www.irf.com 1
10/6/05
IRF6621
DirectFET Power MOSFET
Description
The IRF6621 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the
lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows
dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6621 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching
losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors
operating at higher frequencies. The IRF6621 has been optimized for parameters that are critical in synchronous buck operating from 12 volt
bus converters including Rds(on) and gate charge to minimize losses in the control FET socket.
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
Fig 1. Typical On-Resistance Vs. Gate Voltage
Typical values (unless otherwise specified)
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage
l RoHs Compliant Containing No Lead and Bromide
l Low Profile (<0.7 mm)
l Dual Sided Cooling Compatible
l Ultra Low Package Inductance
l Optimized for High Frequency Switching
lIdeal for CPU Core DC-DC Converters
l Optimized for Control FET application
l Low Conduction and Switching Losses
l Compatible with existing Surface Mount Techniques
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET Website.
Surface mounted on 1 in. square Cu board, steady state.
TC measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
Starting TJ = 25°C, L = 0.29mH, RG = 25, IAS = 9.6A.
Notes:
DirectFET ISOMETRIC
SQ
2.0 4.0 6.0 8.0 10.0
VGS, Gate-to-Source Voltage (V)
5
10
15
20
25
Typical RDS(on) (
m)
TJ = 25°C
TJ = 125°C
ID = 12A
0 4 8 12 16 20 24 28
QG Total Gate Charge (nC)
0
2
4
6
8
10
12
VGS, Gate-to-Source Voltage (V)
VDS= 24V
VDS= 15V
ID= 9.6A
VDSS VGS RDS(on) RDS(on)
30V max ±20V max 7.0m@ 10V 9.3m@ 4.5V
SQ SX ST MQ MX MT MP
Absolute Maximum Ratin
g
s
Parameter Units
VDS Drain-to-Source Voltage V
VGS Gate-to-Source Voltage
ID @ TA = 25°C Continuous Drain Current, VGS @ 10V
e
ID @ TA = 70°C Continuous Drain Current, VGS @ 10V
e
A
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V
f
IDM Pulsed Drain Current
g
EAS Single Pulse Avalanche Energy
h
mJ
IAR Avalanche Current
g
A
Max.
9.6
55
96
±20
30
12
13
9.6
Qg tot Qgd Qgs2 Qrr Qoss Vgs(th)
11.7nC 4.2nC 1.0nC 10nC 6.9nC 1.8V
PD - 97005A
IRF6621
2www.irf.com
Pulse width 400µs; duty cycle 2%.
Repetitive rating; pulse width limited by max. junction temperature.
Notes:
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
BVDSS Drain-to-Source Breakdown Voltage 30 ––– ––– V
∆ΒVDSS/TJ Breakdown Voltage Temp. Coefficient ––– 24 ––– mV/°C
RDS(on) Static Drain-to-Source On-Resistance ––– 7.0 9.1 m
––– 9.3 12.1
VGS(th) Gate Threshold Voltage 1.35 1.8 2.25 V
VGS(th)/TJGate Threshold Voltage Coefficient ––– -5.1 ––– mV/°C
IDSS Drain-to-Source Leakage Current ––– ––– 1.0 µA
––– ––– 150
IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA
Gate-to-Source Reverse Leakage ––– ––– -100
gfs Forward Transconductance 31 ––– ––– S
QgTotal Gate Charge ––– 11.7 17.5
Qgs1 Pre-Vth Gate-to-Source Charge ––– 3.3 –––
Qgs2 Post-Vth Gate-to-Source Charge ––– 1.0 ––– nC
Qgd Gate-to-Drain Charge ––– 4.2 –––
Qgodr Gate Charge Overdrive ––– 3.2 ––– See Fig. 15
Qsw Switch Charge (Qgs2 + Qgd)––– 5.2 –––
Qoss Output Charge ––– 6.9 ––– nC
RGGate Resistance ––– 2.0 –––
td(on) Turn-On Delay Time ––– 12 –––
trRise Time ––– 14 –––
td(off) Turn-Off Delay Time ––– 16 ––– ns
tfFall Time ––– 4.1 –––
Ciss Input Capacitance ––– 1460 –––
Coss Output Capacitance ––– 310 ––– pF
Crss Reverse Transfer Capacitance ––– 170 –––
Diode Characteristics
Parameter Min. Typ. Max. Units
ISContinuous Source Current ––– ––– 53
(Body Diode) A
ISM Pulsed Source Current ––– ––– 96
(Body Diode)d
VSD Diode Forward Voltage ––– 0.8 1.0 V
trr Reverse Recovery Time ––– 9.8 15 ns
Qrr Reverse Recovery Charge ––– 10 15 nC di/dt = 420A/µs c
TJ = 25°C, IS = 9.6A, VGS = 0V c
showing the
integral reverse
p-n junction diode.
VGS = 4.5V, ID = 9.6A c
VDS = VGS, ID = 250µA
TJ = 25°C, IF = 9.6A
VGS = 4.5V
ID = 9.6A
VGS = 0V
VDS = 15V
ID = 9.6A
VDD = 15V, VGS = 4.5Vc
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 12A c
VGS = 20V
VGS = -20V
VDS = 24V, VGS = 0V
VDS = 15V
VDS = 24V, VGS = 0V, TJ = 125°C
MOSFET symbol
Clamped Inductive Load
VDS = 15V, ID = 9.6A
Conditions
ƒ = 1.0MHz
VDS = 15V, VGS = 0V
IRF6621
www.irf.com 3
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Surface mounted on 1 in. square Cu board, steady state.
See AN-994 for additional details.
Used double sided cooling , mounting pad.
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
Notes:
TC measured with thermocouple incontact with top (Drain) of part.
Rθ is measured at TJ of approximately 90°C.
Surface mounted on 1 in. square Cu (still
air).
Mounted to a PCB with
small clip heatsink (still air)
Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
1E-006 1E-005 0.0001 0.001 0.01 0.1 110 100
t1 , Rectangular Pulse Duration (sec)
0.01
0.1
1
10
100
Thermal Response ( Z
thJA )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
Ri (°C/W) τi (sec)
1.6195 0.000126
2.1406 0.001354
22.2887 0.375850
20.0457 7.410000
11.9144 99
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
Ci= τi/Ri
Ci= τi/Ri
τ
τC
τ4
τ4
R4
R4
τ5
τ5
R5
R5
A
Absolute Maximum Ratin
g
s
Parameter Units
PD @TA = 25°C Power Dissipation
c
W
PD @TA = 70°C Power Dissipation
c
PD @TC = 25°C Power Dissipation
f
TP Peak Soldering Temperature °C
TJ Operating Junction and
TSTG Storage Temperature Range
Thermal Resistance
Parameter Typ. Max. Units
RθJA Junction-to-Ambient
cg
––– 58
RθJA Junction-to-Ambient
dg
12.5 –––
RθJA Junction-to-Ambient
eg
20 ––– °C/W
RθJC Junction-to-Case
fg
––– 3.0
RθJ-PCB Junction-to-PCB Mounted 1.0 –––
Linear Derating Factor
c
W/°C
1.4
0.017
270
-40 to + 150
Max.
42
2.2
IRF6621
4www.irf.com
Fig 5. Typical Output Characteristics
Fig 4. Typical Output Characteristics
Fig 6. Typical Transfer Characteristics Fig 7. Normalized On-Resistance vs. Temperature
Fig 8. Typical Capacitance vs. Drain-to-Source Voltage Fig 9. Typical On-Resistance Vs.
Drain Current and Gate Voltage
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
BOTTOM 2.5V
60µs PULSE WIDTH
Tj = 25°C
2.5V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
BOTTOM 2.5V
60µs PULSE WIDTH
Tj = 150°C
2.5V
110 100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
C, Capacitance(pF)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
-60 -40 -20 020 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
0.5
1.0
1.5
Typical RDS(on) (Normalized)
ID = 12A
VGS = 10V
VGS = 4.5V
020 40 60 80 100
ID, Drain Current (A)
4
8
12
16
20
Typical RDS(on) (
m)
TJ = 25°C Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 10V
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
TJ = 150°C
TJ = 25°C
TJ = -40°C
VDS = 15V
60µs PULSE WIDTH
IRF6621
www.irf.com 5
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 10. Typical Source-Drain Diode Forward Voltage Fig11. Maximum Safe Operating Area
Fig 14. Maximum Avalanche Energy Vs. Drain Current
0.4 0.6 0.8 1.0 1.2 1.4
VSD, Source-to-Drain Voltage (V)
1
10
100
1000
ISD, Reverse Drain Current (A)
VGS = 0V
TJ = 150°C
TJ = 25°C
TJ = -40°C
25 50 75 100 125 150
Starting TJ, Junction Temperature (°C)
0
10
20
30
40
50
60
EAS, Single Pulse Avalanche Energy (mJ)
I D
TOP 3.0A
4.3A
BOTTOM 9.6A
0.1 1.0 10.0 100.0
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
TA = 25°C
Tj = 150°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100µsec
25 50 75 100 125 150
TC, Case Temperature (°C)
0
10
20
30
40
50
60
ID, Drain Current (A)
-75 -50 -25 025 50 75 100 125 150
TJ, Junction Temperature ( °C )
1.0
1.5
2.0
2.5
Typical VGS(th) Gate threshold Voltage (V)
ID = 250µA
IRF6621
6www.irf.com
D.U.T. VDS
ID
IG
3mA
VGS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
Fig 15a. Gate Charge Test Circuit Fig 15b. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2 Qgd Qgodr
Fig 16b. Unclamped Inductive Waveforms
tp
V
(BR)DSS
I
AS
Fig 16a. Unclamped Inductive Test Circuit
Fig 17b. Switching Time Waveforms
VGS
VDS
90%
10%
td(on) td(off)
trtf
Fig 17a. Switching Time Test Circuit
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
VDD
VDS
LD
D.U.T
+
-
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
IRF6621
www.irf.com 7
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
VGS=10V
VDD
ISD
Driver Gate Drive
D.U.T. ISD Waveform
D.U.T. VDS Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
Inductor Current
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
+
-
+
+
+
-
-
-
RGVDD
D.U.T
DirectFET Substrate and PCB Layout, SQ Outline
(Small Size Can, Q-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
DD
DD
GS
IRF6621
8www.irf.com
DirectFET Outline Dimension, SQ Outline
(Small Size Can, Q-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DirectFET Part Marking
CODE
A
B
C
D
E
F
G
H
J
K
L
M
N
P
IMPERIAL
MIN
4.75
3.70
2.75
0.35
0.48
0.78
0.88
0.78
N/A
0.93
2.00
0.59
0.03
0.08
MAX
4.85
3.95
2.85
0.45
0.52
0.82
0.92
0.82
N/A
0.97
2.10
0.70
0.08
0.17
MIN
0.187
0.146
0.108
0.014
0.019
0.031
0.035
0.031
N/A
0.037
0.079
0.023
0.001
0.003
METRIC
DIMENSIONS
MAX
0.191
0.156
0.112
0.018
0.020
0.032
0.036
0.032
N/A
0.038
0.083
0.028
0.003
0.007
IRF6621
www.irf.com 9
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.10/05
DirectFET Tape & Reel Dimension (Showing component orientation).
METRIC
MIN
330.0
20.2
12.8
1.5
100.0
N.C
12.4
11.9
CODE
A
B
C
D
E
F
G
H
MAX
N.C
N.C
0.520
N.C
N.C
0.724
0.567
0.606
MIN
12.992
0.795
0.504
0.059
3.937
N.C
0.488
0.469
MAX
N.C
N.C
13.2
N.C
N.C
18.4
14.4
15.4
IMPERIAL
STANDARD OPTION (QTY 4800)
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6621). For 1000 parts on 7" reel,
order IRF6621TR1
METRIC IMPERIAL
TR1 OPTION (QTY 1000)
MIN
177.77
19.06
13.5
1.5
58.72
N.C
11.9
11.9
MAX
N.C
N.C
12.8
N.C
N.C
13.50
12.01
12.01
MIN
6.9
0.75
0.53
0.059
2.31
N.C
0.47
0.47
MAX
N.C
N.C
0.50
N.C
N.C
0.53
N.C
N.C
REEL DIMENSIONS
Loaded Tape Feed Direction
MIN
7.90
3.90
11.90
5.45
4.00
5.00
1.50
1.50
NOTE: CONTROLLING
DIMENSIONS IN MM CODE
A
B
C
D
E
F
G
H
MAX
0.319
0.161
0.484
0.219
0.165
0.205
N.C
0.063
MIN
0.311
0.154
0.469
0.215
0.158
0.197
0.059
0.059
MAX
8.10
4.10
12.30
5.55
4.20
5.20
N.C
1.60
DIMENSIONS
METRIC IMPERIAL
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/