3Q96. Will replace MCM6726B.
256Kx4 MCM6229B 28 400 (WJ) SOJ 15/17/20/25 Now Not for new designs. Suggest MCM6229BB.
MCM6229BA 28 400 (WJ) SOJ 17/20/25 Now Not for new designs. Suggest MCM6229BB.
MCM6229BB 28 300 (J), 400 (WJ) SOJ 15/17/20/25 Now Evolutionary pinout.
MCM6729B 32 400 (WJ) SOJ 8/10/12 Now Output enable. Revolutionary pinout.
MCM6729C 32 400 (WJ) SOJ 6/7 Now Revolutionary pinout.
MCM6729D 32 400 (WJ) SOJ 7.5/8/10/12 4Q96 Revolutionary pinout. Samples 3Q96. Will replace MCM6729B.
1Mx1 MCM6227B 28 300 (J), 400 (WJ) SOJ 15/17/20/25 Now For Telecom and IC Tester applications.
256K 16Kx16 MCM62996 52 (FN) PLCC 15/20/25 Now Choice of 5 V or 3.3 V power supplies for output buffers. For wide
bus applications.
MCM62995A 52 (FN) PLCC 15/20/25 Now DSP96000 and RISC applications. Latched address inputs.
32Kx8 MCM6206BA 28 300 (EJ) SOJ 12/15/20/25 Now Replaces MCM6206D.
MCM6706B 28 300 (J) SOJ 8/10 Now Evolutionary pinout.
MCM6706BR 32 300 (J) SOJ 6/7/8 Now Revolutionary pinout.
32Kx9 MCM6205D 32 300 (J) SOJ 15/20/25 Now Not for new designs.
PRODUCT PORTFOLIO
FAST STATIC RAMs
MOTOROLA
7–4 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
62 = 5 V CMOS
63 = 3.3 V CMOS
67 = 5 V BiCMOS
69 = 3.3 V BiCMOS
Speed (ns)
Package* (WJ = Wide SOJ,
J = SOJ, FN = PLCC,
TB = TAB)
M 67 J 8R
Width:
5 = x 9
6 = x 8
7 = x 1
8 = x 4
9 = x 4 with OE
Motorola Component
(Qualified)
Memory
Speed (ns)
Package (WJ = Wide SOJ,
FN = PLCC, J = SOJ,
ZP = PBGA, TQ = TQFP)
M 67 6 FN 12B
Width:
04 = x 4
08 = x 8
09 = x 9
16 = x 16
18 = x 18
24 = x 24
32 = x 32
36 = x 36
0 6
Density:
0 = 256K
2 = 1M
4 = 4M
6 = 16K
8 = 64K
Revolutionary Pinout*
MC
62 = 5 V CMOS
63 = 3.3 V CMOS
67 = 5 V BiCMOS
69 = 3.3 V BiCMOS
18
A = Async w/Address and
Data Latch
B = x86 Burst Count
C = x86 Burst Count and
Output Register
D = Dual I/O
F = Flow–Through BurstRAM
H = x86 Burst Count with Address
Disable
J = x86 Burst Count with Address Disable
and Output Register
L = Register/Latch
M = Motorola (PowerPC) Burst Count
P = Pipelined BurstRAM
Q = Sep. I/O
R = Register/Register
T = Cache Tag
X = Line Buffer
Depth:
3 = 8K Address Depth
4 = 16K Address Depth
5 = 32K Address Depth
6 = 64K Address Depth
7 = 128K Address Depth
8 = 256K Address Depth
NOTE: There are some exceptions to these device numbering schemes, i.e.,
MCM62990A is a CMOS 16K x 16 and NOT a 512K x 90 device. MPC designates
devices designed to work with PowerPC microprocessors and support chips.
* These designators apply to current products – future products will not necessarily
follow this scheme.
DEVICE/PART NUMBER DESIGNATORS
MC
Motorola
Component
MC = Qualified
SC = Special
Memory
A
Die Revision
ASYNCHRONOUS DEVICE SYNCHRONOUS DEVICE
B
Die Revision*
Blank = First qualified Motorola device
A = First die size change/spec change
B = Second die size change/spec change
BA = First qualified foundry device
FAST STATIC RAM MODULES (Contact Fast Static RAM Marketing for Custom Fast SRAM Modules)
PowerPC Processor Applications
Description Chip Set Functionality Cache Size Access Time
(Max) Pro–
duction Packaging Motorola
Part Number
PowerPC Cache
Modules with 16K x 15 Motorola MPC105,
Motorola MPC106 Flow–Through Burst 512KB Cache 66 MHz Now 178 Pin Card Edge (SG) MPC2105A
CacheTag Flow–Through Burst 1MB 66 MHz Now MPC2106A
Pentium and other x86 Processor Applications
Description Chip Set Functionality Cache Size Access Time
(Max) Pro–
duction Packaging Motorola
Part Number
Pentium L2 Cache
Mdl
Triton II chip set Piped Burst
8Bi TAG
512KB Cache 75 MHz Now 160 Pin Card Edge (SG) MCM64PC64
Modules 8 Bit TAG 256KB Cache 66 MHz Now MCM64PC32
Triton II chip set Piped Burst
11 Bi TAG
512KB Cache 75 MHz Now 160 Pin Card Edge (SG) MCM64PD64
11 Bit TAG 256KB Cache 66 MHz Now MCM64PD32
Networking and Buffer Applications
Description Organization Access Time
(Max) Production Packaging Comments Motorola
Part Number
Standard FSRAM
Modules 1M x 32 20/25 ns Now 72 Pin SIMM (SG) Uses eight 4M SRAMs MCM321024
512K x 32 20/25 ns Now 72 Pin SIMM (SG) Uses four 4M SRAMs MCM32515
128K x 32 20/25 ns Now 64 Pin SIMM (SG) Uses four 1M SRAMs MCM32128A
BurstRAM and DSPRAM are trademarks of Motorola, Inc.
NetRAM is a trademark of Motorola, Inc.
Pentium is a registered trademark of Intel Corporation.
PowerPC is a trademark of IBM Corporation.
PHASE OUT
PHASE OUT
PHASE OUT
PHASE OUT
PRODUCT PORTFOLIO
DYNAMIC RAMs
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP MOTOROLA
7–5
RELIABILITY AND QUALITY REPORT
DRAM MODULES (Contact DRAM Marketing for Custom DRAM Modules) (See Notes 1 and 2)
Byte
Density Organization Motorola Part
Number Pins Package
Options Access
Time Production
Operating
Current
(mA Max) Volt
FPM
or
EDO (B)uffered or
(U)nbuffered
Parity, Non–Parity,
ECC or ECC pin
for Parity Refresh Comp.
Pkg.
1MB 1Mx8 MCM81430 30 (S) 60/70 NOW 240/200 5 FPM U Non–Parity 1K SOJ
4MB 4Mx8 MCM84000 30 (AS) 60/70 NOW 960/800 5 FPM U Non–Parity 2K SOJ
MCM84C430 30 (S) 60/70 NOW 220/190 5 FPM U Non–Parity 2K SOJ
MCM84CT430 30 (S) 60/70 NOW 220/190 5 FPM U Non–Parity 2K TSOP
4Mx9 MCM94000 30 (AS) 60/70 NOW 1080/900 5 FPM U Parity 2K SOJ
MCM94C430 30 (S) 60/70 NOW 340/290 5 FPM U Parity 2K SOJ
MCM94CT430 30 (S) 60/70 NOW 340/290 5 FPM U Parity 2K TSOP
1Mx32 MCM32100 72 (DG), (D) 60/70 NOW 960/800 5 FPM U Non–Parity 1K TSOP
MA321BT08T 72 (ADG),(AD) 60/70 NOW 370/310 5 FPM U Non–Parity 1K TSOP
MB321BT08T 72 (ADG),(AD),(
ASN) 60/70 NOW 370/310 5 EDO U Non–Parity 1K TSOP
MB321BT18T 72 (ADG),(ADN) 60/70 NOW 350/290 3.3 EDO U Non–Parity 1K TSOP
MCM32B116 72 (S),(SG) 60/70 TBD 370/310 5 FPM U Non–Parity 1K SOJ
MB321BJ08T 72 (ASN) 60/70 TBD 360/300 5 EDO U Non–Parity 1K SOJ
MCM32BT116 72 (SH) 60/70 NOW 370/310 5 FPM U Non–Parity 1K TSOP
MCM32130 72 (SH),(SHG) 60/70 NOW 960/800 5 FPM U Non–Parity 1K SOJ
MCM32T100 72 (SH),(SHG) 60/70 NOW 960/800 5 FPM U Non–Parity 1K TSOP
8MB 2Mx32 MA322BT08T 72 (ADG) 60/70 NOW 374/314 5 FPM U Non–Parity 1K TSOP
MB322BT08T 72 (ADG), (ASN) 60/70 NOW 374/314 5 EDO U Non–Parity 1K TSOP
MB322BT18T 72 (ADG) 60/70 NOW 352/292 3.3 EDO U Non–Parity 1K TSOP
MCM32B216 72 (S),(SG) 60/70 TBD 374/314 5 FPM U Non–Parity 1K SOJ
MB322BJ08T 72 (ASN) 60/70 TBD 374/314 5 EDO U Non–Parity 1K SOJ
MCM32BT216 72 (SH) 60/70 NOW 374/314 5 FPM U Non–Parity 1K TSOP
MCM32230 72 (SH),(SHG) 60/70 NOW 976/816 5 FPM U Non–Parity 1K SOJ
MCM32T200 72 (S), (SG) 60/70 NOW 976/816 5 FPM U Non–Parity 1K TSOP
16MB 4Mx32 MCM32C400 72 (ASH),(ASH
G) 60/70 4Q96 880/760 5 FPM U Non–Parity 2K SOJ
MB324CJ00T 72 (BSN) 60/70 4Q96 880/760 5 EDO U Non–Parity 2K SOJ
MCM32CT400 72 (ASH),(ASH
G) 60/70 4Q96 880/760 5 FPM U Non–Parity 2K TSOP
MCM32CT420 72 (ADG) 60/70 4Q96 880/760 5 FPM U Non–Parity 2K TSOP
MB324CT00T 72 (BDG),(BSN) 60/70 4Q96 880/760 5 EDO U Non–Parity 2K TSOP
MCM32CT423 72 (ADG) 60/70 4Q96 600/520 3.3 FPM U Non–Parity 2K TSOP
MB324CT10T 72 (BDG) 60/70 4Q96 880/760 3.3 EDO U Non–Parity 2K TSOP
PHASE OUT
PHASE OUT
PHASE OUT
PRODUCT PORTFOLIO
DYNAMIC RAMs
MOTOROLA
7–6 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
Byte
Density Organization Motorola Part
Number Pins Package
Options Access
Time Production
Operating
Current
(mA Max) Volt
FPM
or
EDO (B)uffered or
(U)nbuffered
Parity, Non–Parity,
ECC or ECC pin
for Parity Refresh Comp.
Pkg.
32MB 8Mx32 MCM32C800 72 (ASH),(ASH
G) 60/70 4Q96 896/776 5 FPM U Non–Parity 2K SOJ
MB328CJ00T 72 (BSN) 60/70 4Q96 896/776 5 EDO U Non–Parity 2K SOJ
MCM32CT800 72 (ASH),(ASH
G) 60/70 4Q96 896/776 5 FPM U Non–Parity 2K TSOP
MB328CT00T 72 (BSN) 60/70 4Q96 896/776 5 EDO U Non–Parity 2K TSOP
4MB 1Mx36 MCM36104 72 (S),(SG) 60/70 NOW 1080/900 5 FPM U ECC for Parity 1K SOJ
8MB 2Mx36 MCM36204 72 (S),(SG) 60/70 NOW 1098/918 5 FPM U ECC for Parity 1K SOJ
16MB 4Mx36 MCM36C400 72 (AS),(ASG),(
ASH),
(ASHG)
60/70 NOW 1360/1160 5 FPM U Parity 2K SOJ
MCM36C404 72 (ASH),(ASH
G) 60/70 4Q96 990/855 5 FPM U ECC for Parity 2K SOJ
32MB 8Mx36 MCM36C800 72 (AS),(ASG) NOW 1384/1184 5 FPM U Parity 2K SOJ
MCM36C804 72 (ASH),(ASH
G) 60/70 NOW 1008/873 5 FPM U ECC for Parity 2K SOJ
4MB 1Mx40 MCM40100 72 (AS),(ASG) 60/70 NOW 1200/1000 5 FPM U ECC 1K SOJ
8MB 2Mx40 MCM40200 72 (AS),(ASG) 60/70 NOW 1220/1020 5 FPM U ECC 1K SOJ
16MB 4Mx40 MCM40C400 72 (SH),(SHG) 60/70 NOW 1100/950 5 FPM U ECC 2K SOJ
32MB 8Mx40 MCM40C800 72 (SH),(SHG) 60/70 NOW 1120/970 5 FPM U ECC 2K SOJ
8MB 1Mx64 MA641AJ40T 168 (ADG) 60/70 NOW 2050/1715 5 FPM B Non–Parity 1K SOJ
MCM64BT116 168 (DG) 60/70 NOW 828/700 5 FPM B Non–Parity 1K TSOP
MB641BT48T 168 (ADG) 60/70 NOW 828/700 5 EDO B Non–Parity 1K TSOP
MA641BT08T 168 (ADG) 60/70 4Q96 740/620 5 FPM U Non–Parity 1K TSOP
MB641BT08T 168 (ADG) 60/70 4Q96 740/620 5 EDO U Non–Parity 1K TSOP
MB641BT18T 168 (ADG) 60/70 4Q96 700/580 3.3 EDO U Non–Parity 1K TSOP
16MB 2MX64 MCM64BT216 168 (DG) 60/70 NOW 836/704 5 FPM B Non–Parity 1K TSOP
MB642BT48T 168 (ADG) 60/70 NOW 836/704 5 EDO B Non–Parity 1K TSOP
MA642BT08T 168 (ADG) 60/70 4Q96 748/628 5 FPM U Non–Parity 1K TSOP
MB642BT08T 168 (ADG) 60/70 4Q96 748/628 5 EDO U Non–Parity 1K TSOP
MB642BT18T 168 (ADG) 60/70 4Q96 708/588 3.3 EDO U Non–Parity 1K TSOP
32MB 4Mx64 MA644CT00T 168 (ADG) 60/70 4Q96 1760/1520 5 FPM U Non–Parity 2K TSOP
MB644CT00T 168 (ADG) 60/70 4Q96 1760/1520 5 EDO U Non–Parity 2K TSOP
MA644CT10T 168 (ADG) 60/70 4Q96 1200/1040 3.3 FPM U Non–Parity 2K TSOP
MB644CT10T 168 (ADG) 60/70 4Q96 1200/1040 3.3 EDO U Non–Parity 2K TSOP
1MX72 MA721BT08T 168 (ADG) 60/70 4Q96 980/820 5 FPM U ECC 1K TSOP
2MX72 MA722BT08T 168 (ADG) 60/70 4Q96 990/835 5 FPM U ECC 1K TSOP
4MX72 MA724CT00T 168 (ADG) 60/70 4Q96 1980/1710 5 FPM U ECC 2K TSOP
MB724CT00T 168 (ADG) 60/70 4Q96 1980/1710 5 EDO U ECC 2K TSOP
MA724CT10T 168 (ADG) 60/70 4Q96 1350/1170 3.3 FPM U ECC 2K TSOP
PRODUCT PORTFOLIO
DYNAMIC RAMs
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP MOTOROLA
7–7
RELIABILITY AND QUALITY REPORT
Byte
Density Organization Motorola Part
Number Pins Package
Options Access
Time Production
Operating
Current
(mA Max) Volt
FPM
or
EDO (B)uffered or
(U)nbuffered
Parity, Non–Parity,
ECC or ECC pin
for Parity Refresh Comp.
Pkg.
MB724CT10T 168 (ADG) 60/70 4Q96 1350/1170 3.3 EDO U ECC 2K TSOP
MA724CJ40T 168 (ADG) 60/70 4Q96 2060/1770 5 FPM B ECC 2K SOJ
MB724CJ40T 168 (ADG) 60/70 4Q96 2060/1770 5 EDO B ECC 2K SOJ
NOTES:
1. Package suffixes are enclosed by () in package column
AD/ADG=DIMM/Gold Pad DIMM (Board Revision)
AS and ASN/ASG=T in Pad SIMM (Board Revision)/Gold Pad SIMM (Board Revision)
ASH/ASHG= Low Profile SIMM/Low Profile Gold Pad SIMM
BDG=Board Rev. DIMM Gold Lead
BSN/BSG=Board Rev. SIMM T in Lead/Board Rev. SIMM Gold Lead
D/DG=Dual Inline Memory Module(DIMM)/Dual Inline Gold Pad Module
S/SG=Single Inline Memeory Module/Gold Pad SIMM
SH/SHG=Short Height SIMM/Short Height Gold Pad SIMM
2. Please consult factory before ordering a gold module package type.
ORDERING INFORMATION
Motorola Memory Prefix
Part Number
Temperature Range (Blank = 0 to 70°C,
C = –40 to +85°C)
Shipping Method (Blank = T ray or Rails,
16M: R = Tape and Reel, 1M & 4M: R2 = Tape and Reel)
Speed (60 = 60 ns, 70 = 70 ns, 80 = 80 ns, 10 = 100 ns)
Package
COMPONENT AND FIRST GENERATION MODULE PART NOMENCLATURE
MCM XXXXX X X XX XX
Fab Indicator
2 = Available for sale worldwide
3 = Available for sale worldwide (16M only)
4 = Not available for sale in USA
5 = Available for sale worldwide
Motorola, Inc. 1996
PRODUCT PORTFOLIO
DYNAMIC RAMs
MOTOROLA
7–8 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
X = Device Status
M = Motorola Qualified Device
E = ESCP Product
S = SCM Product
C = Single Customer Product (SCP)
F = Fab Indicator
G = LGS
U = Tohoku
T = TSB/TSC
V = VIS
NEXT GENERATION MODULE PART NOMENCLATURE
XZ Z A F PY
Y = Memory Product Type
A = FPM DRAM
B = EDO DRAM
ZZ = Data Width
32 = 32 bits
36 = 36 bits
64 = 64 bits
72 = 72 bits A = Address Density
1, 2, 4, 8 = 1M, 2M, 4M, 8M
5 = 16M
3 = 32M
D
D = Die Revision
A = First Rev
B = B Rev
T
T = Package
J = SOJ
T = TSOP
D1 D2
DD = Data Characters
P = PWB Type/Revision
A = No Rev
B = Rev B
S
S = Edge Connector
S = SIMM
D = DIMM/SO–DIMM
Pl
Pl = Plating
N = T in/Lead
G = Gold
Spd
Spd = Speed (ns)
60
70
D1
0 = Commercial, Unbuff, 5 V module
1 = Commercial, Unbuff, 3.3 V module
4 = Commercial, Buff, 5 V module
5 = Commercial, Buff, 3.3 V module
D2
0 = x4 DRAM–based, Square refresh
8 = x16 DRAM–based, Square refresh
PHASE OUT
PHASE OUT
PHASE OUT
PRODUCT PORTFOLIO
DYNAMIC RAMs
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP MOTOROLA
7–9
RELIABILITY AND QUALITY REPORT
DYNAMIC RAMS (HCMOS) (Contact DRAM Marketing)
Byte Density Organization Motorola Part Number Pins Package Options Access Time
(ns Max)
Operating
Current
(mA Max) Production Volt FPM or
EDO Refresh
4MB 4MX1 MCM44100C 20/26 300 SOJ(N) 60/70 110/100 NOW 5 FPM 1K
MCM4L4100C 20/26 300 SOJ(N) 60/70 110/100 NOW 5 FPM 1K
MCM54100A 20/26 300 SOJ(N), 300TSOP (T) 60/70 120/100 NOW 5 FPM 1K
MCM5L4100A 20/26 300 SOJ(N), 300TSOP (T) 60/70 120/100 NOW 5 FPM 1K
MCM54100A–C 20/26 300 SOJ(N), 300TSOP (T) 70/80 100/85 NOW 5 FPM 1K
MCM54100A–V 20/26 300 SOJ(N), 300TSOP (T) 70/80 70/60 NOW 3.3 FPM 1K
MCM5L4100A–V 20/26 300 SOJ(N), 300TSOP (T) 70/80 70/60 NOW 3.3 FPM 1K
1MX4 MCM44400C 20/26 300 SOJ(N) 60/70 110/100 NOW 5 FPM 1K
MCM4L4400C 20/26 300 SOJ(N) 60/70 110/100 NOW 5 FPM 1K
MCM54400A 20/26 300 SOJ(N), 300TSOP (T) 60/70 120/100 NOW 5 FPM 1K
MCM5L4400A 20/26 300 SOJ(N), 300TSOP (T) 60/70 120/100 NOW 5 FPM 1K
MCM54400A–C 20/26 300 SOJ(N) 70/80 100/85 NOW 5 FPM 1K
MCM5L400A–C 20/26 300 SOJ(N), 300TSOP (T) 70 100 NOW 5 FPM 1K
MCM54400A–V 20/26 300 SOJ(N), 300TSOP (T) 70/80 70/60 NOW 3.3 FPM 1K
MCM5L4400A–V 20/26 300 SOJ(N), 300TSOP (T) 70/80 70/60 NOW 3.3 FPM 1K
16MB 4MX4 MCM317400C 24/26 300 SOJ(J),300 TSOP(T) 60/70 120/105 NOW 5 FPM 2K
MCM417400 24/26 300 SOJ(J) 60/70 110/100 NOW 5 FPM 2K
MCM417400B 24/26 300 SOJ(J),300 TSOP(T) 60/70 110/100 4Q96 5 FPM 2K
MCM417405B 24/26 300 SOJ(J),300 TSOP(T) 60/70 110/100 4Q96 5 EDO 2K
MCM516400B 24/26 300 SOJ(J),300 TSOP(T) 50/60/70 100/80/70 Call Mktg 5 FPM 4K
MCM517400B 24/26 300 SOJ(J),300 TSOP(T) 50/60/70 130/110/95 NOW 5 FPM 2K
MCM517400C 24/26 300 SOJ(J),300 TSOP(T) 60/70 110/95 4Q96 5 FPM 2K
MCM517400CV 24/26 300 SOJ(J),300 TSOP(T) 60/70 75/65 4Q96 3.3 FPM 2K
MCM517405C 24/26 300 SOJ(J),300 TSOP(T) 60/70 110/95 4Q96 5 EDO 2K
MCM517405CV 24/26 300 SOJ(J),300 TSOP(T) 60/70 75/65 4Q96 3.3 EDO 2K
1MX16 MCM218160B 42 400 SOJ(J) 60/70 180/170 1Q97 5 FPM 1K
MCM218160B 44/50 400 TSOP (T) 60/70 180/170 1Q97 5 FPM 1K
MCM218165B 42 400 SOJ(J) 60/70 170/160 1Q97 5 EDO 1K
MCM218165B 44/50 400 TSOP (T) 60/70 170/160 1Q97 5 EDO 1K
MCM518160B 42 400 SOJ(J) 60/70 185/155 TBD 5 FPM 1K
MCM518160B 44/50 400 TSOP (T) 60/70 185/155 NOW 5 FPM 1K
MCM518165B 42 400 SOJ(J) 60/70 185/155 TBD 5 EDO 1K
MCM518165B 44/50 400 TSOP (T) 60/70 185/155 NOW 5 EDO 1K
MCM518165BV 42 400 SOJ(J) 60/70 175/145 TBD 3.3 EDO 1K
MCM518165BV 44/50 400 TSOP (T) 60/70 175/145 NOW 3.3 EDO 1K
MOTOROLA
7-10 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
PRODUCT PORTFOLIO
HIGH PERFORMANCE
HIGH–PERFORMANCE 68K SOLUTIONS
Device No. Package Speeds Rev Device Name Temp**
(–40 to +85°C) SOQ MPQ POQ BRICK Description
MC68030 128–Lead RC
124–Lead RP
132–Lead FE
16,20,25,33,40,50
16,20,25,33
16,20,25,33
B
B
B
Enhanced 32–Bit
MPU CRC16,20,25,33
CRP16,20,25,33 1
1
0
1
1
36
14
13
144
Complete 32–bit MPU with on–chip
instruction and data caches, internal
parallel buses, enhanced bus controller,
and on–chip MMU.
For FE sample order—SPAK030FEXXB
MC68EC030 124–Lead RP
132–Lead FE
144–Lead PV
25, 40
25, 40
25
B
BEmbedded MPU CRP25 1
01
36 13
144 32–bit MPU for embedded applications.
On–chip instruction and data cache
provide high speed access for control
routines and data. Utilizes low cost
DRAM bus interface.
For FE sample order—SPAKEC030FEXXB
XC68040 179–Lead RC
184–Lead FE 25, 33, 40
25, 33 M
M32–Bit MPU
MMU
FPU
1
01
21 10
84 Complete 32–bit MPU with on–chip
instruction/data caches (4k bytes each),
on–chip MMU, full IEEE floating point,
multiprocessing support with full M68000
family compatibility.
For FE sample order—SPAK040FEXXM
XC68EC040 179–Lead RC
184–Lead FE 20, 25, 33, 40
20, 25, 33 B
BEmbedded 32–Bit
High Processor 1
01
21 10
84 105 High performance 32–bit MPU with
on–chip instruction and data cache
provides high speed access for control
routines and data. Utilizes low cost
DRAM bus interface.
For FE sample order—SPAKEC040FEXXB
XC68LC040 179–Lead RC
184–Lead FE 20, 25, 33
20, 25, 33 B
BHigh Performance
32–Bit Processor 1
01
21 10
84 105 68040–compatible integer unit and
MMU. Ideal solution for cost–sensitive
computer or sophisticated embedded
applications
For FE sample order—SPAKLC040FEXXB
XC68060 206–Lead RC 50 Superscalar
32–Bit Processor 0 1 10 RISC hybrid superscalar MPU with full
M68000 family compatibility. Includes
dual integer units, on–chip instruction/
data caches (8K bytes each), on–chip
MMU, and full IEEE complient FPU.
XC68LC060 206–Lead RC 50 Superscalar
32–Bit Processor 0 1 10 RISC hybrid superscalar MPU with full
M68000 family compatibility. Includes
dual integer units, on–chip instruction/
data caches (8K bytes each) and
on–chip MMU.
XC68EC060 206–Lead RC 50 Superscalar
32–Bit Processor 0 1 10 RISC hybrid superscalar MPU with full
M68000 family compatibility. Includes
dual integer units, on–chip instruction/
data caches (8K bytes each). Ideal for
high performance embedded control
applications.
XC68330
XC68330V 144–Lead PV
144–Lead PV 16, 25
16 @ 3.3V A
AIntegrated CPU32
Processor 0
060
60 240
240 CPU32 core processor with integrated
glue logic, clock chip select, and wait
state. Power of 32–bit processor with
inexpensive 16–bit data bus.
For PV sample order—SPAK330PVXXA, SPAK330PVXXVA
MC68340
MC68340V
144–Lead FE
144–Lead PV
144–Lead FE
144–Lead PV
16, 25
16, 25
16 @ 3.3V
16 @ 3.3V
C
C
C
C
Integrated
Processor with
DMA
CFE16 0
0
0
0
24
60
24
60
96
60
96
60
120
120
CPU32 core processor for data move-
ment applications. Two channel DMA,
two serial channels, two timers, chip
selects, wait–state generation, and glue
logic. MC68340V is the 3.3 volt version
of the MC68340.
For FE, ZP sample order—SPAK340FEXXC, SPAK340FEXXVC,
SPAK340PVXXVC
XC68341
XC68341V 160–Lead FT
160–Lead FT 16, 25
16 @ 3.3 V Integrated CD–1
Engine CFT16 0
024
24 96
96 CPU32 with 2 channel DMA, real time
clock, timer chip selects, MC68000 bus
interface, queued serial peripheral
interface and two channels.
For FT sample order—SPAK341FTXXA,SPAK341FTXXVA
MC68349
MC68349V 160–Lead FT
160–Lead FT 16, 25
16 @ 3.3V A
ADragon 1 High
Performance
Integrated
Processor
0
024
24 240
240 High performance CPU30 processor
(CPU32 ) 32–bit execution unit, 32–bit
data bus, instruction cache, quad data
memory module, 32–bit dual DMA
controllers and two serial channels.
For FT sample order— SPAK349FTXXA, SPAK349FTXXVA
MC68882 68–Lead RC
68–Lead FN 16,20,25,33,40,50
16,20,25,33,40 A
AEnhanced
Floating–Point
Coprocessor
(EFPCP)
CRC16,20,25,33
CFN16,20,25,33 1
11
121
19 Pin–to–pin timing and software compat-
ible with MC68881. Dual ported regis-
ters and increased pipelining allows 2–4
x performance of MC68881.
Note: All package/speed combinations may not be valid—consult factory to verify.
*Not recommended for new designs.
**Extended temperature devices with minimum order requirements.
MOTOROLA
7-11
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
PRODUCT PORTFOLIO
HIGH PERFORMANCE
HIGH–PERFORMANCE 68K COMMODITY SOLUTIONS
Device No. Package Speeds Rev Device Name Temp**
(–40 to +88°C) SOQ MPQ POQ BRICK Description
MC68EC000 68–Lead FN
64–Lead FU 8, 10, 12, 16, 20
8, 10, 12, 16, 20 8–/16–/32–Bit
HCMOS
E b dd d MPU
0
018
84 1008
252 504 Low cost embedded control MPU with
8–/16–bit selectable data bus.
Embedded MPU For FN, FU sample order—SPAKEC000FNXX, SPAKEC000FUXX
MC68HC000 64–Lead P
68–Lead FN,
68–Lead FC*,
68–Lead R*,
RC*
8, 10, 12, 16
8, 10, 12, 16, 20
8, 10, 12, 16
8, 10, 12, 16
HCMOS
16–/32–Bit MPU CFN8, 10, 12, 16
CFN8, 10, 16
CRC8, 10, 12, 16
6
0
0
0
6
18
78
21
192
1008
780
210 390
Completely pin and timing compatible
with MC68000, with 1/10 of the power
dissipation
RC*
For FC, FN, P, RC sample order—SPAKHC000FCXX, SPAKEC000FNXX,
SPAKHC000PXX, SPAKH000RCXX*
MC68HC001* 68–Lead FN,
68–Lead FC
68–Lead RC
8, 10, 12, 16
8, 10, 12, 16
8, 10, 12, 16
Statically
Switchable
8–/16–Bit Data
B
CFN8, 10
CFC10
CRC8
0
0
0
18
78
21
1008
780
210
Functionally compatible to MC68000 and
MC68008
Bus For FN, FC, RC sample order—SPAKHC001FNXX, SPAKHC001FCXX,
SPAKH001RCXX*
MC68020 114–Lead RC
132–Lead FE*
114–Lead RP
132–Lead FC
12, 16, 20, 25, 33
16, 20, 25, 33
16, 20, 25
16, 20, 25, 33
E
E
E
E
32–Bit MPU CRC16, 20, 25
CRP16
CFC16, 20, 25
1
0
1
0
1
36
1
36
14
180
13
144 180
Complete 32–bit MPU. 5–Gbyte linear
address space. Coprocessor interface.
Instruction cache. Dynamic bus sizing.
Excellent MPU for graphics control.
On–chip cache speeds drawing algo-
rithms. Bit field support for pixel manipu-
lation.
For FC, FE sample order—SPAK020FCXXE, SPAK020FEXXE
MC68EC020 100–Lead FG
100–Lead RP 16, 25
16, 25 32–Bit
Embedded MPU CFG16
CRP16, 25 0
166
1264
13 330 32–bit data bus MPU with 24–bit address
bus. Instruction cache. Dynamic bus
sizing. Coprocessor interface. Low cost
packaging.
For FG sample order—SPAKEC020FGXX
MC68306 132–Lead FC
144–Lead PV 16, 20
16, 20 Integrated EC000
Processor CFC16 0
036
60 144
600 68000 CPU, 68681 DUART, DRAM
control all in one chip.
For FC, PV sample order—SPAK306FCXX, SPAK306PVXX
XC68307
XC68307V
100–Lead FG
100–Lead PU
100–Lead FG
100–Lead PU
16
16
8, 16 @ 3.3 V
8, 16 @ 3.3 V
Integrated
Multiple Bus
Processor
CFG16 0
0
0
0
66
84
66
84
264
420
264
420
Static EC000 Core Processor, UART,
M–Bus Dual Timers, 8051 interface,
dynamic 68000 bus
For FG, PU sample order—SPAK307FGXX, SPAK307FGXXV,
SPAK307PUXX, SPAK307PUXXV
XC68322 160–Lead FT 16, 20 Bandit–Integrated
Printer Processor 0 24 240 Static EC000 Core Processor, RISC
Graphics Processor, Print Engine Video
Controller. DRAM Controller, 1284
Parallel Port.
For FT sample order—SPAK322FTXX
MOTOROLA
7-12 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
PRODUCT PORTFOLIO
HIGH PERFORMANCE
HIGH–PERFORMANCE 68K DATA COMMUNICATIONS SOLUTIONS
Device No. Package Speeds Rev Device Name Temp*
(–40 to +85°C) SOQ MPQ POQ BRICK Description
MC68185 44–Lead FN
68–Lead RC Twisted Pair
Modem (TPM) 1
11
116
24 Used with MC68824 TBC and RS485
transceiver to make a low cost twisted
pair LAN node. DC to 2 Mb/s.
MC68195 44–Lead FN LocalTalk Adaptor 1 1 16 Two channel device containing all the
digital logic necessary to gluelessly
interface the 68302 to LocalTalk net-
works.
MC68302
MC68302V
132–Lead RC
132–Lead FC
144–Lead PV
144–Lead PV
16, 20, 25
16, 20, 25
16, 20
16 @ 3.3V
C
C
C
C
Integrated
Multiprotocol
Processor (IMP)
CRC16, 20
CFC16, 20 1
0
0
0
1
36
60
60
14
144
300
300
180
300
300
68000 core with three high–performance
multiprotocol serial channels also
on–chip DMA, RAM, timers, I/O, chip
select, and wait state interrupt controller.
For FC, PV sample order—SPAK302FCXXC, SPAK302PVXXC
XC68356 357–Lead ZP 25 Signal Processing
Communications
Engine
0 44 220 Static 68302 with PCMCIA Slave
interface, full 56002 with expanded
memory.
For ZP sample order—SPAK356ZPXX
XC68360
XC68EN360
241–Lead RC
240–Lead FE
241–Lead RC
240–Lead FE
357–Lead ZP
25
25
25
25
25
B
B
B
B
B
QUICCª QUad
Integrated
Communications
Controller
1
0
1
0
0
1
21
1
21
44
10
105
10
105
220
CPU32 + core with System Integration
Module (SIM) and four high–perfor-
mance SCCs support numerous
protocols. Two SCCs supports Ethernet
on ”EN” version.
For FE sample order—SPAK360FEXX, SPAKEN360FEXX
For ZP sample order—SPAKEN360ZP25B
MC68605 84–Lead R,RC
84–Lead FN 10, 12, 16
10, 12, 16 X.25 Protocol
Controller (XPC) CRC10,12
CFN16 1
11
121
15 Implements 1984 CCITT X.25 LAPB.
Independently generates link level
commands and responses using two 22
byte FIFOs and on–chip DMA. Intelli-
gent HDLC.
MC68606 84–Lead RC
84–Lead FN 12, 16
12, 16 B
BCFN12, 16 1
11
121
15 Implements CCITT Q.920/Q.921 link
access procedure (LAPB) specified at
ISO level 2 for both signaling and data
applications in an ISDN.
MC68824 84–Lead R,RC
84–Lead FN 10, 12, 16
10, 12, 16 HToken Bus
Controller (TBC) CRC10, 12, 16 1
11
121
15 Implements IEEE 802.4 Token Bus
Media Access Control which GM MAP
specifies in layer 2. Manages access to
media, fault recovery, and frame
formatting. Runs at speeds down to 10
Kb/s.
MOTOROLA FDDI CHIP SET
XC68834 44–Lead PB Stream Cipher
Chip 0 96 480 Implements the stream cipher portion of
the FDDI TP–PMD standard including
id ih i i
For PB sample order—
SPAK834PB
g
transmit data stream ciphering, receive
stream deciphering, signal detect
filtering, and loopback.
XC68836 52–Lead FN BFDDI Clock Gener-
ator (FCG) 1 1 23 Implements the lower portion of the
Physical Layer (PHY) functions of the
FDDI standard.
MC68837 120–Lead KB
120–Lead FC B
EElasticity Buffer
and Link Manager
(ELM)
1
01
24 10
120 Implements the remaining portion of the
Physical Layer (PHY) functions of the
FDDI standard.
For FC sample order—SPAK837FCE
MC68838 120–Lead KB
120–Lead FC C
CMedia Access
Controller (MAC) 1
01
24 24
96 Implements theMedia Access Control
(MAC) protocol of the FDDI standard.
For FC sample order—SPAK838FCC
MC68839 185–Lead RC
184–Lead FE FDDI System
Interface (FSI) 1
01
12 10
48 Provides a high–performance, flexible
interface to any system bus. On–chip
DMA and 8K bytes of internal memory
are just a few of the many features of
this chip.
For FE sample order—SPAK839FE
XC68840 184–Lead FE 25, 33 BIntegrated Fiber
Distributed Data
Interface (IFDDI)
0 12 48 Connects the FDDI media into the
user’s system. The IFDDI implements a
system interface, MAC and ELM
functionality and a 64–entry CAM
on–chip.
For FE sample order—SPAK840FE
MOTOROLA
7-13
MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
PRODUCT PORTFOLIO
HIGH PERFORMANCE
HIGH–PERFORMANCE 68K DATA COMMUNICATIONS SOLUTIONS (cont.)
Device No. Package Speeds Rev Device Name Temp*
(–40 to +85°C) SOQ MPQ POQ BRICK Description
MC68847 208–Lead FC Quad ELM 0 24 96 Implements four MC68837 ELM devices
on a single chip, providing a low–cost
solution for FDDI concentrator applica-
tions.
For FC sample order—SPAK847FC
MC68848 144–Lead FE
144–Lead PV CAMEL Chip
CAMEL w/cipher-
ing
0
024
60 96
300 Implements a MAC, ELM and a
64–entry CAM on–chip.
ing
For FE, PV sample order—SPAK848FE, SPAK848PV
*Extended temperature devices with minimum order requirements.
Note: All package/speed combinations may not be valid – consult factory to verify.
HIGH–PERFORMANCE 68K SUPPORT DEVICES
Device No. Package Speeds Rev Device Name Description
MC68150 68–Lead FN 33, 40 Dynamic Bus Sizer
Processor Allows 32–Bit 040, LC040 and EC040 bus to communicate bidirectionally with 32, 16, or
8–bit peripherals and memories. Contact IC Logic Division, Mesa, AZ (602) 962–3005.
MC68184 40–Lead P,L Broadband I/F Controller
(BIC) Macrocell implementation of the digital portion of the IEEE 802.4 Broadband Physical
layer. 1, 5, 10 Mb/s serial speed. Contact ASIC Division, Chandler, AZ (602) 821–4597.
MC68194 52–Lead FJ Carrierband Modem
(CBM) A bipolar implementation of the IEEE 802.4 Carrierband Physical layer. 1, 5, 10 Mb/s
serial speed. Contact IC Logic Division, Mesa AZ (602) 962–3005.
CLOCK DRIVERS/CLOCK DISTRIBUTION CHIPS: A variety of timing solutions are available from the Logic IC Division. They include low skew nout buffers, PLL clock drivers, and
low–voltage PLL clock drivers that are designed for the Motorola microprocessor. Contact IC Logic Division, Mesa AZ (602) 962–3005.
XC68331 132–Lead FC 16 Microcontroller with
General Purpose Timer CPU32 Core Processor with QSM and GPT, 12 CS’s. Contact AMCU Marketing (512)
891–2758
XC68332 132–Lead FC 16 Microcontroller with Timer
Processor Unit CPU32 Core Processor with QSM and GPT, 12 CS’s. Contact AMCU Marketing (512)
891–2758
END–OF–LIFE DEVICES
Device Last Buy Date Last Ship Date Replacement Part
MC68000 12/1/95 5/28/96 MC68HC000 (pin compatible, check electrical specifications)
MC68008 12/1/95 5/28/96 MC68EC000 (not pin compatible)
MC68010 12/1/95 5/28/96 No known alternate source
MC68230 12/1/95 5/28/96 SGS–Thomson is an alternate source.
MC68440 12/1/95 5/28/96 SGS–Thomson is an alternate source.
MC68450 12/1/95 5/28/96 Hitachi is an alternate source.
MC68681 12/1/95 5/28/96 We are currently developing a CMOS version of the 68681/2681.
MC2681 12/1/95 5/28/96 The new versions will be available 4Q95.
MC68901 12/1/95 5/28/96 We are currently developing a CMOS version of the MC68901. The new version will be available
4Q95.
MC68881 1/24/95 7/23/95 MC68882 (pin compatible, minor S/W change required.)
MC68302FE 6/1/95 11/28/95 Only the FE package will be discontinued.
MC68340RP 11/10/95 5/8/96 Only the RP package will be discontinued.
XC68330FC 11/14/95 5/12/96 Only the FC package will be discontinued.
PACKAGING:
EM=QFP (32 x 32 mm) FN=Plastic Quad Pack (PLCC) KB=Ceramic PGA w/Ceramic Lid PV=TQFP (20 x 20 mm)
FC=Plastic Quad (Gull Wing) FT=Plastic Flat Pack (28 x 28 mm) L=Ceramic DIP R=Pin Grid Array, Solder Lead Finish
FE=Ceramic Quad (Gull Wing) FU=Plastic Quad Flat Pack LC=Ceramic DIP, Gold Lead Finish RC=Pin Grid Array , Gold Lead Finish
FG=Plastic Quad Flat Pack (PQFP) (14 x 14 mm) P=Plastic DIP RP=Plastic Pin Grid Array
MOTOROLA
7-14 MICROPROCESSOR AND MEMORY TECHNOLOGIES GROUP
RELIABILITY AND QUALITY REPORT
PRODUCT PORTFOLIO
RISC MICROPROCESSORS
88K PRODUCT
Device No. Package Speeds Rev Device Name Temp*
(–40 to +85°C) Description
MC88100 180–Lead RC 20, 25, 33 32–Bit RISC
Microprocessor RISC MPU with IEEE–754 floating point support. Four
independent execution units.
MC88110 299–Lead RC 40, 50 Second Generation
RISC Microprocessor RISC MPU with IEEE–754 floating point support. Superscalar
issue and speculative execution. 8K instruction and 8K data
caches on chip.
MC88200 180–Lead RC 20, 25, 33 16K Byte Cache/Memory
Management Unit For MC88100. Implements 16K byte cache and memory
management functions. Supports cache coherency.
MC88410 279–Lead RC 50 Secondary Cache
Controlled For MC88110. Implements second level cache controller with
cache coherency.
PowerPC PRODUCT
Device No. Package
(w/# of Pins) Speeds Bus
Divider Rev General Description SOQ MPQ POQ
105
PPC105A
XPC105A 304 RX
304 RX 66
66 C
CD = 2.4
D = 2.4 PCI Bridge
PCI Bridge 1
11
11
1
106
PPC106A 304 RX 66 CA = 1.0 PCI Bridge 1 1 1
601
MPC601 304 CQ 50, 66, 80, 100,
120 A 32–bit processor. Three instructions per clock.
Unified 32–Kbyte cache, 3.6 V, 64–bit data bus 0 72 72
602
PPC602A
XPC602A 144 FC
144 LC 66
66 A
AA = 1.1, B = 2.0
B = 2.0 32–bit processor. One instruction per clock.
4 Kbyte Icache, 4 Kbyte Dcache, 3.3 V, 64 bit
data bus.
1
01
24 1
24
603
XPC603A
XPC603A 240 FE
256 RX 66, 80
66, 80 A,C
A, C B = 3.2
B = 3.2
32 bit processor. Three instructions per clock.
8 Kbyte Icache, 8 Kbyte Dcache, 3.3 V, 32/64 bit
data bus. 0
124
124
1
603e
XPC603E
XPC603E 240 FE
256 RX 80, 90, 100
80, 90, 100 B, C, D
B, C, D D – 1.4, E = 2.2
D – 1.4, E = 2.2
F = 3.0
32 bit processor. Three instrucitons per clock.
16 Kbyte Icache, 16 Kbyte Dcache, 32/64 bit data
bus. 1
124
124
1
604
XPC604A
XPC604A 304 FX
256 RX 90, 100, 120
90, 100, 120 B, C
B, C B = 3.3, D = 3.5
B = 3.3, D = 3.5
32 bit processor. Four instructions per clock.
16 Kbyte Icache, 16 Kbyte Dcache, 3.3 V, 64 bit
data bus. 1
11
12 1
12
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Af firmative Action Employer.
Mfax is a trademark of Motorola, Inc.
NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES
POSTAGE WILL BE PAID BY ADDRESSEE
ATTN MDL4 JACKIE SCHULTZE
MOTOROLA SEMICONDUCTOR
PRODUCTS SECTOR
PO BOX 20912
PHOENIX AZ 85036-9938
BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 2565 PHOENIX, AZ
The purpose of this RELIABILITY AND QUALITY REPORT is to better serve you by
informing you of Motorola’s culture, methodology, and results to ensure reliability and
quality of our semiconductor products. Please help us to continue to improve the quality
and usefulness of this report by filling out the attached form.
1) Do you find this handbook of value to you? yes no
2) Please rate this report: Excellent Good Unsatisfactory
Format
Information included
Usability
3) What would you like to see included in future reports?
4) Comments:
Name:
Title:
Company:
Position:
CUSTOMER RESPONSE FORM
NOTES
NOTES
NOTES
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center ,
P.O. Box 5405; Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315
Mfax: RMF AX0@email.sps.mot.com – TOUCHT ONE 602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
INTERNET: http://Design–NET.com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
BR1100/D