Features
Floating channel designed for bootstrap operation
Fully operational to +600V
Tolerant to negative transient voltage
dV/dt immune
Gate drive supply range from 10 to 20V
Undervoltage lockout
CMOS Schmitt-triggered inputs with pull-down
Output in phase with input (IR2117) or out of
phase with input (IR2118)
Also available LEAD-FREE
Data Sheet No. PD60146 Rev O
SINGLE CHANNEL DRIVER
Product Summary
VOFFSET 600V max.
IO+/- 200 mA / 420 mA
VOUT 10 - 20V
ton/off (typ.) 125 & 105 ns
Packages
Typical Connection
8-Lead PDIP
IR2117/IR2118
8-Lead SOIC
IR2117S/IR2118S
IR2117
IR2118
















IR2117(S)/IR2118(S) & (PbF)
www.irf.com 1
(Refer to Lead Assignments for correct pin configuration).
This/These diagram(s) show electrical connections only.
Please refer to our Application Notes and DesignTips for
proper circuit board layout.
Description
The IR2117/IR2118(S) is a high voltage, high speed
power MOSFET and IGBT driver. Proprietary HVIC and
latch immune CMOS technologies enable ruggedized
monolithic construction. The logic input is compatible
with standard CMOS outputs. The output driver fea-
tures a high pulse current buffer stage designed for
minimum cross-conduction. The floating channel can
be used to drive an N-channel power MOSFET or IGBT
in the high or low side configuration which operates up
to 600 volts.
IR2117(S)/IR2118(S) & (PbF)
2www.irf.com
Symbol Definition Min. Max. Units
VBHigh side floating supply voltage -0.3 625
VSHigh side floating supply offset voltage VB - 25 VB + 0.3
VHO High side floating output voltage VS - 0.3 VB + 0.3
VCC Logic supply voltage -0.3 25
VIN Logic input voltage -0.3 VCC + 0.3
dVs/dt Allowable offset supply voltage transient (figure 2) 50 V/ns
PDPackage power dissipation @ TA +25°C (8 lead PDIP) 1.0
(8 lead SOIC) 0.625
RthJA Thermal resistance, junction to ambient (8 lead PDIP) 125
(8 lead SOIC) 200
TJJunction temperature 150
TSStorage temperature -55 150
TLLead temperature (soldering, 10 seconds) 300
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-
eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions. Additional information is shown in Figures 5 through 8.
Symbol Definition Min. Max. Units
VBHigh side floating supply absolute voltage VS + 10 VS + 20
VSHigh side floating supply offset voltage Note 1 600
VHO High side floating output voltage VSVB
VCC Logic supply voltage 10 20
VIN Logic input voltage 0 VCC
TAAmbient temperature -40 125 °C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
Recommended Operating Conditions
The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the
recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential.
W
°C/W
V
°C
V
IR2117(S)/IR2118(S) & (PbF)
www.irf.com 3
Symbol Definition Min. Typ. Max. Units Test Conditions
ton Turn-on propagation delay 125 200 VS = 0V
toff Turn-off propagation delay 105 180 VS = 600V
trTurn-on rise time 80 130
tfTurn-off fall time 40 65
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, CL = 1000 pF and TA = 25°C unless otherwise specified. The dynamic electrical characteristics
are measured using the test circuit shown in Figure 3.
ns
Symbol Definition Min. Typ. Max. Units Test Conditions
VIH input voltage - logic “1” (IR2117) logic “0” (IR2118) 9.5
VIL Input voltage - logic “0” (IR2117) logic “1” (IR2118) 6.0
VOH High level output voltage, VBIAS - VO 100 IO = 0A
VOL Low level output voltage, VO 100 IO = 0A
ILK Offset supply leakage current 50 VB = VS = 600V
IQBS Quiescent VBS supply current 50 240 VIN = 0V or VCC
IQCC Quiescent VCC Supply Current 70 340 VIN = 0V or VCC
IIN+ Logic “1” input bias current (IR2117) VIN = VCC
(IR2118) VIN = 0V
IIN- Logic “0” input bias current (IR2117) VIN = 0V
(IR2118) VIN = VCC
VBSUV+ VBS supply undervoltage positive going threshold 7.6 8.6 9.6
VBSUV- VBS supply undervoltage negative going threshold 7.2 8.2 9.2
VCCUV+ VCC supply undervoltage positive going threshold 7.6 8.6 9.6
VCCUV- VCC supply undervoltage negative going threshold 7.2 8.2 9.2
IO+ Output high short circuit pulsed current 200 250 VO = 0V
VIN = Logic “1”
PW10 µs
IO- Output low short circuit pulsed current 420 500 VO = 15V
VIN = Logic “0”
PW10 µs
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to
COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.
mA
V
V
mV
— 20 40 µA
— — 1.0
IR2117(S)/IR2118(S) & (PbF)
4www.irf.com
Functional Block Diagram (IR2117)








 





Functional Block Diagram (IR2118)















IR2117(S)/IR2118(S) & (PbF)
www.irf.com 5
Lead Definitions
Symbol Description
VCC Logic and gate drive supply
IN Logic input for gate driver output (HO), in phase with HO (IR2117)
IN Logic input for gate driver output (HO), out of phase with HO (IR2118)
COM Logic ground
VBHigh side floating supply
HO High side gate drive output
VSHigh side floating supply return
Lead Assignments
8 Lead PDIP 8 Lead SOIC
IR2118 IR2118S
1
2
3
4
8
7
6
5
VCC
IN
COM
VB
HO
VS
1
2
3
4
8
7
6
5
VCC
IN
COM
VB
HO
VS
8 Lead PDIP 8 Lead SOIC
IR2117 IR2117S
1
2
3
4
8
7
6
5
VCC
IN
COM
VB
HO
VS
1
2
3
4
8
7
6
5
VCC
IN
COM
VB
HO
VS
IR2117(S)/IR2118(S) & (PbF)
6www.irf.com
Figure 1. Input/Output Timing Diagram
Figure 3. Switching Time Test Circuit Figure 4. Switching Time Waveform Definition
IR2117/IR2118
Figure 2. Floating Supply Voltage Transient Test Circuit
HO
90% 90%
10% 10%
50%50%
trtf
ton toff
IN
50% 50%
IN
(IR2118)
(IR2117)
IN
(IR2117)
HO
IN
(IR2118)
IR2117/IR2118
<50 V/ns
IR2117(S)/IR2118(S) & (PbF)
www.irf.com 7
0
100
200
300
400
500
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Turn-on Delay Time (ns
)
Figure 4B. Turn-On Time
vs. Supply Voltage
Typ.
M ax.
0
100
200
300
400
500
-50-25 0 25 50 75100125
Temperature (oC)
Turn-on Delay Time (ns
)
Figure 4A. Turn-On Time
vs. Tem
p
erature
Typ.
M ax.
0
100
200
300
400
500
-50-25 0 255075100125
Temperature (oC)
Turn-Off Time (ns)
Figure 5A. Turn-Off Time
vs. Temperature
Typ.
M ax.
0
100
200
300
400
500
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Turn-Off Time (ns)
Figure 5B. Turn-Off Time
vs. Supply Voltage
Typ.
M ax.
IR2117(S)/IR2118(S) & (PbF)
8www.irf.com
0
100
200
300
400
500
-50-250 255075100125
Temperature (oC)
Turn-On Rise Time (ns
)
Fiure 6A. Turn-On Rise Time
vs.Tem
p
erature
Typ.
M ax.
0
100
200
300
400
500
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Turn-On Rise Time (ns
)
Figure 6B. Turn-On Rise Time
vs. Su
pp
l
y
Volta
g
e
Typ.
M ax.
0
50
100
150
200
250
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Turn-Off Fall Time (ns
)
Figure 7B. Turn-Off Fall Time
vs. Supply Voltage
Typ.
M ax.
0
50
100
150
200
250
-50 -25 0 25 50 75 100 125
Temperature (oC)
Turn-Off Fall Time (ns
)
Typ.
M ax.
Figure 7A. Turn-Off Fall Time
vs. Tem
p
erature
IR2117(S)/IR2118(S) & (PbF)
www.irf.com 9
8
9
10
11
12
13
-50 -25 0 25 50 75 100 125
Temperature (oC)
Input Voltage (V)
Figure 8A. Logic "1" (IR2118 "0") Input Voltage
vs. Temperature
Min.
4
5
6
7
8
9
-50-250 255075100125
Temper atre (oC)
Input Voltage (V)
Figure 9A. Logic "0" (IR2118 "1") Input Voltage
vs. Temperature
M ax.
Min.
3
6
9
12
15
18
10 12 14 16 18 20
Vcc Supply Voltage (V)
Input Voltage (V)
Figure 8B. Logic "1" (IR2118 "0") Input Voltage
vs. Supply Voltage
Figure 8B. Logic "1" (IR2118 "0") Input Voltage
vs. Supply Voltage
M ax.
0
3
6
9
12
15
10 12 14 16 18 20
Vcc Supply Voltage (V)
Input Voltage (V)
Figure 9B. Logic "0" (IR2118 "1") Input Voltage
vs. Supply Voltage
Figure 9B. Logic "0" (IR2118 "1") Input Voltage
vs. Supply Voltage
IR2117(S)/IR2118(S) & (PbF)
10 www.irf.com
0.0
0.1
0.2
0.3
0.4
0.5
-50 -25 0 25 50 75 100 125
Temperature (oC)
High Level Output Voltage (V
)
Figure 10A. High Level Output
vs. Temperature
M ax.
0
0.1
0.2
0.3
0.4
0.5
10 12 14 16 18 20
Vcc Supply Voltage (V)
High Level Output Voltage (V)
Figure 10B. High Level Output
vs. Supply Voltage
M ax.
0
0.1
0.2
0.3
0.4
0.5
-50-250 255075100125
Temperature (oC)
Low Level Output Voltage (V)
Figure 11A. Low Level Output
vs.Temperature
M ax.
0
0.1
0.2
0.3
0.4
0.5
10 12 14 16 18 20
Vcc Supply Voltage (V)
Low Level Output Voltage (V)
Figure 11B. Low Level Output
vs. Supply Voltage
MAX.
IR2117(S)/IR2118(S) & (PbF)
www.irf.com 11
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Temperature (oC)
Offset Supply Leakage Current ( A)
M ax.
Figure 12A. Offset Supply Leakage Current
vs. Tem per ature
0
100
200
300
400
500
0 100 200 300 400 500 600
VB Boost Voltage (V)
Offset Supply Leakage Current ( A)
M ax.
Figure 12B. Offset Supply Leakage
Current vs. VB Boost Voltage
0
200
400
600
800
1000
-50 -25 0 25 50 75 100 125
Temperature (oC)
V Supply Current ( )
Figure 13A. VBS Supply Current
vs. Te m per ature
Typ.
M ax.
0
200
400
600
800
1000
10 12 14 16 18 20
VBS Supply Voltage (V)
V Supply Current ( )
Figure 13B. VBS Supply Current
vs. Supply Voltage
Typ.
M ax.
IR2117(S)/IR2118(S) & (PbF)
12 www.irf.com
0
200
400
600
800
1000
-50-25 0 25 50 75100125
Temperature (oC)
Vcc Supply Current ( A)
Figure 14A. Vcc Supply Current
vs. Temperature
M ax.
Typ.
0
200
400
600
800
1000
10 12 14 16 18 20
Vcc Supply Voltage (V)
Vcc Supply Current ( )
Figure 14B. Vcc Supply Current
vs. Supply Voltage
M ax.
Typ.
0
20
40
60
80
100
120
-50 -25 0 25 50 75 100 125
Logic "1" Input Current ( )
Figure 15A. Logic "1" (2118 "0") Input Current
vs. Temperature
Temperature (oC)
M ax.
Typ.
0
20
40
60
80
100
120
10 12 14 16 18 20
Vcc Supply Voltage (V)
Logic "1" Input Current ( )
Figure 15B. Logic "1" (2118 "0") Input Current
vs. Supply Voltage
M ax.
Typ.
IR2117(S)/IR2118(S) & (PbF)
www.irf.com 13
0
1
2
3
4
5
-50 -25 0 25 50 75 100 125
Temperature (oC)
Logic "0" Input Current ( )
Figure 16A. Logic "0" (2118"1") Input Current
vs. Tem per ature
M ax.
0
1
2
3
4
5
10 12 14 16 18 20
Vcc Supply Voltage (V)
Logic "0" Input Current ( )
Figure 16B. Logic "0" (2118"1") Input Current
vs. Supply Voltage
M ax.
Figure 17A. Vcc Undervoltage Threshold (+)
vs. Tem perature
6
8
10
12
14
16
-50 -25 0 25 50 75 100 125
Temperature (oC)
Vcc Supply Current ( )
M ax.
Typ.
Min.
6
8
10
12
14
16
-50 -25 0 25 50 75 100 125
Temperature (oC)
Vcc Supply Current ( )
Typ.
Figure 18A. Vcc Undervoltage Threshold (-)
vs. Te m per ature
Max
Min.
IR2117(S)/IR2118(S) & (PbF)
14 www.irf.com
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Temperature (oC)
Output Source Current (mA)
Figure 21A. Output Source Current
vs. Te m per ature
Typ.
Min.
6
8
10
12
14
16
-50 -25 0 25 50 75 100 125
Temperature (oC)
VBS Supply Current ( )
Figure 19A. VBS Undervoltage Threshold (+)
vs. Temperature
Max.
Typ.
Min.
6
8
10
12
14
16
-50 -25 0 25 50 75 100 125
Temperature (oC)
V Supply Current ( )
Figure 20A. VBS Undervoltage Threshold (-)
vs. Te m per ature
M ax.
Typ
.
Min.
0
100
200
300
400
500
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Output Source Current (mA)
Min.
Figure 21B. Output Source Current
vs. Supply Voltage
Typ.
IR2117(S)/IR2118(S) & (PbF)
www.irf.com 15
0
200
400
600
800
1000
-50-25 0 25 50 75100125
Temperature (oC)
Output Sink Current ( )
Figure 22A. Output Sink Current
vs.Temperature
Typ.
Min.
-12
-10
-8
-6
-4
-2
0
10 12 14 16 18 20
VBS Floting Supply Voltage (V)
vs Offset Supply Voltage (V)
Figure 23B. Maximum VS Negative Offset
vs. Supply Voltage
Typ.
0
200
400
600
800
1000
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Output Sink Current ( )
Figure 22B. Output Sink Current
vs. Supply Voltage
Min.
Typ.
IR2117(S)/IR2118(S) & (PbF)
16 www.irf.com
Figure 26. IR2117/IR2118 TJ vs. Frequency (IRFBC40)
RGATE = 15
, VCC = 15V
Figure 27. IR2117/IR2118 TJ vs. Frequency (IRFPE50)
RGATE = 10
, VCC = 15V
Figure 24. IR2117/IR2118 TJ vs. Frequency (IRFBC20)
RGATE = 33
, VCC = 15V
Figure 25. IR2117/IR2118 TJ vs. Frequency (IRFBC30)
RGATE = 22
, VCC = 15V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
Frequency (Hz)
Junction Temperature (°C)
320V
140V
10V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
Frequency (Hz)
Junction Temperature (°C)
320V 140V
10V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
Frequency (Hz)
Junction Temperature (°C)
320V 140V 10V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
Frequency (Hz)
Junction Temperature (°C)
320V 140V
10V
IR2117(S)/IR2118(S) & (PbF)
www.irf.com 17
01-6014
01-3003 01 (MS-001AB)
8-Lead PDIP
Case outlines
01-6027
8-Lead SOIC
87
5
65
D B
E
A
e
6X
H
0.25 [.010] A
6
4312
4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
NOTES:
1. DIMENSIONING & TOLERANC ING PER ASME Y14.5M-1994.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
7
K x 45°
8X L 8X c
y
FOOTPRINT
8X 0.72 [.028]
6.46 [.255]
3X 1.27 [.050] 8X 1.78 [.070]
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD P ROTRU SIONS NOT TO EXC EED 0.25 [.010].
7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO
A SUBSTRATE.
MOLD P ROTRU SIONS NOT TO EXC EED 0.15 [.006].
0.25 [.010] C A B
e1
A
A1
8X b
C
0.10 [.004]
e1
D
E
y
b
A
A1
H
K
L
.189
.1497
.013
.050 BASIC
.0532
.0040
.2284
.0099
.016
.1968
.1574
.020
.0688
.0098
.2440
.0196
.050
4.80
3.80
0.33
1.35
0.10
5.80
0.25
0.40
1.27 BASIC
5.00
4.00
0.51
1.75
0.25
6.20
0.50
1.27
MIN MAX
MILLIMETERSIN C H E S
MIN MAX
DIM
e
c .0075 .0098 0.19 0.25
.025 B AS IC 0.635 B AS IC
IR2117(S)/IR2118(S) & (PbF)
18 www.irf.com
LEADFREE PART MARKING INFORMATION
ORDER INFORMATION
Basic Part (Non-Lead Free)
8-Lead PDIP IR2117 order IR2117
8-Lead PDIP IR2118 order IR2118
8-Lead SOIC IR2117S order IR2117S
8-Lead SOIC IR2118S order IR2118S
Leadfree Part
8-Lead PDIP IR2117 order IR2117PbF
8-Lead PDIP IR2118 order IR2118PbF
8-Lead SOIC IR2117S order IR2117SPbF
8-Lead SOIC IR2118S order IR2118SPbF
Lead Free Released
Non-Lead Free
Released
Part number
Date code
IRxxxxxx
YWW?
?XXXX
Pin 1
Identifier
IR logo
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
P
?MARKING CODE
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
This product has been qualified per industrial level
Data and specifications subject to change without notice. 5/14/2007