SIEMENS FEATURES * Identical Channel to Channel Footprint 1.D620 Crosses to TLP620-2 ILQ620 Crosses to TLP620-4 * Current Transfer Ratio (CTR) at i= +5 mA ILD/Q620: 50% Min. ILO/Q620GB: 100% Min. Saturated Current Transfer Ratio (CTFigay) at Ip= +1 mA ILD/Q620: 60% Typ. ILD/Q620GB: 30% Min. High Collector-Emitter Voltage, BVee9=70 V Dual and Quad Packages Feature: - Reduced Board Space ~ Lower Pin and Parts Count Better Channel to Channel CTR Match - Improved Common Mode Rejection Fiald-Effect Stable by TRIOS (TRansparent 10n Shield) Isolation Test Voltage from Double Molded Package * Underwriters Lab File #252744 VDE 0884 Available with Option 1 Maximum Ratings (Each Channel) Emitter Forward Current... Surge Current ......... Power Dissipation .... Derate from 25C Detector Collector-Emitter Breakdown Vollage ........, Collector Current oo. Collector Current (t <1 ms). Power Dissipation ....... Derate from 25C Package Isolation Test Voltage (t=1 6c.) ... Package Dissipation, LOG20/GB .......0..0.0. 400 mW Derate from 25C vo. . 5.33 myer Package Dissipation. I ILO620/GB. beeseeaee 500 mW Davate from 25C oe 6.67 mWi/C Creepage? : tee .?mmmin. Clearance oes 7mm min. Isolation Resistance VigsB00 V, Ti =28C tenance 210" Vig= 500 V, Ta= 100C vesesees 210 Storage Temperaivre ....... -5SC to +150C Operating Temperature -55C to + 100C Junction TAMperature eee eee 100C Soldering Temperature (2 mm from case@ bOttOM) oe - 260C DUAL CHANNEL ILD620/620GB QUAD CHANNEL ILQ620/620GB AC INPUT PHOTOTRANSISTOR Package Dimensions in Inches (mm) ILD620/620GB Pin One |.D- K=Cathode AIK CEN [] Collector 268 (6.81 i 355 aa aw C2 [7] Erniner 1 AK Ore Coulector 9901991 ax Pe] Emitter 379 (8.63) 045 (1,44) 150 8) 305 Typ. | [7030 (76) 130 3.30} (7.75) Typ f 1135 (3.43 et 115 39 1) ro" Tye! 022 (.56) | 3-9 018 { 46) a ( 78) ora 30) 100 (2.54) Typ. 008 (.20) K=Cathode 1LO820/620GB AIK Ct ~ ce Collector Pin One 1.0. @ EI PT] Emitter Tego es AK oe ~ Cfo AK Ga (73) Emitter 268 (6.81 255 Baa AIK Ge ~ KB Collector \ AIK @ (71) Emitter wNM ak FE] [7Q) Cottector 790 (20.07) A + se 779 (19-7 } wk Gl [g] Emitter 045 (1.14) 150 (3.81) 305 T; | [77.036 .76) 130 (3.30) yeas at 115 (2.92 " ob 1.02) eta 030 984 Saf LE (46 100 (2.54) Typ a a DESCRIPTION The ILD/Q620 and ILD/Q620GB are multi-channel input phototran- sistor optocouplers that use inverse parallel GaAs IRLED emitters and nigh gain NPN silicon phototransistors per channel. These de- vices are constructed using over/under leadframe optical coupling and double molded insulation resulting in a Withstand Test Voltage of 7500 VACpeaK- The LED parameters and the linear CTR characteristics combined with the TRIOS fieid-effect process make these devices well suited for AC voltage detection. The ILD/Q620GB with its low fp guaranteed CTRoesat minimizes power dissipation of the AC voltage detection network that Is placed in series with the LEDs, Eliminating the phototransistor base connection provides added electrical noise immunity from the transients found in many industrial control environments. 5-17 Optocouplers \Optoisolators) 12Characteristics Symbol Min. Typ. Max. Unit Condition Emitter Forward Voltage Ve 1 1.15 13 v p=t10 mA Forward Current Ir 25 20 pa Vp=t0.7 V Capacitance Co 25 pF V.=0 V, fe 1 MHz Thermal Resistance Junction to Lead Rieu 750 Ciw Datector Capacitance Cor 6.8 pF Voga5 V, f= + MHz Collector-Emitter Leakage Current lcEO 10 100 nA VopH2d V Collector-Emitter Leakage Current loea 2 50 pA Ta=88C, Voga24 V Thermal Resistance Junction to Lead Pry 500 CHW Package Tranafer Characterlatics Channel/Channel CTR Match CTRX/CTRY 1toi 3to1 lp=5 MA, Voe=5 V CTR Symmetry loE(AATION 056 2 log (lp=-5 MA) (=4+5 MA) Off-State Collector Current \CE(OFF) t 10 pA VeatO.7 V, Vop=24 ILD/Q620 Saturated Current Transfer Ratio CTReegat 60 % ie=t1 MA, Vope0.4 V Current Transfer Ratio TRee 50 80 600 % leat6 mA, Vop=5 V Callactor-Emittar Saturation Voltage Veesat 0.4 Vv (-=t8 mA, lop = 2.4 MA ILD/Q620GB Saturated Current Transfer Ratio CTR cena 30 % ip=t1 MA, Vop=0.4 V Current Transfer Ratio CTAce 100 200 600 % (-=+5 mA, Voe=5 V Collactor-Emitter Saturation Voltage Voegsat 0.4 v (-=+1 MA, Iog=0.2 MA Isolation and Insulation Common Mode Agjaction, Gutput High CMH 5000 Vi US Vom=50 Vp.p. Ay =1 kK, lp=OmA Common Mode Aaejaction, Output Low CML 5000 Vips Vom=50 Vpp, AL=1 kQ, Ip=tOmA Cammon Mode Coupling Capacitance Com 0.01 pF Package Capacitance ClO 0.8 pF i.g20 V, f=1 MHz insulation Resistance Rs 1012 Q Vi.g2500 V Channel to Channel Insulation 500 VAC Switching Times Figure +. Non-saturated switching timing Figure 2. Saturated switching timing IF=10 mA F=10 KHz, VemeS Vec=5 V DF=50% cc AL oe Vo ee Yo F=10 KHz, DF=50% RL =75 2 [-=10 mA Figure 3. Non-saturated switching timing Figure 4, Saturated switching timing lr + Ip qe Pe bey ~~ ; tp | t R Yo PLH Vo - -*| TPLH rts 50% _ VTH=1.5]V t t Pe et ipy, | btgLtp 5-180 ILO/Q620/GBTeat Test Char Symbol Typ. Unit Condition Characteriatic Symbol Typ. Unit Candition On Time Tops 3.0 HS (2410 mA On Time Tons 43 BS [=210 mA Rise Tine h 20 pS Voo=h V Rise Tima t 28 HS Vop=5 Off Time love 23 us R=750 Ol Time loz 25 Hs A= kf Fal! Time L 2.0 ps Fall Time t 1 HS Propagation H-L lag 11 BS 50% of V.. Propagation H-L Noa, 26 us Vysls Propagation L-H teen 2.5 ys Propagation L-H baw 72 Hs Figure 5. LED forward current versus forward voltage Figure 6, Collector-emitter leakage versue temperature 60 5 ie E 40 104 20 104 S 2 Foo & 10 1 10 : 20 i 0 10 gj 40 toa 3 10 7. u -60 10 15 10 35 60 O88 =%10 15 2 6 0 oo 4 60 8 100 VF -LEO Forward Voltage - V Figure 7. Maximum LED current versus amblent temperature 120 g 8 8 Td (MAX}= 100C a o 3 {F - Maximum LED Current - mA o ~60 -40 -20 0 20 40 60 8d 100 Ta - Ambient Temperature - C Figure 9. Collector current versus diode forward current =10 mA Vces5 V Ty225C 0 0 ; i: J 1 1 5 10 20 Forward Current, (mA) Ta- Ambient Temperature -C Figure & Maximum LED power dissipation 200 E on o pes \ a Prep - LED Power - mw 8 o 1 1 L 1 1 1 1 -B0 -40 -20 0 20 46 60 ao 100 Ta - Ambiant Temperature - C ILD/Q620/GB Optecouplers (Oproisolators)Figure 10. Normalization factor for non- eaturated and caturated CTA T,=S0C versus It 2.0 T Normalized to: Vice = SV, IF = SmA, Ta 25C 1.5 [ ~ CTRca(sat) Vee = 0.4V NCTAce NCTRea({sat} 05 a Ta= 50C 0 a 4 ps J 1 10 100 iF - LED Current. mA CTRNF - Normalized CTR Factor Figure 12. Normalization factor for non-saturated and saturated CTR T,#100C vereus If 20 T Normalized to: qT Veo = 5V, IF = S mA, Ta = 25C 1.5 P--~ CTRea(sat) Vea = 4 Oe T : o re : vlna aa ta L100 no Lo co A 1 10 100 {F - LED Current - mA CTRMF - Normalized CTR Factor Figure 14. Maximum detector power dissipation + 200 im : J | 60 406 20 oO 70 6400 60 8s Ta - Ambient Temperature - "C Figure 117, Normalization factor for non-saturated and saturated CTR T,#70C versua If 20 | Normalized to: 5 Vee = 6V, IF= 5 mA, Ta = 25C _ | gl & 48 f-~ ctrcefaat) Vee = 0.4 E NCTAce R 1.0 i O05 NCTAce(sat) i E Ta= 70C ao , . 1 a 1 10 100 iF - LED Current - mA Figure 13. Peak LED current versua peak duration, Tau 10000 1000 106 Mtipk) - Peak LED Current - mA i to Lpeesnal ul 1% 10% 104 103 wt to t- LEO Pulse Duration - Figure 15. Maximum collector current versus collector voltage 1000 A 1 10 100 Voce - Caltector-Emltter Voliage - 5-182 IL D/Q620/GB