HIGH-SPEED 3.3V 16K x 36 SYNCHRONOUS PIPELINED DUAL-PORT STATIC RAM WITH 3.3V OR 2.5V INTERFACE Features: True Dual-Port memory cells which allow simultaneous access of the same memory location High-speed clock to data access - Commercial: 4.2/5/6ns (max.) - Industrial: 5ns (max) Pipelined output mode Counter enable and reset features Dual chip enables allow for depth expansion without additional logic Full synchronous operation on both ports - 7.5ns cycle time, 133MHz operation (9.6 Gbps bandwidth) - Fast 4.2ns clock to data out - 1.8ns setup to clock and 0.7ns hold on all control, data, and address inputs @ 133MHz IDT70V3569S - Data input, address, byte enable and control registers - Self-timed write allows fast cycle time Separate byte controls for multiplexed bus and bus matching compatibility LVTTL- compatible, single 3.3V (150mV) power supply for core LVTTL- compatible, selectable 3.3V (150mV)/2.5V (125mV) power supply for I/Os and control signals on each port Industrial temperature range (-40C to +85C) is available for selected speeds Available in a 208-pin Plastic Quad Flatpack (PQFP), 208-ball fine-pitch Ball Grid Array, and 256-pin Ball Grid Array Green parts availble, see ordering instructions Functional Block Diagram BE3L BE3R BE2L BE2R BE1L BE1R BE0L BE0R R/WL R/WR B W 0 L CE0L CE1L B W 1 L B W 2 L B B WW 3 3 L R BB WW 2 1 RR B W 0 R CE0R CE1R OE L OER Dout0-8_L Dout9-17_L Dout18-26_L Dout27-35_L Dout0-8_R Dout9-17_R Dout18-26_R Dout27-35_R 16K x 36 MEMORY ARRAY I/O0L- I/O35L Din_L I/O0R - I/O35R Din_R CLKL CLKR A13L A 0L CNTRSTL ADS L CNTENL Counter/ Address Reg. , A 13R ADDR_L ADDR_R Counter/ Address Reg. A 0R CNTRSTR ADS R CNTENR 4831 tbl 01 OCTOBER 2008 1 (c)2008 Integrated Device Technology, Inc. DSC 4831/12 IDT70V3569S High-Speed 16K x 36 Dual-Port Synchronous Pipelined Static RAM Description: The IDT70V3569 is a high-speed 16K x 36 bit synchronous Dual-Port RAM. The memory array utilizes Dual-Port memory cells to allow simultaneous access of any address from both ports. Registers on control, data, and address inputs provide minimal setup and hold times. The timing latitude provided by this approach allows systems to be designed with very short cycle times. With an input data register, the IDT70V3569 has been optimized for applications having unidirectional or bidirectional data flow Industrial and Commercial Temperature Ranges in bursts. An automatic power down feature, controlled by CE0 and CE1, permits the on-chip circuitry of each port to enter a very low standby power mode. The 70V3569 can support an operating voltage of either 3.3V or 2.5V on one or both ports, controllable by the OPT pins. The power supply for the core of the device (VDD) remains at 3.3V. Pin Configuration(1,2,3,4) 12/12/01 A1 A2 IO19L IO18L B1 I/O20R C1 B2 VSS C2 A3 VSS B3 I/O18R C3 A4 NC B4 VSS C4 VDDQL I/O19R VDDQR VDD D1 I/O22L E1 D2 VSS E2 D3 D4 I/O21L I/O20L E3 A5 NC B5 NC C5 NC D5 NC A6 NC B6 A13L C6 NC D6 A11L A7 A12L B7 A9L C7 A10L D7 A7L A8 A8L B8 BE2L C8 BE3L D8 BE0L A9 BE1L B9 CE0L C9 CE1L D9 VDD A10 VDD B10 VSS C10 VSS D10 A11 A12 A13 CLKL CNTENL A4L B11 ADSL C11 R/WL D11 OEL CNTRSTL B12 A5L C12 A6L D12 A3L B13 A1L C13 A2L D13 VDD E4 F2 F3 VDDQL I/O23R I/O24L G1 G2 I/O26L VSS H1 VDD J1 VDDQL K1 I/O28R L1 H2 G3 VDD K2 VSS L2 J3 VSS K3 I/O27R L3 M2 M3 VDDQL I/O29L I/O30R N1 I/O31L P1 N2 VSS P2 N3 H4 R1 VSS T1 R2 R3 I/O33L I/O34R VDD J14 VSS VSS 208-Pin fpBGA Top View(6) K4 VSS K14 L14 T2 VSS U2 I/O35L M14 VSS VSS N4 T3 T4 I/O33R I/O34L VDDQL VSS U1 I/O6R M4 NC U3 VDD U4 NC B15 B17 B16 VDDQR I/O16L I/O15R C15 C16 C17 I/O16R I/O15L D15 VSS D17 D16 E15 F15 E17 E16 VSS I/O13L F17 F16 I/O12R I/O11L VDDQR G15 G16 G17 H15 IO9R J15 VDD K15 H16 H17 VSS I/O10R J17 J16 VSS VDDQR K16 K17 I/O7R VDDQL I/O8R L4 R4 VSS I/O17R VDDQL I/O14L I/O14R H14 70V3569BF BF-208(5) J4 P4 D14 A17 A16 OPTL I/O17L I/O9L VDDQL I/O10L I/O11R N14 L15 I/O7L M15 I/O6L N15 L16 VSS L17 VSS M16 I/O8L M17 I/O5R VDDQR N16 N17 I/O3R VDDQL I/O4R I/O31R I/O30L P3 VDD G14 G4 I/O32R I/O32L VDDQR I/O35R C14 VSS VSS I/O29R I/O28L VDDQR I/O27L M1 VSS F14 F4 I/O26R VDDQR I/O25R J2 B14 A15 I/O12L I/O13R I/O25L I/O24R H3 A0L E14 I/O23L I/O22R VDDQR I/O21R F1 A14 P5 NC R5 NC T5 NC U5 NC P6 NC R6 A13R T6 NC U6 A11R P7 A12R R7 A9R T7 A10R U7 A7R P8 A8R R8 P9 BE1R R9 BE2R CE0R T8 T9 BE3R CE1R U8 BE0R U9 VDD P10 VDD R10 VSS T10 VSS U10 OER P11 P12 P13 CLKR CNTENR A4R R11 ADSR T11 R/WR R12 A5R T12 A6R U12 A3R R13 A1R T13 A2R U13 A0R P14 I/O2L R14 VSS T14 VSS U14 VDD P15 I/O3L R15 P16 I/O5L P17 VSS R16 I/O4L R17 VDDQL I/O1R VDDQR T15 I/O0R U15 T16 T17 VSS I/O2R U17 U16 OPTR I/O0L I/O1L , 4831 drw 02c NOTES: 1. All VDD pins must be connected to 3.3V power supply. 2. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VIH (3.3V), and 2.5V if OPT pin for that port is set to VIL (0V). 3. All VSS pins must be connected to ground supply. 4. Package body is approximately 15mm x 15mm x 1.4mm, with 0.8mm ball pitch. 5. This package code is used to reference the package diagram. 6. This text does not indicate orientation of the actual part-marking. 6.42 2 IDT70V3569S High-Speed 16K x 36 Dual-Port Synchronous Pipelined Static RAM Industrial and Commercial Temperature Ranges Pin Configuration(1,2,3,4) (con't.) 70V3569BC BC-256(5) 256-Pin BGA Top View(6) 12/12/01 A1 NC B1 I/O18L C1 A2 NC B2 NC C2 I/O18R I/O19L D1 D2 A3 NC B3 NC C3 VSS D3 I/O20R I/O19R I/O20L E1 E2 E3 A4 NC B4 NC C4 NC D4 VDD E4 I/O21R I/O21L I/O22L VDDQL F1 F2 F3 F4 I/O23L I/O22R I/O23R VDDQL G1 G2 G3 G4 I/O24R I/O24L I/O25L VDDQR H1 H2 H3 H4 A5 NC B5 NC C5 A13L D5 J2 J3 J4 I/O27L I/O28R I/O27R VDDQL K1 K2 K3 K4 I/O29R I/O29L I/O28L VDDQL L1 L2 L3 L4 I/O30L I/O31R I/O30R VDDQR M1 M2 M3 M4 I/O32R I/O32L I/O31L VDDQR N1 N2 N3 I/O33L I/O34R I/O33R P1 P2 I/O35R I/O34L R1 I/O35L T1 NC R2 NC T2 NC P3 NC R3 NC T3 NC N4 VDD P4 NC R4 NC T4 NC A11L B6 A12L C6 A10L D6 A7 A8L B7 A9L C7 A7L D7 A8 A9 BE2L CE1L B9 B8 BE3L C8 B10 B11 C10 C11 BE0L CLKL ADSL D9 D8 A11 OEL CNTENL CE0L R/WL CNTRSTL C9 BE1L A10 D10 D11 A12 A5L B12 A4L C12 A6L D12 A13 A2L B13 A1L C13 A3L D13 VDDQL VDDQL VDDQR VDDQR VDDQL VDDQL VDDQR VDDQR VDD E5 VDD F5 VDD G5 VSS H5 I/O26L I/O25R I/O26R VDDQR VSS J1 A6 J5 VSS K5 VSS L5 VDD M5 VDD N5 E6 VDD F6 VSS G6 VSS H6 VSS J6 VSS K6 VSS L6 VSS M6 VDD N6 E7 VSS F7 VSS G7 VSS H7 VSS J7 VSS K7 VSS L7 VSS M7 VSS N7 E8 E9 VSS F9 F8 VSS G8 VSS G9 VSS VSS H8 H9 VSS VSS J8 J9 VSS K8 VSS K9 VSS L8 VSS L9 VSS M8 VSS M9 VSS N8 VSS VSS N9 E10 VSS F10 VSS G10 VSS H10 VSS J10 VSS K10 VSS L10 VSS M10 VSS N10 E11 VDD F11 VSS G11 VSS H11 VSS J11 VSS K11 VSS L11 VSS M11 VDD N11 E12 A13R R5 NC T5 NC P6 A10R R6 A12R T6 A11R P7 A7R R7 A9R T7 A8R P8 P9 P10 P11 BE1R BE0R CLKR ADSR R8 R9 R10 R11 BE3R CE0R R/WR CNTRSTR T8 T9 BE2R CE1R T10 T11 OER CNTENR A0L B14 VDD C14 A15 A16 NC B15 NC B16 I/O17L NC C16 C15 OPTL I/O17R I/O16L D14 D16 D15 I/O15R I/O15L I/O16R E14 E16 E15 VDD VDDQR I/O13L I/O14L I/O14R F12 F13 F14 F15 F16 VDD VDDQR I/O12R I/O13R I/O12L G12 VSS H12 VSS J12 VSS K12 VSS L12 VDD M12 VDD N12 VDDQR VDDQR VDDQL VDDQL VDDQR VDDQR VDDQL VDDQL P5 E13 A14 P12 A6R R12 A4R T12 A5R G13 G14 G15 G16 VDDQL I/O10L I/O11L I/O11R H13 H14 VDDQL I/O9R J13 J14 H16 H15 IO9L I/O10R J15 J16 VDDQR I/O8R I/O7R K13 K14 VDDQR I/O6R L13 L14 VDDQL I/O5L M13 M14 VDDQL I/O3R N13 VDD P13 A3R R13 A1R T13 A2R N14 I/O2L P14 K15 I/O6L L15 OPTR T14 A0R I/O7L L16 I/O4R I/O5R M16 M15 I/O3L I/O4L N16 N15 I/O1R I/O2R P15 P16 I/O0L I/O0R R14 I/O8L K16 I/O1L R16 R15 NC T15 NC , T16 NC NC 4831 drw 02d NOTES: 1. All VDD pins must be connected to 3.3V power supply. 2. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VIH (3.3V), and 2.5V if OPT pin for that port is set to VIL (0V). 3. All VSS pins must be connected to ground supply. 4. Package body is approximately 17mm x 17mm x 1.4mm, with 1.0mm ball-pitch. 5. This package code is used to reference the package diagram. 6. This text does not indicate orientation of the actual part-marking. 6.42 3 , IDT70V3569S High-Speed 16K x 36 Dual-Port Synchronous Pipelined Static RAM Industrial and Commercial Temperature Ranges 12/12/01 70V3569DR DR-208(5) 208-Pin PQFP Top View(6) I/O16L I/O16R I/O15L I/O15R VSS VDDQL I/O14L I/O14R I/O13L I/O13R VSS VDDQR I/O12L I/O12R I/O11L I/O11R VSS VDDQL I/O10L I/O10R I/O9L I/O9R VSS VDDQR VDD VDD VSS VSS VSS VDDQL I/O8R I/O8L I/O7R I/O7L VSS VDDQR I/O6R I/O6L I/O5R I/O5L VSS VDDQL I/O4R I/O4L I/O3R I/O3L VSS VDDQR I/O2R I/O2L I/O1R I/O1L 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 VSS VDDQL I/O35R I/O35L VDD VSS NC NC NC NC NC NC NC NC A13R A12R A11R A10R A9R A8R A7R BE3R BE2R BE1R BE0R CE1R CE0R VDD VDD VSS VSS CLKR OER R/WR ADSR CNTENR CNTRSTR A6R A5R A4R A3R A2R A1R A0R VDD VSS VSS OPTR I/O0L I/O0R VDDQL VSS I/O19L I/O19R I/O20L I/O20R VDDQL VSS I/O21L I/O21R I/O22L I/O22R VDDQR VSS I/O23L I/O23R I/O24L I/O24R VDDQL VSS I/O25L I/O25R I/O26L I/O26R VDDQR VSS VDD VDD VSS VSS VDDQL VSS I/O27R I/O27L I/O28R I/O28L VDDQR VSS I/O29R I/O29L I/O30R I/O30L VDDQL VSS I/O31R I/O31L I/O32R I/O32L VDDQR VSS I/O33R I/O33L I/O34R I/O34L 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 VSS VDDQR I/O18R I/O18L VSS VDD VSS NC NC NC NC NC NC NC A13L A12L A11L A10L A9L A8L A7L BE3L BE2L BE1L BE0L CE1L CE0L VDD VDD VSS VSS CLKL OEL R/WL ADSL CNTENL CNTRSTL A6L A5L A4L A3L A2L A1L A0L VDD VDD VSS OPTL I/O17L I/O17R VDDQR VSS Pin Configuration(1,2,3,4) (con't.) , 4831 drw 02a NOTES: 1. All VDD pins must be connected to 3.3V power supply. 2. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VIH (3.3V), and 2.5V if OPT pin for that port is set to VIL (0V). 3. All VSS pins must be connected to ground supply. 4. Package body is approximately 28mm x 28mm x 3.5mm. 5. This package code is used to reference the package diagram. 6. This text does not indicate orientation of the actual part-marking. 6.42 4 IDT70V3569S High-Speed 16K x 36 Dual-Port Synchronous Pipelined Static RAM Industrial and Commercial Temperature Ranges Pin Names Left Port Right Port Names CE0L, CE1L CE0R, CE1R Chip Enables R/WL R/WR Read/Write Enable OEL OER Output Enable A0L - A13L A0R - A13R Address I/O0L - I/O35L I/O0R - I/O35R Data Input/Output CLKL CLKR Clock ADSL ADSR Address Strobe Enable CNTENL CNTENR Counter Enable CNTRSTL CNTRSTR Counter Reset BE0L - BE3L BE0R - BE3R Byte Enables (9-bit bytes) VDDQL VDDQR Power (I/O Bus) (3.3V or 2.5V)(1) OPTL OPTR Option for selection VDDQX(1,2) VDD Power (3.3V)(1) VSS Ground NOTES: 1. VDD, OPTX, and VDDQX must be set to appropriate operating levels prior to applying inputs on the I/Os and controls for that port. 2. OPTX selects the operating voltage levels for the I/Os and controls on that port. If OPTX is set to VIH (3.3V), then that port's I/Os and controls will operate at 3.3V levels and VDDQX must be supplied at 3.3V. If OPTX is set to VIL (0V), then that port's I/Os and controls will operate at 2.5V levels and VDDQX must be supplied at 2.5V. The OPT pins are independent of one another--both ports can operate at 3.3V levels, both can operate at 2.5V levels, or either can operate at 3.3V with the other at 2.5V. (0V) 4831 tbl 01 Truth Table I--Read/Write and Enable Control(1,2,3,4) OE CLK CE0 CE1 BE3 BE2 BE1 BE0 R/W Byte 3 I/O27-35 Byte 2 I/O18-26 Byte 1 I/O9-17 Byte 0 I/O0-8 X H X X X X X X High-Z High-Z High-Z High-Z Deselected-Power Down X X L X X X X X High-Z High-Z High-Z High-Z Deselected-Power Down X L H H H H H X High-Z High-Z High-Z High-Z All Bytes Deselected X L H H H H L L High-Z High-Z High-Z DIN Write to Byte 0 Only X L H H H L H L High-Z High-Z DIN High-Z Write to Byte 1 Only X L H H L H H L High-Z DIN High-Z High-Z Write to Byte 2 Only X L H L H H H L DIN High-Z High-Z High-Z Write to Byte 3 Only X L H H H L L L High-Z High-Z DIN DIN Write to Lower 2 Bytes Only X L H L L H H L DIN DIN High-Z High-Z Write to Upper 2 bytes Only X L H L L L L L DIN DIN DIN DIN Write to All Bytes L L H H H H L H High-Z High-Z High-Z DOUT Read Byte 0 Only L L H H H L H H High-Z High-Z DOUT High-Z Read Byte 1 Only L L H H L H H H High-Z DOUT High-Z High-Z Read Byte 2 Only L L H L H H H H DOUT High-Z High-Z High-Z Read Byte 3 Only L L H H H L L H High-Z High-Z DOUT DOUT Read Lower 2 Bytes Only L L H L L H H H DOUT DOUT High-Z High-Z Read Upper 2 Bytes Only L L H L L L L H DOUT DOUT DOUT DOUT H L H L L L L X High-Z High-Z High-Z High-Z MODE Read All Bytes Outputs Disabled NOTES: 1. "H" = V IH, "L" = VIL, "X" = Don't Care. 2. ADS, CNTEN, CNTRST = X. 3. OE is an asynchronous input signal. 4. It is possible to read or write any combination of bytes during a given access. A few representative samples have been illustrated here. 6.42 5 4831 tbl 02 IDT70V3569S High-Speed 16K x 36 Dual-Port Synchronous Pipelined Static RAM Industrial and Commercial Temperature Ranges Truth Table II--Address Counter Control(1,2) Address X Previous Address X Addr Used CLK(6) 0 ADS CNTEN X CNTRST I/O(3) MODE X (4) L DI/O(0) Counter Reset to Address 0 An X An L X H DI/O (n) External Address Used An Ap Ap H H H DI/O(p) External Address Blocked--Counter disabled (Ap reused) Ap + 1 H DI/O(p+1) X Ap (4) (5) H L Counter Enabled--Internal Address generation NOTES: 1. "H" = VIH, "L" = VIL, "X" = Don't Care. 2. Read and write operations are controlled by the appropriate setting of R/W, CE0, CE1, BEn and OE. 3. Outputs are in Pipelined mode: the data out will be delayed by one cycle. 4. ADS and CNTRST are independent of all other memory control signals including CE0, CE 1 and BEn 5. The address counter advances if CNTEN = VIL on the rising edge of CLK, regardless of all other memory control signals including CE0, CE1, BEn. Recommended DC Operating Conditions with VDDQ at 2.5V Recommended Operating Temperature and Supply Voltage(1) Parameter Min. Typ. Max. Unit 3.15 3.3 3.45 V 2.375 2.5 2.625 V 0 0 0 V Input High Voltage (3) (Address & Control Inputs) 1.7 ____ V DDQ + 125mV(2) V Input High Voltage - I/O(3) 1.7 ____ V DDQ + 125mV(2) V ____ 0.7 V GND VDD V DD Core Supply Voltage 0OC to +70OC 0V 3.3V + 150mV VDDQ I/O Supply Voltage (3) -40OC to +85OC 0V 3.3V + 150mV V SS Ground VIH VIH Commercial Industrial Symbol Ambient Temperature Grade 4831 tbl 03 4831 tbl 04 NOTES: 1. Industrial temperature: for specific speeds, packages and powers contact your sales office. VIL Input Low Voltage -0.3 (1) 4831 tbl 05a NOTES: 1. VIL > -1.5V for pulse width less than 10 ns. 2. VTERM must not exceed VDDQ + 125mV. 3. To select operation at 2.5V levels on the I/Os and controls of a given port, the OPT pin for that port must be set to VIL (0V), and V DDQX for that port must be supplied as indicated above. Absolute Maximum Ratings(1) Symbol Rating Commercial & Industrial Unit VTERM(2) Terminal Voltage with Respect to GND -0.5 to +4.6 V TBIAS Temperature Under Bias -55 to +125 o C TSTG Storage Temperature -65 to +150 o C IOUT DC Output Current Recommended DC Operating Conditions with VDDQ at 3.3V Symbol 50 mA 4831 tbl 06 NOTES: 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. VTERM must not exceed VDD + 150mV for more than 25% of the cycle time or 4ns maximum, and is limited to < 20mA for the period of VTERM > VDD + 150mV. Parameter Min. Typ. Max. Unit V DD Core Supply Voltage 3.15 3.3 3.45 V VDDQ I/O Supply Voltage (3) 3.15 3.3 3.45 V V SS Ground 0 0 0 VDDQ + 150mV (2) V V VIH Input High Voltage (Address & Control Inputs)(3) 2.0 ____ VIH Input High Voltage - I/O(3) 2.0 ____ VDDQ + 150mV(2) V VIL Input Low Voltage -0.3(1) ____ 0.8 V 4831 tbl 05b NOTES: 1. VIL > -1.5V for pulse width less than 10 ns. 2. VTERM must not exceed VDDQ + 150mV. 3. To select operation at 3.3V levels on the I/Os and controls of a given port, the OPT pin for that port must be set to VIH (3.3V), and VDDQX for that port must be supplied as indicated above. 6.42 6 IDT70V3569S High-Speed 16K x 36 Dual-Port Synchronous Pipelined Static RAM Industrial and Commercial Temperature Ranges Capacitance(1) (TA = +25C, F = 1.0MHZ) PQFP ONLY Symbol Parameter Input Capacitance CIN (3) COUT Output Capacitance Conditions(2) Max. Unit V IN = 3dV 8 pF VOUT = 3dV 10.5 pF 4831 tbl 07 NOTES: 1. These parameters are determined by device characterization, but are not production tested. 2. 3dV references the interpolated capacitance when the input and output switch from 0V to 3V or from 3V to 0V. 3. COUT also references CI/O. DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (VDD = 3.3V 150mV) 70V3569S Symbol |ILI| Parameter (1) Test Conditions Min. Max. Unit Input Leakage Current VDDQ = Max., VIN = 0V to V DDQ ___ 10 A Output Leakage Current 10 A CE0 = VIH or CE1 = VIL, VOUT = 0V to VDDQ ___ VOL (3.3V) Output Low Voltage (2) IOL = +4mA, VDDQ = Min. ___ 0.4 V VOH (3.3V) Output High Voltage (2) IOH = -4mA, VDDQ = Min. 2.4 ___ V VOL (2.5V) Output Low Voltage(2) IOL = +2mA, VDDQ = Min. ___ 0.4 V VOH (2.5V) (2) 2.0 ___ V |ILO| Output High Voltage IOH = -2mA, VDDQ = Min. 4831 tbl 08 NOTE: 1. At VDD < - 2.0V input leakages are undefined. 2. VDDQ is selectable (3.3V/2.5V) via OPT pins. Refer to p.4 for details. 6.42 7 IDT70V3569S High-Speed 16K x 36 Dual-Port Synchronous Pipelined Static RAM Industrial and Commercial Temperature Ranges DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range(3) (VDD = 3.3V 150mV) 70V3569S4 Com'l Only Symbol IDD ISB1 ISB2 ISB3 ISB4 Parameter Test Condition 70V3569S5 Com'l & Ind 70V3569S6 Com'l Only Typ. (4) Max. Typ. (4) Max. Typ. (4) Max. Unit S 375 460 285 360 245 310 mA ____ 285 415 245 360 Version Dynamic Operating Current (Both Ports Active) CEL and CER= VIL, Outputs Disabled, f = fMAX(1) COM'L IND S ____ Standby Current (Both Ports - TTL Level Inputs) CEL = CER = VIH f = fMAX(1) COM'L S 145 190 105 145 95 125 IND S ____ ____ 105 175 95 150 Standby Current (One Port - TTL Level Inputs) CE"A" = VIL and CE"B" = VIH Active Port Outputs Disabled, f=fMAX(1) COM'L S 265 325 190 260 175 225 IND S ____ ____ 190 300 175 260 Full Standby Current (Both Ports - CMOS Level Inputs) Both Ports CEL and CER > VDDQ - 0.2V, VIN > VDDQ - 0.2V or VIN < 0.2V, f = 0(2) COM'L S 6 15 6 15 6 15 IND S ____ ____ 6 30 6 30 Full Standby Current (One Port - CMOS Level Inputs) CE"A" < 0.2V and CE"B" > VDDQ - 0.2V(5) VIN > VDDQ - 0.2V or VIN < 0.2V, Active Port, Outputs Disabled, f = fMAX(1) COM'L S 265 325 180 260 170 225 IND S ____ ____ 180 300 170 260 (5) mA mA mA mA 4831 tbl 09 NOTES: 1. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of 1/tCYC , using "AC TEST CONDITIONS" at input levels of GND to 3V. 2. f = 0 means no address, clock, or control lines change. Applies only to input at CMOS level standby. 3. Port "A" may be either left or right port. Port "B" is the opposite from port "A". 4. VDD = 3.3V, TA = 25C for Typ, and are not production tested. IDD DC (f=0) = 120mA (Typ). 5. CEX = V IL means CE 0X = V IL and CE1X = VIH CEX = VIH means CE0X = VIH or CE1X = VIL CEX < 0.2V means CE0X < 0.2V and CE1X > VDDQ - 0.2V CEX > VDDQ - 0.2V means CE0X > VDDQ - 0.2V or CE1X - 0.2V "X" represents "L" for left port or "R" for right port. 6.42 8 IDT70V3569S High-Speed 16K x 36 Dual-Port Synchronous Pipelined Static RAM Industrial and Commercial Temperature Ranges AC Test Conditions 2.5V Input Pulse Levels (Address & Controls) GND to 3.0V/GND to 2.35V Input Pulse Levels (I/Os) GND to 3.0V/GND to 2.35V 833 3ns Input Rise/Fall Times Input Timing Reference Levels 1.5V/1.25V Output Reference Levels 1.5V/1.25V DATAOUT 5pF* 770 Figures 1, 2, and 3 Output Load 4831 tbl 10 , 3.3V 50 590 50 DATAOUT 1.5V/1.25 , DATAOUT 10pF (Tester) 4831 drw 03 435 5pF* Figure 1. AC Output Test load. 4831 drw 04 Figure 2. Output Test Load (For tCKLZ , tCKHZ, tOLZ, and tOHZ ). *Including scope and jig. 10.5pF is the I/O capacitance of this device, and 10pF is the AC Test Load Capacitance. 7 6 5 4 tCD (Typical, ns) 3 2 1 * 20.5 * 30 * 50 * 80 100 200 -1 Capacitance (pF) 4831 drw 05 * Figure 3. Typical Output Derating (Lumped Capacitive Load). 6.42 9 , , IDT70V3569S High-Speed 16K x 36 Dual-Port Synchronous Pipelined Static RAM Industrial and Commercial Temperature Ranges AC Electrical Characteristics Over the Operating Temperature Range (Read and Write Cycle Timing)(1,2) (VDD = 3.3V 150mV, TA = 0C to +70C) 70V3569S4 Com'l Only Symbol tCYC2 tCH2 tCL2 Parameter Clock Cycle Time (Pipelined) Clock High Time (Pipelined) Clock Low Time (Pipelined) Min. Max. 7.5 ____ 3 ____ 3 ____ 70V3569S5 Com'l & Ind 70V3569S6 Com'l Only Min. Max. 10 ____ Min. Max. Unit 12 ____ 4 ____ ns 5 ____ 4 ____ ns 5 ____ 3 ____ ns 3 ____ 3 ns tR Clock Rise Time ____ tF Clock Fall Time ____ 3 ____ 3 ____ 3 ns tSA Address Setup Time 1.8 ____ 2.0 ____ 2.0 ____ ns tHA Address Hold Time 0.7 ____ 0.7 ____ 1.0 ____ ns tSC Chip Enable Setup Time 1.8 ____ 2.0 ____ 2.0 ____ ns 0.7 ____ 0.7 ____ 1.0 ____ ns 1.8 ____ 2.0 ____ 2.0 ____ ns 0.7 ____ 1.0 ____ ns tHC Chip Enable Hold Time Byte Enable Setup Time tSB tHB Byte Enable Hold Time 0.7 ____ tSW R/W Setup Time 1.8 ____ 2.0 ____ 2.0 ____ ns tHW R/W Hold Time 0.7 ____ 0.7 ____ 1.0 ____ ns tSD Input Data Setup Time 1.8 ____ 2.0 ____ 2.0 ____ ns tHD Input Data Hold Time 0.7 ____ 0.7 ____ 1.0 ____ ns tSAD ADS Setup Time 1.8 ____ 2.0 ____ 2.0 ____ ns tHAD ADS Hold Time 0.7 ____ 0.7 ____ 1.0 ____ ns tSCN CNTEN Setup Time 1.8 ____ 2.0 ____ 2.0 ____ ns tHCN CNTEN Hold Time 0.7 ____ 0.7 ____ 1.0 ____ ns tSRST CNTRST Setup Time 1.8 ____ 2.0 ____ 2.0 ____ ns tHRST CNTRST Hold Time 0.7 ____ 0.7 ____ 1.0 ____ ns Output Enable to Data Valid ____ 4 ____ 5 ____ 6 ns tOE (1) tOLZ Output Enable to Output Low-Z 0 ____ 0 ____ 0 ____ ns tOHZ Output Enable to Output High-Z 1 4 1 4.5 1 5 ns tCD2 Clock to Data Valid (Pipelined) ____ 4.2 ____ 5 ____ 6 ns ____ 1 ____ 1 ____ ns tDC Data Output Hold After Clock High 1 tCKHZ Clock High to Output High-Z 1 3 1 4.5 1.5 6 ns 1 ____ 1 ____ 1 ____ ns 6 ____ 8 ____ 10 ____ ns tCKLZ Clock High to Output Low-Z Port-to-Port Delay tCO Clock-to-Clock Offset NOTES: 1. All input signals are synchronous with respect to the clock except for the asynchronous Output Enable (OE). 2. These values are valid for either level of VDDQ (3.3V/2.5V). See page 4 for details on selecting the desired I/O voltage levels for each port. 6.42 10 4831 tbl 11 IDT70V3569S High-Speed 16K x 36 Dual-Port Synchronous Pipelined Static RAM Industrial and Commercial Temperature Ranges Timing Waveform of Read Cycle for Pipelined Operation(2) tCYC2 tCH2 tCL2 CLK CE0 tSC tSC tHC tHC (3) CE1 tSB tHB tSB BE(0-3) R/W ADDRESS (4) tSW tHW tSA tHA An An + 1 (1 Latency) An + 2 An + 3 tDC tCD2 DATAOUT Qn tCKLZ OE tHB (5) Qn + 1 Qn + 2 (5) (1) tOHZ tOLZ (1) tOE NOTES: 4831 drw 06 1. OE is asynchronously controlled; all other inputs are synchronous to the rising clock edge. 2. ADS = VIL, CNTEN and CNTRST = VIH. 3. The output is disabled (High-Impedance state) by CE0 = VIH, CE1 = VIL, BEn = VIH following the next rising edge of the clock. Refer to Truth Table 1. 4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only. 5. If BEn was HIGH, then the appropriate Byte of DATAOUT for Qn + 2 would be disabled (High-Impedance state). Timing Waveform of a Multi-Device Pipelined Read(1,2) tCH2 tCYC2 tCL2 CLK tSA tHA A0 ADDRESS(B1) tSC tHC CE0(B1) tSC tHC tCD2 tCD2 Q0 DATAOUT(B1) tCKHZ A1 tSC tCKHZ A6 A5 A4 A3 A2 tSC CE0(B2) Q3 tCKLZ tDC tHA A0 ADDRESS(B2) tCD2 Q1 tDC tSA A6 A5 A4 A3 A2 A1 tHC tHC tCD2 DATAOUT(B2) tCKHZ tCD2 Q4 Q2 tCKLZ NOTES: 1. B1 Represents Device #1; B2 Represents Device #2. Each Device consists of one IDT70V3569 for this waveform, and are setup for depth expansion in this example. ADDRESS(B1) = ADDRESS(B2) in this situation. 2. BEn, OE, and ADS = VIL; CE 1(B1), CE 1(B2), R/W, CNTEN, and CNTRST = VIH. 6.42 11 tCKLZ 4831 drw 07 IDT70V3569S High-Speed 16K x 36 Dual-Port Synchronous Pipelined Static RAM Industrial and Commercial Temperature Ranges Timing Waveform of Left Port Write to Pipelined Right Port Read(1,2) CLKL tSW tHW tSA tHA R/WL ADDRESSL NO MATCH MATCH tSD DATAINL tHD VALID tCO(3) CLKR tCD2 R/WR ADDRESSR tSW tHW tSA tHA NO MATCH MATCH DATAOUTR VALID tDC 4831 drw 08 NOTES: 1. CE0, BEn, and ADS = VIL; CE1, CNTEN, and CNTRST = VIH. 2. OE = VIL for the Right Port, which is being read from. OE = V IH for the Left Port, which is being written to. 3. If tCO < minimum specified, then data from right port read is not valid until following right port clock cycle (ie, time from write to valid read on opposite port will be tCO + 2 tCYC2 + tCD2 ). If tCO > minimum, then data from right port read is available on first right port clock cycle (ie, time from write to valid read on opposite port will be tCO + tCYC + tCD2 ). Timing Waveform of Pipelined Read-to-Write-to-Read tCYC2 (OE = VIL)(2) tCH2 tCL2 CLK CE0 tSC tHC tSB tHB CE1 BEn tSW tHW R/W (3) ADDRESS tSW tHW An tSA tHA An +1 An + 2 An + 3 An + 2 An + 4 tSD tHD DATAIN Dn + 2 tCD2 (1) tCKHZ tCKLZ tCD2 Qn + 3 Qn DATAOUT READ NOP (4) WRITE READ 4831 drw 09 NOTES: 1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals. 2. CE0, BEn, and ADS = V IL; CE1, CNTEN, and CNTRST = V IH. "NOP" is "No Operation". 3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only. 4. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity. 6.42 12 IDT70V3569S High-Speed 16K x 36 Dual-Port Synchronous Pipelined Static RAM Industrial and Commercial Temperature Ranges Timing Waveform of Pipelined Read-to-Write-to-Read (OE Controlled)(2) tCH2 tCYC2 tCL2 CLK CE0 tSC tHC tSB tHB CE1 BEn tSW tHW R/W (3) ADDRESS tSW tHW An tSA tHA An +1 An + 2 tSD DATAIN Dn + 2 tCD2 (1) Qn DATAOUT An + 4 An + 3 An + 5 tHD Dn + 3 tCKLZ tCD2 Qn + 4 (4) tOHZ OE READ WRITE READ 4831 drw 10 NOTES: 1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals. 2. CE 0, BEn, and ADS = VIL; CE1, CNTEN, and CNTRST = VIH. 3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only. 4. This timing does not meet requirements for fastest speed grade. This waveform indicates how logically it could be done if timing so allows. Timing Waveform of Pipelined Read with Address Counter Advance(1) tCH2 tCYC2 tCL2 CLK tSA ADDRESS tHA An tSAD tHAD ADS tSAD tHAD CNTEN tSCN tHCN tCD2 DATAOUT Qx - 1(2) Qn + 2(2) Qn + 1 Qn Qx Qn + 3 tDC READ EXTERNAL ADDRESS READ WITH COUNTER COUNTER HOLD READ WITH COUNTER 4831 drw 11 NOTES: 1. CE0, OE, BEn = VIL; CE1, R/W, and CNTRST = V IH. 2. If there is no address change via ADS = V IL (loading a new address) or CNTEN = VIL (advancing the address), i.e. ADS = VIH and CNTEN = VIH, then the data output remains constant for subsequent clocks. 6.42 13 IDT70V3569S High-Speed 16K x 36 Dual-Port Synchronous Pipelined Static RAM Industrial and Commercial Temperature Ranges Timing Waveform of Write with Address Counter Advance(1) tCH2 tCYC2 tCL2 CLK tSA tHA An ADDRESS INTERNAL(3) ADDRESS An(7) An + 2 An + 1 An + 4 An + 3 tSAD tHAD ADS tSCN tHCN CNTEN tSD tHD Dn + 1 Dn DATAIN WRITE EXTERNAL ADDRESS Dn + 1 Dn + 4 Dn + 3 Dn + 2 WRITE WRITE WITH COUNTER COUNTER HOLD WRITE WITH COUNTER 4831 drw 12 Timing Waveform of Counter Reset(2) tCH2 tCYC2 tCL2 CLK tSA tHA (4) An ADDRESS INTERNAL(3) ADDRESS Ax 0 1 An + 2 An + 1 An An + 1 tSW tHW R/W ADS tSAD tHAD CNTEN tSCN tHCN tSRST tHRST CNTRST tSD tHD D0 DATAIN (5) Q1 Q0 DATAOUT (6) COUNTER RESET WRITE ADDRESS 0 READ ADDRESS 0 READ ADDRESS 1 READ ADDRESS n Qn READ ADDRESS n+1 NOTES: 4831 drw 13 1. CE0, BEn, and R/W = V IL; CE1 and CNTRST = VIH. 2. CE0, BEn = VIL; CE1 = VIH. 3. The "Internal Address" is equal to the "External Address" when ADS = VIL and equals the counter output when ADS = VIH. 4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only. 5. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals. 6. No dead cycle exists during counter reset. A READ or WRITE cycle may be coincidental with the counter reset cycle: ADDR 0 will be accessed. Extra cycles are shown here simply for clarification. 7. CNTEN = VIL advances Internal Address from `An' to `An +1'. The transition shown indicates the time required for the counter to advance. The `An +1'Address is written to during this cycle. 6.42 14 IDT70V3569S High-Speed 16K x 36 Dual-Port Synchronous Pipelined Static RAM Industrial and Commercial Temperature Ranges Functional Description Depth and Width Expansion The IDT70V3569 provides a true synchronous Dual-Port Static RAM interface. Registered inputs provide minimal set-up and hold times on address, data, and all critical control inputs. All internal registers are clocked on the rising edge of the clock signal, however, the self-timed internal write pulse is independent of the LOW to HIGH transition of the clock signal. An asynchronous output enable is provided to ease asynchronous bus interfacing. Counter enable inputs are also provided to stall the operation of the address counters for fast interleaved memory applications. A HIGH on CE0 or a LOW on CE1 for one clock cycle will power down the internal circuitry to reduce static power consumption. Multiple chip enables allow easier banking of multiple IDT70V3569s for depth expansion configurations. Two cycles are required with CE0 LOW and CE1 HIGH to re-activate the outputs. The IDT70V3569 features dual chip enables (refer to Truth Table I) in order to facilitate rapid and simple depth expansion with no requirements for external logic. Figure 4 illustrates how to control the various chip enables in order to expand two devices in depth. The IDT70V3569 can also be used in applications requiring expanded width, as indicated in Figure 4. Through combining the control signals, the devices can be grouped as necessary to accommodate applications needing 72-bits or wider. A15 IDT70V3569 CE0 CE1 IDT70V3569 CE1 VDD VDD Control Inputs Control Inputs IDT70V3569 CE0 IDT70V3569 CE1 CE1 CE0 CE0 Control Inputs Control Inputs 4831 drw 14 Figure 4. Depth and Width Expansion with IDT70V3569 6.42 15 BE, R/W, OE, CLK, ADS, CNTRST, CNTEN , IDT70V3569S High-Speed 16K x 36 Dual-Port Synchronous Pipelined Static RAM Industrial and Commercial Temperature Ranges Ordering Information XXXXX A 99 A Device Type Power Speed Package A A Process/ Temperature Range Blank I(1) Commercial (0C to +70C) Industrial (-40C to +85C) G(2) Green BF DR BC 208-pin fpBGA (BF-208) 208-pin PQFP (DR-208) 256-pin BGA (BC-256) 4 5 6 Commercial Only Commercial & Industrial Commercial Only S Standard Power Speed in nanoseconds 70V3569 576Kbit (16K x 36-Bit) 3.3V Synchronous Dual-Port RAM 4831 drw 15 NOTES: 1. Contact your local sales office for Industrial temp range in other speeds, packages and powers. 2. Green parts available. For specific speeds, packages and powers contact your local sales office. Datasheet Document History 1/8/99: 3/12/99: 4/28/99: 6/8/99: 6/15/99: 8/4/99: 10/14/99: 10/19/99: 11/12/99: 4/10/00: Initial Public Release Added fpBGA package Fixed typo on page 10 Changed drawing format Page 2 Changed package body dimensions Page 3 Fixed typo Page 5 Deleted note 6 for Table II Page 2 Fixed typographical error Page 6 Improved power number Upgraded speed to 133MHz, added 2.5V I/O capability Page 4 Corrected I/O numbers in Truth Table I Replaced IDT logo Added new BGA packages, added full 2.5V interface capability Continued on page 17 6.42 16 IDT70V3569S High-Speed 16K x 36 Dual-Port Synchronous Pipelined Static RAM Industrial and Commercial Temperature Ranges Datasheet Document History (cont'd) 01/12/01: 04/10/01: 12/12/01: 3/23/05: 02/08/06: 07/25/08: 10/23/08: Page 6 Updated Truth Table II Increated storage temperature parameter Clarified TA Parameter Page 8 DC Electrical parameters-changed wording from "open" to "disabled" Removed note 7 on DC Electrical Characteristics table Removed Preliminary status Added Industrial Temperature Ranges and removed related notes Page 2, 3 & 4 Added date revision to pin configurations Page 6 Removed industrial temp footnote from table 04 Page 8 & 10 Removed industrial temp for 6ns from DC & AC Electrical Characteristics Page 16 Removed industrial temp from 6ns in ordering information Added industrial temp footnote Page 1 & 17 Replaced TM logo with (R) logo Page 1 Added green availability to features Page 16 Added green indicator to ordering information Page 1 & 17 Replaced old IDT TM with new IDT TM logo Page 5 Changed footnote 2 for Truth Table I from ADS, CNTEN, CNTRST = VIH to ADS, CNTEN, CNTRST = X Page 8 Corrected a typo in the DC Chars table Page 16 Removed "IDT" from orderable part number CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com The IDT logo is a registered trademark of Integrated Device Technology, Inc. 6.42 17 for Tech Support: 408-284-2794 DualPortHelp@idt.com